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Abstract Mechanotransduction, the conversion of a
mechanical stimulus into a cellular response, plays a
fundamental role in cell volume regulation, fertilization,
gravitaxis, proprioception, and the senses of hearing,
touch, and balance. Mechanotransduction also fills im-

portant functions in the myocardium, where each cycle of
contraction and relaxation leads to dynamic deformations.
Since the initial observation of stretch induced muscle
growth, our understanding of this complex field has been
steadily growing, but remains incomplete. For example,
the mechanism by which myocytes sense mechanical
forces is still unknown. It is also unknown which
mechanism converts such a stimulus into an electrochem-
ical signal, and how this information is transferred to the
nucleus. Is there a subpopulation of mechanosensing
myocytes or mechanosensing cells in the myocardium?
The following article offers an overview of the funda-
mental processes of mechanical stretch sensing in myo-
cytes and recent advances in our understanding of this
increasingly important field. Special emphasis is placed
on the unique cardiac cytoskeletal structure and related Z-
disc proteins.

Keywords Z-disc proteins · Stretch response ·
Tensegrity · Myocardial stretch sensing · Cardiomyopathy

Abbreviations BNC: Brain sodium channel ·
CARP: Cardiac ankyrin repeat protein · MLP: Muscle
LIM protein · SAC: Stretch-activated channel

Introduction

Cell volume and growth regulation is essential for cell
survival, and it has been postulated that mutations in
mechanosensor genes cause cancer [1] and neuropathies
[2]. Stretch is also known to induce muscle growth and
was first reported by Csapo and coworkers [3]. Since this
initial observation it has been reported that mechanical
overload on remaining myocytes after both myocardial
infarction and hypertension also induce a (compensatory)
hypertrophy. Therefore it is conceivable that mutations in
the genes responsible for mechanical stretch sensing in
myocytes influence the myocardial stretch response and
represent a basis for cardiac disease. In this context it is
important to note that a vast number of different
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mutations are known to cause cardiovascular diseases (for
more detailed reviews see [4, 5], but the underlying
mechanisms, leading from DNA mutations to the com-
plex phenotype in vivo are often unknown. Studies in
integrin a7 deficient mice which develop a muscular
dystrophy [6], studies in mice harboring a myocyte
specific loss of integrin b1 which develop heart failure
[7], and studies in mouse models and in humans [8] have
pointed to a connection between failure in stretch sensing
mechanisms and heart disease.

Mechanotransduction is a highly conserved process
and can be found in a wide variety of different cells,
including endothelial cells, fibroblasts, and cardiomy-
ocytes. However, the presence of a stretch sensing
mechanism in these cell types does not mean that they
all share a common mechanism. It is more likely that
during evolution under different circumstances different
sensing mechanisms were developed in different cell
types and organisms. Evidence for this notion can be
found in the fact that no homologues of the mechanosen-
sitive channel in bacteria mscL have been found in
eukaryotes, and that close homologues of the putative
channel subunits in Caenorhabditis elegans, MEC-4, and
MEC-10 have not been found in vertebrates (for review
see [2]). Therefore to understand sensing mechanisms in
different cell types each single cell type must be analyzed
independently.

Interestingly, different forms of mechanical stretch
result in the activation of different signaling pathways in a
certain cell type, whereas different cells may respond to
the same challenge with different biochemical answers.
For example, in cardiac fibroblasts, angiotensin II
activates mitogen-activated protein kinases through an
upstream regulatory complex including the Gbg subunit
of Gi protein, tyrosine kinases including Src family
tyrosine kinases, Shc, Grb2, Ras, and Raf-1 kinase, while
Gq and protein kinase C are major signaling molecules
activated by angiotensin II in cardiac myocytes [9].

Conversely, different forms of stretch (i.e., direct
mechanical stretch or stretch induced by hypo-osmotic
pressure) induce different reactions in the same cell type.
For example: hypotonic swelling induced c-fos gene
expression in cardiomyocytes was abolished by tyrosine
kinase inhibitors, but not by inhibitors of protein kinase C,
phospholipase C, or angiotensin II antagonists [10]. In
contrast, c-fos gene induction by directly stretching
cardiomyocytes plated on silicon membranes was inhib-
ited by tyrosine kinase, protein kinase C, and phospho-
lipase C inhibitors or angiotensin II antagonists [11, 12].
In addition, extracellular matrix proteins (e.g., laminin,
fibronectin, vitronectin) are involved in the stretch
response and activate signaling kinases in cardiac fibro-
blasts [13].

