
29

Effective Regression Test Case Selection: A Systematic
Literature Review

RAFAQUT KAZMI, DAYANG N. A. JAWAWI, and RADZIAH MOHAMAD,
Universiti Teknologi Malaysia
IMRAN GHANI, Monash University Malaysia

Regression test case selection techniques attempt to increase the testing effectiveness based on the mea-
surement capabilities, such as cost, coverage, and fault detection. This systematic literature review presents
state-of-the-art research in effective regression test case selection techniques. We examined 47 empirical
studies published between 2007 and 2015. The selected studies are categorized according to the selection
procedure, empirical study design, and adequacy criteria with respect to their effectiveness measurement
capability and methods used to measure the validity of these results.

The results showed that mining and learning-based regression test case selection was reported in 39% of
the studies, unit level testing was reported in 18% of the studies, and object-oriented environment (Java)
was used in 26% of the studies. Structural faults, the most common target, was used in 55% of the studies.
Overall, only 39% of the studies conducted followed experimental guidelines and are reproducible.

There are 7 different cost measures, 13 different coverage types, and 5 fault-detection metrics reported
in these studies. It is also observed that 70% of the studies being analyzed used cost as the effectiveness
measure compared to 31% that used fault-detection capability and 16% that used coverage.

CCS Concepts: � Software and its engineering → Software testing and debugging; Empirical software
validation

Additional Key Words and Phrases: Software testing, SLR, coverage, cost effectiveness, fault detection ability

ACM Reference Format:
Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani. 2017. Effective regression test
case selection: A systematic literature review. ACM Comput. Surv. 50, 2, Article 29 (May 2017), 32 pages.
DOI: http://dx.doi.org/10.1145/3057269

1. INTRODUCTION

Regression testing is a repetitive part of software testing. It ensures that new defects
will not be introduced into the extended code or specification changes. IEEE defines
regression testing as (IEEE-Std-610.12-1990 1990):

“Selective retesting of a system or component to verify that modifications have not
caused unintended effects and that the system or components still complies with its
specified requirement.”

The use of regression testing may increase due to the growth in iterative development
as well as reusability of different software artifacts at different levels of software

Authors’ addresses: R. Kazmi, D. N. A. Jawawi, R. Mohamad, Department of Software Engineering Fac-
ulty of Computing Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia; emails:
rafaqutkazmi@gmail.com, dayang@utm.my, radziahm@utm.my; I. Ghani, School of Information Technology,
Monash University Malaysia, 47500 Bandar Sunway Selangor, Malaysia; email: imran.ghani@monash.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0360-0300/2017/05-ART29 $15.00
DOI: http://dx.doi.org/10.1145/3057269

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

http://dx.doi.org/10.1145/3057269
http://dx.doi.org/10.1145/3057269

29:2 R. Kazmi et al.

projects. This issue necessitates the need to select test cases effectively, which is a
challenging task. This is because it affects the cost, coverage, and fault detection during
regression testing. As mentioned in several studies, 50% of a project’s cost is spent on
software testing and 80% of this amount is consumed by regression testing [Chittimalli
and Harrold 2009; Tao et al. 2010a; White 1989]. To maintain the effectiveness (cost,
coverage, fault) of test suite in regression testing, tester may reduce size of test suite,
number of test case execution, test case execution time, select a subset of test cases that
have already been executed on the system under testing (SUT), or effectively prioritize
the test cases [Askarunisa et al. 2010]. The behavior of regression test selection (RTS)
and test suite reduction are almost similar. They both attempt to select a subset of test
cases from previously executed test suites. But the main difference between them is
RTS is based on code modifications in SUT and selects the test cases that are relevant to
the modifications between the previous and current version. On the contrary, reduction
methods rely on coverage information metrics for a single version. On the other side,
test suite prioritization reorders test cases with the intent to discover faults from SUT
as early as possible. The main difference between RTS and prioritization techniques
is prioritization does not account for code modifications in SUT. The main focus of
prioritization techniques is to increase fault detection ability, ignoring the version
of SUT or modifications made to the source code of SUT [Yoo and Harman 2012].
Coverage information with fault detection is used as proxy for regression test case
selection [Rothermel et al. 1998] and in other studies, code coverage information is also
utilized for cost reduction in RTS techniques [Rosenblum and Weyuker 1997; Binkley
1995; Inozemtseva and Holmes 2014]. The scope chosen for this systematic literature
review (SLR) is effectiveness of RTS. This scope is chosen because these techniques are
related to a common objective of regression testing optimization. These techniques aim
to optimize regression testing from an existing pool of test cases based on changes in
the current version of the SUT.

These three parameters (cost, coverage, and fault detection capability) are chosen
because measurement of effectiveness is context-dependent [Do and Rothermel 2006].
The context we mean is circumstances that form the existence of an event, which in
current scenario is regression testing. The context of regression testing is different for
different testing constraints, such as configuration aware regression testing [Qu et al.
2008], time aware regression testing [Zhang et al. 2009], faulty control flow path aware
regression testing [Jiang and Su 2007], and fault-free time aware regression testing
[Yoo and Harman 2012]. The measurement of software testing costs can be divided into
two: direct measures and indirect measures [Leung and White 1991]. Direct measures
include time for test specification, analysis, design, execution, and post analysis. Indi-
rect costs include managerial cost, maintenance cost, and tools cost. Effectiveness is
determined on the basis of coverage, fault detection, and direct costs. There is a close
relationship between cost and effectiveness [Elbaum et al. 2003]. A test case is said to
be effective if it finds more bugs [Orso and Rothermel 2014]. There are other ways to
measure the effectiveness of regression testing as reported in the literature. Coverage
is the main contributor of cost in regression testing with its fault detection [Rosenblum
and Weyuker 1997]. Unfortunately, many researchers do not agree on the relationship
between costs, coverage, and fault detection [Andrews et al. 2006; Cai and Lyu 2005;
Namin and Andrews 2009; Gligoric et al. 2014]. Effectiveness is also measured in terms
of effort reduction in creating and maintaining test suites [Poulding et al. 2007], cov-
erage information of SUT [Tao et al. 2010b], and cost-effectiveness of test suite [Nagar
et al. 2014]. There is a need to find the relationships between effectiveness contributors
and its impact on RTS techniques.

Regression testing is used in different applications, such as database [Haftmann et al.
2007], graphical user interface (GUI) [Memon and Soffa 2003; Memon 2008; Memon

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:3

Table I. Summary of Related Studies in Regression Testing

Study Type Study References Study Focus
Year of

Publication

Total
Studies

Reviewed Years Covered
SLRs [Engström et al. 2010] Test Case

Selection
2010 27 1988–2006

[Engström et al. 2008] Test Case
Selection

2008 28 1969–2006

Surveys [Orso and Rothermel
2014]

Software
Testing

2014 — 2000–2014

[Yoo and Harman 2012] Regression
Testing

2012 159 1977–2009

[Biswas et al. 2011b] Test Case
Selection

2011 —

Mapping [González et al. 2014] Software
Testing

2014 16 2000–2013

et al. 2005], web [Xu et al. 2003; Kung et al. 2000; Harman and Alshahwan 2008;
Roest et al. 2010], and real-time embedded systems applications [Schütz 1994; Hla
et al. 2008; White and Robinson 2004]. In Biswas et al. [2011b], the authors compared
different regression testing techniques. They also classify those techniques with respect
to application types. This survey highlights the need to investigate the relationship
between cost- and coverage-based effectiveness. There is not enough evidence found
from SLRs, mapping studies, and surveys on the relationship between cost, coverage,
and fault detection as shown in Table I.

The organization of this article is as follows. Section 2 discusses the background
of empirical evidence for SLR RTS selection techniques. Section 3 describes a frame-
work to evaluate the quality of empirical studies selected. Section 4 describes research
method adopted to conduct this SLR. Section 5 represents and discusses the results.
Section 6 describes the threats to validity with regard to this SLR. The discussion and
conclusion for this SLR are presented in Section 7 and Section 8, respectively. Finally,
Section 9 presents future works with regard to this SLR.

2. BACKGROUND OF REGRESSION TEST CASE SELECTION STUDIES

As mentioned in the Introduction, in this SLR, the authors have collected relevant arti-
cles discussing regression test case selection techniques that focused on cost-, coverage-,
or fault-based effectiveness. In the literature, there are only two SLRs, one mapping
study, and three surveys that are related to regression testing or regression test case
selection, as shown in Table I. But these studies did not focus on effectiveness based
on cost, coverage, and fault detection of regression test case selection. Let us discuss
these studies one by one.

The first SLR [Engström et al. 2010] covered the time period between 1988 and 2006
and identified 27 studies, including 38 empirical studies, 21 experiments, and 25 case
studies. The SLR identified 28 regression test case selection techniques and compared
these techniques on the basis of cost reduction and fault detection capability. The
second SLR [Engström et al. 2008] covered the time period between 1969 and 2006 and
identified 28 primary studies for regression test case selection. The identified regression
test case selection techniques are classified on the basis of their input method, type
of code under analysis, and selection criteria. The authors of these SLRs concluded
that there is a need to put research focus on medium to large data sets for empirical
studies and there is also a need to investigate regression test case selection using better
empirical designs and evaluation methods. The conclusion for these two SLRs were the
same as presented in Engström et al. [2010].

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:4 R. Kazmi et al.

In addition, there is one mapping study [González et al. 2014] found in the literature.
It covered the time period between 2000 and 2013. The results are the same as reported
in previous SLRs with the same shortcomings. The authors identified four testing
families on the basis of testing procedure and types of SUT and evaluated 26 techniques
empirically. The authors also mentioned the need to focus on experimental designs and
evaluation methods and suggested the use of statistical methods for results evaluation.

In addition to these two SLRs and one maping study, there are three significant
surveys in the regression testing domain [Yoo and Harman 2012; Biswas et al. 2011b,
Orso and Rothermel 2014]. All these surveys presented detailed and comprehensive
disscussions about test case selection, prioritization, and reduction methods. In Yoo
and Harman [2012], the authors analyzed 159 studies covering the time period be-
tween 1977 and 2007. This survey reported that emerging trends in the field include
test data generation, multiobjective regression testing, and test oracles (with cost). The
authors also mentioned that experimental designs and empirical evaluations process
are not up to the mark, but it is getting the attention of researchers. In Biswas et al.
[2011b], the authors compared different regression testing techniques and classified
those techniques with respect to application types. This survey highlighted the need
to investigate the relationship between cost- and coverage-based effectiveness [Biswas
et al. 2011b]. The authors also put emphasis on investigating granularity of coverage,
such as statement coverage, branch coverage, condition coverage, and other coverage
types. The size of SUTs and test suite size also need to be investigated more pre-
cisely. This survey also concluded that the relationship between cost, coverage, and
other measurable factors of software testing need to be properly emphasized. Orso
and Rothermel [2014] reviewed important studies in the domain of software testing
between 2000 and 2014. The survey concluded that there are challenges in domains,
such as test oracles, testing modern (big size) application, domain-based testing, test-
ing non-functional properties of software, and probabilistic program analysis. They
also mentioned the need to establish repositories for testable artifacts (software sys-
tems, test suites, bug fixes reports). This survey also mentioned that more research is
required for empirical analysis and design in software testing.

Based on the discussions provided in previous SLRs, mapping study, and surveys,
it is obvious that these studies agreed on empirical evaluation for software testing in
general and regression testing in particular.

