
Raffaella Gozzelino- Principal Investigator at Chronic Diseases Research Center (CEDOC) / Faculty of Medical Sciences (FCM), NOVA University of Lisbon
Raffaella Gozzelino
- Principal Investigator at Chronic Diseases Research Center (CEDOC) / Faculty of Medical Sciences (FCM), NOVA University of Lisbon
About
44
Publications
16,341
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,981
Citations
Introduction
Current institution
Chronic Diseases Research Center (CEDOC) / Faculty of Medical Sciences (FCM), NOVA University of Lisbon
Current position
- Principal Investigator
Additional affiliations
March 2012 - March 2015
December 2007 - March 2012
Publications
Publications (44)
Severe malarial anemia (SMA) increases the morbidity and mortality of Plasmodium, the causative agent of malaria. SMA is mainly developed by children and pregnant women in response to the infection. It is characterized by ineffective erythropoiesis caused by impaired erythropoietin (EPO) signaling. To gain new insights into the pathogenesis of SMA,...
On 30 January 2020, WHO declared COVID-19 a public health emergency of global concern. COVID-19 became pandemic on 11 March 2020, and spread unprecedently. No country was prepared to face its impact. Major fears started to be expressed for Africa, where dramatic consequences were expected, due to the weakness of health systems. In this review, we r...
Citation: Martins, A.C.; Lima, I.S.; Pêgo, A.C.; Sá Pereira, I.; Martins, G.; Kapitão, A.; Gozzelino, R. Abstract: Parkinson's disease (PD) is a multifactorial neurodegenerative pathology characterized by the progressive loss of dopaminergic neurons in the substantia nigra of the brain. Aging is considered the main risk factor for the development o...
Sub-chronic inflammation, caused by age-related dysbiosis, primes the brain to neuroinflammation and neurodegenerative diseases. Evidence revealed that Parkinson’s disease (PD) might originate in the gut, demonstrating gastro-intestinal disturbances, as reported by PD patients long before developing motor symptoms. In this study, we conducted compa...
Anthracyclines are among the most used and effective anticancer drugs. Their activity has been attributed to DNA double-strand breaks resulting from topoisomerase II poisoning and to eviction of histones from select sites in the genome. Here we show that the extensively used anthracyclines Doxorubicin, Daunorubicin and Epirubicin decrease the trans...
Transcriptional programs leading to induction of a large number of genes can be rapidly initiated by the activation of only few selected transcription factors. Upon stimulation of macrophages with microbial-associated molecular patterns (MAMPs), the activation of the nuclear factor kappa B (NF-κB) family of transcription factors triggers inflammato...
Iron is essential for almost all organisms, being involved in oxygen transport, DNA synthesis, and respiration; however, it is also potentially toxic via the formation of free radicals [...]
Iron is a critical element for most organisms, which plays a fundamental role in the great majority of physiological processes. So much so, that disruption of iron homeostasis has severe multi-organ impacts with the brain being particularly sensitive to such modifications. More specifically, disruption of iron homeostasis in the brain can affect ne...
Significance
Malaria, the disease caused by Plasmodium spp. infection, remains a major global cause of morbidity and mortality, claiming the lives of over ∼4.5 × 10 ⁵ individuals per year. Paradoxically, however, up to 98% of infected individuals survive the infection, establishing disease tolerance to malaria. We found that this host defense strat...
The ability of pathogens to sequester iron from their host cells and proteins affects their virulence. Moreover, iron is required for various innate host defense mechanisms as well as for acquired immune responses. Therefore, intracellular iron concentration may influence the interplay between pathogens and immune system. Here, we investigated whet...
Background:
Recent evidence indicates a robust competition between host and mycobacteria for iron acquisition during infection. Variable consequences of iron supplementation have been reported on the susceptibility to mycobacterial infection. In this study, we revisited the effects of experimental iron-enriched diet on Mycobacterium bovis BCG infe...
Iron (Fe) is essential to almost all organisms, as required by cells to satisfy metabolic needs and accomplish specialized functions. Its ability to exchange electrons between different substrates, however, renders it potentially toxic. Fine tune-mechanisms are necessary to maintain Fe homeostasis and, as such, to prevent its participation into the...
Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze the formation of highly reactive hydroxyl radicals, oxidative stre...
Ferritins, the main intracellular iron storage proteins, have been studied for over 60 years, mainly focusing on the mammalian ones. This allowed the elucidation of the structure of these proteins and the mechanisms regulating their iron incorporation and mineralization. However, ferritin is present in most, although not all, eukaryotic cells, comp...
Heme is essential for the survival of most organisms, despite the fact of being potentially toxic. This dual effect is due to the ability of the iron (Fe) atom contained within the protoporphyrin ring of the heme molecule to participate in redox reactions and exchange electrons with a variety of substrates. Therefore, the pro-oxidant reactivity of...
Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:β-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galβ1-4GlcNAc-R (α-gal) glycan and allowed for the production of...