To date the molecular identity of a mechanosensor or
mechanosensors in cardiomyocytes is unknown. Two
major paradigms have emerged: a localized model of
mechanotransduction in which the cellular signal is
generated in close proximity to the plasma membrane
and a decentralized model in which the forces applied at

the cell surface are transmitted to other locations via the
cytoskeleton [14, 15]. The two models are not mutually
exclusive; they may exist in parallel and they may
communicate.

Centralized models

Stretch-activated channels

Localized models of mechanotransduction propose that a
stretch signal is generated in close proximity to the
membrane; hence, stretch-activated channels (SACs) are
good candidates for mechanosensors in this model. SACs,
found in more than 30 different types of cells including
animals, plants, fungi and even bacteria [16], are permis-
sive to K+, Na+, and Ca2+. Stretch of cardiac myocytes
increases intracellular calcium levels [17], which can be
blocked by streptomycin and gadolinium, known in-
hibitors of SACs [18, 19, 20]. SACs can open rapidly and
amplify the signal by permitting the entry of large
numbers of ions (for review see [21]), thereby demon-
strating mechanosensor properties. In contrast, several
other studies were unable to show that inhibitors of SAC
block stretch induced expression of immediate early
genes and protein synthesis [22, 23, 24].

Mechanosensation (mec) is the transduction of me-
chanical forces into a cellular electrochemical signal,
enabling living organisms to detect touch; vibrations,
such as sound; accelerations, including gravity; body
movements; and changes in cellular volume and shape
[2].

A genetic screen of C. elegans with defects in
mechanosensation resulted in the identification of several
mutant mec genes [25]. A subset of these genes encode
cytoskeletal genes or ion channels such as degenerins.
The mouse orthologue of a mec, brain sodium channel 1
(BNC1), was targeted and BNC1-null mice were ana-
lyzed. There was only a mild electrophysiological phe-
notype in neurons but no behavioral deficits were
documented, suggesting other members of the gene
family have compensated for the defect [26]. Other
genetically targeted mice harboring deleted alleles of
epithelial sodium channels (relatives of the BNC genes)
die of defects in electrolyte metabolism within a few days
of birth (reviewed in [27]).

Integrins

Integrins represent another group of transmembrane
proteins, possibly involved in mechanosensing [28].
Integrins are heterodimeric transmembrane receptors that
couple components of the extracellular matrix or neigh-
boring cells with the intracellular actin cytoskeleton.
Because the cytoplasmic domain physically associates
with multiple cytoskeletal proteins (e.g., talin, tensin,
vinculin, paxillin, and a-actinin) integrins may serve as
mechanosensors, transmitting mechanical signals to the
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cytoskeleton. Its interaction with the focal adhesion
kinase is therefore of special importance. Focal adhesion
kinase interacts with a variety of different molecules such
as Src, Fyn, p130Cas, and Graf (GTPase regulator
associated with focal adhesion kinase). These signaling
molecules further activate various downstream proteins
such as p21ras, mitogen-activated protein kinases, Rho/
Cdc42, phosphatidyl inositol 4-5 biphosphate kinase,
protein kinase C, and p70S6 K. Therefore integrins are also
very attractive candidates for mechanotransduction.

A subset of integrins specifically binds to the amino
acid sequence Arg-Gly-Asp (RGD). Pretreatment of
cardiac myocytes with RGD peptides inhibited features
of hypotonic cell swelling induced activation of down-
stream signaling [22, 29]. Because of their interaction
with a variety of cytoskeletal proteins integrins might link
centralized and decentralized models of mechanosensing
and transduction.

Second messengers

Second messenger systems, such as nonreceptor-type
tyrosine kinases (e.g., Src) have also been linked to
stretch sensing. Membrane stretch might directly cause
conformational changes in these molecules and activate
them. Indeed, tyrosine kinase activity is observed within
5 s after hypotonic stress, the earliest time point examined
following a stretch [10]. The underlying mechanism
activating these kinases remains unclear. Experiments
with pharmacological inhibitors suggest that protein
kinase C, mitogen-activated protein kinases (extracellular
signal regulated kinases 1 and 2), or even G proteins may
not be involved. A vast number of additional molecules
such as phospholipases C and D as well as ion exchangers
such as the Na/H exchanger are implicated in
mechanosensor functions (for an overview see [30]).