2.1. Regression Test Case Selection

Test case selection methods were first proposed by Fischer [1977] for maintenance of
software. Regression test selection attempts to rerun the subset of initial test suites
and verify that the changes do not affect the current software version. The main
purpose of RTS is to improve the cost of regression testing and maximize possible
fault detection ability [Graves et al. 2001]. Test case selection depends on specific and
complete conditions called test cases [Sapna and Mohanty 2010]. Test case selection is
the process to re-run the most relevant test cases with respect to changes or updates
made to SUT [Elbaum et al. 2003]. As shown in Table II, test case selection is used to
select a subset of test cases already available for previously executed test cases [Beizer
1995]. Test cases are inputs for the testing process and act as executional conditions
with expected outputs [EEE 1990]. The set of two or more test cases, called “test suite,”
expands with the evolution of software. It is not wise to re-execute all these test cases
as it costs a lot in terms of the development, execution, and maintenance of these test
suites [Askarunisa et al. 2010]. Thus, an appropriate test case selection technique is
useful in regression testing. Before we discuss test case selection and regression testing
together, it is better to discuss regression testing first.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:5

Table II. Regression Testing Steps and Their Related Problems

Number Steps in Regression Testing Related Problems
1 Select T′ sub-set of T, a set of test cases to re-run

on P′
Regression Test Selection/
Prioritization/Reduction

2 Testing P′ using T′ to verify the correctness of P′
with respect to T

Test Suite Execution Problem

3 If required, produce T′ ′, a set of new functional or
structural test cases for P′

Coverage Identification Problem

4 Test P′ with T′ ′ to verify the correctness of P′ with
respect to T′ ′

Test Suite Execution Problem

5 Create T′ ′ ′, a new set of test cases and test history
of P′, from T, T′, and T′ ′

Test Suite Maintenance

Regression testing is formally described by the following: suppose P be the current
program and P′ to be the next version of P. Let S be the current set of specification of P
and S′

be the specifications of next versions of P′. Similarly, T is the test suite for P, and
individual test cases can be represented by t. A regression test case selection technique
tries to select test case T′ subset of T in such a way as to fulfill testing specifications
S′ and the changes or modification from P to P′ [Rothermel 1996; Yoo and Harman
2012]. Table II shows the steps taken during regression testing and related problems
that need to be solved in each step.

In Table II, T represents the test suite, P represents the program under test, P′
represents the modified program, T′ represents the test suite for P′, T′′ is the test
suite for updated versions of P′, and T′′′ is the test suite to verify the results of T′′.
In the scenario presented in Table II, a program P is tested with a test suite T. After
modifications made in P, it is important to verify that the produced P′ did not adversely
impact the functionality of P. Thus, there is a need for a modified test suite, which is
represented as T′ and is used to verify the changes or modified parts of P′. This issue
is known as the test case selection problem, which aims “to select a subset of test cases
from the existing test suite to test the modified program.” This is also known as test
suite execution problem, which establishes the correctness of the modified program.

The next step is to verify the selection process correctness. It is performed by creating
another test suite T′′, which is used to verify the correctness of testing and test case
selection method by several adequacy criteria, such as coverage information, cost of
test suite creation, and maintenance- or fault-based adequacy criteria, like fault rate
or fault detection capability. The final step of regression testing is to maintain the test
suite for future use. This is done by creating T′′′, an updated test suite on the basis of
adequacy criterion applied in the previous execution.

The main purpose of RTS techniques is to reduce the cost of testing by reducing
the executional cost of regression test suites [Leung and White 1991]. The cost of RTS
techniques is compared with retest-all, which is done “to re-run all the test cases in the
previous run.” The retest-all approach is impractical due to cost and effectiveness of
testing process [Mirarab et al. 2012b]. An alternative to the retest-all approach is the
random test case selection [Chittimalli and Harrold 2009]. The downside of random
test case selection is it may fail to identify many regression errors [Biswas et al.
2011b]. RTS techniques attempt to remove the drawbacks of retest-all and random test
case selection by selecting more relevant test cases to adequacy criterions or testing
objectives depending on testing process, such as coverage information [Rosenblum and
Weyuker 1997], cost bounds [Graves et al. 2001], or fault-based statistics [Ostrand
et al. 2005].

There are many different objectives and possible direct or indirect benefits with
regard to regression test case selection. The major goals observed in the literature

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:6 R. Kazmi et al.

for regression test case selection are N-release development [Orso et al. 2004], con-
tinuous development, continuous integration, and continuous quality enhancement
[Lewis 2016]. RTS techniques ultimately contribute directly and in some cases indi-
rectly to overall quality of software product [Lewis 2008], maintenance activities [Wong
et al. 1997], reliability of software product [Musa 1993], transition of software system
from older systems [Victor 2003], deployment activities of product, software upgrades
[Brereton et al. 2007], training of applications as well as staff and version control sys-
tem. But RTS techniques work with code/requirement information, risk management
data, software production, and metrics to evaluate the results of testing process. Due to
the multi-facet research domain and problem types, it is necessary to have a framework
to assess all these empirical studies with measureable objectives. In the next section,
we propose a framework to assess the empirical studies conducted in regression testing
in general and regression test case selection in particular.

2.2. Empirical Studies for Regression Test Case Selection

To assess whether RTS techniques can be applied in real-life software projects, there is
a need to manage empirical studies that evaluate effectiveness with respect to cost, cov-
erage, or fault detection capability. There are three types of empirical studies, namely
case studies, experiments, and surveys [Wohlin et al. 2012]. In software engineering,
case study is an investigation that is established on multiple sources of evidences to
inquire one precedent for a particular phenomenon [Wohlin et al. 2012; Kitchenham
2004]. Experiment or controlled experiment is an empirical inquiry that manipulates
one factor of the studies settings. Surveys have the ability to evaluate a large number
of variables by investigating smaller sample of representative variables. Surveys are
conducted to knowledge domains, tools, or techniques that are already mature.

After studying the literature on empirical studies [Dyba et al. 2005; Kitchenham
et al. 2004; Kitchenham et al. 2002; Johnson 2002], we could not find a model or
framework that could help to systematically evaluate the empirical studies. Thus, we
felt it is necessary to create an assessment framework to evaluate this kind of study.
Our proposed framework will provide a proper quality assessment of empirical studies
conducted for RTS techniques as well as help researchers to design their empirical
studies for regression testing in the future. The framework has also helped us to
assess the quality of the studies selected in this SLR because most RTS techniques are
based on heuristic algorithms that add some challenges to measure their effectiveness
without a proper framework. The next section presents our proposed framework and
explains its components.

3. ASSESSMENT FRAMEWORK FOR EMPIRICAL STUDIES ON REGRESSION TEST
CASE SELECTION

The framework below (Figure 1) is composed of three (3) main components: theoretical
base of study, scope of study, and evaluation components. Theoretical base of study
component covers test problem, test model, SUT, and data set.

This framework provides justification for data collection and selection of empirical
studies for this SLR. It does not provide complete operational details and guidelines
for the empirical studies, because there is sufficient literature available for software
engineering experimental guidelines. For this SLR, we only consider controlled exper-
iments and case studies conducted with the aim to investigate cost, cost-effectiveness,
or effectiveness of RTS techniques. This framework presents an empirical study under
three granularity levels and refines the process with respect to information collected at
each level. This framework also shows the relationship and dependency between these
activities. The conceptual framework for RTS regression testing is shown in Figure 1.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:7

Fig. 1. Conceptual Framework of Regression Test Case Selection Empirical Studies.

3.1. Theoretical Base of the Study

Based on this framework, a case study needs to be assessed based on four core charac-
teristics:

(1) Test Problem,
(2) Test Model,
(3) System Under Test,
(4) Data Set.

The definition for each core characteristic is as follows:

Test problem: This characteristic addresses the theoretical baseline of the empirical
study. It covers areas such as formal hypothesis, test purpose, test strategy, and threats
to validity [Wohlin et al. 2012]. The problem definition and its success or failure criteria
are assessed by the explanation of test problem provided in this framework. The focus
of this SLR is on RTS techniques, which focus on effectiveness for which these empirical
studies are designed and conducted. Therefore, this characteristic is considered in this
SLR.

Test model: This characteristic consists of algorithms or RTS methods and validation
criteria. This feature determines the complexity of method evaluated and its verifica-
tion. The validation criterion listed in this framework can also determine the objective
of the empirical study and help to choose other features listed in level two for the de-
sign of the empirical study. The testing approach is defined by model being tested. The
effectiveness based on cost, coverage, or fault aims the procedure, to systematically
exercising the empirical study.

System under test: This characteristic elaborates the application domain for the
empirical study. It can also help to distinguish the methods of selection. SUT also
influences the choice of dataset for empirical study as well in the sense that either the
system under test is object oriented, structured, web service, or mobile application. It
affects the testing method and its complexity. Since this is an important parameter for
regression testing, it is included in this SLR.

Data set: This is the artifact on which an empirical study is conducted upon. The main
feature of any data set is its size. As shown in Table III, a study is considered as small
(S) if its size is less than 2,000 lines of code (LOC), medium (M) if it contains from 2,000
to less than 100,000 LOC, and large (L) if it contains more than 100,000 LOC. In most

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:8 R. Kazmi et al.

Table III. Classification Scheme for Size of Empirical Studies

Size Measure LOC (Lines of Code) Class Count (CC) Function Count (FC)
Small (S) <2000 <100 �1000
Medium (M) 2000 to <100,000 �100 to <1000 >1000 to <50,000
Large (L) �100,000 �1000 �50,000

of the primary studies, LOC metric is clearly defined but few studies also considered
class count and function count as their artifact size. The studies with less than 100
class count (CC) are considered as small studies, medium studies for 100 to less than
1000 CC, and large studies for those with at least 1000 CC. On the other hand, based on
function count (FC), studies containing 1000 function count (FC) or less are considered
small studies, medium studies if they contain from 1001 to less than 50,000 FC, and
large studies for those with at least 50,000 FC.

The second feature of the data set is size of test suite, which is normally equal to the
number of test cases present in a test suite. RTS technique can select test cases from
such a test suite. The third feature of the data set is the tool or environment used to
conduct the empirical study.

3.2. Scope of the Study

The study scope always narrows down the problem by selecting the test level, target
faults, and relevant adequacy criteria. If the scoping is not considered then results of
the empirical study cannot be generalized and verified. The following parameters need
to be considered for the scoping of empirical studies for RTS techniques:

(1) Test level,
(2) Target faults,
(3) Adequacy criteria.

The definition for each parameter is as follows:

Test level: This parameter concerns the types of testing conducted, for example, unit
testing, system testing, smoke testing, and integration testing. There are many reasons
why this parameter is considered, among them is because RTS techniques need to be
applied during the maintenance and system release phases. It is also evident that
test cases like unit testing may also be reused at integration-testing and system-
testing phases. Therefore, it is appropriate to consider test levels for RTS application
techniques in this SLR.

Target faults: The primary objective of all testing techniques is to uncover faults.
There are many types of faults tackled by different RTS techniques. The most common
faults focused during regression testing are real faults [Anderson et al. 2014], structural
changes [Pasala et al. 2008], and mutational faults [Mirarab et al. 2012a]. Discussion
on test case selection mechanism of SLR will be insufficient if faults is not included,
thus we included this issue in this SLR.

