Raffaele Luca Amalfi

Raffaele Luca Amalfi
  • Swiss Federal Institute of Technology in Lausanne

About

42
Publications
8,580
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
526
Citations
Current institution
Swiss Federal Institute of Technology in Lausanne

Publications

Publications (42)
Conference Paper
Two-phase cooling systems based on the thermosyphon operating principle exhibit excellent heat transfer performance, reliability, and flexibility, therefore can be applied to overcome thermal challenges in a wide range of electronic cooling applications and deployment scenarios. However, extremely complex nature of two-phase flow physics involving...
Conference Paper
This paper advances the state-of-the-art in novel passive two-phase systems for more efficient cooling of datacenters and telecom central offices compared to the traditional air-based cooling solutions (e.g. aisle-based containment systems). The proposed passive two-phase technology uses numerous server-level thermosyphons to dissipate the heat gen...
Conference Paper
The trade-off between efficient cooling and low power consumption is a goal that has always been very desirable in electronics cooling, especially nowadays that power densities of processing units are increasing. Conventional cooling solutions do not have the necessary cooling capacities for these power densities or require significant power consum...
Conference Paper
Passive, gravity-driven thermosyphons represent a step-change in technology towards the goal of greatly reducing PUE (Power Usage Effectiveness) of datacenters by replacing energy hungry fans of air-cooling approach with a highly-reliable solution able to dissipate the rising heat loads demanded in a cost-effective manner. The European Union has la...
Article
The present study is focused on the experimental characterization of two-phase heat transfer performance and pressure drops within an ultra-compact heat exchanger (UCHE) suitable for electronics cooling applications. The UCHE is composed of a double-side-copper finned plate with an optimized geometry that enhances the heat transfer performance and...
Conference Paper
Thermosyphon cooling systems represent the future of datacenter cooling, and electronics cooling in general, as they provide high thermal performance, reliability and energy efficiency, as well as capture the heat at high temperatures suitable for many heat reuse applications. On the other hand, the design of passive two-phase thermosyphons is extr...
Conference Paper
The present study is focused on the experimental characterization of two-phase heat transfer performance and pressure drops within an ultra-compact heat exchanger (UCHE) suitable for electronics cooling applications. In this specific work, the UCHE prototype is anticipated to be a critical component for realizing a new passive two-phase cooling tec...
Article
Passive two-phase cooling systems are an efficient and viable alternative to conventional air-cooling schemes for thermal management of electronics due to their capability of dissipating higher power densities with lower power consumption and noise levels. This article aims to assess the performance of a novel two-phase air-cooled thermosyphon for...
Conference Paper
The main objective of this paper is to utilize an improved version of the simulator presented at InterPACK 2017 to design a thermosyphon system for energy-efficient heat removal from 2-U servers used in high-power datacenters. Currently, between 25% and 45% of the total energy consumption of a datacenter (this number does not include the energy req...
Conference Paper
Gravity-driven two-phase liquid cooling systems using flow boiling within micro-scale evaporators are becoming a game-changing solution for electronics cooling. The optimization of the system’s filling ratio can however become a challenging problem for a system operating over a wide range of cooling capacities and temperature ranges. The benefits o...
Conference Paper
Nowadays, datacenters heat density dissipation follows an exponential increasing trend that is reaching the heat removal limits of the traditional air-cooling technology. Two-phase cooling implemented within a gravity-driven system represents a scalable and viable long-term solution for datacenter cooling in order to increase the heat density dissi...
Article
An experimental study is presented to characterize two-phase thermal and hydraulic performance of a prototype corrugated plate heat exchanger with small pressing depth. In particular, upward flow boiling of low pressure refrigerant R245fa was investigated for a prototype fabricated with two plates of only 1 mm pressing depth with a chevron angle of...
Article
Infrared (IR) thermography was used to measure the local heat transfer coefficients within two plate heat exchanger geometries. The chevron patterns were machined into polycarbonate and IR transparent calcium fluoride plates, both of which were electrically heated using flexible film heaters at heat fluxes up to 0.8 W cm-2. The test fluid was a ref...
Article
Plate heat exchangers are adopted in many domestic and industrial applications, such as ventilation, air conditioning, evaporation or condensation process, heat pumps and cooling of hydrodynamic circuits in engines. In the present thesis, an extensive experimental study to characterize thermal and hydraulic performance of a compact plate heat excha...
Article
In the second article of the present two-part paper, upward single-phase heat transfer within a compact plate heat exchanger was investigated experimentally. The experimental setup, the data reduction technique and pressure drop results were presented in Part 1, while high resolution infrared measurements of R245fa and R236fa were implemented to ob...
Article
This two-part paper presents experimental work to characterize thermal and hydraulic performances of a compact plate heat exchanger. Upward single-phase heat transfer and pressure drop of low pressure, liquid refrigerants R245fa and R236fa was investigated within a plate prototype fabricated with a 1 mm pressing depth and a chevron angle of 65°. Sp...
Article
In the second part of this study a sensitivity analysis on the prediction methods is performed to consider the effect of plate geometry on thermal–hydraulic performance and an extensive comparison of all the two-phase pressure drop and flow boiling heat transfer prediction methods available in the open literature are also provided versus the large...
Article
This two-part paper presents an overview of evaporation heat transfer mechanisms, a review of the experimental and prediction methods and a creation of a consolidated multi-lab database of 3601 data points and provides a detailed comparison of all the prediction methods to this broad database and finally proposes new prediction methods for the loca...

Network

Cited By