Given the large number of different molecules with the
potential to sense mechanical force and to interact with
the cytoskeleton, a reductionist approach, whereby single
molecules are pointed out, might not necessarily be the
strategy to solve the problem of primary mechanosensa-
tion.

Decentralized models

Decentralized models of mechanotransduction propose
that mechanical stress applied at the cell surface is
transmitted throughout the cell via the cytoskeleton. The
term “tensegrity,” based on R. Buckminster Fuller’s
geodesic dome, has been applied to describe the trans-
mission of mechanical forces from one part of the cell to
another. This would theoretically allow the process of
mechanotransduction to occur at a locus distant from the
site of applied strain [31, 32].

The tensegrity model of mechanotransduction is
supported by a variety of different data, including the
fact that isolated myocytes in vitro, after the application

of a mechanical stimulus, are able to respond with an
increase in their gene expression, protein synthesis and
cell size [33, 34]. The ability to sense stretch does not
necessarily depend on humoral or neural factors but on an
intact stretch sensor complex inside the cell. These and
other data using a variety of different agents and
antagonists gave rise to the hypothesis that the whole
cell is the mechanosensor [35]. However, it is likely that
some molecules or macromolecular structures have more
important implications in mechanotransduction than oth-
ers.

Titin, T-cap, and MLP

Titin, transcribed from a single gene consisting of 363
exons and located on chromosome 2, encodes a protein
consisting of up to 38,138 amino acids with a mature
molecular weight of up to 4.2 MDa. It spans a half
sarcomere, the contractile unit of striated muscle [36].
This gigantic protein plays a pivotal role in a variety of
different processes, including myofibril assembly and
maintenance. It also contributes significantly to the
intrinsic passive elasticity. The aminoterminal half of
the protein is anchored into the Z-disc, where it binds a
variety of different proteins, including a-actinin and t-cap
[37]. T-cap or telethonin, with a molecular weight of
about 19 kDa is a relatively small protein with no
significant homologies to any other known protein. It
binds at the lateral boundaries of the Z-disc to the
aminoterminal end of titin (hence its name: titin cap, t-
cap). Interestingly, mutations in this protein have been
found to cause a form of limb girdle muscular dystrophy
[38] and it is likely to be implicated in the genesis of
cardiomyopathy [8].

T-cap also binds to a variety of different proteins
including the potassium channel b-subunit minK, provid-
ing at least a structural basis for the interaction of
cytoskeletal proteins with ion channels [39]. Another
binding partner for t-cap is the muscle LIM protein
(MLP). This protein, with a molecular weight of about
26 kDa, is also relatively small. Mice deficient for MLP
develop a severe form of dilated cardiomyopathy, a
syndrome characterized by enlargement and impaired
function of one or both ventricles.

Interestingly, the cardiomyopathy phenotype of MLP�/�

mice can be rescued if this line is crossed into phos-
pholamban deficient mice, generating MLP-phospholam-
ban double-knockout animals. This can be documented by
a variety of different in vivo or in vitro measurements,
including electron microscopy [40]. In the case of the
MLP deleted mice, a broad and distorted Z-disc can be
observed, whereas this phenotype is completely rescued in
case of the MLP-phospholamban double-deficient mice
[8].

The underlying mechanism of the development of
cardiomyopathy in MLP�/� seems to be at least partly a
loss in the stretch sensing apparatus, represented by a
macromolecular complex consisting of MLP/t-cap and
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titin (Fig. 1). Thus the additional deletion of phospho-
lamban in the MLP deficient background represents a
strategy to overcome a defect in myocardial stretch
sensing. With a more compliant passive elasticity,
mechanical stretch is not sensed appropriately and hence
there is failure to activate second messenger systems or to
induce strain-dependent modification of the cytoskeleton
itself.

The molecular basis for the higher compliance in the
MLP-deficient myocardium needs to be unraveled in
much more detail. Different models are conceivable: one
possibility consists of a change in conformation following
the loss of MLP followed by t-cap instability at the
periphery of the Z-disc. Another possibility is the
mechanical instability of the Z-disc, ultimately leaving
titin molecules without their anchor, giving rise to a much
more compliant A-band. Another possibility is a change
in the expression of different titin isoforms. N2B titin,
which is expressed only in myocardium, is the only
isoform expressed in small rodents, representing a stiffer
form of titin, whereas the N2BA isoform is much more
compliant and found to be coexpressed in large mammals,
including humans. Heart failure related isoform switching
is at play at least in the canine and human myocardium,
suggesting that this mechanism may be utilized to adjust
diastolic stiffness during heart disease [41, 42]. However,
whether such a change occurs in the mouse myocardium
needs to be clarified.

