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Abstract. A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the
transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based
on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine
differences in absorption and scattering coefficients. Precise knowledge of the sample’s surface shape and orienta-
tion is required to provide boundary conditions for these techniques. We propose an integrated method based on
structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is
usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and
camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying bypro-
ducts caused by inter-reflections and multiple scattering in semitransparent tissue. © 2012 Society of Photo-Optical Instru-

mentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.12.126009]
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1 Introduction
Using light for medical diagnostics and biomedical research has
become increasingly popular over the last decades due to fast
and noninvasive applications without the need for ionizing
radiation.

In the range of near-infrared light, the absorption coefficient
of biological tissue components such as oxi/deoxihemoglobin,
melanin, and water decreases. Therefore light can pass several
centimeters through tissues.1 A main field of research in this
area is diffuse optical tomography (DOT). Most DOT systems
detect transmitted light2,3 and analyze the scattering and absorp-
tion differences to determine structural changes in tissues.4,5

Interpreting these values with respect to experimentally obtained
data for tissue parameters makes DOT suitable for breast cancer
detection, small animal, or brain imaging and tracking of active
pharmaceuticals.2,6–9

1.1 Illumination and Light Capturing Methods

In DOT systems different methods for illumination and light-
capturing have been established. In DOT systems, two different
setups can be distinguished: the first type employs noncontact
illumination and light capturing while the second system type
uses optical fibers in direct contact to the tissue to inject and
detect light.6,7,10 The optical fiber applications are limited
with respect to functionality due to the need of contact gel in
suitable containers, inflexibility, and high maintenance require-
ments. Furthermore, an integrated real shape 3-D reconstruction
of tissues or phantoms embedded in contact gel is difficult or
even impossible.8,11 In noncontact DOT, problems arise due

to refraction at surfaces, reflection, and intensity variations
caused by the irregularity of the objects geometry.

1.2 Reconstruction of Inner Tissue Structure

Mathematical models were developed to describe light transport
inside tissue by employing finite element methods (FEM) or
Monte Carlo simulations for image reconstruction and determin-
ing differences in absorption and scattering coefficients.12–18

The use of such methods is strongly simplified due to the exis-
tence of highly sophisticated software toolboxes, e.g., TOAST
(http://web4.cs.ucl.ac.uk/research/vis/toast/intro.html) or NIR-
FAST (http://www.dartmouth.edu/~nir/nirfast/), that offer a
broad variety of adjustable parameters.19 Current methods for
mesh creation are mainly based on segmented pre-MRI or
CT scans, or rough approximations of the surface.20–22 However,
for a more accurate reconstruction, precise knowledge of the
surface is inevitable.

1.3 3-D Surface Scans and Reconstruction
of the Object Shape

In addition to the development of reconstruction software, dif-
ferent surface capturing methods have been employed. DOT
systems with integrated 3-D cameras, holographic scanners,
or photoluminescence plates were developed. Another method
to capture the shape of the object is to process pre-MRI or CT
scans.11,20–22 These systems have disadvantages regarding accu-
racy and/or handling, expenditure of time, availability and oper-
ating costs. For example, in semitransparent objects, 3-D
cameras cannot distinguish between information from the sur-
face and light originating from the subsurface. Photolumines-
cence plates capture only a shadow image of the object
disregarding fine details of the surface.3,8,12,19 Structured lightAddress all correspondence to: K. Baum, Philipps University Marburg,
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3-D scanners, which are widely used in a lot of industrial appli-
cations,23–25 offer a cheap and flexible option for integration of a
3-D surface scanner into a DOT system. Libraries such as “Open
Computer Vision” (open CV, http://opencv.willowgarage.com/
wiki/) or “The Point Cloud Library” (PCL, http://pointcloud-
s.org/) provide a multitude of suitable open source software
components for utilization in optical imaging applications.26

In this paper we present an approach for 3-D surface recon-
struction of semi-transparent objects imaged by a DOT system,
using a structured light projection setup in combination
with polarization difference imaging (PDI). Combining these
techniques allows for contactless image acquisition and also
faster mesh generation for FEM-based image reconstruction
algorithms.

