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Figure 1: Sketch vectorization starts from detecting intersections between sketch and grid lines. The algorithm use them as the starting points
to trace lines with the moment of inertia to resolve best line continuation at any line junction. With each next grid line (three examples in
the figure), the method detects more lines that finally map the whole sketch to lists of lines where each line is a list of nodes. This approach
produces finally vectorized lines in a single pass during sketch tracing without additional subprocesses. The algorithm is described in details
in Section 2.

Abstract
Image vectorisation is a fundamental method in graphic design and is one of the tools allowing to transfer artist work into
computer graphics. The existing methods are based mainly on segmentation, or they analyse every image pixel; thus, they are
relatively slow. We introduce a novel method for fast line drawing image vectorisation, based on a multi-scale second derivative
detector accelerated by the summed-area table and an auxiliary grid. Image is scanned initially along the grid lines, and nodes
are added to improve accuracy. Applying inertia in the line tracing allows for better junction mapping in a single pass. Our
method is dedicated to grey-scale sketches and line drawings. It works efficiently regardless of the thickness of the line or its
shading. Experiments show it is more than two orders of magnitude faster than the existing methods, not sacrificing accuracy.

CCS Concepts
• Computing methodologies → Non-photorealistic rendering; Parametric curve and surface models;

1. Introduction

Image vectorizations methods are one of the oldest computer vision
algorithms, embedded in most vector image processing software.
Their goal is to transform a raster (bitmap) image into a set of vec-
tors to allow easier editing, scalability and, usually, compactness.

Automatic vectorization tools save much time of manual redraw-
ing during a workflow. Vectorisation can have different aims. In
some cases, we need to extract gradient-filled shapes from an im-
age; in other cases, only shape outlines, or a sketch line. Despite
their wide adoption, industrial vectorization is performed manu-
ally, and it takes less time than manual corrections after automatic
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processing. Therefore, there is ongoing work on making vectoriza-
tion algorithms more human-like intelligent. Even for clean, noise-
free line drawings, it is still challenging to disambiguate line junc-
tions. The significant advantage of vectorization compared to sim-
ple scanning is the resultant image quality that allows to resize or
manipulate image without the quality loss, unlike in the case of
raster images. The second advantage is memory usage as the vec-
torized image needs significantly fewer data than a similar bitmap.
For real image-like photography, or painting vectorization it is not
an optimal solution because of the image complexity but in most
cases of drawing or sketch it is a perfect tool to import line drawing
images or sketches for further processing.

Image vectorization can be divided into two main classes by the
purpose. The first one is a family of industrial applications that re-
quire accuracy of the final vectorized image, and the second one
is for art purposes that is more focused on visual effect than the
accuracy of the image mapping.

In the first case, most of the work is performed manually, espe-
cially for technical drawings that need a precise description of the
subject to which they refer. This type of drawing requires some ex-
pert knowledge; thus, simple vectorization of technical drafts often
does not bring the desired effect.

In the second case, the requirements are different. Art drafts of-
ten describe more impressions than reality. Most art drawings de-
pict non-photographic content that is easily interpreted by human
perception. In most cases, vectorization is used to import drafts or
fragments of real images from photos in a digital graphics work-
flow. Vectorized content is easy to manipulate, edit and combine
with other content into the final product. Vector graphics compared
to bitmaps makes an impression of pure, clean design and is scal-
able which is often used in an advertisement, animation, or web
development starting from brand representation, through graphs to
the entire layout.

Most of vector graphic software has own implementation of
vectorization tool, e.g. Adobe Illustrator Image Trace [Tea12] or
Inkscape Potrace [Sel03]. These algorithms are based on a sin-
gle channel image segmentation. In the literature, there were in-
troduced more advanced algorithms based on segmentation and
boundary fitting [HDS*18]; some algorithms start to vectorize gra-
dient shape fill [SLWS07; OBW*08; LHFY12]. To provide better
results or realistic output images, some works proposed image de-
composition into overlapped transparent layers [FLB17; TDSG15;
TLG17; AASP17]. In [BS18] images are vectorized by frame field
processing. The algorithm from [NHS*13] analyzes the drawing’s
topology in order to resolve junction ambiguities. In [FLB16], the
authors optimize a balance between fidelity and simplicity, yet, the
algorithm is much slower than the algorithm presented in this paper.
In [XLY09] an algorithm for image vectorization is proposed aimed
at high quality photograph representation. In [KL11] smooth vector
representation is created from very low-resolution bitmap images
(icons, sprites etc.). Cartoon images are vectorized by image trian-
gulation in [ZY01] and in [FSH11] by high order thin-plate splines.
Both methods are aimed at accuracy not speed.