Adequacy criteria: RTS testing strategy is defined via testing model and adequacy
criteria. This arrangement helps to systematically execute the SUT. The common ad-
equacy criteria used in RTS techniques are coverage-based, fault-based, cost-based,
and any combination of these three adequacy criteria. These criteria are used as proxy
for regression testing and verification purpose as well. The choice of adequacy criteria
depends on RTS techniques as well as the target application domain and testing tools.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:9

3.3. EVALUATION (METRICS)

There are a number of existing RTS techniques that vary in terms of their objectives and
designs. Due to this, it is difficult to set a common evaluation mechanism for the results
of these techniques. Similarly, there are many different metrics used for evaluating
these results. The most common metrics in RTS evaluations are the following:

Inclusiveness: This metric “measures the extent to which a technique chooses tests
that cause modification program to produce different output than the original program”
[Rothermel and Harrold 1996]. Precision: This metric “measures the ability of a tech-
nique to skip test cases that will not produce different output with respect to original
program” [Rothermel and Harrold 1996]. Recall is considered as the completeness
measure of a RTS technique, and it is measured as percentage of selected failed tests
from all failed tests [Chen et al. 2011a]. Efficiency: This metric “measures the cost of
computation of a technique under study” [Rothermel and Harrold 1996]. F-Measure
is used to measure the fault detection capability and cost reduction of a selection tech-
nique [Chen et al. 2011a]. F-Measure is the combination of precision and recall, and
it is a widely used measure in information science. FDR: This measure is used with
code-based path analysis RTS techniques to compare each FDR path and chooses the
most suitable one [Hemmati et al. 2010b]. Average Percentage Faults Detected
(APFD): This metric assigned the number between 0 and 100 to indicate fault detec-
tion. A higher value indicates better fault detection capability, and vice versa. APFD
[Rothermel et al. 2001] is usually used in test case prioritization techniques. APFDC:
APFD is applied in the cases where test costs and fault severity are not changed.
However, the APFDC is being used when test costs and fault severities are fluctuating
[Elbaum et al. 2001]. Average Fault Detection Rate (AFDR): This metric is derived
from APFD, it “enables the overall comparison of two selection techniques in terms of
fault detection rate” [Elbaum et al. 2002]. Multi-Objective Optimization (MOO): A
family of metrics that consist of Hyper Volume (HV) [Deb 2001], Generational Distance
(GD) [Coello et al. 2002], Inverted Generational Distance (IGD) [Coello et al. 2002], and
Coverage (C) [Deb 2001]. HV computes the size of dominating space, and a higher HV
value is considered good in MOO problems. GD and IGD indicate average distance of
Pareto Frontier (PF) from actual distance of desired PF value. Coverage: This metric
presents the number of solutions within no dominated set of comparison algorithms.

The detailed coverage of these metrics is out of the scope of this SLR. The choice of
metrics used for the evaluation of an empirical study results is compelled by the nature
of RTS solution and SUT. The evaluation of RTS techniques revealed the strengths and
weaknesses of the techniques. The type of information collected through these empirical
studies depends on the choice of algorithms, tools used for these experiments, SUT, and
evaluation processes used to verify these results.

This section has provided the clarification on basic concepts of regression testing, test
case selection, test cases, and evaluation metrics. We now present the SLR protocol used
to collect the primary studies, analysis procedure, and result documentation process in
Section 4.

4. SYSTEMATIC LITERATURE REVIEW (SLR)

In order to carry out the SLR, we adopt three review guidelines steps [Brereton et al.
2007] as shown in Figure 2. This process consists of planning, conducting, and docu-
mentation of the results. The first step describes the rationale to carry out the SLR,
which is discussed in Section 2.2. The specification of research question is described in
Table IV. The primary study selection is presented in Section 4.2, and inclusion and
exclusion criterion is given in Section 4.5. The data extraction method is discussed in
Section 4.6. Finally, the results are discussed in Section 5.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:10 R. Kazmi et al.

Fig. 2. Overview of Research Methodology for SLR.

Table IV. Research Questions and Their Motivations

Research
Question
(RQ) RQ Statement Motivation
RQ 1 What is the state-of-art research in test case selection techniques in software regression

test case selection?

RQ 1.1 What types of RTS techniques are in
practice for controlled experimentations?

These research questions focus to
characterize the current domain of test case
selection. The reason to form these questions
is because the main characteristics of
software testing frequently reported in the
literature are test level, targeted faults, test
model and categorization of test cases with
respect to the application domain.

RQ 1.2 At what test levels do these studies
conducted?

RQ 1.3 In what types of application
domains/environments do these studies
conducted? What types of faults do they
focused on?

RQ 2 How were the empirical studies designed and conducted?

RQ 2.1 How do the empirical studies designed for
test case selection techniques?

The empirical studies which are objective
critical and have proper design are easy to
assess and replicate reliable results with
reproducibility. The sub-questions help to
assess the empirical studies in terms of their
design.

RQ 2.2 What types of data sets/objects/artifacts
were used for the empirical study?

RQ 3 What empirical evidence is available for the cost, coverage and fault based effectiveness of
RTS techniques?

RQ 3.1 What empirical evidence is available for
the cost or cost effectiveness?

These questions help to incorporate the
outcomes shared by the previous studies.
These research questions can also help to
check the level of empirical evidence obtained
after this study has been conducted. We also
attempt to find answers to the sub-questions
to synthesize the main research question.

RQ 3.2 Is it possible to collect some empirical
evidence on the effectiveness of RTS
techniques?

RQ 3.3 What types of evaluation methods were
used to verify the studies results?

4.1. Research Questions

The research questions are framed after discussions have been made with testing
experts and experienced authors. The objective of these research questions is to find
the most effective and relevant regression test case selection techniques, focusing on
cost, coverage, and fault detection. In the same time, we want to find out techniques
used for the empirical evaluations. With the above-mentioned objectives, the authors

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:11

also tried to focus on measurable aspects and techniques that had sufficient evidence
with reasonable size of projects. The questions are shown in Table IV.

4.2. Strategy for Study Selection

This is an important step for any SLR that ensures completeness of the selection of
primary studies. The quality of results is usually based on primary studies selected for
the SLR. Selection for our study was based on three steps:

(1) Selection of source repositories,
(2) Identification of search keywords,
(3) Inclusion or exclusion criteria for studies based on the research questions.

4.3 Selection of Source Repositories

We initiated this process by entering search strings on source databases. These
databases will return a set of studies. The retrieved studies were then mapped to the
inclusion and exclusion criteria. Selection of appropriate databases and search strings
are quite important for SLR quality because they directly influence the completeness
of the results of the study. We used the following popular repositories:

(1) IEEE Xplore,
(2) ACM Digital Library,
(3) ScienceDirect (including Elsevier Science).

The rationale behind choosing these repositories was that IEEE Xplore and ACM
Digital Library covered almost all important conferences, while ScienceDirect covers
almost all important journals in the domain of software engineering, especially software
testing.

In this section, we present the source repositories, and in the next section, we present
the search keywords used to search these repositories.

4.4. Identification of Search Keywords

The systematic method used to formulate the search keywords cosists of the following
steps:

(1) Identify major keywords based on research questions,
(2) Identify alternative words and synonyms for the major keywords,
(3) Frame a search string by joining these keywords with Boolean AND operator, for

alternative words use the Boolean OR operator.

Since our main focus was to investigate empirical studies in RTS, the following major
keywords were used for the purpose of finding relevant studies in the field of software
testing and test case selection. We intentionally avoided empirical study as a keyword
due to the fact that most studies do not use this keyword. Initially, we collect the key-
words from available research studies in the domain of regression test case selection,
and then we use these keywords to start the process of designing search queries. The
second source of collecting initial search strings are previously published SLRs in the
domain of software testing.

As shown in Figure 3, we keyed in a number of search strings on different repositories.
In order to retrieve maximum possible relevant studies, we used the following terms:
“software testing,” “regression testing,” “test case selection,” and “regression test case
selection.” It should be noted that if we use keyword “testing” alone, then it returns
too many irrelevant studies. Due to this observation, we used AND operator between
“software” and “testing” keywords. This expression finds maximum relevant studies on
the topic under investigation. To obtain the most relevant search results, authors also

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:12 R. Kazmi et al.

Fig. 3. Search Strings for Selecting Studies from IEE, ACM, and ScienceDirect.

switched the search string with OR to cover document titles, author keywords, and
time span between 2007 and 2015.

When executing these search queries on the selected databases, it was also found that
ACM Digital Library also indexed selected ScienceDirect and IEEE Xplore sources, and
ScienceDirect also indexed IEEE Xplore listed journals. These redundant results were
removed from the search output. Furthermore, these selected databases employ quite
distinct search criteria, so where possible, we try to refine our selection by narrowing
our selection of sources, especially in the ScienceDirect database.

The reason of doing so is to get the most relevant research studies for analysis;
otherwise, the number of retrieved studies was so high it made it difficult to perform
further analysis. In the next section, we elaborate the inclusion and exclusion criteria
for primary study selection from studies obtained from the selected source repositories.

4.5. Study Selection Based on Inclusion and Exclusion Criteria

RTS have been used with many different features and many software testing types with
respect to different testing objectives and application types. At the same time, it is also
a superset of other test suite optimization techniques, such as test suite prioritization,
test suite reduction, and test suite augmentation. There are also many features on
which these RTS methods and techniques are proposed and evaluated, such as size
of SUT, size of test suite, code-based changes, specification-based changes, efficiency,
and application-failure-based validation. As mentioned above, the focus of this SLR
is to investigate the effectiveness of RTS techniques, including cost, coverage, or fault
detection ability. Thus, it is necessary to define the inclusion and exclusion criteria that
help to select the relevant primary studies. In this section, we explain our inclusion
and exclusion criteria and reasons behind the selection:

(1) We executed our search queries on selected repositories as mentioned before. We
found 724 research studies between 2007 and 2015 (after removing duplicate

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:13

Table V. Distributions of Studies After Applying Inclusion/Exclusion Criteria

Repository Studies Found First Level Second Level
IEEE Xplore 417 144 26
ACM Digital Library 213 39 08
ScienceDirect (including Elsevier Science) 94 32 13
Total 724 215 47

results). We followed two stage selection processes as shown in Table V. In the
first stage, studies were selected based on their titles and abstracts. If a study title
or abstract did not include RTS technique focusing on effectiveness (cost, coverage,
or fault detection ability), then that study is filtered out/excluded at this stage.

(2) The title or abstract that did not include RTS method/technique were excluded.
(3) The title or abstract that did not discuss the automation of RTS technique with

respect to cost- or coverage-based effectiveness or fault detection was excluded.

If there exists any confusion in the first phase of selection, the study will be brought
forward to the second phase for further refinement. After first phase, we were left with
215 studies. At the second level of inclusion/exclusion, the studies were divided into
three sets according to their research questions. We studied their contents in detail,
one by one. We exclude several studies based on the following exclusion criteria:

(1) Posters, technical reports, PhD dissertations, and studies with less than 5 pages
were excluded. The primary goal of this study is to build a synthesis on peer-
reviewed studies with sufficient technical details.

(2) Studies that did not focus on RTS effectiveness (cost, coverage, fault detection)
methods/techniques were excluded.

(3) Studies that did not report any empirical evidence on the focus areas (cost, coverage,
fault detection) were excluded.

In some cases, during the second level, we were not able to decide whether to include
several studies in this SLR. To make this important decision, we discussed it with
other researchers and decisions were made based on consensus. The one important
point about selection process is we cannot exclude studies on the basis of the SUT. The
reason behind this decision was by considering this exclusion parameter, the domains
were narrow and only few studies would have been selected. After phase two, we were
left with 47 studies. Out of these 47 studies, three articles on empirical study were
extended versions of a conference article published in some journals. In this case, we
consider these three articles as one.

In the next section, we will present data extraction method from primary studies
collected from the inclusion/exclusion criteria.

4.6. Data Extraction Method

After the relevant studies were selected, data extraction forms were designed to col-
lect data from these studies. Data needed were collected in two phases and into
two separate sets of data sheets. The first sheet contains standard information
[Kitchenham 2004], which includes study title, authors name, brief summary, and
comments by researchers performing the studies. The second sheet consists of infor-
mation directly extracted from the studies. The information collected in the first set
was used for the inclusion/exclusion criteria, while the information collected in the
second set was used to answer the research questions proposed. The mapping of data
collection with their respective RQs is shown in Table VI.

In the next section, we will present results of the SLR from the primary studies data
collected.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:14 R. Kazmi et al.

Table VI. Data Collection for Research Questions Framed

Research Questions (RQs) Type of Data Extracted
RQ 1 RQ 1.1 Types of RTS techniques, solution types, or algorithms used to conduct

RTS techniques
RQ 1.2 Test level of the empirical studies conducted
RQ 1.3 Targeted faults, test type, and application domain or process model

RQ 2 RQ 2.1 Formal hypothesis, test purpose, test strategy, threats to validity
RQ 2.2 Size of dataset, size of test suite, tool/environment for experimental

setup, number of test suite runs, data collection method
RQ 3 RQ 3.1 Evidence type or measure for cost or cost effectiveness of RTS technique

RQ 3.2 Evidence type or measure for effectiveness of RTS technique
RQ 3.3 Metric or comparison baseline used to validate empirical study results

Fig. 4. RTS Techniques Used in the Studies.

