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NMR microscopy of pore-space backbones in rock, sponge, and sand
in comparison with random percolation model objects
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Two- and three-dimensional “random swiss-cheese percolation” and “random-site percolation” pore net-
works were simulated on a computer. The results were used as templates for the fabrication of model objects.
The flow of water through the pore spaces of these objects was studied with the aid of NMR microscopy in the
velocity-mapping variant. Up to three spatial dimensions and three dimensions for the three velocity compo-
nents were examined. The results for the model objects were juxtaposed to those for lacunar materials such as
pumice, sponge, sand, and glass bead agglomerates. Parameters characterizing the structure were evaluated
from conventional NMR images of the water-filled pore spaces. The percolation backbone was determined by
eliminating all voxels with velocities below the noise lei$.1063-651X97)02504-X]

PACS numbgs): 47.55.Mh, 87.59.Pw, 61.43.Hv, 47.5&

I. INTRODUCTION The class of systems to be compared with the model ob-
jects is called “lacunar”[9]. In the present study, this in-

Lacunar materials and systems such as pumice, sponggudes samples of natural origin such as natural sponge,
sand, and glass bead agglomerates form interconnected pd¥emice stone, and agglomerates of granular materials such as
spaces which permit transport of fluids through the sampleglass beads or quartz sand. Apart from structural properties,
It is therefore of interest to establish a set of parameter§ansport phenomena were examined using a velocity-
suitable for the characterization of the geometrical propertie§?@Pping NMR technique. Transport, of course, refers to per-
of the pore spaces. This requires the development of experfolation features of utmost practical relevanid. The
mental procedures for the reliable determination of thes%ransp”ort-hmnmg structure is termed the “percolation back-
guantities.

In order to test the possibilities NMR microscopy offers
in this respect, predictions of the standard percolation theor;
[1] were already compared with experimental results in ou

previous work{ 2—4]. Random-site percolation clusters were

. . . ercolation probabilityP,,, and the fractalor pseudofractal
simulated on a computer. The patterns produced in this wag on b i alor pseu 2

c ot imension of the backbore . In the following, experimen-
were “?ed as templates. for the fabrication of two- or thr_eef | determinations of such parameters with the aid of NMR
dimensional lacunar objects. The pore spaces were fille

ith q ined with the aid of . icroscopy techniques will be discussed and examined with
with water and examined with the aid of NMR mICroscopy regpect 1o the potential distinction of the pore spaces of dif-
techniques. A suitable algorithm for the evaluation of thefarant materials on this basis.

image data was developed and shown to reliably reproduce
the theoretical parameters by which the simulated clusters
are characterized.

Random-site percolation networks are well defined and Random-site and swiss-cheese percolation model objects
easy to simulate. However, they are less suitable for modelwere fabricated. The random-site percolation clusters based
ing pore spaces in lacunar systems and granular materials oh computer simulations such as displayed in Fig. 1 were
a practical nature. In this paper we are therefore referring teomposed of stacks of 0.5 mm thick polystyrene disks. These
so-called ‘“swiss-cheese” model&—7] which promise to disks were milled with the aid of a LPKF_eiterplatten-
take the highly branched pore spaces of practical system§onturfrasen circuit board plotter using computer-simulated
better into account. Swiss-cheese percolation models in thiemplates as described[i®,3]. The cubic basis of the cluster
context are defined as a uniform transport medium with ranlattice was 32 lattice constants wide in each space direction.
domly placed spherical “voids’{8]. That is, each “void”  The cross sections of the pores were quadratic with an edge
forms an obstacle for transport of matter. In the presentength of 0.5 mm.
study, the pore space is thus defined as the space comple- The swiss-cheese percolation cluster objects were rebuilt
mentary to that occupied by the “void” distribution. according to computer simulations such as those represented

Corresponding computer simulations were evaluated inn Fig. 2. The objects were constructed in the form of stacks
terms of fractal parameters. Real swiss-cheese model objeaté 0.3 mm thick polystyrene disks. FiguregaBand 3b)
were then composed using the computer-simulated poreshow photographs of complete two- or three-dimensional
space patterns as templates. The experimental NMR investswiss-cheese objects.
gation was carried out in analogy to our previous studies of The basis of the clusters was again cubic. In the two-
random-site percolation objediZ]. dimensional case, the extension of the cluster was 80 lattice

