Rakesh KaundalUtah State University | USU · Department of Plants, Soils and Climate
Rakesh Kaundal
Ph.D.
About
61
Publications
23,026
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,051
Citations
Introduction
Bioinformatics and Computational Biology:
Highly successful track record of integrating biology and bigdata analytics with over 15 years’ experience in bioinformatics, computational biology, and scientific programming. In-depth knowledge of bioinformatics data analysis tools and databases, information management, and integration to support diverse activities essential for organismal improvement and genomics-enabled studies.
Additional affiliations
July 2014 - May 2017
Institute for Integrative Genome Biology (IIGB), University of California, Riverside
Position
- Managing Director
March 2011 - June 2014
January 2005 - March 2007
Publications
Publications (61)
COVID 19 pandemic is still ongoing, having taken more than 6 million human lives with it, and it seems that the world will have to learn how to live with the virus around. In consequence, there is a need to develop different treatments against it, not only with vaccines, but also new medicines. To do this, human-virus protein-protein interactions (...
Monkeypox virus, a close relative of variola virus, has significantly increased the incidence of monkeypox disease in humans, with several clinical symptoms. The sporadic spread of the disease outbreaks has resulted in the need for a comprehensive understanding of the molecular mechanisms underlying disease infection and potential therapeutic targe...
Rice, vital for food security, faces drought stress in various climates. This study examined transcription factors (TFs) in drought tolerance using two rice cultivars: drought-tolerant Nagina-22 and drought-sensitive IR-64. Immature panicles were used to prepare transcriptome libraries, sequenced with Paired-End 150 bp chemistry for both control an...
Differential expression of 128 known and 111 novel miRNAs in the panicle of Nagina 22 under terminal drought stress targeting transcription factors, stress-associated genes, etc., enhances drought tolerance and helps sustain agronomic performance under terminal drought stress.
Drought tolerance is a complex multigenic trait, wherein the genes are f...
The 21stcentury is considered to be an era of global climate change while recurring drought causes severe yield losses, challengingcrop production, andraising serious concerns about sustainable food production/security. MicroRNAs (miRNAs) have emerged as a new candidate for improving/modulating developmental processes in plants, including grain yie...
Live-attenuated virus vaccines provide long-lived protection against viral disease but carry inherent risks of residual pathogenicity and genetic reversion. The live-attenuated Candid#1 vaccine was developed to protect Argentines against lethal infection by the Argentine hemorrhagic fever arenavirus, Junín virus. Despite its safety and efficacy in...
Terminal drought stress causes severe yield losses and it is raising serious concerns for sustainable food production in this era of global climate change. Drought tolerance is a complex/multigenic trait controlled by a network of genes, which is fine-tuned by subtle coding/non-coding regulatory mechanisms to mitigate the deleterious effects of dro...
Microsatellites, also known as simple sequence repeats (SSRs), are polymorphic loci that play an important role in genome research, animal breeding, and disease control. Ranch animals are important components of agricultural landscape. The ranch animal SSR database, ranchSATdb, is a web resource which contains 15,520,263 putative SSR markers. This...
Recurrent occurrence of drought stress in varying intensity has become a common phenomenon in the present era of global climate change, which not only causes severe yield losses but also challenges the cultivation of rice. This raises serious concerns for sustainable food production and global food security. Root of a plant is primarily responsible...
Monkeypox virus (MPXV) is a dsDNA virus, belonging to Poxviridae family. The outbreak of monkeypox disease in humans is critical in European and Western countries, owing to its origin in African regions. The highest number of cases of the disease were found in the United States, followed by Spain and Brazil. Understanding the complete infection mec...
SARS-CoV-2, a novel betacoronavirus strain, has caused a pandemic that has claimed the lives of nearly 6.7M people worldwide. Vaccines and medicines are being developed around the world to reduce the disease spread, fatality rates, and control the new variants. Understanding the protein-protein interaction mechanism of SARS-CoV-2 in humans, and the...
Drought stress severely affects the growth and development of rice, especially at the reproductive stage, which results in disturbed metabolic processes, reduced seed-set/grain filling, deteriorated grain quality, declined productivity, and lower yield. Despite the recent advances in understanding the responses of rice to drought stress, there is a...