5. RESULTS

This section outlines the results with respect to the research questions.

5.1. RQ 1: What is the State-of-the-Art of Research in Test Case Selection
Techniques in Software Testing?

The purpose of this research question is to assess state-of-the-art research in regression
test case selection techniques. In order to answer this question, data were collected from
primary studies with the help of SLR protocol as shown in Figure 2, and the studies
were further assessed with the help of framework as shown in Figure 1.

5.1.1. RQ 1.1: What type of RTS Techniques Were in Practice for Controlled Experimentations?
The first aspect of this RQ was on RTS techniques categories based on their com-
monalities in selection procedure, input type, and output type. We grouped these RTS
methods in five categories listed below. These categories are reported in recent surveys
and they have lots of common characteristics [Biswas et al. 2011a]. The second reason
to group these techniques into these categories is that each study uses different selec-
tion procedure with similar objectives and constraints. The percentage of the reported
techniques is shown in Figure 4. The techniques used in the studies are as follows:

(1) Mining and Learning,
(2) Model Based Testing,

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:15

(3) Program Slicing,
(4) Control Flow Graph (CFG),
(5) Firewall,
(6) Other techniques.

The results showed that mining and learning-based RTS techniques are most utilized
method between 2007 and 2015. They were used in 18 of 43 (38%) studies. Genetic
Algorithm (GA) is used in 5 of 17 studies [S17, S20, S22, S31, S33]. Several observations
are noted for the GA utilization. First, there are many publications on GA application
and it is used for different problems. Second, empirical data is easily available for GA
experimental setup. This eases researcher in executing and compiling results using GA
algorithm. Fuzzy rule-based reasoning is used in 5 studies [S6, S15, S34, S35, S45].
Fuzzy logic has appropriate mathematical reasoning under certain conditions. It also
removes unwanted precision from analysis [S35]. Fuzzy logic can also accommodate
the form of rule-based reasoning, valuable project experience gained by testers during
project execution can be transformed into fuzzy rules, and remove drawbacks of linear
modeling [S35]. Practical swarm optimization (PSO) was reported in 4 studies [S19,
S23, S24, S37]. It was reported for multi-objective selection and optimization criteria
for code coverage, functional requirement with cost, and effectiveness constraints. It
is also reported [S19] that PSO gained more attention compared to GA and other
search-based algorithms on performing RTS methods.

The second-largest portion of reported technique in our primary study is MBT in RTS
techniques (26%) [S2, S12, S13, S16, S25, S27, S28, S29, S30, S42, S43]. These UML-
based RTS techniques are used in collaboration diagrams, sequence diagrams, state
charts, use-case diagrams, and class relationship diagrams. Most of the time, these
techniques use control flow, function calls, behavior changes, component changes, data
dependency, and message sequences or message changes for their selection criterion.
Most of these studies represent artifact designs and do little to the code or application
level testing. It is also observed that MBT methods are used with GA techniques [S20,
S28, S30] for some common objectives like similarity-based measures and test case
diversity measures.

Program Slicing RTS techniques are used in 11% [S1, S3, S39, S40, S47] of the
primary studies and they are the pioneer RTS techniques [S1]. Slicing techniques
mostly omit test cases that do not produce new, relevant outputs. They are called
nonmodification revealing test cases [S40].

From the analysis, these techniques are applied to small- or medium-sized data sets,
which are mostly procedural or modular applications. They are also difficult to be scaled
from one environment to another environment [S3].

CFG-based RTS techniques have a share of 9% [S7, S10, S38] of the primary stud-
ies. These techniques are based on flow control of programs or workflow of program
behaviors and functions. These techniques are also applied to small datasets and only
cover changes within the execution flow and do nothing to those outside of the current
flow [S7]. They also worked with coverage information [S7, S38] and updated coverage
information [S10] with program path analysis.

Oracle-based RTS techniques are used in 4% [S8, S14] of the studies and mostly
focus on test case profiles or execution profiles of test cases. These techniques try to
predict the fault rate or effectiveness of the test suites for future use. The creation and
maintenance of such profiles are considered as overhead and consume extra resources
in oracle-based RTS techniques. It is also observed that an emerging domain other
than oracle-based RTS, but with the same goal of oracle-based RTS using selection
procedures of basic selection techniques. These techniques are named in test case

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:16 R. Kazmi et al.

Table VII. Test Case Profiling and Selection with Historical Data Analysis Techniques

Technique Description Studies
Mutation Score Calculate mutation score for each test case and select the

best score
S22, S26,
S45

Historical Data
Analysis

Utilize the coverage information and fault revealing power
or execution time constraint with historical data analysis to
select test cases for current programs

S30, S32

Test Case Profiling
Based on Numerical
Data Analysis

Maintain a profile for test cases on coverage information,
fault rate or fault revealing test cases, and defect discovery
time

S6, S10, S15,
S31, S40

Test Case Ranking A statistical model based on earlier testing results (fault
potency and fault rates). The model can be used to
determine the next sets of test cases

S2

Fig. 5. RTS Testing Level.

profiling and selection with historical data analysis, test case ranking, or test case
selection on the basis of mutation score as shown in Table VII. The commonality
between all these techniques is the analysis of previous test data collected through
previous testing cycles.

Firewall technique [S9] consists of 2% of the primary studies. Other individual RTS
techniques, which are mostly based on particular experimental setups, make up 12%
of our primary studies.

5.1.2. RQ 1.2: At What Test Levels Were These Studies Conducted? The second aspect is the
testing level of these primary studies as shown in Figure 5. The analysis shows that
Unit testing recorded the biggest percentage, which is 24% of all studies, followed by
Behavioral testing (11%), Evolutionary or Maintenance testing (11%), System testing
and Cluster/Architectural testing (9%), Specification/Requirement/Functional testing
7%, Reliability testing and Integration testing (5%), and, lastly, 17% of the studies that
did not mention any particular testing level.

It is observed that the type of testing parameters used depend on the testing frame-
work, for example, JUnit is used by Java. Thus, the choice of testing environment leads
to the choice of unit testing for most studies. The second possible reason for the choice of
testing level was the dataset under test. It is observed that most datasets are publicly
available and can be used for unit tests.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:17

Fig. 6. RTS System Under Test.

5.1.3. RQ 1.3: What Types of Applications/Environments and Fault Types Were Conducted in
These Studies? The third aspect is about SUT/environment where these empirical stud-
ies were performed. We observed that Java is the most frequent language used in these
studies (28%), followed by UML-based artifacts (15%), C++ (13%), mobile devices and
C (11%), binary codes (5%), and, finally, VB/C#, web services, and CISCO devices (2%)
as shown in Figure 6. In this case, the factor of dataset availability and testing ar-
tifacts may lead to the reason why Java is chosen. This is because most open source
applications are written in Java. Apache and SIR are two well-known test artifact
repositories having information of testing information with fault reports. Majority of
existing datasets are based on Java and JUnit framework.

The fourth aspect was the fault type that these primary studies were using. We
observed that 55% of the studies did not use any particular fault type but used some
structural coverage criteria to fulfill RTS procedures. The structural coverage criteria
used in the studies were code coverage, condition coverage, modified condition coverage,
function coverage, and constraint coverage. The second largest proportion of fault types
used in these primary studies were real faults/mutational faults (33%), followed by code
changes (16%) as shown in Figure 7.

5.2. RQ2: How Were the Empirical Studies Designed and Conducted?

The type and design of datasets used for empirical evaluation are important. A tech-
nique’s level of effectiveness does not guarantee its suitability to complete testing
objectives. Thus, in order to conduct an effective experiment, there is a need to follow
experimental guidelines for experiment design. In this research question, we investi-
gate the reported studies’ designs, reproducibility, and scale.

5.2.1. RQ 2.1: How Are Empirical Studies Designed for Test Case Selection Techniques? In
order to answer this question, the primary studies were classified into two classes. We
used the following definitions for the experiments: “A study in which an intervention
is deliberately introduced to observe its effects” [Shadish et al. 2002]. Case Study:
“An empirical inquiry that investigates a contemporary phenomenon within its real
life context, especially when the boundaries between phenomena and context are not
clearly evident” [Yin 2003].

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:18 R. Kazmi et al.

Fig. 7. Fault Type Proportion.

Table VIII. Experiment/Case Study Setup Details

ID Question Yes Partially No
1 Are the research questions clearly stated? 18 (41%) 25 (58.1%) 0 (0%)
2 Were threats to validity clearly stated? 14 (32.5%) 12 (27.9%) 17 (39.5%)
3 Is the study repeatable (public datasets)? 16 (37.2%) 10 (23.2%) 17 (39.5%)

The analysis shows that 65% of primary studies claimed that they were evaluated
as case studies, as shown in Table IX. The remaining 35% studies are claimed as
experiments. It is also observed that 18 of the 47 studies (38%) clearly mentioned
their research questions and 25 of the studies (53%) partially mentioned their research
questions. Only 14 studies (29%) mentioned their internal and external threats, another
12 studies (25%) partially mentioned these threats, while the rest (17 studies or 36%)
did not mention this aspect. There were 16 studies (34%) that used public datasets for
case study/experimentation, 12 studies (25%) used open source or partially available
datasets, while the rest (17 studies or 36%) used private datasets, making them not
reproducible. The overall observation was that during this analysis, empirical design
was not considered as its due share in proper software-testing experiments. The second
observation was that research questions framed for investigating the problem were too
general and often did not return with sufficient information. The threats to validity or
study limitations in such studies were also ignored in a majority of the studies.

5.2.2. RQ 2.2: What Types of Datasets/Objects/Artifacts Were Used for the Empirical Study? Size
of the case study/experiment is an important factor to assess their validity. In order
to answer this question, we classify the studies into small, medium, large (S, M, and
L) studies. The size was determined based on the criterion presented in Table III. The
details on the studies’ artifacts, types, and sizes are presented in Table IX. The results
show that 12 studies were made on large-size datasets, 12 studies on medium-size
datasets, and 16 studies on small-size datasets. There were 7 studies that did not
report their size of datasets. It is also observed that 13 studies used datasets taken
from SIR [Infrastructure 2016], 7 were using industrial datasets, and 13 studies did
not mention their source of dataset. It is observed that the use of publically available
datasets increases since 2007. This trend is due to the existence of dataset repositories.