In suitable cases, the pore space of lacunar media can be
characterized by scaling laws with well-defined exponents
1,10-19. Parameters of particular interest are the fragial
pseudofractal dimensiond;, the correlation lengttg, the

II. EXPERIMENTAL SECTION
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FIG. 1. Computer-simulated
site percolation networks with lat-
tice sizes of 3%32 and
32X 32X 32 lattice points in two
and three Euclidean dimensions,
respectively. Any isolated clusters
were eliminated. The white voxels
represent the pore spacga)
(a) (b) de=2, p—p.=0.060.(b) de=3,
p—p.=0.035 (multisectional
view of the voxels located on the
surfaces. (c) Schematic illustra-
tion of the pore structure: white,
interconnected pore space; gray,
isolated cluster; black, matrix.

(©

constants in each space direction. The three-dimensional olacity component along the respective field gradient direc-

jects comprised 64 lattice constants in each direction. Théon. In this way, maps of the velocity vector of water per-

edge length of the quadratic cross sections of the pores wawlating through the pore space can be acquired. The radio

0.3 mm. frequency and field gradient pulse sequence is shown in Fig.
The NMR microscopy pulse schemes used in this workd. More detailed information on this method can be found in

were optimized for imaging of liquids. The NMR signal of [19,20.

the polystyrene material therefore was negligible compared The absolute value of the local flow velocity

with the signal of the water filled into the pore spaces. Bey = \/u 2+ v2+u2 was then calculated from the three velocity
fore injecting water, the pore spaces were evacuated in Ord@bmponents WhICh were separately measured with the aid of
to avoid air bubbles which tend to block the dead ends of thehis pulse sequence.

pore space. Magnetic field inhomogeneities in the field of The image data sets recorded in this way were up to six
view were less than-0.015 ppm as detected by magnetic dimensional. On this basis, any two- or three-dimensional
resonance spectroscopic imagifegg., Ref[16]). representation of the local spin density or the local velocity

The proton magnetic resonance imaging experimentgomponents or the local velocity magnitude can be rendered
were carried out with a Bruker Biospec 47/40 magde T)  in principle. Spin-density images mirror the full percolation
combined with a partly home-made radio frequefiyunit.  cluster, whereas the percolation backbone can be identified
The maximum gradients were 0.6 T/m. Typical gradientwith the aid of the velocity data.
switching times were 0.2 ms.

Two- or three-dimensionalprotor) spin-density image
data were recorded using a gradient-recalled echo pulse se-
guence for the spatial encodirigpper part of Fig. # The
digital resolution varied from 0.10 mm to 0.30 mm. The The porosity of a lacunar percolation system is defined by
sample dimensions ranged from 8 mm to 20 mm. The local
spin density is equivalent to the local porosity of the mate- Y )
rial, where “local” refers to the two-dimensional pixel or p= Vpt+Vp'
three-dimensional voxel at the considered position.

Based on bipolar field gradient pulses, the Fourier encodwhereV, is the total pore volume, and, is the total matrix
ing velocity imaging(FEVI) principle[17,18 permits phase volume without pores in the sample fraction under consider-
encoding of the gradient echo proportional to the local ve-ation. We distinguish the “overall porosity” referring to the

IIl. CHARACTERISTIC PARAMETERS
IN PERCOLATIONTHEORY




NMR MICROSCOPY OF PORE-SPACE BACKBONES IN ... 4415

FIG. 2. Computer-simulated
swiss-cheese percolation networks
with lattice sizes of 8% 80 and
64X 64X 64 lattice points in two
and three Euclidean dimensions,
respectively. Any isolated clusters
were eliminated. The white voxels
represent the pore spacga)
de=2, p—p.=0.087.(b) de=3,
p—p.=0.009 (projection of the
total pore space on the drawing
plane; the gray shades of the
three-dimensional black-and-
white data set arise from the su-
perposition of voxel projections
(c) Schematic illustration of the
approximate representation of
spherical  transport  medium
“voids” (percolation obstacles
by a finite number of discrete ma-

g = | - . trix voxels. In the two-
— dimensional case shown here, the
S e e e circle comprises the same area as
| SIS S the pixels marked by dots.
. .
©

whole sample, and the “local porosity” characterizing the dimensional random-site percolation networks are found to
situation within a voxel at a certain position. be[1] d;=1.9 indg=2 andd;=2.5 indz=3 (see also Fig.

