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NMR microscopy of pore-space backbones in rock, sponge, and sand
in comparison with random percolation model objects

A. Klemm, H.-P. Müller, and R. Kimmich
Universität Ulm, Sektion Kernresonanzspektroskopie, 89069 Ulm, Germany

~Received 22 October 1996!

Two- and three-dimensional ‘‘random swiss-cheese percolation’’ and ‘‘random-site percolation’’ pore net-
works were simulated on a computer. The results were used as templates for the fabrication of model objects.
The flow of water through the pore spaces of these objects was studied with the aid of NMR microscopy in the
velocity-mapping variant. Up to three spatial dimensions and three dimensions for the three velocity compo-
nents were examined. The results for the model objects were juxtaposed to those for lacunar materials such as
pumice, sponge, sand, and glass bead agglomerates. Parameters characterizing the structure were evaluated
from conventional NMR images of the water-filled pore spaces. The percolation backbone was determined by
eliminating all voxels with velocities below the noise level.@S1063-651X~97!02504-X#

PACS number~s!: 47.55.Mh, 87.59.Pw, 61.43.Hv, 47.53.1n
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I. INTRODUCTION

Lacunar materials and systems such as pumice, spo
sand, and glass bead agglomerates form interconnected
spaces which permit transport of fluids through the samp
It is therefore of interest to establish a set of parame
suitable for the characterization of the geometrical proper
of the pore spaces. This requires the development of exp
mental procedures for the reliable determination of th
quantities.

In order to test the possibilities NMR microscopy offe
in this respect, predictions of the standard percolation the
@1# were already compared with experimental results in
previous work@2–4#. Random-site percolation clusters we
simulated on a computer. The patterns produced in this
were used as templates for the fabrication of two- or thr
dimensional lacunar objects. The pore spaces were fi
with water and examined with the aid of NMR microsco
techniques. A suitable algorithm for the evaluation of t
image data was developed and shown to reliably reprod
the theoretical parameters by which the simulated clus
are characterized.

Random-site percolation networks are well defined a
easy to simulate. However, they are less suitable for mo
ing pore spaces in lacunar systems and granular materia
a practical nature. In this paper we are therefore referrin
so-called ‘‘swiss-cheese’’ models@5–7# which promise to
take the highly branched pore spaces of practical syst
better into account. Swiss-cheese percolation models in
context are defined as a uniform transport medium with r
domly placed spherical ‘‘voids’’@8#. That is, each ‘‘void’’
forms an obstacle for transport of matter. In the pres
study, the pore space is thus defined as the space com
mentary to that occupied by the ‘‘void’’ distribution.

Corresponding computer simulations were evaluated
terms of fractal parameters. Real swiss-cheese model ob
were then composed using the computer-simulated p
space patterns as templates. The experimental NMR inv
gation was carried out in analogy to our previous studies
random-site percolation objects@2#.
551063-651X/97/55~4!/4413~10!/$10.00
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The class of systems to be compared with the model
jects is called ‘‘lacunar’’@9#. In the present study, this in
cludes samples of natural origin such as natural spon
pumice stone, and agglomerates of granular materials suc
glass beads or quartz sand. Apart from structural proper
transport phenomena were examined using a veloc
mapping NMR technique. Transport, of course, refers to p
colation features of utmost practical relevance@7#. The
transport-limiting structure is termed the ‘‘percolation bac
bone.’’

In suitable cases, the pore space of lacunar media ca
characterized by scaling laws with well-defined expone
@1,10–15#. Parameters of particular interest are the fractal~or
pseudofractal! dimensiondf , the correlation lengthj, the
percolation probabilityP` , and the fractal~or pseudofractal!
dimension of the backbonedf

b . In the following, experimen-
tal determinations of such parameters with the aid of NM
microscopy techniques will be discussed and examined w
respect to the potential distinction of the pore spaces of
ferent materials on this basis.

II. EXPERIMENTAL SECTION

Random-site and swiss-cheese percolation model obj
were fabricated. The random-site percolation clusters ba
on computer simulations such as displayed in Fig. 1 w
composed of stacks of 0.5 mm thick polystyrene disks. Th
disks were milled with the aid of a LPKF~Leiterplatten-
Konturfräsen! circuit board plotter using computer-simulate
templates as described in@2,3#. The cubic basis of the cluste
lattice was 32 lattice constants wide in each space direct
The cross sections of the pores were quadratic with an e
length of 0.5 mm.