5.3. RQ 3: What Empirical Evidence Is Available for the Cost-, Coverage-, and Fault-Based Effec-
tiveness Measure of RTS Techniques? It is difficult to measure the costs and effectiveness

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:19

Table IX. Detail of Primary Studies, Artifacts, and Study Type and Size

Ref Artifact Type Size
S1 [Tao et al. 2010a] Details not reported EXP S
S2 [Tsai et al. 2009] 60 web services, Own unspecified EXP M
S3 [Tao et al. 2010b] SIR (Siena, jtopas) CS S
S4 [El-Hamid et al. 2010] Calculator & sorting, Own unspecified CS S
S5 [Huang et al. 2011] Configuration files EXP S
S6 [Xu et al. 2013] Real life telecom project CS L
S7 [Xu and Rountev 2007] Seven programs: Bean, tracing, telecom,

quicksort, nullcheck, dcm, lod
Exp S

S8 [Yu et al. 2013] SIR (Make, grep), ABB (5 programs) CS M
S9 [Zheng et al. 2007] ABB application CS L
S10 [Chittimalli and Harrold

2009]
Java apps, Own unspecified CS/Exp L

S11 [Rachatasumrit and Kim
2012]

SIR (Jmeter, XMLSecurity, ANT) CS M

S12 [Pasala et al. 2008] inARTS tool, 7 components of Windows XP based
app & NunitForms (open source)

CS M

S13 [Fourneret et al. 2014] Details not reported CS S
S14 [Nanda et al. 2011] Prototype tool TREND and Consultant Assistant

programs, Details not reported
CS M

S15 [Chen et al. 2011a] Schedule (program), SIR (Flex, space), gcov (a
GNU tool)

CS M

S16 [Iqbal et al. 2010] Student enrolment system CS S
S17 [Mirarab et al. 2012a] SIR (Ant, Nano, Galileo, Jmeter) CS M
S18 [Pang et al. 2013] SIR (Nanoxml, jtopas, Jmeter, xml-security, .ant) CS S
S19 [De Souza et al. 2011] 2 applications, Details not reported Exp M
S20 [Hemmati and Briand 2010] Safety monitoring component CS M
S21 [Cibulski and Yehudai 2011] Open source Apache based (Log4j, commons

Math)
CS M

S22 [Assis Lobo de Oliveira et al.
2013]

5 benchmarks (polo) CS M

S23 [De Souza et al. 2014a] SIR (space) CS S
S24 [De Souza et al. 2014b] Details not reported EXP
S25 [Hemmati et al. 2011] Safety monitoring component, video-conference

system, TRUST tool for testing
EXP

S26 [Delamaro and Offutt 2014] 30 programs Siemens, text books EXP S
S27 [Anderson et al. 2014] Microsoft Dynamics AX CS L
S28 [Hemmati et al. 2010b] Safety monitoring component EXP M
S29 [Huang et al. 2009] General Java application EXP S
S30 [Hemmati et al. 2010a] Industrial Project, Details not reported CS L
S31 [Yoo and Harman 2007] SIR (printtokens, printtokens2, schedule,

scheduler, space)
EXP S

S32 [Yu et al. 2010] Financial management system CS L
S33 [Panichella et al. 2015] SIR (11programs), Siemens Suite (printtokens,

printtokens2, scheduler, scheduler2)
CS L

S34 [Kumar et al. 2013] SIR (Print_tokens, Print_tokens2) CS S
S35 [Xu et al. 2014] Telecommunications system EXP L
S36 [Rogstad et al. 2013] SOFIE (tax accounting system) EXP L
S37 [De Souza et al. 2013] Mobile app, Own unspecified CS
S38 [Li et al. 2012] Custom service, Details not reported EXP
S39 [Lin et al. 2012] Details not reported EXP
S40 [Chen et al. 2011b] SIR (space) CS S
S41 [Singh et al. 2010] Calendar, triangle, time-date, Kmap generation,

tax, calculation
CS S

S42 [Mansour et al. 2011] Custom application, Details not reported CS
S43 [Cartaxo et al. 2011] Details not reported CS
S44 [Gligoric et al. 2015] 32 open source projects from Apache,

GoogleCode and GitHub
Exp L

S45 [Shi et al. 2015] 17 open source projects from Apache, GitHub Exp L
S46 [Kumar et al. 2015] SIR (Print_tokens, Print_tokens2) Exp S
S47 [Nardo et al. 2015] NoiseGenSys, Details not reported CS L

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:20 R. Kazmi et al.

Table X. Distribution of Cost Measures Used in the Studies

Number Method Description Studies
1 Measuring cost

of analysis
This analysis is used to detect changes in code
by the compiler (in seconds). The compile time is
considered as the cost for the test case selection.

S7

2 Test suite size This method is performed by removing
redundant test cases. It can be based on cost,
coverage or fault based effectiveness.

S2, S3, S12, S15,
S16, S20, S25, S28,
S40

3. Test suite
execution time

By reducing overall test suite execution time by
achieving some goal like fault rate (mutation
score) or coverage criterion.

S8, S10, S23, S24,
S26, S28, S29, S30,
S31, S32, S33, S34,
S39

4 Defect
discovery time

The time to discover defects by the test suite. S6

5 Bounded cost of
execution time

The test suite is executed with limited resources
like execution time or mutation score with
adequacy criterion.

S21

6 Executional
cost of each test
case

This method measures executional cost of each
test case and make a selection of test cases with
reduced cost with adequacy criterion.

S37

7 Test case
selection time

Time taken to select the test suite is considered
as the cost.

S39

of RTS techniques because they are context-dependent. There are many direct and
indirect measures available, especially in measuring a technique’s effectiveness. The
context-dependency of cost measures and many different cost measures (time, size, ef-
fort) also put high hurdles in comparing these costs. Furthermore, these cost measures
are normally compared with retest-all or random test selection costs, which provides
a weak comparison. Due to this, it is almost impractical to compare between different
types of studies. The datasets used by these studies are small, so it is not possible to
use these results for large-scale projects.

5.3.1. RQ 3.1: What Empirical Evidence Is Collected for the Cost or Cost-Effectiveness or Effec-
tiveness? Assessing cost, coverage, or fault detection ability of RTS methods are the
primary objectives of this study. The empirical studies that are focusing on measuring
cost, effectiveness, or cost-effectiveness are selected for analysis. As mentioned before,
this SLR focuses on measuring cost, coverage, or fault-detection ability of RTS methods.
Thus, the measurement of cost, effectiveness, or cost-effectiveness in a valid manner is
important. Costs are measured due to the following reasons:

(1) To compare several techniques and to decide which technique is more effective than
the other,

(2) To assess whether a technique is practical within a given time constraint.

Seven types of cost measures were used in the 47 studies investigated as shown in
Table X. It was observed that 30 studies (63%) measure the cost of RTS methods using
one way or another, 16 studies (34%) do not measure cost in any way, while the most
dominant trend is to use this measure as a comparison with other RTS techniques. The
rest of them (19 studies or 40%) [S6, S10, S12, S15, S19, S20, S21, S22, S24, S25, S26,
S28, S29, S30, S31, S34, S37, S39, S40] consider cost as their effectiveness measure.

We observed that test suite execution time is the most popular method used to mea-
sure the cost of RTS techniques. This method is reported in 17 of the 47 empirical
studies. But the usage of this method is context-dependent and varies between empiri-
cal studies. The second-most reported cost measure is test suite size, which is reported
in 9 studies. This method is considered as an effectiveness criteria in terms of the

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:21

reduced number of test cases in the resulting test suite. Study [S28] can use two cost
measurement methods, either test suite size or test suite execution time. Meanwhile,
study [S39] uses test cases selection time or test suite execution time to measure its
overall cost. Relative terms of efficiency and effort are also used to measure cost.

5.3.2. RQ 3.2: Is It Possible to Collect Some Empirical Evidence on the Effectiveness of RTS
Techniques? A test suite can be accurately assessed based on its ability to discover
faults or fulfill maximum coverage. Measurement of effectiveness varies across dif-
ferent empirical studies being analyzed. Effectiveness with regard to cost, coverage,
or fault-detection is the main goal of this SLR. Thus we only select RTS studies that
measure effectiveness based on those criteria (cost, coverage, or fault detection). In
our case, effectiveness is measured based on two categories, but the measures are very
much context-dependent and consider many different parameters that are mixed with
each other. The two general categories are as follows:

(1) Coverage-Based Measures of Effectiveness: In this type of measure, some ade-
quacy criterion based on coverage is used to determine the effectiveness of RTS
techniques. This measure also varies in terms of its use coupled with many other
cost and fault-based measures. Subcategories of this measure include statement
coverage, branch coverage, method or function coverage, condition coverage, re-
quirement coverage, and test case coverage, as shown in Table XI.

(2) Fault-Based Measures of Effectiveness: This measure type determines the results
based on faults detected by RTS methods using many variants, such as fault detec-
tion capability, fault relieving capability, failure rate, regression failures, and many
more. The most basic and frequently used measures are shown in Table XII. These
measures are also used with historical data analysis to improve RTS techniques’
capability for future use.

Overall, 27 of 47 empirical studies (57%) measure effectiveness in terms of coverage
using one way or another. From this number, 19 studies [S6, S10, S12, S15, S19, S20,
S21, S22, S24, S25, S26, S28, S29, S30, S31, S34, S37, S39, S40] measure effectiveness
based on cost. Effectiveness is measured for two reasons, either to select the test
cases using effectiveness criterion or to compare this measure with other techniques
or previous version of the same dataset.

The most frequently used adequacy criteria observed in the studies are coverage
criteria, which correlate with fault-based adequacy criteria or cost measures that are
used in 17 studies. It is observed that single criteria is not used at all, and a combination
of cost, coverage, or fault-detection ability are used as effectiveness measures in all
studies. In coverage-based adequacy type, statement coverage is the most frequently
used criteria. The details are shown in Table XI.

The main reasons why statement coverage is used as adequacy criteria is because
it is simple, measurable, and devises test cases on the internal logic and structure of
the application under test. Statement coverage describes the degree to which a soft-
ware is being tested. It also provides information about test cases and statements
related to them. Other types of coverage based adequacy criteria include branch cover-
age, method/function coverage, class coverage, change point coverage, and requirement
coverage.

There are 8 of the 47 studies that used fault-based adequacy criteria without coverage
criteria, as shown in Table XII. The other fault-based criteria used with coverage-based
adequacy criteria are shown in Table XI. It is observed that multi-objective criteria-
based adequacy measures are common in RTS research domain with mining and learn-
ing family of RTS methods. The multi-objective goals are described with fitness func-
tion and (dis)similarity measure functions in machine-learning RTS techniques. The

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:22 R. Kazmi et al.

Table XI. Distribution of Coverage Adequacy Criteria in the Studies

Number Adequacy Measure Description Study
1 Statement coverage Statement coverage used for

dimensionality reduction with an
execution profile of test cases

S18, S40, S45

2 Statement coverage with
fault history

A multi-objective selection criterion
developed using statement coverage with
fault history and executional cost

S31

3 Statement coverage,
branch coverage with
fault detection capability

Fitness function based on statement
coverage, branch coverage, fault detection
capability and executional cost

S34, S46, S47

4 Statement coverage,
branch coverage with
modified statement
coverage

Statement coverage, branch coverage
with average rate of fault detection used
as the effectiveness measure

S41

5 Updated coverage
(statement, branch)

Updated coverage data used as
subsequent selection task

S10

6 Additional statement
coverage with fault rate

Additional statement coverage with fault
detection rate (FDR) as the effectiveness
measure and selection task

S25

7 Method/Functional
coverage

Method or functional coverage with
change impact traceability used for
selection purpose

S14, S39

8 Minimized sum of
coverage (class, methods,
statement)

Multi-objective selection based on
minimum sum of coverage data used by
the voting mechanism for selection
purpose

S17

9 Requirement coverage Multi-objective with maximizing
requirement coverage with minimum cost
of execution time of test cases

S19, S37

10 Change point coverage Change-points coverage with minimum
cost measure used to verify program
subset

S29

11 Test case coverage with
fault detection rate

Test case coverage with fault detection
rate used as similarity measure between
test cases for selection purpose

S30

12 Path coverage Path coverage used for identifying
changes select test cases

S38

13 Transition-based
coverage with fault-based
coverage

Similarity measured with transition
based and fault based coverage that
reduce test suite size by discarding
similar coverage test cases

S43

history-based profile of test case execution, fault data repositories, and change iden-
tification techniques with coverage and updated coverage information were used for
selection or verification of selection techniques results. The other reason to use fault
detection ability as effectiveness measures is the ability of testing tools like JUnit and
mutation generators. These tools simply measure and display the faults or errors with
failed test cases. One thing to note is the degree of measurement varies with tools
choice.

