Design of 4×4 Banyan optical switch using optoelectronic MZI switches with low crosstalk

Vandana Sachdeva ${ }^{1}$, Rajeev Ratan ${ }^{2}$ and J. S. Mahanwal ${ }^{2}$
${ }^{1}$ ECE Deptt., D.C.T.M., Palwal, Haryana; ${ }^{2}$ E \& IE Deptt., Apeejay College of Engg., Sohna, Gurgaon, Haryana, India rajeevratanarora@gmail.com

Abstract

We introduce here a designing of 2×2 MZI (Mach-Zehnder Interferometer) optical switch. The switching of the optical signal is realized with the use of fast electro-optical effects. The designed model has a very high switching capability and is extremely reliable. Various design parameters have been varied to improve the performance of the switch. Then the basic 2×2 switch is exploited in design of 4×4 banyan switch. Banyan switch is a good candidate for further use in higher order switches. Simulation results are shown for 2×2 and 4×4 banyan architecture with low cross-talk values.

Keywords: Optical waveguides, MZI (Mach-Zehnder Interferometer), Banyan architecture, optical field.

Designing of 2×2 basic MZI switch

The wafer is a planar substrate on which we design devices. Its length is along Z-axis, horizontal on the screen and width is along X -axis, vertical on the screen. Thickness of the substrate is in y-direction, perpendicular to the screen and not shown on the layout interface. MZI switch is created on a z -cut wafer of Lithium Niobate and is surrounded by air cladding. Wafer is designed with 33 mms of length, 10 micrometers of thickness and 0.1 mms of width (Table 1). The device is oriented along the Y-optical axis of the Lithium Niobate. We need to define a diffused material for the substrate and a dielectric material for cladding. Air is the di-electric material for cladding and its thickness is 2 micrometers. Titanium

Introduction

Electro-optic effect is a change in refractive index of the material with the variation of intensity of an electric field applied to it; this is the linear electro-optic effect. Speed of this effect is less than 1 ns . Lithium Niobate $\left(\mathrm{LiNbO}_{3}\right)$, Polymers, Lead zirconate titanate (PZT and GaAs-AIGaAs (Martin Nord, 2002) are the materials used in designing of switches with electroopto effects. LiNbO_{3} is based on its large electro- opto coefficient (Ron A. Spanke, 1986). Directional couplers in $\mathrm{Ti}: \mathrm{LiNbO}_{3}$, have been under research for over a decade and recent progress has resulted in $8 x 8$ arrays of switches being offered commercially (Erickson, 1989). Interferometric switches are based on Mach-Zehnder Interferometers (Lai et al., 1998) shown in Fig.1, which consists of a 3 dB splitter and a 3 dB combiner, connected by two interferometer arms. By changing the effective refractive index of one of the arms, the phase difference at the beginning of the combiner can be changed such that the light switches from one output port to the other. 3-dB couplers were chosen to be multi-mode interference (MMI) couplers due to their polarization independence, fabricationand wavelength tolerance. A $2 \times 2 \mathrm{MMI}$ switch with Banyan architecture with coupling loss of 5.38%. and the crosstalk of 6.99×10^{-05} has already been analyzed (Singh et al., 2008).
 diffused waveguides in lithium Niobate are formed by the diffusion of titanium dopant into the lithium niobate host. To form a waveguide, a stripe of titanium with thickness before diffusion of .05 micrometers is deposited on the substrate. Waveguide has a width of 8.0 micrometers. S-Bend Sine and Linear waveguides are started by laying down these basic waveguide elements necessary for the construction of the switch. To provide electro-opto effects we used three electrode set with buffer layer on substrate. Buffer layer is introduced between electrodes and substrate to reduce the losses that are due to metallic cover of the waveguide. The buffer layer has thickness of 0.3 micrometers with horizontal and vertical permittivity of 4 micrometers. Electrodes are defined in three regions with different parameters. First region has electrode with width of 50 micrometers and zero voltage. Second and third electrodes have width of 26 micrometers and zero voltage. Gap between first and second electrode is 6 micrometers and between second and third electrode is 6 micrometers. Second electrode is placed with 5.5 micrometers of center position. Mode type