The swiss-cheese percolation cluster objects were reb
according to computer simulations such as those represe
in Fig. 2. The objects were constructed in the form of sta
of 0.3 mm thick polystyrene disks. Figures 3~a! and 3~b!
show photographs of complete two- or three-dimensio
swiss-cheese objects.

The basis of the clusters was again cubic. In the tw
dimensional case, the extension of the cluster was 80 la
4413 © 1997 The American Physical Society
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FIG. 1. Computer-simulated
site percolation networks with lat
tice sizes of 32332 and
32332332 lattice points in two
and three Euclidean dimension
respectively. Any isolated cluster
were eliminated. The white voxels
represent the pore space.~a!
dE52, p2pc50.060. ~b! dE53,
p2pc50.035 ~multisectional
view of the voxels located on the
surfaces!. ~c! Schematic illustra-
tion of the pore structure: white
interconnected pore space; gra
isolated cluster; black, matrix.
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constants in each space direction. The three-dimensiona
jects comprised 64 lattice constants in each direction.
edge length of the quadratic cross sections of the pores
0.3 mm.

The NMR microscopy pulse schemes used in this w
were optimized for imaging of liquids. The NMR signal o
the polystyrene material therefore was negligible compa
with the signal of the water filled into the pore spaces. B
fore injecting water, the pore spaces were evacuated in o
to avoid air bubbles which tend to block the dead ends of
pore space. Magnetic field inhomogeneities in the field
view were less than60.015 ppm as detected by magne
resonance spectroscopic imaging~e.g., Ref.@16#!.

The proton magnetic resonance imaging experime
were carried out with a Bruker Biospec 47/40 magnet~4.7 T!
combined with a partly home-made radio frequency~rf! unit.
The maximum gradients were 0.6 T/m. Typical gradie
switching times were 0.2 ms.

Two- or three-dimensional~proton! spin-density image
data were recorded using a gradient-recalled echo pulse
quence for the spatial encoding~upper part of Fig. 4!. The
digital resolution varied from 0.10 mm to 0.30 mm. Th
sample dimensions ranged from 8 mm to 20 mm. The lo
spin density is equivalent to the local porosity of the ma
rial, where ‘‘local’’ refers to the two-dimensional pixel o
three-dimensional voxel at the considered position.

Based on bipolar field gradient pulses, the Fourier enc
ing velocity imaging~FEVI! principle @17,18# permits phase
encoding of the gradient echo proportional to the local
b-
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locity component along the respective field gradient dir
tion. In this way, maps of the velocity vector of water pe
colating through the pore space can be acquired. The r
frequency and field gradient pulse sequence is shown in
4. More detailed information on this method can be found
@19,20#.

The absolute value of the local flow velocit
v5Avx21vy

21vz
2 was then calculated from the three veloci

components which were separately measured with the ai
this pulse sequence.

The image data sets recorded in this way were up to
dimensional. On this basis, any two- or three-dimensio
representation of the local spin density or the local veloc
components or the local velocity magnitude can be rende
in principle. Spin-density images mirror the full percolatio
cluster, whereas the percolation backbone can be ident
with the aid of the velocity data.

III. CHARACTERISTIC PARAMETERS
IN PERCOLATIONTHEORY

The porosity of a lacunar percolation system is defined

r5
Vp

Vp1Vm
, ~1!

whereVp is the total pore volume, andVm is the total matrix
volume without pores in the sample fraction under consid
ation. We distinguish the ‘‘overall porosity’’ referring to th
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55 4415NMR MICROSCOPY OF PORE-SPACE BACKBONES IN . . .
FIG. 2. Computer-simulated
swiss-cheese percolation network
with lattice sizes of 80380 and
64364364 lattice points in two
and three Euclidean dimension
respectively. Any isolated cluster
were eliminated. The white voxels
represent the pore space.~a!
dE52, p2pc50.087. ~b! dE53,
p2pc50.009 ~projection of the
total pore space on the drawin
plane; the gray shades of th
three-dimensional black-and
white data set arise from the su
perposition of voxel projections!.
~c! Schematic illustration of the
approximate representation o
spherical transport medium
‘‘voids’’ ~percolation obstacles!
by a finite number of discrete ma
trix voxels. In the two-
dimensional case shown here, th
circle comprises the same area
the pixels marked by dots.
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whole sample, and the ‘‘local porosity’’ characterizing th
situation within a voxel at a certain position.