2 Theory and Methods
Within contactless image acquisition of objects in diffuse optical
tomography, special care must be taken with regard to boundary
surfaces, since the angle of refraction depends on the orientation
of the surface normal and the refraction index of the med-
ium.11,27 To overcome this dilemma given an unknown object
topology, multiple detectors are usually attached directly to
the surface using a refraction index matching contact gel.7

For contactless image acquisition in transmission mode, the
shape of an object has to be known for two reasons: first, the
geometric information can be used for simple mesh creation
to model diffuse light propagation in tissue employing FEM,
like the one used by NIRFAST and TOAST. Second, the
shape determines the direction of photons leaving the object
and the intensity captured by the detector. These problems
are illustrated in Fig. 1, where the surface shape influences
the transmitted light intensity on the detector side. Assuming
a Lambertian radiator at each node k of the FEM-mesh on
the object’s surface, which is justified by the multiple-scattering
nature of light inside the tissue, the light intensity Ik as measured
by the detector can be obtained from the surface shape and the
transmitted intensity I0k perpendicular to the surface by

Ik ¼ I0k · sin βk; k ¼ 1; 2; 3: (1)

The angles αj with j ¼ 1, 2 determine the amount of light
reflected by the surface according to the Fresnel equations.
However, since optical properties of the tissue are generally
unknown, the incident laser beam should be kept perpendicular
to the surface.

2.1 Polarization Difference Imaging

PDI is a relatively simple and fast technique, which allows the
separation of light reflected by the real surface of an object from
the signal originating from the subsurface.

In effect, in nonbirefringent media ballistic scattering does
not alter the polarization state of light, while nonballistic scat-
tering results in random polarization. By analyzing the polariza-
tion state of the reflected light, the real surface of the object can
be extracted. Nevertheless, tissue penetration depth is correlated
to multiple scattering events and inter-reflections ultimately
resulting in a loss of polarization.

If polarizer and analyzer are aligned in the same orientation,
ballistic scattered photons are recovered. To decrease the noise
caused by photons randomly polarized in the same manner as
the incident light due to inelastic scattering, the analyzer is

turned orthogonal to the polarizer and the measured signal is
subtracted. The calculated intensity of ballistic photons is

I ¼ jIjj − I⊥j; (2)

where Ijj is the intensity recorded during parallel alignment of
polarizer and analyzer while I⊥ is obtained after turning the ana-
lyzer at 90 deg.1,28–30

2.2 Structured Light 3-D Reconstruction

A cloud of points on the object’s surface is captured using ray-
plane intersection, which is then triangulated to obtain a discrete
number of small surface elements. For the first step, gray-coded
fringe patterns are projected onto the object. In the camera plane,
the stripes seem shifted and curved due to the topology of the
object. Here every stripe in the projected image is identified in
the captured image by its binary gray-code.31 Provided the posi-
tions of camera and projector are known, the 3-D object position
within the coordinate system of the camera is obtained by cal-
culating the intersection point of the plane given by a projector
stripe and the light ray detected by the camera.32 While exam-
ining tissue, it cannot be assumed that only direct surface reflec-
tions of fringe pattern are observed. Rather, photons originating
from subsurface scattering must be accounted for. To this end,
de-scattering properties of phase-shifting or PDI, which is used
in this work, can be applied.28

By rotating the object and repeating the previous procedure,
local 3-D reconstructions from different viewpoints are acquired
and can be merged to obtain global surface information. This
data is used to provide boundary information for FEM-mesh
creation on the one hand and to normalize images acquired dur-
ing a DOT scan on the other hand (see Fig. 1).

An example for an experimental noncontact DOT setup with
integrated PDI and structured light system is shown in Fig. 2.