In the NMR imaging experiments to be described in thel0). The percolation probabilityP., is a constant P, cor-
following, the pores were completely filled with water. The responds tg, of real samples
local porosityp=p(r) is then equal to the local water spin  Random-site percolation networks are defined by a certain
density, that is, the volume fraction of the water in the voxeloccupation probability of the sitep, and the threshold value
under consideration. Therefore the amplitude of the watep,. In the vicinity of p; and forp>p., the parameter®.,
signal of a voxel is directly proportional to the porosity in and ¢ obey[1]
this voxel.

The average porosity of the whole sample can be deter-

— B
mined from the masses of the dry matrix material{) and P2 (P~ P @
the fluid-filled sample ih,,+m,,) according to
§x(p—pc) " 5
— m,, @
po= My+ 0y My’ The exponents of the above power laws are related with each

. ) " ) other according t¢1]
whereq, is the ratio of the mass densities of the fluid and the

matrix material.
The theory of random percolation networks suggests a di=de— E (6)
. ; e =g .
scaling window of self-similarity in the ranga<r<¢,
wherea is the structure-forming elementary length, anithe

correlation length. Percolation clusters in this range have a A seyere problem arising with evaluations of data ob-
volume-averaged density varying with the probe-volume rayained in real experiments such as NMR imaging studies is
dius according tq1] that the systems are unavoidably restricted to relatively small

cluster sizes and ensembles. It was therefore essential to de-
3) velop evaluation procedures coping with such limitatifis

The power law given in Eq(3), for instance, can be tested

by determining the mean volume-averaged porosity as a
The Euclidean dimension is denoted 8y, the fractal di- function of the radiusr of the probe volume. A suitable
mension byd;. The fractal dimensions of two- and three- evaluation method is the so-called “sandbox” metHag:

rdi—de, a<r<¢

pulr) P r>¢.
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FIG. 3. Photographs of two-
and three-dimensional swiss-
cheese percolation objects exam-
ined in this study. In each case the
pore space was first simulated on
a computer and then machined us-
ing the computer results as tem-
plates. The matches on the bottom
illustrate the length scale(a)
Two-dimensional network milled
into a polystyrene plate with a
thickness of 0.5 mm. The size is
24x24 mm?.  (b) Three-
dimensional object composed of
64 polystyrene disks of a thick-
ness of 0.3 mm each. The cross-
sectional area of the three-
dimensional percolation cluster

was 20< 20 mn?.
(a) (b)
o 1N 1 N r; belonging to the considered cluster. The condition
pu(r)= ) p(ry) (Iri=rjl<r), () |r;—rj|<r is the consequence of the spherical shape of the
pi=2 Tvl= probe volume. The expression in Eq) finally refers to the
where ensemble mean value &f, probe volumes of equal size.
0 (siter; not occupied IV. COMPUTER SIMULATIONS

p(rj)= : : (8)

1 (siter; occupied. A. Random-site percolation networks

The quantityN, is the number of voxels in the probe vol- ~ The percolation objects used for the NMR experiments

ume. The center of the probe volume must be at a positioBre based on computer simulations of random percolation
clusters which served as templates for the object fabrication.

The computer simulations of random percolation networks
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FIG. 5. Mean volume-averaged porospiy(r) as a function of
the probe-volume radius. The data were evaluated from the