In the NMR imaging experiments to be described in t
following, the pores were completely filled with water. Th
local porosityr5r(r ) is then equal to the local water sp
density, that is, the volume fraction of the water in the vo
under consideration. Therefore the amplitude of the wa
signal of a voxel is directly proportional to the porosity
this voxel.

The average porosity of the whole sample can be de
mined from the masses of the dry matrix material (mm) and
the fluid-filled sample (mw1mm) according to

r̄05
mw

mw1qr mm
, ~2!

whereqr is the ratio of the mass densities of the fluid and
matrix material.

The theory of random percolation networks suggest
scaling window of self-similarity in the rangea,r,j,
wherea is the structure-forming elementary length, andj the
correlation length. Percolation clusters in this range hav
volume-averaged density varying with the probe-volume
dius according to@1#

rV~r !}H r df2dE, a,r,j

P` , r.j.
~3!

The Euclidean dimension is denoted bydE , the fractal di-
mension bydf . The fractal dimensions of two- and thre
l
r

r-

e

a

a
-

dimensional random-site percolation networks are found
be @1# df51.9 in dE52 anddf52.5 in dE53 ~see also Fig.
10!. The percolation probability,P` is a constant (P` cor-
responds tor̄0 of real samples!.

Random-site percolation networks are defined by a cer
occupation probability of the sites,p, and the threshold value
pc . In the vicinity of pc and forp.pc , the parametersP`

andj obey @1#

P`}~p2pc!
b, ~4!

j}~p2pc!
2n. ~5!

The exponents of the above power laws are related with e
other according to@1#

df5dE2
b

n
. ~6!

A severe problem arising with evaluations of data o
tained in real experiments such as NMR imaging studie
that the systems are unavoidably restricted to relatively sm
cluster sizes and ensembles. It was therefore essential to
velop evaluation procedures coping with such limitations@2#.
The power law given in Eq.~3!, for instance, can be teste
by determining the mean volume-averaged porosity a
function of the radiusr of the probe volume. A suitable
evaluation method is the so-called ‘‘sandbox’’ method@10#:
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FIG. 3. Photographs of two-
and three-dimensional swiss
cheese percolation objects exam
ined in this study. In each case th
pore space was first simulated o
a computer and then machined u
ing the computer results as tem
plates. The matches on the botto
illustrate the length scale.~a!
Two-dimensional network milled
into a polystyrene plate with a
thickness of 0.5 mm. The size i
24324 mm2. ~b! Three-
dimensional object composed o
64 polystyrene disks of a thick
ness of 0.3 mm each. The cros
sectional area of the three
dimensional percolation cluste
was 20320 mm2.
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r̄V~r !5
1

Np
(
i51

Np 1

Nv
(
j51

Nv

r~r j ! ~ ur i2r j u<r !, ~7!

where

r~r j !5H 0 ~site r j not occupied!

1 ~siter j occupied!.
~8!

The quantityNv is the number of voxels in the probe vo
ume. The center of the probe volume must be at a posi

FIG. 4. Radio frequency~rf! and field gradient (Gi , i5x,y,z)
pulse scheme of the NMR microscopy techniques employed in
study~see Sec. II!. The sequence is based on gradient-recalled e
oes~GE!. The three-dimensional spatial encoding is performed w
the aid of two phase-encoding and one frequency-encoding g
ent. The three velocity components are phase encoded with th
of bipolar gradient pulses~bottom line!. For details see Ref.@20#,
for instance.
n

r i belonging to the considered cluster. The conditi
ur i2r j u<r is the consequence of the spherical shape of
probe volume. The expression in Eq.~7! finally refers to the
ensemble mean value ofNp probe volumes of equal size.