5.3.3. RQ 3.3: What Types of Evaluation Methods Were Used to Verify the Studies Results? RTS
techniques differ in terms of their goals and selection procedures as mentioned in
Figure 1. If we need to choose an RTS technique for practical application, a mechanism
is needed to compare and evaluate the results of each technique. It is very difficult
to compare the difference in terms of each technique’s goals and philosophy. A study
[Rothermel and Harrold 1996] identified different RTS categories, which include

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:23

Table XII. Distribution of Fault-Based Adequacy Criterion in the Studies

Number Measure Description Study
1 Fault Revealing

Capability
Defect discovery capability measured and
compared with retest-all for effectiveness
indicator

S5

2 Defect Discovery Time Test case execution profile with defect
discovery time used as effectiveness
measure

S6

3 Fault Detection
Capability

The function call profile with the fault
detection capability with the goal to
reduce cost is used an effective measure

S15

4 Failure Frequency Rate Most frequent failures with relationship
to test cases are used as effectively
measure

S26, S27, S35,
S36

5 Fault Detection Rate Fault detection rate with cost of analysis
used as effectiveness measure

S28

Fig. 8. Adequacy Measure and Evaluation Method Perception Map.

inclusiveness, precision, efficiency, and generality. There are many other metrics used
to compare the results of RTS techniques studies. Possible classes to be used in the
comparison is given in in Section 3.3. Here we try to map these metrics based on their
effectiveness collected from this SLR study.

Results for the evaluation metrics of RTS techniques are represented in Figure 8
with respect to cost, coverage, fault detection, and combination of these criteria. In
the figure, x-axis represents evaluation metrics and y-axis represents effectiveness
measure. In total, there are 11 metrics used to evaluate the results of RTS techniques
obtained from the collected studies. Overall, 15 studies (31%) compare their results

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:24 R. Kazmi et al.

with previous run of the same application [S11, S35, S4, S18, S38, S43, S33, S17, S12,
S37, S32, S22, S4, S39, S46], followed by retest-all, which is used in 9 studies (19%)
[S25, S36, S13, S16, S10, S29, S5, S6, S44], precision, which is used in 8 studies (17%)
[S1, S14, S18, S42, S13, S3, S7, S46], multi-objective metrics were reported in 5 studies
(10%) [S23, S19, S24, S31, S34], and F-Measure, which is a combination of precision
and recall, is used in 4 empirical studies (10%) [S27, S15, S26, S40].

Recall [S1, S40, S21, S46] is used in 4 primary studies (8%), inclusiveness [S2, S8,
S42] is used in 3 primary studies (6%), APFD [S29, S41, S47] is used in 3 studies (6%),
AFDR [S20, S28] is used in 2 studies (4%), and accuracy is used in 2 (4%) studies. The
FDR [S30, S47] is used in 2 (4%) studies from primary studies under analysis. Few
studies used more than one evaluation metric in order to compare different techniques
of test case selection with reduction or prioritization techniques. We group evaluation
metrics based on their effectiveness measures. Some studies used more than one metric
to evaluate their results. There is a need to mention all metrics used in the studies. For
example, study [S46] used precision, recall, and accuracy for its analysis; study [S47]
used APFD and AFDR for its comparison with prioritization technique under analysis;
study [S42] used inclusiveness and precision; and study [S1] used precision and recall
to evaluate its results.

The results showed that choice of evaluation metrics depends upon the complexity
of RTS technique used and nature of data produced either using experiment or case
study. The retest-all and comparison with previous versions needs no extra computation
and a simple comparison with previous project data can produce the needed results.
The coverage information and cost is measured by tools provided by different vendors
are common mechanism of adequacy and are used with precision and recall metrics.
Fault-based adequacy criteria needs some analysis before and after experiments and
also needs some historical information about test cases behaviors or fault history.
Multi-objective metrics (S19, S23, S24, S31, S34) are used with machine-learning RTS
techniques. They required the most complex calculations compared to other metrics.

6. DISCUSSION

Via the literature, it is found that two ideas contributed to the development of RTS
techniques and their evaluation methods. The first idea is regression testing with test
cases classification [Leung and White 1989] and the second idea is safe regression
testing [Rothermel and Harrold 1994]. These studies provide the theoretical basis for
evaluation of RTS techniques as well as their evaluation frameworks. But, with the
increase in the complexity of software systems, testing environments, and frameworks,
it is observed that with proper statistical backgrounds, these classic methods can still
be effective. Many new trends (e.g., continuous development, continuous integration,
agile and cloud-based systems) pose different challenges to regression testing. Mining
and learning techniques are mainly used by researchers in this field of study, yet these
methods have several drawbacks like small size datasets and high computational cost
made it unattractive to industry players.

The second strong belief in regression testing is coverage based adequacy criteria.
Coverage is used as the proxy for evaluating the quality of test suites. Coverage is a
good indicator of test suite completeness in structural programs. But it is observed
that coverage alone is not sufficient for test suite adequacy evaluation and insufficient
measure for test suite quality measurement in emerging software domain. The high
coverage also needs more number of test suites as well as consumes high costs. It seems
that mutation based regression testing is gradually replacing the coverage measures.
Mutation-based analysis on well-thought statistical grounds can reflect the quality of
test suites better compared to static coverage measures. But there is still a gap between

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:25

the theory and practice in mutation testing area. The ability of mutation analysis tools
differ according to different quality measures used.

Based on this SLR, we recommend that researchers, practitioners, and engineers
follow these guidelines if they intend to conduct regression test case selection:

1. Coverage, cost, or fault detection alone are not sufficient measures to assess the
quality of test suites. They may be considered in some proportion with each other.

2. Coverage granularity levels should be an effective measure for test suites quality.
But it is evident from the studies reviewed that higher coverage rates did not
assure high fault detection ability of test suites.

3. RTS experimental studies must be designed to uncover fault with the cost of re-
gression testing instead of fulfilling some coverage adequacy levels.

4. Testing artifact repositories, open source software with test suites, and supporting
documents create positive impacts on regression test experiments.

5. There are a number of studies and body of knowledge for testing experimentation,
and there must be a proper consideration for regression test experiment context,
hypothesis, design, analysis method, threats to validity, data analysis, presenta-
tion, and results with conclusion.

6. It is also important to consider the accuracy, relevance, and impact of the domain
under study.

7. The empirical studies provide a mechanism to relate controlled experiments with
real world problems. So it is necessary to focus on measurable aspects of the
regression testing, test case selection, prioritization, and reduction.

8. Based on this literature review, it is recommended that future studies need to be
conducted using proper statistical methods.

9. An empirical study is credible when its results are reproducible. Thus, it is neces-
sary to properly document the studies.

10. It seems that mutation testing methods are gradually replacing real fault and
fault seeding techniques. This is because mutation testing methods can be used
to effectively assess classic RTS techniques (e.g., Slicing, Firewall, Graph-Based
Techniques).

11. There are also many indicators found in this SLR that mutation score may replace
coverage adequacy criteria.

12. Software testing frameworks impose several limitations on experimental designs.
It is suggested that future experiments be extended beyond these testing frame-
works.

7. THREATS TO VALIDITY

For this SLR, the relevant threats to its validity may include incomplete selection of
empirical studies, inaccurate data extraction, and unbiased selection strategy.

7.1. Selection of Publications

We have presented the research method in detail in Section 4. The SLR has a general
guideline for the selection of relevant studies. In Section 4.5, we presented the strategy
used to select the relevant studies. However, there is still a possibility that some
relevant studies have been overlooked. The main reason for this is the existence of
gray literature such as technical reports and PhD thesis. In this case, this literature
is important, if the authors report the complete studies, but most of the time they are
briefly reported. In this SLR, we did not include PhD theses and technical reports.

The second possible issue is the difficulty of finding appropriate search strings. In
Section 4.3 and Section 4.4, justifications were given for the process of selection of
repositories and search strings used to find relevant studies to be used in this SLR.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:26 R. Kazmi et al.

However, there may be some articles that may use some other keywords. We refine
our search strings several times to identify the most relevant studies because some
articles that are available in the references of some studies were missing from our
search results. The studies were published in different sources, but we try our search
query with most relevant data sources having a maximum probability to return to most
relevant studies.

7.2. Inaccurate Data Extraction

Incomplete data extraction from the collected studies is the second possible reason for
inaccurate results in this SLR. This may be due to unsystematic data extraction or
invalid classification of data. First, we try to reduce the possibility of inaccurate data
extraction by focusing on the data elements collected from the selected studies repre-
sented in Section 4.6. Second, all data extracted were reviewed three times. Empirical
studies are focused and special type of experimental studies. Their experimental design
and experimental process makes it possible to collect the data objectively.

7.3. Quality Assessment Problem

Quality assessment of selected studies is also another problem which may lead to
inaccurate results. It is not easy to answer RQ 3 due to the nature of the measures
needed to answer this question. For this purpose, we establish a framework presented
in Section 3. This framework helps the researchers to assess the empirical studies for
selection as well as to ensure their required quality assessment subjectively. We also
emphasize that this is the minimum criteria to design and assess the empirical studies
for regression test case selection.

8. CONCLUSION

We have presented results from our systematic review of empirical studies on RTS.
This SLR is focused on the effectiveness of RTS techniques. Mainly, three (3) research
questions were developed by introducing a framework. The findings, based on these
research questions, are as follows:

(RQ1) In total, 47 studies were chosen from 724 studies obtained from the literature
on RTS topic, which measure cost, cost-effectiveness, and/or effectiveness between 2007
and 2015. There were 5 distinct families of methods used namely Mining and Learning,
Model-Based Testing (MBT), Program Slicing, Control Flow Graph (CFG), and Oracle-
Based RTS identified within RTS techniques. These families were classified based on
their operational procedure, input and output method, and solution similarities. There
are several differences between the techniques used by each family in terms of context
and environment, but, in general, they are used to solve the same kinds of problems.
Mining and Learning method obtained better attention from researchers during this
time span and is used in 38% of the selected studies. Genetic Algorithm is used in most
experiments compared to other methods such as Fuzzy logic, Practical Optimization
Swarm, and heuristic algorithms within the mining and learning technique family. The
emerging crossroad from these RTS techniques is Test Case Profiling with historical
data analysis to enhance effectiveness. The 24% studies conducted on a unit level test-
ing to keep the problem simple and manageable within given context. There is need to
expand the level of testing with the empirical evaluation of RTS optimization methods.
Java programming language is reported in 28% studies. It shows that Java is the most
accepted environment and object oriented solutions is more popular than structured
solutions. Majority of the studies do not target any specific fault type but they used
some structural coverage as their objectives. It is also observed that mutation score
is starting to replace coverage criteria. There is a need to investigate RTS techniques
with real faults in software applications using measurable characteristics of datasets.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:27

(RQ2) We observed that 65% of the studies selected were case studies with small-size
datasets. The use of industrial artifacts are still not common in testing case selection
experiments. This factor also makes techniques applicability limited and no evidence
available if they may or may not be used in large industrial applications. The stud-
ies conducted are not mature, and their findings cannot be generalized because only
37% of the studies used publicly available datasets, meaning that they can be repro-
duced by other researchers. The design guidelines for experimental setup and empirical
evaluation guidelines are also compromised; only 32% of the studies explained their
limitations and threats to validity. It is also observed that only 41% of the studies
frame research questions to set up the empirical evaluation. It is important for studies,
especially in the software engineering and software testing fields, to follow the proper
experimental guidelines and using suitable statistical methods to ensure the validity
of their studies.

(RQ3) The focus of this third and last research question was to assess the effec-
tiveness of existing RTS techniques. The effectiveness was measured based on cost
measure, coverage-based, and fault-based adequacy criteria. Of the 47 studies, 30
studies (63%) measured the cost of RTS technique using only one single parameter. It
is found that 7 different cost measures were used in the studies. The most common
cost measure used is execution time of the test suite that was used in 13 studies.
The multi-objective adequacy criteria consist of a combination of these three adequacy
criteria getting the focus of researchers and experimental studies in regression test
case selection. The validation of these results is also equally important for empirical
studies conducted in software testing in general and regression test case selection in
particular. We found that 15 studies compared their results with previous versions of
the same test suite execution. It is also observed that the use of a single metric (ei-
ther cost, coverage, or fault criteria) is not sufficient for measuring all aspects of test
case selection techniques. Furthermore, there is no direct relationship found between
effectiveness based on the cost, coverage, or fault detection ability. The definition of
effectiveness varies among all studies selected. The cost is measured from different
perspectives and conflicting definitions. A measure like reduction in size is considered
as effective, but it does not guarantee a reduction in the execution cost of the test suite.
Similar trends is also found in coverage and fault detection ability.