FIG. 4. Radio frequencyrf) and field gradient@;, i=Xx,y,z) computer-simulated three-dimensional swiss-cheese percolation
pulse scheme of the NMR microscopy techniques employed in thisetwork shown in Fig. @). The shortest radius, i.e., the
study(see Sec. )l The sequence is based on gradient-recalled echstructure-forming elementary length, of the probe-volume compris-
oes(GE). The three-dimensional spatial encoding is performed withing at least one sphere of the matrix is equal to two lattice constants
the aid of two phase-encoding and one frequency-encoding gradas becomes obvious from Fig(c2 Smaller probe volume radii
ent. The three velocity components are phase encoded with the aalitside the scaling window lead to reduced mean volume-averaged
of bipolar gradient pulseéottom line. For details see Ref20], porosities which are not characteristic for the fractal properties of
for instance. the cluster.
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FIG. 6. Verification of the proportionalitieB..>(p— p)? and £x(p—p.) ~* on the basis of computer simulations of two- and three-
dimensional swiss-cheese percolation networks. The correlation Ignigtidisplayed in units of the disk or sphere radais(a) 3=0.14
(fixed literature valup ~~p.=0.35. (b) »=0.24 [value fitted using the threshold value ¢d)]. (c) B=0.41 (fixed literature valug
~+p.=0.074.(d) »=0.30[value fitted using the threshold value (@j].

were carried out assuming the same spatial resolution reldransport mediuni8]. In this case, the percolation thresholds
tive to the object size as in the experiments, that is, a digitahre found to bep.=0.32 for de=2 and p,=0.032 for
resolution of either 0.30 mm or 0.25 mm. Since thed.=3 [5,13,21. The networks were based on quadratic or
computer-simulated patterns were to be used as templates fgfipic lattices for the two- or three-dimensional cases, respec-
the fabrication of real objects, only three-dimensional patyjyely. “Disks” or “spheres” with radii of two lattice con-
terns that consist of two-dimensional slices without “is-
lands” were considered.

The site percolation clusters were composed on a cubic  ;;_

lattice with the aid of the random-number generator of the

Borland C programming language. Each site of the lattice is o d;=3
occupied randomly with the probability. The occupation of )5 a d =2
two neighboring lattice sites is interpreted as a passage. ] £

Above the percolation thresholol, (p.=0.5927 fordg=2

andp.=0.3116 fordg= 3 [1]) one largest cluster exists con- )

necting opposite edges of the netwsiee the “white” clus- d 01 * e d"

ters in Figs. 1a) and Xb), for instancé. The NMR imaging f g »’

resolution was chosen in such a way, that each cluster site is 'W—
probed by four NMR imaging pixels in two-dimensional L5 4

clusters or eight voxels in three dimensions. The elimination
of isolated clusters led to the desired netwFig. 1(c)].

Thus the network size that can be examined in the NMR 10 — — ——
microscopy experiments is restricted t0>X322x 32 lattice 00 ol 02 03 04 05

sites for practical reasong]. E,

FIG. 7. Fractal dimensiom; as a function of the percolation
probability P, . The data were evaluated from computer-simulated
The swiss-cheese model to be considered here is definethiss-cheese percolation networks. Lattice sizes: X128

by randomly distributed spherical obstacles in a uniform(dz=2) and 64< 64X 64 (dg=3).

B. Swiss-cheese percolation networks
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TABLE I. Parameters of random percolation clusters as determined in this(8Brksite percolation; SC,
swiss cheese;, computer simulated?, experimental data from NMR data sets

dg=2 de=3

Pc P df d? Pc P df d?
SPg @ 0.5927 0.5-0.6 1.89 1.6-1.8 0.3116 0.2-0.3 2.53 1.9
SPg @ 0.5-0.6 1.9 1.6-1.8 0.2-0.3 2.5 2.2-2.3
SCr 0.37 0.3-0.5 1.55-1.68 0.080 0.03-0.2 1.8-21
SCge 0.3-0.4 1.60-1.69 1.48-1.55 0.06-0.2 1.8-2.0 1.7-19

8Data from[2].

stants were placed on the lattices at random. The actual vol- The fractal dimensions of the backbone and of the whole
ume covered by these objects is determined by the finiteluster are related d45]

resolution of the lattice, and is indicated in black in Fig®) 2
and 2b), for instance.