IV. COMPUTER SIMULATIONS

A. Random-site percolation networks

The percolation objects used for the NMR experime
are based on computer simulations of random percola
clusters which served as templates for the object fabricat
The computer simulations of random percolation netwo

is
h-
h
di-
aid

FIG. 5. Mean volume-averaged porosityr̄V(r ) as a function of
the probe-volume radiusr . The data were evaluated from th
computer-simulated three-dimensional swiss-cheese percola
network shown in Fig. 2~b!. The shortest radiusa, i.e., the
structure-forming elementary length, of the probe-volume comp
ing at least one sphere of the matrix is equal to two lattice const
as becomes obvious from Fig. 2~c!. Smaller probe volume radi
outside the scaling window lead to reduced mean volume-avera
porosities which are not characteristic for the fractal properties
the cluster.
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FIG. 6. Verification of the proportionalitiesP`}(p2pc)
b and j}(p2pc)

2n on the basis of computer simulations of two- and thre
dimensional swiss-cheese percolation networks. The correlation lengthj is displayed in units of the disk or sphere radiusa. ~a! b50.14
~fixed literature value!  pc50.35. ~b! n50.24 @value fitted using the threshold value of~a!#. ~c! b50.41 ~fixed literature value!
 pc50.074.~d! n50.30 @value fitted using the threshold value of~c!#.
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were carried out assuming the same spatial resolution r
tive to the object size as in the experiments, that is, a dig
resolution of either 0.30 mm or 0.25 mm. Since t
computer-simulated patterns were to be used as template
the fabrication of real objects, only three-dimensional p
terns that consist of two-dimensional slices without ‘‘i
lands’’ were considered.

The site percolation clusters were composed on a cu
lattice with the aid of the random-number generator of
Borland C programming language. Each site of the lattic
occupied randomly with the probabilityp. The occupation of
two neighboring lattice sites is interpreted as a passa
Above the percolation thresholdpc (pc50.5927 fordE52
andpc50.3116 fordE53 @1#! one largest cluster exists con
necting opposite edges of the network@see the ‘‘white’’ clus-
ters in Figs. 1~a! and 1~b!, for instance#. The NMR imaging
resolution was chosen in such a way, that each cluster si
probed by four NMR imaging pixels in two-dimension
clusters or eight voxels in three dimensions. The eliminat
of isolated clusters led to the desired network@Fig. 1~c!#.
Thus the network size that can be examined in the NM
microscopy experiments is restricted to 32332332 lattice
sites for practical reasons@2#.

B. Swiss-cheese percolation networks

The swiss-cheese model to be considered here is de
by randomly distributed spherical obstacles in a unifo
la-
al
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e
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transport medium@8#. In this case, the percolation threshold
are found to bepc50.32 for dE52 and pc50.032 for
dE53 @5,13,21#. The networks were based on quadratic
cubic lattices for the two- or three-dimensional cases, resp
tively. ‘‘Disks’’ or ‘‘spheres’’ with radii of two lattice con-

FIG. 7. Fractal dimensiondf as a function of the percolation
probabilityP` . The data were evaluated from computer-simulate
swiss-cheese percolation networks. Lattice sizes: 1283128
(dE52) and 64364364 (dE53).
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TABLE I. Parameters of random percolation clusters as determined in this work~SP, site percolation; SC
swiss cheese;c, computer simulated;e, experimental data from NMR data sets!.

dE52 dE53
pc P` df df

b pc P` df df
b

SP;c a 0.5927 0.5–0.6 1.89 1.6–1.8 0.3116 0.2–0.3 2.53 1.9
SP;e a 0.5–0.6 1.9 1.6–1.8 0.2–0.3 2.5 2.2-2.3
SC;c 0.37 0.3–0.5 1.55–1.68 0.080 0.03–0.2 1.8–2.1
SC;e 0.3–0.4 1.60–1.69 1.48–1.55 0.06–0.2 1.8–2.0 1.7–1

aData from@2#.
v
ni

ls

at
l
t

r

o

th
-

e

ld

e

b
e
h

er
o
o
io

st

ole

hat
s-
con-
le I

f
e-
ely.
lus-

hat
e
ers.
im-
nd,
mu-
cies

sity
th
xels
ale
on-
de-

a
y,

m-
e-
of
stants were placed on the lattices at random. The actual
ume covered by these objects is determined by the fi
resolution of the lattice, and is indicated in black in Figs. 2~a!
and 2~b!, for instance.

A passage is defined by two ‘‘white’’ pixels or voxe
touching each other at least at one corner@Fig. 2~c!#. For
practical reasons, the cluster size was limited to 80380 @Fig.
2~c!# and 64364364 @Fig. 2~b!# lattice sites in two and three
dimensions, respectively.