2.3 Workflow

The workflow of a DOT system is illustrated in Fig. 3. In the first
step, the object is rotated on a stage while fringe pattern image
sequences are collected to reconstruct a 3-D surface model. The
same detector is used subsequently to acquire images of the
object trans-illuminated by the laser. In the next step, the surface

Fig. 1 The light intensities I1−3 measured by the camera depend on the
surface orientation with respect to camera position and on the refractive
index of object and ambient medium. The angles α1−2 show the orien-
tation of the incident light to the surface segments, while β1−3 describe
the angle between camera normal and the surface at the detector side
(Ik ¼ I0k · sin βk, k ¼ 1, 2, 3). Note that nk denotes the surface normal to
the surface element number k.
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model data is needed for mesh generation on the one hand and
intensity normalization of the images, captured in trans-
illumination mode, on the other. Finally, the mesh is used for
FEM-based solving of the forward model of light propagation
within the object.19

If the deviation between the solution of the forward model
and the captured transmitted light data is minimized by para-
meter variation, the inversion of the forward problem can
give an estimate for the distribution of the light absorption
and scattering parameters μa and μs. All of the components
are integrated in one experimental setup.

2.4 From Point Clouds to Mesh

In order to provide suitable information for tissue reconstruction
applications like NIRFAST and TOAST, surface meshes have to
be constructed out of the acquired point clouds. Such meshes
usually consist of polygons, which in most cases form triangles
for easier storage, rendering, and further processing of the data.
Depending on the required accuracy, the density of points can be
reduced first to reduce computing time. For the point cloud and
surface reconstruction operations, the “Point Cloud Library”26 is
used. It provides implementations of several algorithms for both
surface reconstruction and point cloud filtering/smoothing. For
numerical iterative optimization purposes the “GNU Scientific
Library” is used.33

3 Results
To specify and to validate the method, the following measure-
ments were performed: both a nontransparent metallic cylinder
and a semitransparent cylinder made of Agar-Agar were
scanned in order to determine the accuracy of the proposed
method and demonstrate the advantages of PDI within the
system.

Additional scans of more complex non and semitransparent
objects were carried out. The resulting volume meshes are pre-
sented in Sec. 3.4.

3.1 Accuracy of the Method for Nontransparent
Objects

To determine the accuracy of the 3-D scanning unit, a metallic
cylinder of known radius rcyl ¼ 7.7 mm was scanned from dif-
ferent angles. The resulting point clouds were merged into a
360-deg surface cloud. The final point cloud is shown in
Fig. 4. For this measurement, the cylinder was aligned so
that its symmetry axis coincides with the system’s rotation
axis. Since the orientation of the rotation axis is known from

Fig. 3 Workflow of a DOT system with integrated PDI and structured
light projection. Hardware control, image acquisition, data recon-
struction, and data analysis can be performed within one software
application.

Fig. 4 Point cloud reconstruction of a metal cylinder with radius
rcyl ¼ 7.7 mm.

Fig. 2 Experimental setup for a noncontact DOT system with integrated
PDI and structured light projection system (on the right hand side). The
laser beam describes the transmitted light path of the system (left-hand
side). Transmitted light and fringe pattern can be captured by the same
camera system. For 3-D surface shape reconstruction, the polarizer-
analyzer orientation can be adjusted between 0 and 90 deg, and the
object can be illuminated with fringe patterns by the projector.

Fig. 5 Measurement of a test cylinder made of metal (rcyl ¼ 7.7 mm).
The upper plot shows the computed radius for every point in compar-
ison to the real cylinder radius, which is drawn as dashed line. The
lower plot illustrates the relative error for every point. The mean
error is 3.2% (dashed line) with a standard deviation of 2%. Note
that the point indices are sorted by ascending z-values.
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the calibration procedure, it is possible to compare the distance
of every point to the rotation axis with the actual cylinder radius.

As presented in Fig. 5, the computed point cloud is in good
agreement with the real shape of the cylinder. The mean error is
3.2% with a standard deviation of 2%, which is a satisfying
result.

3.2 Accuracy of the Method for Semitransparent
Objects

Similar tests were performed on a semitransparent Agar-Agar
cylinder (2% Agar-Agar Kobe I, Company Carl Roth GmbH
Karlsruhe) of radius rcyl ¼ 12.92 mm. In order to determine
the influence of PDI on the quality of the 3-D reconstruction,
these measurements were carried out with and without using
the PDI method. The following images illustrate the resulting
point clouds of both measurements in comparison.