In the paper, we focus on the efficient handmade sketch and line
drawing vectorization. The proposed method is more than two or-
ders of magnitude faster than the existing methods with similar ac-

curacy. The speed comes from applying the auxiliary grid and the
summed-area table [Cro84]. At the same time, the proposed vector-
ization acts similarly to human perception with the use of inertia.
The main contribution of the paper is as follows:

• We present a novel method for sketch vectorization that is based
on the auxiliary grid. Image scanning to determine intersection
points between the sketch and the auxiliary grid lines allows
to speed up the sketch vectorization process. As a result, the
method omits most of the image and focuses only on the sketch
line.
• Multiscale second derivative operators in combination with

the summed-area table, bring a significant acceleration of the
method, and it is irrelevant to the width of the sketch line.
• Adding inertia to the sketch line tracing allows for better junction

handling in a single pass during line trace.

The paper is organized as follows. Section 2.1 describes the pro-
posed method of the multiscale line detection based on the sec-
ond derivative. Section 2.2 introduces the auxiliary grid used to
detect intersection points with the sketch lines. Section 2.3 shows a
method of sketch line tracing to determine other intersection points
starting from the first detected intersection with the auxiliary grid.
Node combining and insertion of additional nodes on a detected
bend are described in Section 2.4. Section 3 provides simulation
results on handmade sketches and comparison to similar existing
algorithms.

2. Proposed Method

The presented method is based on line detection by the second
derivative operator instead of image segmentation proposed in the
literature. On input, the method takes grayscale sketch image and
computes the summed-area table [Cro84] to speed up line detec-
tion. The summed-area table computes fast a sum of pixels in a
given area. Our algorithm in a single pass traces lines and cre-
ates nodes with some inertia that mimics the sketcher’s movements.
This approach allows to speed up the vectorization process and re-
duce the problem of wrong node connection at junctions. Misin-
terpreted junctions make a prominent wrong impression concern-
ing the vectorized sketch. To deliver a better node distribution, our
method places most of the nodes at the intersections between sketch
and additional added lines of the auxiliary grid. The auxiliary grid
covers the entire sketch, and nodes placed on its lines create a bet-
ter visual effect, especially in the case of close parallel curves. We
present the algorithm pipeline in Figure 2, and an example of the
algorithm run for three consecutive grid lines in Figure 1.

2.1. Multiscale Line Detection

The standard filter masks used in general applications have a disad-
vantage in the form of its fixed size. Therefore, we use the second
derivative filter as a line detector (Figure 4). Small operators do not
overlap the line and detect wide lines as two separate adjacent lines.
In order to avoid this problem, we apply scalable operators that
are adjusted to the detected line. After finding a line, the method
gradually increases coefficient λ, which defines the filter size and
compares the response to obtain the best-fitted filters that overlap
the line (Figure 3). For a bitmap consisting of thin lines, λ has low
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Figure 2: The general pipeline of the algorithm presented in the
paper.

value, and thick or jagged lines need higher values of λ. This is il-
lustrated in Figure 14, where some adjacent lines are vectorised as
as a single line.

The range of filter size coefficient λ that the method uses is ad-
justable depending of the type of the sketch (i.e. image resolution,
line width or shading). Setting a higher λ upper limit allows detect-
ing filled sketch primitives, e.g. eyes or a nose. Figure 5 presents an
example of this feature. The mask response is weaker because half
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Figure 3: The multi-scale second derivative filter used by the
method. During intersection detection, the algorithm starts convo-
lution with the smallest mask, and after the positive response, the
filter size is gradually increased to overlap the sketch line, i.e. to
obtain the strongest mask response (3 px < 6 px > 10 px).
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Figure 4: Scalable second derivative filters used in the proposed
method. The filter size coefficient λ is adjusted to the line thickness.
The properly adjusted filter that overlaps the line width yields the
highest convolution response.

of the mask correlates with the boundary of the primitive. The high
contrast of the sketch causes that the mask response is sufficient to
detect the boundary line. As the operator response, in each point of
the image, we obtain two-dimensional vector~v = [x,y] where com-
ponent x and y correspond to filter dx and dy (Fig. 4). The filter
response is normalized in the range from -1 for dark areas and to 1
for light areas regardless of the mask size. In the case of the point
over a solid and unchanging background, the result of the opera-
tor will be equal to 0. In each image that represents the operator
responses (feature map), we show only mask responses where the
component sum of~v is less than zero.