The porosity of the network can be determined as the r
of ‘‘white’’ ~i.e., pore space! pixels or voxels and the tota
number of lattice sites. In the three-dimensional case, i
also described by

rn5exp~2 4
3 pnR3!, ~9!

wheren is the number density of spheres, andR is the radius
of the spheres@22,23#. The corresponding expression fo
two-dimensional networks is

rn5exp~2pnR2!. ~10!

In this case,rn represents the fraction of ‘‘white’’ lattice
sites, that is, it is analogous to the occupation probability
the site percolation networks.

The fractal parameters are again determined from
volume-averaged porosityr̄V(r ) as a function of the probe
volume radius~Fig. 5, for instance!. Differences to the values
considered to be universal in all random percolation n
works are due to the finite and discrete lattice approach
the disks and spheres~Fig. 2!.

Taking the literature values for the exponentb in Eq. ~4!
as given quantities, that is,b50.14 for dE52 @23#, and
b50.41 for dE53 @13#, the average percolation thresho
values were determined aspc50.37 for dE52, and
pc50.080 fordE53 @Figs. 6~a! and 6~c!#. These values are
somewhat higher than the theoretical predictions, as
pected for finite matrix sizes@21#. Although there is a slight
variation of the fractal dimension with the percolation pro
ability ~Fig. 7!, Eq. ~5! can be fulfilled in a reasonable rang
by fits of Eq.~6! to the power law of the correlation lengt
@Figs. 6~b! and 6~d!#.

Coherent flow of fluids in the pore space of lacunar p
colation systems is expected to be influenced by the c
straints imposed by geometric confinements. The transp
mediating pore-space structure is called the ‘‘percolat
backbone’’ with the fractal dimensiondf

b @24#. A definition is
that two independent pathways to the sample edges exi
each site@24#. For more details, see@1,4,7#, for instance.
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The fractal dimensions of the backbone and of the wh
cluster are related as@15#

bb5
1
2 ~n dE13b!21, ~11!

df
b5dE2

bb

n
, ~12!

wherebb is the backbone-related exponent in analogy to t
in Eq. ~4!. In the simulations of the backbone, it was a
sumed that singly connected pore-space channels do not
tribute to transport. The results are summarized in Tab
and are illustrated in Fig. 10.

V. EXPERIMENTAL RESULTS
FOR THE MODEL OBJECTS

A. Black-and-white conversion of spin-density images

Figures 8~a! and 8~d! show the spin-density images o
static water filled in the pore space of two- and thre
dimensional swiss-cheese percolation objects, respectiv
The objects were fabricated using computer-simulated c
ters as templates@compare Figs. 2~a! and 2~b!#. The gray
shades directly reflect the local porosity in the voxels. T
is, there are not only ‘‘pure’’ matrix and ‘‘pure’’ pore-spac
voxels as in the case of the computer-simulated clust
Apart from that, the water signals are unavoidably super
posed by noise in the NMR experiments. On the other ha
the visual inspection reveals a good coincidence of the si
lated and the measured patterns in spite of any inaccura
in the object fabrication.

The evaluation of the mean volume-averaged poro
@Eq. ~7!# for probe-volume radii below the correlation leng
requires the unambiguous assignment of the pixels or vo
either to the pore space or to the matrix. The gray-sc
images must therefore be converted to black-and-white c
trasts. A straightforward procedure for this purpose is
scribed in@2#.

The mean volume-averaged porosity was plotted in
form similar to the data representation in Fig. 5. In this wa
the parametersdf , P` , andj can be evaluated.

B. Experimental determination of the percolation backbone

The percolation backbone can experimentally be exa
ined by velocity mapping of water flowing through the r
built percolation objects. The gray-shade representation
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FIG. 8. Spin-density images and velocity maps of the water-filled pore space measured in two- and three-dimensional percolatio
The digital resolution was 300mm, the field of view 38.4 mm in each dimension.~a! Spin-density image of a water-filled two-dimension
swiss-cheese object fabricated forp2pc50.087. This object corresponds to the computer simulated pattern shown in Fig. 2~a!. The gray
shades arise from the local spin density.~b! Velocity map of water percolating through the object~a!: The velocity magnitude is represente
by gray shades. That is, the intensity is proportional to the absolute value of the velocityv5(vx