_1
A passage is defined by two “white” pixels or voxels Bo=2 (v det38)~1, (1)
touching each other at least at one corfieig. 2(c)]. For
practical reasons, the cluster size was limited tx 80 [Fig. b Bo
2(c)] and 64x 64x 64[Fig. 2(b)] lattice sites in two and three di=dg— —, (12

dimensions, respectively.
The porosity of the network can be determined as the ratio
of “white” (i.e., pore spadepixels or voxels and the total Whereg, is the backbone-related exponent in analogy to that
number of lattice sites. In the three-dimensional case, it isn EQ. (4). In the simulations of the backbone, it was as-
also described by sumed that singly connected pore-space channels do not con-
tribute to transport. The results are summarized in Table |
pn=exp(— % mnR%), (9)  and are illustrated in Fig. 10.

wheren is the number density of spheres, &k the radius
of the sphered22,23. The corresponding expression for
two-dimensional networks is

V. EXPERIMENTAL RESULTS
FOR THE MODEL OBJECTS

A. Black-and-white conversion of spin-density images

_ _ 2
po=eXp(— mNRY). (10 Figures &) and &d) show the spin-density images of

static water filled in the pore space of two- and three-
imensional swiss-cheese percolation objects, respectively.
he objects were fabricated using computer-simulated clus-

fers as templategcompare Figs. @ and 2b)]. The gray

volume-averaged porosify,(r) as a function of the probe- shades directly reflect the local porosity in the voxels. That
v is, there are not only “pure” matrix and “pure” pore-space

volume radiugFig. 5, for instancg Differences to the values voxel o th £ th mputer-simulated cluster
considered to be universal in all random percolation netYOXEIS as € case of the computer-simuiated CIUSters.

_ : : part from that, the water signals are unavoidably superim-
mzrz?sﬂgeaﬂges:%é?gggg'tg) and discrete lattice approach oﬁ\osed by noise in the NMR experiments. On the other hand,

Taking the literature values for the exponghin Eq. (4) the visual inspection reveals a good coincidence of the simu-
as given quantities, that i3=0.14 for dg=2 [23] Iand lated and the measured patterns in spite of any inaccuracies
y - . E_ y . . . .
B=0.41 for dg=3 [13], the average percolation threshold in the object fa_brlcatlon. .
values were determined ap,=0.37 for de=2, and The evaluation of the mean volume-averaged porosity

p.=0.080 forde=3 [Figs. 6a) and c)]. These values are [Eq. (7)] for probe-volume radii below the correlation length
-=0. . .

somewhat higher than the theoretical predictions, as oy equires the unambiguous assignment of the pixels or voxels

pected for finite matrix size21]. Although there is a slight glther to the pore space or to the matrix. The gray-scale

e . : . : images must therefore be converted to black-and-white con-
variation of the fractal dimension with the percolation pmb'trasts A straiahtforward procedure for this buroose is de-
ability (Fig. 7), Eq.(5) can be fulfilled in a reasonable range y 9 P purp

\ ; scribed in[2].
by fits of Eq.(6) to the power law of the correlation length i . .
[Figs. @b) and Gd)]. The mean volume-averaged porosity was plotted in a

S form similar to the data representation in Fig. 5. In this way,
Coherent flow of fluids in the pore space of lacunar per-
X X : the parameterd;, P., and¢ can be evaluated.
colation systems is expected to be influenced by the con-
straints imposed by geometric confinements. The transport-
mediating pore-space structure is called the “percolation
backbone” with the fractal dimensiaﬂf [24]. A definition is The percolation backbone can experimentally be exam-
that two independent pathways to the sample edges exist ated by velocity mapping of water flowing through the re-

each sitd24]. For more details, sefd,4,7], for instance. built percolation objects. The gray-shade representation of

In this case,p, represents the fraction of “white” lattice
sites, that is, it is analogous to the occupation probability o
the site percolation networks.

The fractal parameters are again determined from th

B. Experimental determination of the percolation backbone
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16 mm/s g

FIG. 8. Spin-density images and velocity maps of the water-filled pore space measured in two- and three-dimensional percolation objects.
The digital resolution was 302m, the field of view 38.4 mm in each dimensida) Spin-density image of a water-filled two-dimensional
swiss-cheese object fabricated for p.=0.087. This object corresponds to the computer simulated pattern shown in(&igT2e gray
shades arise from the local spin density. Velocity map of water percolating through the objéat The velocity magnitude is represented
by gray shades. That is, the intensity is proportional to the absolute value of the veledity}+v2)*2 The preferential flow pathways
along the percolation backbone are evidéot.Two-dimensional = 2) black-and-white-converted representation of the backbofie) of
The velocity noise level defining the black-white threshold of the pixel representation was 0.9(d)rBfsin-density image of a water-filled
three-dimensional swiss-cheese object fabricategpfop.=0.0085. This object corresponds to the computer-simulated cluster shown in
Fig. 2(b). The gray shades arise partly from the local spin density and partly from the superimposed voxel projections on the drawing plane.
(e) Velocity map of water flowing through the obje(@). The velocity magnitude is represented by gray scales. In this case, the intensity is
proportional to the absolute value of the veloaity: (v +v3+v2)Y2 (f) Three-dimensionalde=3) black-and-white-converted backbone
representation ofe). The velocity noise level is the same as(a.