Immune-driven resistance mechanisms are the prevailing host defense strategy against infection. By contrast, disease tolerance mechanisms limit disease severity by preventing tissue damage or ameliorating tissue function without interfering with pathogen load. We propose here that tissue damage control underlies many of the protective effects of di...
Plasmodium infection during gestation may lead to severe clinical manifestations including abortion, stillbirth, intrauterine growth retardation, and low birth weight. Mechanisms underlying such poor pregnancy outcomes are still unclear. In the animal model of severe placental malaria (PM), in utero fetal death frequently occurs and mothers often s...
Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options in addition to organ support measures. Here we show that the clinically approved group of anthracyclines acts therapeutically at a low dose regimen to confer robust protection against severe sepsis in mice. This saluta...
Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options in addition to organ support measures. Here we show that the clinically approved group of anthracyclines acts therapeutically at a low dose regimen to confer robust protection against severe sepsis in mice. This saluta...
Significance:
Inflammation and immunity can be associated with varying degrees of heme release from hemoproteins, eventually leading to cellular and tissue iron (Fe) overload, oxidative stress, and tissue damage. Presumably, these deleterious effects contribute to the pathogenesis of systemic infections.
Recent advances:
Heme release from hemogl...
Activation of tumor necrosis factor receptor-1 can trigger survival or apoptosis pathways. In many cellular models, including the neuronal cell model PC12, it has been demonstrated that inhibition of protein synthesis is sufficient to render cells sensitive to apoptosis induced by TNFα. The survival effect is linked to the translocation of the tran...
TNFα can promote either cell survival or cell death. The activation of NF-κB plays a central role in cell survival while its inhibition makes possible TNFα-triggered cytotoxicity. Here, we report that the overexpression of a non-degradable mutant of the Inhibitor of NF-κB (super-repressor (SR)-IκBα) sensitizes HeLa cells towards TNFα-induced apopto...
Disease tolerance is a defense strategy that limits the fitness costs of infection irrespectively of pathogen burden. While restricting iron (Fe) availability to pathogens is perceived as a host defense strategy, the resulting tissue Fe overload can be cytotoxic and promote tissue damage to exacerbate disease severity. Examining this interplay duri...
Heme, iron (Fe) protoporphyrin IX, functions as a prosthetic group in a range of hemoproteins essential to support life under aerobic conditions. The Fe contained within the prosthetic heme groups of these hemoproteins can catalyze the production of reactive oxygen species. Presumably for this reason, heme must be sequestered within those hemoprote...
The cytotoxic effect of tumor necrosis factor (TNF) is repressed in most cell types through the expression of several immediate-early TNF-responsive cytoprotective genes. To the best of our knowledge, there are no molecules produced under pathophysiologic condition that have been shown to override this cytoprotective effect. Identification of such...
Low-grade polymicrobial infection induced by cecal ligation and puncture is lethal in heme oxygenase-1-deficient mice (Hmox1(-/-)), but not in wild-type (Hmox1(+/+)) mice. Here we demonstrate that the protective effect of this heme-catabolizing enzyme relies on its ability to prevent tissue damage caused by the circulating free heme released from h...
FLICE-inhibitory protein (FLIP) is an endogenous inhibitor of the signaling pathway triggered by the activation of death receptors. Here, we reveal a novel biological function for the long form of FLIP (FLIP-L) in neuronal differentiation, which can be dissociated from its antiapoptotic role. We show that FLIP-L is expressed in different regions of...
Heme oxygenases (HO) catabolize free heme, that is, iron (Fe) protoporphyrin (IX), into equimolar amounts of Fe(2+), carbon monoxide (CO), and biliverdin. The stress-responsive HO-1 isoenzyme affords protection against programmed cell death. The mechanism underlying this cytoprotective effect relies on the ability of HO-1 to catabolize free heme an...
Infection by Plasmodium, the causative agent of malaria, is associated with hemolysis and therefore with release of hemoglobin from RBC. Under inflammatory conditions, cell-free hemoglobin can be oxidized, releasing its heme prosthetic groups and producing deleterious free heme. Here we demonstrate that survival of a Plasmodium-infected host relies...
Upon activation, tumor necrosis factor alpha (TNF-alpha) receptor can engage apoptotic or survival pathways. Inhibition of macromolecular synthesis is known to sensitize cells to TNF-alpha-induced cell death. It is believed that this sensitization is due to the transcriptional blockade of genes regulated by NF-kappaB. Nevertheless, such evidence ha...
Death receptors (DRs) and their ligands are expressed in developing nervous system. However, neurons are generally resistant to death induction through DRs and rather their activation promotes neuronal outgrowth and branching. These results suppose the existence of DRs antagonists expressed in the nervous system. Fas apoptosis inhibitory molecule (...
ResumLapoptosi pot ser induïda a través de nombrosos estímuls, entre els quals hi ha elsreceptors de mort. Per induir apoptosi TNFα necessita la participació dinhibidors de latranscripció dARN o de la síntesi proteica, com són ActD i CHX. En aquest estudidemostrem com la citotoxicitat de TNFα en cèl·lules PC12 i en neurones corticalssensibilitzades...
Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth-promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from...