21vz
2)1/2. The preferential flow pathways

along the percolation backbone are evident.~c! Two-dimensional (dE52) black-and-white-converted representation of the backbone of~b!.
The velocity noise level defining the black-white threshold of the pixel representation was 0.9 mm/s.~d! Spin-density image of a water-filled
three-dimensional swiss-cheese object fabricated forp2pc50.0085. This object corresponds to the computer-simulated cluster show
Fig. 2~b!. The gray shades arise partly from the local spin density and partly from the superimposed voxel projections on the drawin
~e! Velocity map of water flowing through the object~d!. The velocity magnitude is represented by gray scales. In this case, the inten
proportional to the absolute value of the velocityv5(vx

21vy
21vz

2)1/2. ~f! Three-dimensional (dE53) black-and-white-converted backbon
representation of~e!. The velocity noise level is the same as in~c!.
it
se
e
.’’
the two- or three-dimensional velocity maps Figs. 8~b! and
8~e! directly visualizes the main transport pathways.

Furthermore, the two- or three-dimensional spin-dens
images Figs. 8~a! and 8~d! can be ‘‘filtered’’ with the aid of
y

the corresponding velocity maps, Figs. 8~b! and 8~e!. That is,
all voxels with velocity magnitudes below the rms noi
level in the velocity maps are converted to ‘‘black’’ in th
spin-density maps. All other voxels were taken as ‘‘white
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FIG. 9. Three-dimensional spin density images of water-filled natural and granular materials having a lacunar structure.~a! Pumice stone:
The sample radius was 13 mm, the length was 18 mm. The image data set consists of 1003100370 voxels. The data were visualized wit
the aid of a ray-tracing algorithm. The voxel resolution was 250mm. ~b! Natural sea sponge: The sample radius was 4 mm, the length
10 mm. The data set is visualized with the aid of a ray-tracing algorithm, as~a!. The image data consist of 80380380 voxels. The digital
resolution was 100mm. ~c! Glass bead agglomerate: The sample radius was 4 mm, the length was 10 mm. The gray shades reflect
spin density. In this multisectional representation merely voxels at the surfaces are displayed. The bead diameter was (1.060.2) mm. The
voxel resolution was 100mm. ~d! Quartz sand agglomerate: The sample radius was 4 mm, the length was 10 mm. The particle di
ranged from 450 to 1000mm. The gray shades reflect the local spin density. The voxel resolution was 100mm. In this multisectional
representation merely voxels at the surfaces are displayed.
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This procedure permits the unambiguous rendering of
ages of the percolation backbone according to the very d
nition @24#. Typical results are represented by Figs. 8~c! and
8~f!. The main-flow direction was along thez direction. The

TABLE II. Experimental porosity and pseudofractal dimensio
of the whole pore space,dpf , and of the backbone,dpf

b , of practical
lacunar systems obtained by six-dimensional NMR microscopy

r̄0 dpf dpf
b

Pumice stone 0.6 2.9 2.9
Natural spongea 0.8 2.9 2.9
Glass beadsa 0.4 2.5 2.5
Quartz sand 0.3 2.7 2.7

a
Data from@2#.
-
fi-
velocity noise level was evaluated to be in the range 0.8–
mm/s. The variation of the flow rate did not significant
change the backbone structure.

The representation of the mean volume-averaged poro
of the backbone patterns as a function of the probe-volu
radius permits the evaluation of the fractal dimension ch
acterizing this reduced pore space. The results are liste
Table I. Contrary to the site percolation model, the frac
dimension of the swiss-cheese backbone is closer to tha
the complete pore space. The magnitudes of the fracta
mensions are compared in Fig. 10.

VI. EXPERIMENTAL RESULTS
OF PRACTICAL SYSTEMS

The objective of our work is to find an experimental pr
tocol for the NMR characterization of pore spaces in pra
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cal systems. These can be of a natural origin such as pu
or sponge, whereas granular agglomerates are of a m
technical importance. A number of samples of this sort w
studied in the same way as the fabricated percolation obje
In order to be able to image the pore space, the samples
evacuated and filled with water as already described in c
text with the fabricated objects.