the two- or three-dimensional velocity maps Figé)8and  the corresponding velocity maps, FiggbBand 8e). That is,

8(e) directly visualizes the main transport pathways. all voxels with velocity magnitudes below the rms noise
Furthermore, the two- or three-dimensional spin-densitylevel in the velocity maps are converted to “black” in the

images Figs. &) and 8d) can be “filtered” with the aid of  spin-density maps. All other voxels were taken as “white.”
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© (d)

FIG. 9. Three-dimensional spin density images of water-filled natural and granular materials having a lacunar sgueturgce stone:
The sample radius was 13 mm, the length was 18 mm. The image data set consists #0@RF0 voxels. The data were visualized with
the aid of a ray-tracing algorithm. The voxel resolution was 250. (b) Natural sea sponge: The sample radius was 4 mm, the length was
10 mm. The data set is visualized with the aid of a ray-tracing algorithrtg)a$he image data consist of 880X 80 voxels. The digital
resolution was 10@&m. (c) Glass bead agglomerate: The sample radius was 4 mm, the length was 10 mm. The gray shades reflect the local
spin density. In this multisectional representation merely voxels at the surfaces are displayed. The bead diametet @23 (An0. The
voxel resolution was 10@m. (d) Quartz sand agglomerate: The sample radius was 4 mm, the length was 10 mm. The particle diameters
ranged from 450 to 100@&m. The gray shades reflect the local spin density. The voxel resolution wagm00n this multisectional
representation merely voxels at the surfaces are displayed.

This procedure permits the unambiguous rendering of imvelocity noise level was evaluated to be in the range 0.8-0.9
ages of the percolation backbone according to the very definm/s. The variation of the flow rate did not significantly
nition [24]. Typical results are represented by Fig&)&nd  change the backbone structure.

8(f). The main-flow direction was along theedirection. The The representation of the mean volume-averaged porosity
of the backbone patterns as a function of the probe-volume
radius permits the evaluation of the fractal dimension char-
acterizing this reduced pore space. The results are listed in
Table I. Contrary to the site percolation model, the fractal
dimension of the swiss-cheese backbone is closer to that of

TABLE II. Experimental porosity and pseudofractal dimensions
of the whole pore spacey, and of the backboneigf, of practical
lacunar systems obtained by six-dimensional NMR microscopy.

X A dgf the cc_JmpIete pore space. The magnitudes of the fractal di-
mensions are compared in Fig. 10.
Pumice stone 0.6 2.9 2.9
Natural sponge 0.8 2.9 2.9 VI. EXPERIMENTAL RESULTS
Glass beads 0.4 2.5 25 OF PRACTICAL SYSTEMS
Quartz sand 0.3 2.7 2.7

The objective of our work is to find an experimental pro-
Data from[2]. tocol for the NMR characterization of pore spaces in practi-
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3- C. Glass bead agglomerates
natural sponge
“pumice stone - Granular systems are of actual practical interest. We have
Jartzsand studied agglomerates of glass beads with well-defined diam-
glass beads eters of (1.620.2) mm. The interstitial space was filled with
Sfte percolation~__ water and imaged in the same way as the other samples.
\ : Figure 9c) shows a spin-density image. Obviously, the
| beads were packed less symmetrically as expected from the
”o . 5| swisecheese theoretical point of view. Reasons are the unavoidable distri-
site percolation bution of the bead diameters, and constraints by the sample
) \ T tube. However, the pseudofractal dimension of the black-
ﬁfi":}‘% . and-white-converted spin-density image turned out to be
\ T practically the same as that of computer simulations of bcc-
packed spherg®]. In this case it is clear that the backbone
coincides with the whole pore spa€Eable Il and Fig. 1D
|- d, d’ 14 d, d’ D. Quartz sand