Drought and heat stress substantially impact plant growth and productivity. When subjected to drought or heat stress, plants exhibit reduction in growth resulting in yield losses. The occurrence of these two stresses together intensifies their negative effects. Unraveling the molecular changes in response to combined abiotic stress is essential to...
The increasing infectious diseases in wheat immensely reduce crop yield and quality, thus affecting global wheat production. The evolution in phytopathogens hinders the understanding of the disease infection mechanisms. TRustDB is an open-access, comprehensive database that is specifically focused on the disease stem rust (also known as black rust)...
The study of molecular interactions, especially the inter-species protein-protein interactions, is crucial for understanding the disease infection mechanism in plants. These interactions play an important role in disease infection and host immune responses against pathogen attack. Among various critical fungal diseases, the incidences of Karnal bun...
Triticum aestivum (wheat), a major staple food grain, is affected by various biotic stresses. Among these, fungal diseases cause about 15–20% of yield loss, worldwide. In this study, we performed a comparative analysis of protein-protein interactions between two Puccinia graminis races (Pgt 21-0 and Pgt Ug99) that cause stem (black) rust in wheat....
Background
Triticum aestivum is the most important staple food grain of the world. In recent years, the outbreak of a major seed-borne disease, common bunt, in wheat resulted in reduced quality and quantity of the crop. The disease is caused by two fungal pathogens, Tilletia caries and Tilletia laevis , which show high similarity to each other in t...
Host-pathogen protein interactions (HPPIs) play vital roles in many biological processes and are directly involved in infectious diseases. With the outbreak of more frequent pandemics in the last couple of decades, such as the recent outburst of Covid-19 causing millions of deaths, it has become more critical to develop advanced methods to accurate...
Nitrogen is essential for life and its transformations are an important part of the global biogeochemical cycle. Being an essential nutrient, nitrogen exists in a range of oxidation states from +5 (nitrate) to −3 (ammonium and amino-nitrogen), and its oxidation and reduction reactions catalyzed by microbial enzymes determine its environmental fate....
Common bunt, caused by two fungal species, Tilletia caries and Tilletia laevis, is one of the most potentially destructive diseases of wheat. Despite the availability of synthetic chemicals against the disease, organic agriculture relies greatly on resistant cultivars. Using two computational approaches—interolog and domain-based methods—a total of...
Arbuscular mycorrhizal symbiosis (AMS) is widespread mutualistic association between plants and fungi, which plays an essential role in nutrient exchange, enhancement in plant stress resistance, development of host, and ecosystem sustainability. Previous studies have shown that plant small secreted proteins (SSPs) are involved in beneficial symbiot...
Medicago sativa (also known as alfalfa), a forage legume, is widely cultivated due to its high yield and high-value hay crop production. Infectious diseases are a major threat to the crops, owing to huge economic losses to the agriculture industry, worldwide. The protein-protein interactions (PPIs) between the pathogens and their hosts play a criti...
Problem
A significant rate of spontaneous abortion is observed in cattle pregnancies produced by somatic cell nuclear transfer (SCNT). Major histocompatibility complex class I (MHC-I) proteins are abnormally expressed on the surface of trophoblast cells from SCNT conceptuses.
Method of study
MHC-I homozygous compatible (n = 9), homozygous incompat...
Microsatellites, or simple sequence repeats (SSRs), are polymorphic loci that play a major role as molecular markers for genome analysis and plant breeding. The legume SSR database is a webserver which contains simple sequence repeats (SSRs) from genomes of 13 legume species. A total of 3,706,276 SSRs are present in the database, 698,509 of which a...
The Citrus genus comprises some of the most important and commonly cultivated fruit plants. Within the last decade, citrus greening disease (also known as huanglongbing or HLB) has emerged as the biggest threat for the citrus industry. This disease does not have a cure yet and, thus, many efforts have been made to find a solution to this devastatin...
Alfalfa has emerged as one of the most important forage crops, owing to its wide adaptation and high biomass production worldwide. In the last decade, the emergence of bacterial stem blight (caused by Pseudomonas syringae pv. syringae ALF3) in alfalfa has caused around 50% yield losses in the United States. Studies are being conducted to decipher t...