9. FUTURE WORK

Potential future work for the researchers in this field may include:

(1) Perform research focusing on trade-offs between current RTS techniques (e.g., tra-
ditional techniques) with mining and learning or test oracles (i.e., techniques with
statistical origins).

(2) Design a general purpose evaluation technique to be used for the whole RTS testing
process, because we were unable to find a single fit-for-all technique to be used for
this purpose.

(3) More works are required to design and conduct empirical studies, because the
current design guidelines are not mature and can be further improved.

(4) Single adequacy criterion is not sufficient, thus investigations should be made to
multi-criteria cases and performed with proper statistical methods used.

(5) There is need to determine the relationships between cost, coverage, and fault-
detection abilities of test suites.

(6) Evaluation metrics should be implemented with sufficient mathematical and sta-
tistical details, instead of only making comparison with previous studies’ results,
because in many cases the testing context may differ although implemented on the
same application.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:28 R. Kazmi et al.

ACKNOWLEDGMENTS

We thank Universiti Teknologi Malaysia and Ministry of Science, Technology and Innovation (MOSTI)
Malaysia (Vot No: 4S113).

REFERENCES

J. Anderson, S. Salem, and H. Do. 2014. Improving the effectiveness of test suite through mining historical
data. In Proceedings of the 11th Working Conference on Mining Software Repositories. ACM, 142–151.

J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. 2006. Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE Trans. Software Eng. 32, 608–624.

M. A. Askarunisa, M. L. Shanmugapriya, and D. N. Ramaraj. 2010. Cost and coverage metrics for measuring
the effectiveness of test case prioritization techniques. INFOCOMP J. Comput. Sci. 9, 43–52.

A. Assis Lobo De Oliveira, C. Gonyalves Camilo-Junior, and A. M. Vincenzi. 2013. A coevolutionary algorithm
to automatic test case selection and mutant in mutation testing. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC’13). IEEE, 829–836.

B. Beizer. 1995. Black-Box Testing: Techniques for Functional Testing of Software and Systems, John Wiley
& Sons, Inc.

D. Binkley. 1995. Reducing the cost of regression testing by semantics guided test case selection. In Proceed-
ings of the International Conference on Software Maintenance. IEEE, 251–260.

S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran. 2011a. Regression test selection techniques: A survey.
Informat.: Int. J. Comput. Informat. 35, 289–321.

S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran. 2011b. Regression test selection techniques: A survey.
Informatica 35.

P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil. 2007. Lessons from applying the
systematic literature review process within the software engineering domain. J. Syst. Software 80,
571–583.

X. Cai and M. R. Lyu. 2005. The effect of code coverage on fault detection under different testing profiles.
ACM SIGSOFT Software Eng. Notes 30, 1–7.

E. G. Cartaxo, P. D. Machado, and F. G. O. Neto. 2011. On the use of a similarity function for test case
selection in the context of model-based testing. Software Test. Verificat. Reliabil. 21, 75–100.

S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng. 2011a. Using semi-supervised clustering to improve regression
test selection techniques. In Proceedings of the IEEE 4th International Conference on Software Testing,
Verification and Validation (ICST’11). IEEE, 1–10.

Z. Chen, Y. Duan, Z. Zhao, B. Xu, and J. Qian. 2011b. Using program slicing to improve the efficiency and
effectiveness of cluster test selection. Int. J. Software Eng. Knowl. Eng. 21, 759–777.

P. K. Chittimalli and M. J. Harrold. 2009. Recomputing coverage information to assist regression testing.
IEEE Trans. Software Eng. 35, 452–469.

H. Cibulski and A. Yehudai. 2011. Regression test selection techniques for test-driven development. In Pro-
ceedings of the 4th International Conference on Software Testing, Verification and Validation Workshops
(ICSTW’11). IEEE, 115–124.

C. A. C. Coello, D. A. Van Veldhuizen, and G. B. Lamont. 2002. Evolutionary Algorithms for Solving Multi-
Objective Problems. Springer.

L. S. De Souza, P. B. De Miranda, R. B. Prudencio, and F. De Barros. 2011. A multi-objective particle swarm
optimization for test case selection based on functional requirements coverage and execution effort. In
Proceedings of the23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI’11).
IEEE, 245–252.

L. S. De Souza, R. B. Prudencio, and D. A. Barros. 2014a. A hybrid binary multi-objective particle swarm
optimization with local search for test case selection. In Proceedings of the 2014 Brazilian Conference on
Intelligent Systems (BRACIS’14), 2014a. IEEE, 414–419.

L. S. De Souza, R. B. Prudencio, and F. D. Barros. 2014b. A comparison study of binary multi-objective particle
swarm optimization approaches for test case selection. In Proceedings of the 2014 IEEE Congress on
Evolutionary Computation (CEC’14). IEEE, 2164–2171.

L. S. De Souza, R. B. Prudêncio, F. D. A. Barros, and E. H. D. S. Aranha. 2013. Search based constrained test
case selection using execution effort. Expert Syst. Appl. 40, 4887–4896.

K. Deb. 2001. Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons.
M. E. Delamaro and J. Offutt. 2014. Assessing the influence of multiple test case selection on mutation exper-

iments. In Proceedings of the 2014 IEEE 7th International Conference on Software Testing, Verification
and Validation Workshops (ICSTW’14). IEEE, 171–175.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:29

H. Do and G. Rothermel. 2006. An empirical study of regression testing techniques incorporating context
and lifetime factors and improved cost-benefit models. In Proceedings of the 14th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. ACM, 141–151.

T. Dyba, B. A. Kitchenham, and M. Jorgensen. 2005. Evidence-based software engineering for practitioners.
IEEE Software, 22, 58–65.

I. Eee. 1990. Standard G lossary of softwareengineering terminology. IEEE Software Eng. Stand. Cll ect.
IEEE, 610.12–190.

W. S. A. El-Hamid, S. S. El-Etriby, and M. M. Hadhoud. 2010. Regression test selection technique for multi-
programming language. In Proceedings of the 7th International Conference on Informatics and Systems
(INFOS’10). IEEE, 1–5.

S. Elbaum, P. Kallakuri, A. Malishevsky, G. Rothermel, and S. Kanduri. 2003. Understanding the effects of
changes on the cost-effectiveness of regression testing techniques. Software Test. Verificat. Reliabil. 13,
65–83.

S. Elbaum, A. Malishevsky, and G. Rothermel. 2001. Incorporating varying test costs and fault severities into
test case prioritization. In Proceedings of the 23rd International Conference on Software Engineering.
IEEE Computer Society, 329–338.

S. Elbaum, A. G. Malishevsky, and G. Rothermel. 2002. Test case prioritization: A family of empirical studies.
IEEE Trans. Software Eng. 28, 159–182.

E. Engström, P. Runeson, and M. Skoglund. 2010. A systematic review on regression test selection techniques.
Informat. Software Technol. 52, 14–30.

E. Engström, M. Skoglund, and P. Runeson. 2008. Empirical evaluations of regression test selection tech-
niques: A systematic review. In Proceedings of the 2nd ACM-IEEE International Symposium on Empir-
ical Software Engineering and Measurement. ACM, 22–31.

K. F. Fischer. 1977. A test case selection method for the validation of software maintenance modifications.
Proceedings of COMPSAC, 1977. 421–426.

E. Fourneret, J. Cantenot, F. Bouquet, B. Legeard, and J. Botella. 2014. Setgam: Generalized technique for
regression testing based on UML/OCL models. In Proceedings of the 8th International Conference on
Software Security and Reliability (SERE’14), 2014. IEEE, 147–156.

M. Gligoric, L. Eloussi, and D. Marinov. 2015. Practical regression test selection with dynamic file depen-
dencies. In Proceedings of the 2015 International Symposium on Software Testing and Analysis. ACM,
211–222.

M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and D. Marinov. 2014. Guidelines for coverage-
based comparisons of non-adequate test suites. Space 6, 1, 142.

J. E. González, N. Juristo, and S. Vegas. 2014. A systematic mapping study on testing technique experiments:
has the situation changed since 2000? In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, 2014. ACM, 3.

T. L. Graves, M. J. Harrold, J. M. Kim, A. Porter, and G. Rothermel. 2001. An empirical study of regression
test selection techniques. ACM Trans. Software Eng. Methodol (TOSEM) 10, 184–208.

F. Haftmann, D. Kossmann, and E. Lo. 2007. A framework for efficient regression tests on database applica-
tions. VLDB J.: Int. J. Very Large Data Bases 16, 145–164.

M. Harman and N. Alshahwan. 2008. Automated session data repair for web application regression testing.
In Proceedings of the 1st International Conference on Software Testing, Verification, and Validation.
IEEE, 298–307.

H. Hemmati, A. Arcuri, and L. Briand. 2010a. Reducing the cost of model-based testing through test case
diversity. In Testing Software and Systems. Springer.

H. Hemmati, A. Arcuri, and L. Briand. 2011. Empirical investigation of the effects of test suite properties on
similarity-based test case selection. In Proceedings of the IEEE 4th International Conference on Software
Testing, Verification and Validation (ICST’11). IEEE, 327–336.

H. Hemmati and L. Briand. 2010. An industrial investigation of similarity measures for model-based test case
selection. In Proceedings of the IEEE 21st International Symposium on Software Reliability Engineering
(ISSRE’10) IEEE, 141–150.

H. Hemmati, L. Briand, A. Arcuri, and S. Ali. 2010b. An enhanced test case selection approach for model-
based testing: An industrial case study. In Proceedings of the 18th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering. ACM, 267–276.

K. Hla, Y. Choi, and J. S. Park. 2008. Applying particle swarm optimization to prioritizing test cases for
embedded real time software retesting. In Proceedings of the IEEE 8th International Conference on
Computer and Information Technology Workshops. IEEE, 527–532.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:30 R. Kazmi et al.

S. Huang, Y. Chen, J. Zhu, Z. J. Li, and H. F. Tan. 2009. An optimized change-driven regression testing
selection strategy for binary Java applications. In Proceedings of the 2009 ACM Symposium on Applied
Computing. ACM, 558–565.

S. Huang, Z. J. Li, J. Zhu, Y. Xiao, and W. Wang. 2011. A novel approach to regression test selection for
J2EE applications. In Proceedings of the 27th IEEE International Conference on Software Maintenance
(ICSM’11). IEEE, 13–22.

IEEE-STD-610. 12-1990. 1990. IEEE standard glossary of software engineering terminology (IEEE Std
610.12-1990). IEEE Computer Society, Los Alamitos. CA.

S. A. Infrastructure. 2016. SIR. Retrieved from http://sir.unl.edu/portal/index.php.
L. Inozemtseva and R. Holmes. 2014. Coverage is not strongly correlated with test suite effectiveness. In

Proceedings of the 36th International Conference on Software Engineering. ACM, 435–445.
M. Z. Z. Iqbal, Z. Malik, and M. Riebisch. 2010. A model-based regression testing approach for evolving

software systems with flexible tool support. In Proceedings of the 17th IEEE International Conference
and Workshops on Engineering of Computer Based Systems (ECBS’10). IEEE, 41–49.

L. Jiang and Z. Su. 2007. Context-aware statistical debugging: from bug predictors to faulty control flow
paths. In Proceedings of the 22nd IEEE/ACM International Conference on Automated Software Engi-
neering. ACM, 184–193.

D. S. Johnson. 2002. A theoretician’s guide to the experimental analysis of algorithms. Data Structures,
Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges, 59,
215–250.

B. Kitchenham. 2004. Procedures for performing systematic reviews. Keele University, Keele, UK. 33, 1–26.
B. A. Kitchenham, T. Dyba, and M. Jorgensen. 2004. Evidence-based software engineering. In Proceedings

of the 26th International Conference on Software Engineering. IEEE Computer Society, 273–281.
B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El Emam, and J. Rosenberg.