Table I. Wafer properties		
Substrate- LiNbO $_{3}$	Propagation direction-Y, crystal cut-Z	Thickness 10 micrometers
Wafer Properties		
Wafer Profile- $_{\|c\|}^{\|c\|}$ Wafer dimensions		
LiNbO $_{3}$	Length-33 mms	Width-0.1 mms
	2 D Wafer Properties	
Material	Thickness	Refractive index
Air/Cladding	2 micrometers	1

Fig.2. 2×2 MZI switch

Fig.6. $2 \times 2 \mathrm{MZI}$ in bar state with 7.3 volts of electrode voltage

Research article
©Indian Society for Education and Environment (iSee)
"Optical switch" http://www.indjst.org

Vandana Sachdeva et al. Indian J.Sci.Technol.

Simulation

After the input plane has been defined the global data is set with refractive index MODAL. Wavelength selected for simulation is 1.3 micrometer. The 2D properties have been set with TM polarization and 500 mesh points. The simulation results could be sensitive to the number of mesh points. In general, the usage of more mesh points results in better precision. PARAXIAL BPM solver, FINITE DIFFE-RENCE engine is used. Finite Difference Taylor series expansions are used to derive finite-difference schemes to approximate the wave equations. BPM 2 D provides TBC (Transparent Boundary Conditions) method to escape unwanted reflections from the boundaries. We did 2D isotropic calculation and observed switching results in Cross and bar states (Fig. 3-7).

Table 2. Waveguide properties

Stripe thickness before diffusion	.05 micrometers	
Waveguide Material	Diffusion parameters	
TI:LiNbO	D_{h}	4.0
	D_{v}	3.5

Simulation of 2×2 Banyan network

A $2 \times 2 \mathrm{MZI}$ network with Banyan architecture is realized and simulated in Optisystem of OPTIWAVE Software. Switches used in proposed architecture are in Bar state. A CW laser used as optical source is connected to first port of input by keeping other port at optical null. The basic parameters of optical source are frequency, linewidth and power. Fig. 9 shows this configuration with input power=10mw, line width $=10 \mathrm{MHZ}$ and results show that 9.89 mws of power is obtained at bar state and 0.05 mws of power is obtained at cross port which is very small. Table 3 shows analysis of proposed set-up for different values of input power. Crosstalk value measured is -22.9 db .

Banyan Architecture

A typical Banyan architecture contains $\log _{2} n$ stages each having $\mathrm{n} / 2,2 \times 2$ switches. In Banyan network there is unique path between input and output and the no. of switching elements in each path is fixed and equal to $\log _{2}$ n . These characteristics have made banyan network very attractive for constructing switching networks with directional couplers because loss and attenuation of optical signal are proportional to no. of couplers that the optical signal crosses. Fig. 8 shows a typical 4×4 Banyan network with $4,2 \times 2 \mathrm{MZI}$ switches.

Fia. 8. 4x4 Banyan architecture

Vol. 2 No. 10 (Oct 2009)
ISSN: 0974-6846

Fig.10. 4×4 Banyan set-up for simulation
(5), 681.
3. Martin Nord (2002) Optical switching technologies for optical-line, Burst and Packet switching, R \&DR 32.
4.Ron A. Spanke (1986) Architectures for large nonblocking optical space switches. IEEE J. Quantum Electr. Vol. QE-22, No: 6.
5.Singh G, Sharma MK, Vijay Janyani and Yadav RP (2008) Design of 4×4 banyan optical switch using MMI switches with low crosstalk \& low coupling loss, IEEE Proc. Intl. Conf. on Microwave-8, 978-1-4244-26904444/08