Alfalfa is an important forage crop that is moderately tolerant to salinity; however, little is known about its salt-tolerance mechanisms. We studied root and leaf transcriptomes of a salt-tolerant (G03) and a salt-sensitive (G09) genotype, irrigated with waters of low and high salinities. RNA sequencing led to 1.73 billion high-quality reads that...
Microsatellites or simple sequence repeats (SSRs) are popular co-dominant markers that play an important role in crop improvement. To enhance genomic resources in general horticulture, we identified SSRs in the genomes of eight citrus species and characterized their frequency and distribution in different genomic regions. Citrus is the world’s most...
Motivation
Understanding the mechanisms underlying infectious diseases is fundamental to develop prevention strategies. Host-Pathogen Interactions (HPI) are actively studied worldwide to find potential genomic targets for the development of novel drugs, vaccines, and other therapeutics. Determining which proteins are involved in the interaction sys...
With the advent of Next-Generation Sequencing (NGS) technologies, numerous data is being generated every day, however, analysis remains a big hurdle to efficiently use the technology as this data requires complex multi-step processing and demands computational expertise from the user. A large number of algorithms, statistical methods, and software...
The aerobic, Gram-negative motile bacillus, Burkholderia pseudomallei is a facultative intracellular bacterium causing melioidosis, a critical disease of public health importance, which is widely endemic in the tropics and subtropical regions of the world. Melioidosis is associated with high case fatality rates in animals and humans; even with trea...
The aerobic, Gram-negative motile bacillus, Burkholderia pseudomallei is a facultative intracellular bacterium causing melioidosis, a critical disease of public health importance, which is widely endemic in the tropics and subtropical regions of the world. Melioidosis is associated with high case fatality rates in animals and humans; even with trea...
The subcellular localization of proteins is very important for characterizing its function in a cell. Accurate prediction of the subcellular locations in computational paradigm has been an active area of interest. Most of the work has been focused on single localization prediction. Only few studies have discussed the multi-target localization, but...
Reproductive success in plants is dependent on many factors but the precise timing of flowering is certainly among the most crucial. Perennial plants often have a vernalization or over-wintering requirement in order to successfully flower in the spring. The shoot apical meristem undergoes drastic developmental and molecular changes as it transition...
Objectives:
A Western type dietary pattern is a major risk factor for colitis-associated colorectal cancer (CAC). Observations from transgenerational studies suggest that epimutations may be inherited, resulting in persistent aberrant gene expression in offspring. Previously, our group reported that ancestral exposure to the total Western diet (TW...
Somatic cell NT (SCNT) efficiency remains poor, preventing the technology from being regularly used in the agricultural industry. It is believed that faulty epigenetic reprogramming of SCNT embryos leads to the low overall success. A clear apoptotic signature is associated with inappropriate gene expression and epigenomic aberrancies in many experi...
One important mechanism plants use to cope with salinity is keeping the cytosolic Na⁺ concentration low by sequestering Na⁺ in vacuoles, a process facilitated by Na⁺/H⁺ exchangers (NHX). There are eight NHX genes (NHX1 through NHX8) identified and characterized in Arabidopsis thaliana. Bioinformatics analyses of the known Arabidopsis genes enabled...
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a high-production volume organophosphate-based plasticizer and flame retardant widely used within the United States. Using zebrafish as a model, the objectives of this study were to determine whether (1) TDCIPP inhibits DNA methyltransferase (DNMT) within embryonic nuclear extracts; (2) uptake of TD...
Background
Laccases (E.C. 1.10.3.2) are multi-copper oxidases that have gained importance in many industries such as biofuels, pulp production, textile dye bleaching, bioremediation, and food production. Their usefulness stems from the ability to act on a diverse range of phenolic compounds such as o-/p-quinols, aminophenols, polyphenols, polyamine...
Background
Every year pathogenic organisms cause billions of dollars' worth damage to crops and livestock. In agriculture, study of plant-microbe interactions is demanding a special attention to develop management strategies for the destructive pathogen induced diseases that cause huge crop losses every year worldwide. Pseudomonas syringae is a maj...