Figure 6 demonstrates that the absence of PDI leads to major
reconstruction errors. This observation can be quantified by

analyzing the cylinder radius as described in Sec. 3.1. As
shown in Fig. 7(a), the usage of the PDI method suppresses
most of the reconstruction errors. In addition, using PDI reduces
the mean relative error from 19.3 to 7.4%. However, the errors
still show a larger dispersion about the mean as compared to the
metal cylinder. All the quantitative results are summarized in
Table 1.

Fig. 6 (a) Point cloud reconstruction of an Agar-Agar cylinder with a radius rcyl ¼ 12.92 mm using PDI technique. (b) Point cloud of the same cylinder
measured without using PDI.

Fig. 7 Measurements of an Agar-Agar cylinder (rcyl ¼ 12.92 mm) with and without PDI. The dashed lines indicate the ideal cylinder radius in the upper
and the mean errors in the lower plots (a) PDI measurement of an Agar-Agar cylinder. The mean error is 7.4% with a standard deviation of 7.9%
(b) NonPDI measurement of the same cylinder. Here the mean error is 19.3% with a standard deviation of 60.5%. Note the different scaling of the
y-axis. Point indices are sorted by ascending z-values in both cases.

Table 1 Validation results.

Metal
Cylinder

Agar-Agar
cylinderwith PDI

Agar-Agar
cylinderwithout PDI

Mean relative error 3.2% 7.4% 19.3%

Standard deviation 2% 7.9% 60.5%
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Fig. 8 (a) Photo of the phantom. (b) The point cloud image of the phantom. (c) and (d) Triangulated surface meshes with different node distances.

Fig. 9 (a) Photo of a typical HARIBO gold bear. (b) Volume mesh reconstructed from a PDI measurement of the same gold bear.
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Based on these results, we conclude that the usage of PDI
clearly improves the surface scans. However, our point cloud
reconstructions of semitransparent objects do not reach the
quality of nontransparent objects.

3.3 Meshing of Nontransparent Objects

Both a photography of a nontransparent object (here a plastic
mouse phantom) and the corresponding point cloud captured
with the introduced setup via structured light, are shown in
Fig. 8(a) and 8(b), respectively.

Such surface point clouds captured from different angles
were merged into a 360-deg surface point cloud of the sample.
We then used a triangulation algorithm implemented in
NIRFAST to find a 3-D volume mesh for further processing.
Preliminary results are shown in Fig. 8(c) and 8(d) with different
node distances.

3.4 Meshing of Semitransparent Objects

The main application of our approach is to handle tissue-like and
semi-transparent objects using PDI. Figure 9(a) and 9(b) show
both a photography of a typical HARIBO Gold-bear (HARIBO
of America, Inc., Baltimore, MD) and its corresponding mesh as
calculated from point cloud data obtained with our setup. As
shown in Sec. 3.2, the absence of PDI leads to significant recon-
struction errors and therefore the best results can be achieved by
using PDI within a DOT system.

4 Conclusion
Our setup provides a quick and cost-effective method to obtain a
pure 3-D surface structure of an object within a DOTapplication
concerning both hardware and software. Such surface scans
including setup calibration, scanning and data processing can
typically be finished within less than 10 min. Hardware compo-
nents like polarisation filters for PDI applications and a struc-
tured light pattern projector are added to an existing DOT
system. It has to be mentioned that projector-camera calibration
is challenging for a camera field of view with sub-centimeter
size. The same detector is used for the transmitted and structured
light image capturing. Furthermore, hardware control, image
acquisition, data reconstruction, and data analysis are integrated
into one software application. With our method, the images’
intensities acquired through contactless trans-illumination of tis-
sue can be corrected to simulate planar objects. Optical fibers
and contact gel are not needed because photon propagation
between object and detector can be calculated using the surface
model data. Most importantly, the 3-D surface information can
be used to generate a volume mesh to model the object for
FEM-based image reconstruction software like NIRFAST and
to supersede MRI or CT analysis.
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