Other possibilities include changes in the recently
discovered interaction between PEVK titin and F-actin.
The data suggest that this contributes significantly to
passive stiffness of the sarcomere [43]. Yet another
possibility includes changes in N2B titin phosphorylation

by protein kinase A [44]. Phosphorylation of N2B titin
might cause a destabilization of native structures within
the N2B element, causing it to extend and lower its
fractional extension. Considering that the activation of
protein kinase A via b-adrenergic stimulation constitutes
a major regulatory pathway in the heart, the protein kinase
A responsive element of cardiac titins may allow
modulation of diastolic function in vivo and might be at
play in heart failure as well.

Other possibilities include the influence of titin on
actin-myosin filament interaction and its calcium sensi-
tivity, all of which can affect either directly or indirectly
passive myocardial stiffness.

Melusin

Melusin is a muscle specific protein located at costameres
near the Z-disc, where it binds to the cytoplasmic domain
of b1 integrin. Inactivation of this gene does not affect
cardiac development or basal function but leads to a
reduced left ventricular hypertrophy and a transition to
dilated cardiomyopathy following aortic constriction.
More interestingly, deficiency of this protein is not
associated with any loss of sensitivity to humoral factors
such as angiotensin II or phenylephrine in terms of a
myocardial hypertrophic response. Further analysis re-
vealed that following pressure overload glycogen syn-
thase kinase 3b and Akt phosphorylation was blunted in
melusin-deficient hearts [45]. Thus melusin is an element
of the integrin-dependent cardiac mechanosenor and may
be indispensable for the heart to induce adaptive cardiac
remodeling. Several questions, such as whether human

Fig. 1 Schematic diagram of a
half sarcomere with different Z-
disc proteins and their localiza-
tion. T-cap, MLP, a-actinin,
and the calsarcins are Z-disc
proteins. Melusin interacts with
the integrins b1. CARP is lo-
cated within the I band. Titin, a
giant protein spanning a half
sarcomere, is anchored with its
aminoterminus at the Z-disc.
During passive mechanical
stretch and under physiological
conditions a macromolecular
complex consisting of T-cap,
MLP, and titin functions as a
stretch sensor (Adaptated from
[8])
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mutations occur in this protein, and whether it might serve
as a therapeutic target in heart failure, remain unan-
swered. The function of this very interesting molecule in
different signaling pathways must be elucidated in much
more detail.

Calcineurin and calsarcins

The serine-threonine phosphatase calcineurin is expressed
in multiple tissues and consists of a catalytic A subunit
and a regulatory B subunit. While a single gene encodes
calcineurin B, three different calcineurin A subunits
(CnAa, CnAb, CnAg) have been described in vertebrates
and have largely overlapping expression patterns in
various tissues. Elevations in cytoplasmic calcium con-
centrations promote the association of calmodulin with
calcineurin and consequent activation of the enzyme.
Calcineurin dephosphorylates the nuclear factor of acti-
vated T-cells transcription factor family, thereby unmask-
ing nuclear localization signals on these proteins, which
in turn results in translocation of nuclear factor of
activated T-cells proteins to the nucleus and activation
of transcription. This process was first documented in T-
cells where it leads to the activation of immune response
genes and was later found in the heart where it activates
the hypertrophic response [46]. Interestingly, calcineurin
interacts with calsarcins 1, 2, and 3, a recently described
Z-disc associated family of proteins [47] (Table 1). By
binding to the other Z-disc proteins a-actinin, g-filamin,
cypher, and t-cap [48], calsarcins provide a connection
between calcium dependent signaling and the Z-disc.
Hypothetically, mechanical stress can be sensed by the Z-
disc and be efficiently translated into the calcineurin
pathway. There is also evidence for a role of calcineurin
in electrical remodeling during hypertrophy as well.

Pressure-overload hypertrophy induced by thoracic
aortic banding in mice resulted in an increase in L-type
Ca2+ channel density but no significant alteration in I to.
Cyclosporin A, an calcineurin inhibitor, prevented the
hypertrophy and increase in Ca2+ current in aortic-banded
mice, indicating a specific role for calcineurin in electri-
cal remodeling [49].