A. Pumice stone

Figure 9~a! represents a NMR spin-density image of t
three-dimensional distribution of static water in a pum
stone with an overall porosity of 0.6. The gray shades of
image were converted into black-and-white contrasts. Ve
ity maps recorded with flowing water permit the rendering
the percolation backbone. Interestingly, only a few vox
were suppressed by this ‘‘finite velocity filtering.’’ The con
clusion is that almost all voxels contribute to transport
flow. That is, the pseudofractal dimension and the pseu
ractal dimension of the backbone practically coincide~see
Table II and Fig. 10!. The pore space must be highly cros
linked so that dead ends are unlikely.

B. Natural sponge

A natural sea sponge sample was filled with water a
imaged by six-dimensional NMR microscopy velocity ma
ping. The spin-density image recorded with static wate
represented by Fig. 9~b!. The overall porosity was 0.8. Th
evaluations show that the percolation backbone again lar
coincides with the whole pore space~see Table II and Fig.
10!.

FIG. 10. Illustration of the variation of the~pseudo! fractal di-
mensiondf and the~pseudo! fractal dimension of the backbon
df
b of various lacunar objects and materials as evaluated from N
microimaging data. The fractal parameters of the random perc
tion clusters scatter in the indicated ranges depending on the o
sample.~a! dE52. ~b! dE53.
ice
re
e
ts.
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c-
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s

f-

-
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C. Glass bead agglomerates

Granular systems are of actual practical interest. We h
studied agglomerates of glass beads with well-defined di
eters of (1.060.2) mm. The interstitial space was filled wit
water and imaged in the same way as the other samp
Figure 9~c! shows a spin-density image. Obviously, th
beads were packed less symmetrically as expected from
theoretical point of view. Reasons are the unavoidable dis
bution of the bead diameters, and constraints by the sam
tube. However, the pseudofractal dimension of the bla
and-white-converted spin-density image turned out to
practically the same as that of computer simulations of b
packed spheres@2#. In this case it is clear that the backbon
coincides with the whole pore space~Table II and Fig. 10!.

D. Quartz sand

As another granular system we have studied tigh
packed quartz sand. The nominal diameter distribution of
grains covers a range 450–1000mm. Figure 9~d! displays a
three-dimensional spin-density image of the water-filled
terstitial space. The pseudo-fractal dimension of the bla
and-white-converted spin-density image again coincides w
that of the percolation backbone~Table II and Fig. 10!.

VII. DISCUSSION

In a first step, the swiss-cheese model was examine
more than 100 computer simulations in two dimensions, a
in more than 40 in three dimensions. A suitable parameter
for the characterization of the percolation network is form
by the fractal dimensiondf , the correlation lengthj, and the
percolation probabilityP` . Different lattice sizes, varied in
a range from 70370 to 100031000, corroborate the sam
parameter values.

The simulated pore-space patterns were used as temp
for the fabrication of two- or three-dimensional lacunar o
jects. The fractal properties of these objects were studied
NMR microscopy after filling the pore spaces with wate
The experimental data were evaluated in an equivalent
as the computer simulations. The procedures were teste
juxtaposing the simulated and measured results. The pa
eters deduced from the NMR data perfectly reproduce
parameters characterizing the computer simulations.

It was demonstrated that the percolation backbone
experimentally be separated with the aid of flow veloc
maps. The fractal dimension of the backbone can be ev
ated and used as a further parameter characterizing the
space. As a result, the pore spaces of natural and prac
systems tend to have coinciding~pseudo! fractal dimensions
for the total pore space and the backbone part of it. This i
contrast to the random-site and swiss-cheese percolation
jects.

The modeling of typical natural percolation objects r
quires the simulation of random percolation clusters far aw
from the percolation thresholdp@pc , where dead ends ar
unlikely. In this case, theoretical predictions for random p
colation networks become unreliable. That is, the experim
tal parameters determined in this work for practical syste
do not yet have their theoretical counterparts.

In random-site percolation clusters the backbone conce
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only a small part of the network. Close to the percolati
threshold the cluster tends to consist of dead ends@1#. This
property is less pronounced with continuum swiss-che
models. Far away from the percolation threshold it becom
more and more difficult to distinguish a backbone from t
total percolation cluster at all. Finally, in natural lacunar o
jects the backbone appears to coincide totally with the wh
percolation network~compare Fig. 10!. The pore space o
natural lacunar objects obviously tends to be highly interc
nected.
g
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