2.2. Auxiliary grid

In order to speed up line detection and to obtain better results of
node positioning, we introduced to our method the auxiliary grid.
The auxiliary grid is used as a template to determine the intersec-
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Figure 5: An advantage of the second derivative mask is that it
allows detecting the boundary line of the filled primitive. Yellow
color represents component x that corresponds to dx mask and pink
color y component that corresponds to dy.

tion points between the sketch and the grid lines. Our method ini-
tially provides line detection for points under grid lines and by-
passes the rest of the image. Figure 6 presents an example of a
15-pixel grid. That means that the method checks only one pixel
per 15 pixels of the image to localize the sketch lines. The dis-
tance between grid lines is adjustable, and in the case of making
it sparser, the method speeds up the vectorization process, but it
might miss some short lines and details of the image (Fig. 12). The
method checks each horizontal and vertical grid line across the im-
age and detects local minima (Fig.6a, red line). When the method
detects an intersection and checks that the current point is not al-
ready traced then it adjusts the mask size and starts trace line in
both directions (green line). During line trace, the method gradu-
ally adds additional nodes on each intersection with the grid lines
(green points).

During node insertion, the method is limited by a single condi-
tion. Nodes are created only if the normal vector ~n = |~v| for the
sketch line at the intersection point is in the proper direction ~dg to
the grid line that fulfils the condition |~n · ~dg| < cos30◦. This con-
dition prevents from inserting multiple nodes in the case where the
sketch line coincides with the grid line instead of intersecting it.
Nodes inserted at grid lines provide a better node distribution be-
tween the lines. Such vectorization looks cleaner on adjacent lines
in contrast to inserting nodes over the lines at a certain fixed dis-
tance.

2.3. Edge tracking

After detecting a sketch line and setting the starting node at position
~p, the method follows the line to insert new nodes in two directions.
The starting direction ~d is horizontal or vertical and depends on ~n
of the initial node. For a horizontal line, vector ~d becomes [−1,0]
for the first tracing direction and [1,0] for the second. For a vertical
line, respectively [0,−1], [0,1].

a) intersections b) trace steps c) results

Figure 6: Line localization and tracing with the auxiliary grid us-
ing. a) Line tracing start point localization (the first step) along the
grid line (red arrow ~dg direction and red dot as started nodes) and
(second step) line tracing (green arrow directions and green dots as
next nodes of the traced line). b) The real route traversed by the al-
gorithm during the line trace (red pixels) that follows pixel by pixel
along local minima. c) Results: blue rectangle – starting node, blue
circle – ending node, red lines – normal vector ~n for node, green
lines – node connections.

In each step, the method moves the position of ~p by a single pixel
in the direction of vector ~dl5 that is equal to the average value of
the last five values of ~d. At the beginning, vector ~dl5 equals vector
~d. We checked empirically that a lower value than 5 causes that the
inertia of tracing is too small. Higher value could cause tracing to
leave the current line.

After moving the position of ~p, the method corrects its position
by determining the local minimum in the vertical direction to the
last move. The method checks neighbour point at the two-pixel dis-
tance in each direction and changes ~p if the operator response in
the checked point is stronger than of the current point. Figure 7
shows the trace process when, after each step, the method corrects
the current position. To resolve the problem of overlapping already
detected lines, we use an additional map from the previous steps.

Following position correction, the method determines the direc-
tion of the last step ~d = ~pcur − ~plast and updates ~dl5 = ( ~dl5 ∗ 4+
~d)/5. Vector ~dl5 value reacts on the line direction change weaker
but is corrected after each step. This allows to trace lines more
smoothly and on the sketch line junctions, the trace follows through
the junction to look for a straight continuation of the line. Figures
6b and 7 show the mapped path of tracings with red pixels. As
we can see, the tracing does not change its direction rapidly during
abrupt line width change. In other words, the method tries to follow
the pencil path. Method traces the line until:

• it encounters another already traced line found in the additional
trace map,
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track direction

track step

vertical local maximum

horizontal local maximum

Figure 7: Line tracing correction. After each step, the algorithm
corrects the position; thus it follows exactly the middle of the sketch
line.