As another granular system we have studied tightly
() (b) packed quartz sand. The nominal diameter distribution of the
grains covers a range 450-10p0n. Figure 9d) displays a
FIG. 10. lllustration of the variation of thépseud fractal di-  three-dimensional spin-density image of the water-filled in-
mensiond; and the(pseud9 fractal dimension of the backbone terstitial space. The pseudo-fractal dimension of the black-
d? of various lacunar objects and materials as evaluated from NMRand-white-converted spin-density image again coincides with
microimaging data. The fractal parameters of the random percolahat of the percolation backbori@able Il and Fig. 10
tion clusters scatter in the indicated ranges depending on the object
sample.(a) dg=2. (b) de=3. VII. DISCUSSION

In a first step, the swiss-cheese model was examined in
lgore than 100 computer simulations in two dimensions, and
In more than 40 in three dimensions. A suitable parameter set
or sponge, whereas granular agglomerates are of a MOLSr the characterization of the percolation network is formed

t‘icg.’"g"’?' mportance. A nun;:erf O; §ar?polles of tr";’. sortt\)/yert%)y the fractal dimensiod;, the correlation lengtl§, and the
studied in the same way as the fabricated percolation objec E‘ercolation probabilityP,, . Different lattice sizes, varied in

In order to be able to image the pore space, the samples we erange from 7670 to 1000< 1000. corroborate the same
evacuated and filled with water as already described in Corbarameter values. '

text with the fabricated objects.

cal systems. These can be of a natural origin such as pumi

The simulated pore-space patterns were used as templates
for the fabrication of two- or three-dimensional lacunar ob-
jects. The fractal properties of these objects were studied by
NMR microscopy after filling the pore spaces with water.

Figure 9a) represents a NMR spin-density image of the The experimental data were evaluated in an equivalent way
three-dimensional distribution of static water in a pumiceas the computer simulations. The procedures were tested by
stone with an overall porosity of 0.6. The gray shades of thiguxtaposing the simulated and measured results. The param-
image were converted into black-and-white contrasts. Veloceters deduced from the NMR data perfectly reproduce the
ity maps recorded with flowing water permit the rendering ofParameters characterizing the computer simulations.
the percolation backbone. Interestingly, only a few voxels It was demonstrated that the percolation backbone can

were suppressed by this “finite velocity filtering.” The con- experim(anta;lly b? separated V}Y“L‘ the ?(id of flow VeIOCit3I’
clusion is that almost all voxels contribute to transport bymaps. The fractal dimension of the backbone can be evalu-

flow. That is, the pseudofractal dimension and the pseudoi"-iteOI and used as a further parameter characterizing the pore

ractal dimension of the backbone practically coincidee space. As a result, the pore spaces of natural and practical

. : systems tend to have coincidifigseudo fractal dimensions
Table Il and Fig. 10 The pore space must be highly cross- . S
linked so that dead ends are unlikely. for the total pore space and the backbone part of it. This is in

contrast to the random-site and swiss-cheese percolation ob-
jects.
The modeling of typical natural percolation objects re-
A natural sea sponge sample was filled with water andjuires the simulation of random percolation clusters far away
imaged by six-dimensional NMR microscopy velocity map- from the percolation thresholp>p., where dead ends are
ping. The spin-density image recorded with static water isunlikely. In this case, theoretical predictions for random per-
represented by Fig.(B). The overall porosity was 0.8. The colation networks become unreliable. That is, the experimen-
evaluations show that the percolation backbone again largelial parameters determined in this work for practical systems
coincides with the whole pore spa¢gee Table Il and Fig. do not yet have their theoretical counterparts.
10). In random-site percolation clusters the backbone concerns

A. Pumice stone

B. Natural sponge
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models. Far away from the percolation threshold it becomegydyger, Hans Wiringer, and Ute @e for assistance in the
more and more difficult to distinguish a backbone from thecourse of the experiments. One of (®. K.) is indebted to
total percolation cluster at all. Finally, in natural lacunar ob-pay| Callaghan for an excursion to Lake Taupo, New
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