Enigma/ENH/cypher family

The enigma family is a newly emerging PDZ-LIM family
of proteins, defined by an aminoterminal PDZ domain
and one to three carboxyterminal LIM domains [50].
Several family members are expressed in striated muscle
and localize at the Z-disc, including enigma [50], actinin-
associated LIM protein [51], ENH [52], and cypher [48].
Interestingly, ENH [52], enigma [52], and cypher [48] are
all shown to bind to protein kinase C. A few genes in this
gene family have been knocked out and the resulting
animal models develop different phenotypes. For exam-
ple, the actinin-associated LIM protein knockout mouse
develops a pronounced right ventricular cardiomyopathy.

In this case most probably a developmental pathway is
responsible for this phenotype [51]. Cypher is expressed
in at least six different isoforms and plays an essential
role in striated muscle structure and function. Mice
homozygous null for cypher die during the first 1–5
postnatal days because of congenital myopathy with
symptoms that include decreased milk intake, limb
muscle weakness, cyanosis, and cardiomyopathy [48].
Electron microscopy studies revealed severely disorga-
nized skeletal and cardiac muscle with discontinuous/
punctuate Z-discs. These findings are somewhat more
severe but similar to defects found in MLP-deficient mice
[8]. The fact that homozygous knockout animals die after
birth implies that cypher is not necessary for myofibril-
logenesis, but stabilizes Z-discs after contraction has
started.

In a recent work in which two different skeletal muscle
specific isoforms were knocked into the cypher locus, a
partial rescue was obtained, with animals surviving up to
1 year [53]. These animal models might provide us with
new tools to study skeletal and cardiac muscle specific
effects of different cypher isoforms.

Additional Z-disc proteins with implications
in cell signaling

Myopalladin (MW 145 kDa) and the related ubiquitously
expressed protein palladin contain Ig-domains and are
enriched at sites of actin filament anchorage [54]. The
carboxyterminal domain is conserved between the two
proteins and is responsible for its association with a-
actinin. Myopalladin interacts with the SH3 domain of
both nebulin and nebulette via its proline rich domain and
via its N-terminal domain with the cardiac ankyrin repeat
protein (CARP) within the I-band. CARP is localized both
in the nucleus and along myofilaments and may be
involved in gene expression [55, 56]. Overexpression of
the aminoterminal myopalladin disrupts Z-disc organiza-
tion and overall sarcomere structure in chick cardiac
myocytes. This surprising result suggests that the inter-

Table 1 Z-disc proteins and interacting partners: representatives of
Z-disc proteins and their interactions with signaling molecules, ion
channel-subunits, and transcriptional regulators

Protein Interaction/properties Reference

Cypher Protein kinase C 48
Calsarcin 47

ENH Protein kinase C 52
Enigma Protein kinase C 52
T-cap MinKa (potassium channel subunit) 39
Muscle LIM

protein
Nuclear protein,
cofactor of transcription

57

FHL2b Apoptosis induced by
overexpression

58

Myopalladin Cardiac ankyrin repeat protein 54

a The b-subunit of the slow-activating component of the delayed
rectifier potassium current [I(Ks)] channel
b Four and a half LIM domain protein
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action between myopalladin and CARP is a connection
between myofibrillar organization and gene expression.

Summary

In conclusion, very sophisticated ideas of mechanotrans-
duction including centralized and decentralized models
have been developed. They do not mutually exclude each
other, they might exist in parallel, and they may
communicate with each other. Titin and the Z-disc related
proteins have a variety of functions that are not limited to
simply providing mechanical stability and passive stiff-
ness. They are obviously involved in mechanotransduc-
tion, cell signaling, and gene expression. The tuning of
the passive elasticity of titin is complex and involves
different mechanisms with short term (protein kinase A
dependent) or long-term (differential splicing, transcrip-
tion) regulation. The exact pathways are not yet known
but are involved in mechanotransduction. Our data on
cardiac stretch sensing supports the tensegrity model of
mechanotransduction, whereby specific Z-disc proteins
interact with titin and are able to sense mechanical
deformation. Our understanding of passive elasticity, its
connection with mechanotransduction, and the resulting
stretch response with implications in human disease is just
beginning. Mutations in genes affecting mechanotrans-
duction might define a new subset of cardiomyopathies
with implications for therapy. It is clear that inside-
outside signaling and outside-inside signaling are equally
important in physiology and disease. Further work is
needed to unravel the details of mechanical stress
dependent signal pathways and to identify consecutive
therapeutic strategies to prevent disease or stop its
progression.
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