2002. Preliminary guidelines for empirical research in software engineering. IEEE Trans. Software Eng.
28, 721–734.

M. Kumar, A. Sharma, and R. Kumar. 2013. Fuzzy entropy-based framework for multi-faceted test case
classification and selection: An empirical study. IET Software 8, 103–112.

M. Kumar, A. Sharma, and R. Kumar. 2015. An empirical evaluation of a three-tier conduit framework
for multifaceted test case classification and selection using fuzzy-ant colony optimisation approach.
Software: Pract. Exp. 45, 949–971.

D. C. Kung, C. H. Liu, and P. Hsia. 2000. An object-oriented web test model for testing web applications. In
Proceedings of the 1st Asia-Pacific Conference on Quality Software. IEEE, 111–120.

H. K. Leung and L. White. 1989. Insights into regression testing [software testing]. In Proceedings of the
1989 Conference on Software Maintenance. IEEE, 60–69.

H. K. Leung and L. White. 1991. A cost model to compare regression test strategies. In Proceedings of the
1991 Conference on Software Maintenance. IEEE, 201–208.

W. E. Lewis. 2008. Software Testing and Continuous Quality Improvement, CRC Press, Boca Raton, FL.
W. E. Lewis. 2016. Software Testing and Continuous Quality Improvement, CRC Press, Boca Raton, FL.
B. Li, D. Qiu, H. Leung, and D. Wang. 2012. Automatic test case selection for regression testing of composite

service based on extensible BPEL flow graph. J. Syst. Software 85, 1300–1324.
Y. D. Lin, C. H. Chou, Y. C. Lai, T. Y. Huang, S. Chung, J. T. Hung, and F. C. Lin. 2012. Test coverage

optimization for large code problems. J. Syst. Software 85, 16–27.
N. Mansour, H. Takkoush, and A. Nehme. 2011. UML-based regression testing for OO software. J. Software

Maint. Evol.: Res. Pract. 23, 51–68.
A. Memon, A. Nagarajan, and Q. Xie. 2005. Automating regression testing for evolving GUI software. J.

Software Maint. Evol.: Res. Pract. 17, 27–64.
A. M. Memon. 2008. Automatically repairing event sequence-based GUI test suites for regression testing.

ACM Transactions on Software Engineering and Methodology (TOSEM) 18, 4.
A. M. Memon and M. L. Soffa. 2003. Regression testing of GUIs. ACM SIGSOFT Software Engineering Notes

28, 118–127.
S. Mirarab, S. Akhlaghi, and L. Tahvildari. 2012a. Size-constrained regression test case selection using

multicriteria optimization. IEEE Trans. Software Eng. 38, 936–956.
S. Mirarab, S. Akhlaghi, and L. Tahvildari. 2012b. Size-constrained regression test case selection using

multicriteria optimization. IEEE Trans. Software Eng. 38, 936–956.
J. D. Musa. 1993. Operational profiles in software-reliability engineering. IEEE Software 10, 14–32.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

Effective Regression Test Case Selection: A Systematic Literature Review 29:31

R. Nagar, A. Kumar, S. Kumar, and A. S. Baghel. 2014. Implementing test case selection and reduction
techniques using meta-heuristics. In Proceedings of the 5th International Conference on Confluence The
Next Generation Information Technology Summit (Confluence’14). IEEE, 837–842.

A. S. Namin and J. H. Andrews. 2009. The influence of size and coverage on test suite effectiveness. Proceed-
ings of the 18th International Symposium on Software Testing and Analysis. ACM, 57–68.

A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso. 2011. Regression testing in the presence of non-code
changes. In Proceedings of the IEEE 4th International Conference on Software Testing, Verification and
Validation (ICST’11). IEEE, 21–30.

D. D. Nardo, N. Alshahwan, L. Briand, and Y. Labiche. 2015. Coverage-based regression test case selection,
minimization and prioritization: A case study on an industrial system. Software Test. Verificat. Reliabil.
25, 371–396.

A. Orso and G. Rothermel. 2014. Software testing: A research travelogue (2000–2014). In Proceedings on the
Future of Software Engineering. ACM, 117–132.

A. Orso, N. Shi, and M. J. Harrold. 2004. Scaling regression testing to large software systems. ACM SIGSOFT
Software Engineering Notes, 2004. ACM, 241–251.

T. J. Ostrand, E. J. Weyuker, and R. M. Bell. 2005. Predicting the location and number of faults in large
software systems. IEEE Trans. Software Eng. 31, 340–355.

Y. Pang, X. Xue, and A. S. Namin. 2013. Identifying effective test cases through k-means clustering for
enhancing regression testing. In Proceedings of the 12th International Conference on Machine Learning
and Applications (ICMLA’13). IEEE, 78–83.

A. Panichella, R. Oliveto, M. D. Penta, and A. De Lucia. 2015. Improving multi-objective test case selection
by injecting diversity in genetic algorithms. IEEE Trans. Software Eng. 41, 358–383.

A. Pasala, Y. Lew Yaw Fung, F. Akladios, G. Appala Raju, and R. P. Gorthi. 2008. Selection of regression
test suite to validate software applications upon deployment of upgrades. In Proceedings of the 19th
Australian Conference on Software Engineering (ASWEC’08). IEEE, 130–138.

S. Poulding, P. Emberson, I. Bate, and J. Clark. 2007. An efficient experimental methodology for configuring
search-based design algorithms. In Proceedings of the 10th IEEE High Assurance Systems Engineering
Symposium (HASE’07). IEEE, 53–62.

X. Qu, M. B. Cohen, and G. Rothermel. 2008. Configuration-aware regression testing: an empirical study of
sampling and prioritization. In Proceedings of the 2008 International Symposium on Software Testing
and Analysis. ACM, 75–86.

N. Rachatasumrit and M. Kim. 2012. An empirical investigation into the impact of refactoring on regression
testing. In Proceedings of the 28th IEEE International Conference on Software Maintenance (ICSM’12).
IEEE, 357–366.

D. Roest, A. Mesbah, and A. Van Deursen. 2010. Regression testing ajax applications: Coping with dynamism.
In Proceedings of the 3rd International Conference on Software Testing, Verification and Validation
(ICST’10). IEEE, 127–136.

E. Rogstad, L. Briand, and R. Torkar. 2013. Test case selection for black-box regression testing of database
applications. Informat. Software Technol. 55, 1781–1795.

D. S. Rosenblum and E. J. Weyuker. 1997. Using coverage information to predict the cost-effectiveness of
regression testing strategies. IEEE Trans. Software Engineering 23, 146–156.

G. Rothermel. 1996. Efficient, Effective Regression Testing Using Safe Test Selection Techniques. Clemson
University.

G. Rothermel and M. J. Harrold. 1994. A framework for evaluating regression test selection techniques. In
Proceedings of the 16th International Conference on Software Engineering (ICSE-16). IEEE, 201–210.

G. Rothermel and M. J. Harrold. 1996. Analyzing regression test selection techniques. IEEE Trans. Software
Eng. 22, 529–551.

G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. 1998. An empirical study of the effects of minimization on
the fault detection capabilities of test suites. In Proceedings of the 1998 Proceedings of the International
Conference on Software Maintenance. IEEE, 34–43.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. 2001. Prioritizing test cases for regression testing.
IEEE Trans. Software Engineering, 27, 929–948.

P. Sapna and H. Mohanty. 2010. Clustering test cases to achieve effective test selection. Proceedings of the
1st Amrita ACM-W Celebration on Women in Computing in India, 2010. ACM, 15.

W. Schütz. 1994. Fundamental issues in testing distributed real-time systems. Real-Time Syst. 7, 129–157.
W. R. Shadish, T. D. Cook, and D. T. Campbell. 2002. Experimental and Quasi-Experimental Designs for

Generalized Causal Inference. Wadsworth Cengage Learning.

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

29:32 R. Kazmi et al.

A. Shi, T. Yung, A. Gyori, and D. Marinov. 2015. Comparing and combining test-suite reduction and regression
test selection. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 237–247.

Y. Singh, A. Kaur, and B. Suri. 2010. A hybrid approach for regression testing in interprocedural program.
JIPS, 6, 21–32.

C. Tao, B. Li, X. Sun, and C. Zhang. 2010a. An approach to regression test selection based on hierarchical slic-
ing technique. In Proceedings of the IEEE 34th Annual Computer Software and Applications Conference
Workshops (COMPSACW’10). IEEE, 347–352.

C. Tao, B. Li, X. Sun, and Y. Zhou. 2010b. A hierarchical model for regression test selection and cost analysis
of Java programs. In Proceedings of the 17th Asia Pacific Software Engineering Conference (APSEC’10).
IEEE, 290–299.

W. T. Tsai, X. Zhou, R. A. Paul, Y. Chen, and X. Bai. 2009. A coverage relationship model for test case selection
and ranking for multi-version software. In High Assurance Services Computing. Springer.

R. Victor. 2003. Iterative and incremental development: A brief history. IEEE Computer Society, 47–56.
L. White. 1989. Insights IntoRegressionTesting. In Proceedings of the Conference on Software Maintenance.

IEEE Computer Society Press, 60–69.
L. White and B. Robinson. 2004. Industrial real-time regression testing and analysis using firewalls. Pro-

ceedings on the 20th IEEE International Conference on Software Maintenance, 2004. IEEE, 18–27.
C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. 2012. Experimentation in Software

Engineering, Springer Science & Business Media.
W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini. 1997. Test set size minimization and fault detection

effectiveness: A case study in a space application. In Proceedings on the 21st Annual International
Computer Software and Applications Conference (COMPSAC’97). IEEE, 522–528.

G. Xu and A. Rountev. 2007. Regression test selection for AspectJ software. In Proceedings of the 29th
International Conference on Software Engineering (ICSE’07). IEEE, 65–74.

L. Xu, B. Xu, Z. Chen, J. Jiang, and H. Chen. 2003. Regression testing for web applications based on
slicing. In Proceedings on the 27th Annual International Computer Software and Applications Conference
(COMPSAC’03). IEEE, 652–656.

Z. Xu, K. Gao, T. M. Khoshgoftaar, and N. Seliya. 2014. System regression test planning with a fuzzy expert
system. Informat. Sci. 259, 532–543.

Z. Xu, Y. Liu, and K. Gao. 2013. A novel fuzzy classification to enhance software regression testing. In
Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM’13). IEEE,
53–58.

R. K. Yin. 2003. Case study research design and methods third edition. Applied Social Research Methods
Series, 5.

S. Yoo and M. Harman. 2007. Pareto efficient multi-objective test case selection. In Proceedings of the 2007
International Symposium on Software Testing and Analysis. ACM, 140–150.

S. Yoo and M. Harman. 2012. Regression testing minimization, selection and prioritization: A survey. Soft-
ware Test. Verificat. Reliabil. 22, 67–120.

L. Yu, L. Xu, and W. T. Tsai. 2010. Time-constrained test selection for regression testing. Advanced Data
Mining and Applications. Springer.

T. Yu, X. Qu, M. Acharya, and G. Rothermel. 2013. Oracle-based regression test selection. In Proceedings
of the IEEE 6th International Conference on Software Testing, Verification and Validation (ICST’13).
IEEE, 292–301.

L. Zhang, S. S. Hou, C. Guo, T. Xie, and H. Mei. 2009. Time-aware test-case prioritization using integer linear
programming. In Proceedings of the 18th International Symposium on Software Testing and Analysis.
ACM, 213–224.

J. Zheng, L. Williams, B. Robinson, and K. Smiley. 2007. Regression test selection for black-box dynamic link
library components. In Proceedings of the 2nd International Workshop on Incorporating COTS Software
Into Software Systems: Tools and Techniques. IEEE Computer Society, 9.

Received February 2016; revised November 2016; accepted February 2017

ACM Computing Surveys, Vol. 50, No. 2, Article 29, Publication date: May 2017.