• the sum of~v components for the current traced point falls under
the threshold (that means the line is too weak).

When the trace interrupts the current line, the method inserts the
ending node and returns to search for the next intersection point
with the grid line to start another tracing. For very subtle non-
contrasting sketch lines, the threshold value should be smaller.
However, this will make the algorithm more sensitive to small noise
elements.

2.4. Node combining

We could describe the result of the line vectorization process as a
graph of nodes connected by edges. However, in each traced path
that represents a single line, each node is always connected only
with two other nodes. Thus, to store the results more efficiently
compared to a traditional graph, we combine a set of single line
nodes into a single list of nodes. Nodes are ordered in a list accord-
ing to their detection during tracing; thus, we do not require the
information about graph edges. As a result, the method operates on
lists of lines where each line is a list of nodes. This approach pro-
duces finally vectorized lines in a single pass during sketch tracing
without additional subprocesses.

2.5. Additional nodes – line bend detection

During line tracing the nodes inserted on the detected intersection
between the sketch and grid lines could not correctly reproduce the
details of the image. In order to resolve this problem, we have to
add some additional nodes. To locate these points for additional
nodes, the method examines bends of the traced line. Bend detec-
tion relies on comparing two vectors ~d1 and ~d2 that are determined
in the same way as ~dl5. Both vectors are equal to the average value
of ~d from the last steps. The number of steps is adjustable for both
vectors. After each step, we calculate the vectors according to for-
mula

~di = (~di ∗ steps+ ~d)/(step+1) , (1)

where i is the vector number and step is the number of the last step
counted. In practice, step determines the strength with the current
~d affects ~di.

Finally, each vector is normalized and their dot product is com-
pared

|~d1 · ~d2|< cos15◦ . (2)

If the dot product is less then threshold equal to cos15◦ then the
method adds an additional node and resets the vectors ~d1 = ~d2 = ~d.
Figure 8 presents a graphic explanation of the bend detection. The
value of ~d1 changes faster than ~d2 during tracing. When the traced
line starts to change direction, then the dot product between ~d1
and ~d2 start decreasing and at last, exceeds the threshold. More-
over, Figure 8, in the third column, presents an example of in-
valid bend detection. In this case, if step equals 1 for ~d1, then ~d1
changes rapidly between steps what is caused by noise. In the case
of step = 2, the bend points are detected more correctly.

disable d1 - 2 steps
d2 - 5 steps
d1•d2 < 0.95

d1 - 1 step
d2 - 5 steps
d1•d2 < 0.95

segmentation
direction 

d2d1

Figure 8: Line bend detection by comparing trace direction vectors
~d1 and ~d2. Each vector is equal to the average value of ~d vectors
from several last trace steps. The first column shows the results
without bend detection, the second one with ~d1 counted from the
last two steps and ~d2 from the last five steps. The last column is an
example for single step and five last steps.
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3. Experiments

Experiments were performed on an image set of handmade
sketches without any preprocessing. The method was implemented
as a single thread application in C++ using Qt and STL libraries.
Experiments were performed on a Linux machine with AMD APU
processor with 16GB memory. The proposed method was run with
parameters: grid size = 15px, mask size range = [2px,5px], treshold
= 0.13, steps d1 = 2 and d2 = 5.

Table 1 presents the speed results of the method compared to
other algorithms. The aim was to compare the proposed method
with similar methods from the literature. For this purpose, due to
the lack of access to the author’s implementation of the referenced
algorithms, we presented a summary of the results of our method
with the results presented in the compared articles. In the compared
papers, a common large dataset was not defined, and the focus
was on the assessment of the visual effects obtained by the meth-
ods. The tests were carried out on a small collection of hand-made
sketches generally available on the page http://www-labs.
iro.umontreal.ca/~bmpix/ [BS18]. As we can see, our
method thanks to its single pass vectorization and the auxiliary
grid line detection significantly accelerates the vectorization pro-
cess. According to Table 2, our method performs a large part of the
calculation only for the traced image lines determined as the local
minimum. The compared methods operate on the entire set of dark
pixels.