Transfer of alien genes into crop plants from wild and distant plant genetic resources has invoked tremendous interest of crop scientists globally and several traits including resistance to diseases and insect-pests, tolerance to drought, salinity, temperature extremities and other abiotic stresses as well as genes for several quality traits have b...
Background: Plastids are an important component of plant cells, being the site of manufacture and storage of chemical compounds used by the cell, and contain pigments such as those used in photosynthesis, starch synthesis/storage, cell color etc. They are essential organelles of the plant cell, also present in algae. Recent advances in genomic tech...
Background: Dicer, an RNase III enzyme, plays a vital role in the processing of pre-miRNAs for generating the miRNAs. The structural and sequence features on pre-miRNA which can facilitate position and efficiency of cleavage are not well known. A precise cleavage by Dicer is crucial because an inaccurate processing can produce miRNA with different...
The tenth annual conference of the MidSouth Computational Biology and Bioinformatics Society (MCBIOS 2013), "The 10th Anniversary in a Decade of Change: Discovery in a Sea of Data", took place at the Stoney Creek Inn & Conference Center in Columbia, Missouri on April 5-6, 2013. This year's Conference Chairs were Gordon Springer and Chi-Ren Shyu fro...
A complete map of the Arabidopsis (Arabidopsis thaliana) proteome is clearly a major goal for the plant research community in terms of determining the function and regulation of each encoded protein. Developing genome-wide prediction tools such as for localizing gene products at the subcellular level will substantially advance Arabidopsis gene anno...
Transporters move hydrophilic substrates across hydrophobic biological membranes and play key roles in plant nutrition, metabolism, and signaling and, consequently, in plant growth, development, and responses to the environment. To initiate and support systematic characterization of transporters in the model legume Medicago truncatula, we identifie...
Transporters move hydrophilic substrates across hydrophobic biological membranes and play key roles in plant nutrition, metabolism, and signaling and, consequently, in plant growth, development, and responses to the environment. To initiate and support systematic characterization of transporters in the model legume Medicago truncatula, we identifie...
The attainment of complete map-based sequence for rice (Oryza sativa) is clearly a major milestone for the research community. Identifying the localization of encoded proteins is the key to understanding their functional characteristics and facilitating their purification. Our proposed method, RSLpred, is an effort in this direction for genome-scal...
The analysis of average daily weather variables of a week earlier to threshold levels (0.05
%) of years 1991 to 2000 showed that maximum temperature of 23.5 to 27.7oC, minimum of 17.6 to
20oC, relative humidity of > 80 % with exception to 1996 and 1998, rainfall of more than 3 mm per
day and more than 4 rainy days per week were critical in the prog...
Supplementary material. All the additional information regarding evaluation of methods, data preprocessing and normalization, steps followed for various approaches etc. have been provided in this additional file.
Diverse modeling approaches viz. neural networks and multiple regression have been followed to date for disease prediction in plant populations. However, due to their inability to predict value of unknown data points and longer training times, there is need for exploiting new prediction softwares for better understanding of plant-pathogen-environme...
Twenty-one elite genotypes were evaluated at two agroclimatically different locations under four environments to assess the nature and magnitude of genotype x environment interactions for grain yield and some other quantitative traits; and to identify the phenotypically stable genotypes for their performance over a wide range of environments and fo...
Rice blast caused by Pyricularia grisea Sacc. is the most serious fungal disease causing moderate to heavy
yield losses worldwide especially in temperate , flooded and tropical ecosystems (Ou, 1985). Though the
management of this disease through host resistance is the most suitable method, however changes in race
composition of the pathogen have of...
Twenty-one maize (Zea mays L.) genotypes comprising 10 hybrids and 11 composites were evaluated at two
agroclimatically different locations with three dates of sowing to assess the mean performance, genetic
variability, heritability and genetic advance for grain yield and other quantitative traits. The analysis of
variance revealed that the materia...
Technical Bulletin No. 9, 2004-2005, Directorate of Rice Research, Rajendranagar, Hyderabad (AP), India, 46 pp.