When we compare the number of lines in Table 2 with the exper-
imental results in Figure 9 and Fig. 10 we can have an impression
that there are too many of them. It is caused by the details of im-
ages where the method creates many short lines to map elements
properly, which can be observed in Figure 6. Compared to other
methods in Fig. 9, our method does not create improper connec-
tions between lines like it is in the case of Favreau et al. [FLB16]
method. Our method does not go beyond the sketch lines during the
trace. Moreover, we can resolve the problem of filled primitives.
Thanks to the second derivative operator, the presented method de-
tects the outline of the primitives, e.g. in the case of the cat nose in
Figure 10.

Some weaknesses of our method compared to Bessmeltsev et al.
[BS18] can be seen at the jagged lines like animal hair in the im-
ages. This weakness is caused by the grid line that does not intersect
with these small elements; however, our method reproduces these
details but with the lack of some connections between them. Figure
12 presents more precisely the problem of details missing with the
grid size increasing. As we can see, the best results are obtained for
10- and 20-pixel grids. In the case of a 40 pixel grid, we obtain a
noticeable loss of parts of the sketch that were not intersected by
the grid.

In order to specify the precision of the bitmap-vector mapping,
we used the method of determining the coverage ratio of the origi-
nal sketch by a vectorized representation. This form is not entirely
accurate, because, in the case of sketches, we have lines of differ-
ent thickness, which will not always be fully covered by lines of
a vector image with a fixed width. To more accurately determine
the precision of the method, we compare the vector image with the
image representing the second derivative of the input image. An
example is shown in Figure 11. The presented method uses second

derivative filters to locate the lines, so the presented comparison
best reflects the accuracy of the method, as well as allows for a bet-
ter determination of accuracy in the case of filled areas, where the
method is to determine the outline of this area.

The average precision of vectorization for a set of sketches con-
sisting of 90 images was 81 %. More detailed results are presented
in Table 2 for sample sketches from Figure 10. The method loses
accuracy for irregularly shaded, or hatched fill pattern images, e.g.
penguin or trees in Fig. 13. In these areas, the second derivative op-
erator returns positive results, however they are not lines but shad-
owing fragments, which then lead to the determination of additional
lines during vectorization.

For an additional experiment, for vector images from the Corel-
Draw clipart collection, the method obtained a higher average pre-
cision of 89 %. This is due to the lack of irregularly shaded fields,
which add false lines. Sample results are shown in Figure 14. The
method omits some of the details because it is oriented towards
black lines. Thus, some of the edges, particularly coloured ele-
ments, have been omitted. In addition, in the case of thin elements,
the method can present them with one line instead of two in paral-
lel, this is due to the size of the mask, which can cover the whole
of a given fragment.

4. Conclusion

The proposed method considerable speeds up the vectorization pro-
cess of sketch and line drawing images compared to the existing
solutions. Application of the auxiliary grid to sketch vectorization
accelerates line detection which is confirmed by the experimental
results. The adjustable value of the grid size can be used in two
ways. Increasing the size of the grid reduces the number of details,
at the same time accelerating the method. On the other hand, it also
can be used as a filter to detect significant lines of the sketch. Very
good handling of line intersections is obtained by the application of
inertia, similar to an artist or a designer strokes. In further studies,
we will aim at overcoming the problem of losing the details caused
by increasing the grid size by designing better junction detection.
In most sketch and line drawing examples, lines are interconnected
or adjacent and such places should be even more precisely detected
than in the case of the presented approach. By applying even more
intelligent line intersection handling, the method could be sped up
significantly by using a much larger grid.
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Figure 9: Experimental results from Table 1. The first column presents the method by Favreau et al. [FLB16], the second Bessmeltsev et al.
[BS18] and the third one – our method.

Figure 10: Several additional examples of the experimental results from Table 1.
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Figure 11: Computing the accuracy of the method. The comparison is designed to examine the percentage of coverage of the second derivative
determined from the image by the vector form. In the first column, we have the original image, then the vector representation and the coverage.
The pixels marked in green indicate the covered surface and the red ones are not covered.

grid = 10 grid = 20 grid = 40

Figure 12: Vectorization results depending on the grid size change. Experiments were conducted for 10-, 20- and 40-pixel grids. Increasing
the grid size reduces the number of nodes (green dots) per line but also increases detail loss.
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Figure 13: Several additional examples of the experimental results.
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Figure 14: Several additional examples of the experimental results on the CorelDraw clipart collection.
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