Rafał Białek

Rafał Białek
Technische Universität München | TUM · Professorship for Electrobiotechnology

Doctor of Philosophy

About

18
Publications
2,009
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
103
Citations
Citations since 2017
15 Research Items
102 Citations
201720182019202020212022202305101520
201720182019202020212022202305101520
201720182019202020212022202305101520
201720182019202020212022202305101520
Additional affiliations
March 2021 - present
Adam Mickiewicz University
Position
  • PostDoc Position
October 2016 - February 2021
Adam Mickiewicz University
Position
  • PhD Student
Education
September 2015 - July 2017
Adam Mickiewicz University
Field of study
  • Biophysics
October 2012 - June 2015
Adam Mickiewicz University
Field of study
  • Molecular biophysics

Publications

Publications (18)
Article
Full-text available
Observation of Fano resonances in various physical phenomena is usually ascribed to the coupling of discrete states with background continuum, as it has already been reported for various physical phenomena. Here, we report on Fano lineshapes of nonthermal GHz phonons generated and observed with pumped Brillouin light scattering in gold-silicon thin...
Article
Full-text available
Light-induced electron-transfer reactions were investigated in wild-type and three mutant Rhodobacter sphaeroides reaction centers with the secondary electron acceptor (ubiquinone QA) either removed or permanently reduced. Under such conditions, charge separation between the primary electron donor (bacteriochlorophyll dimer, P) and the electron acc...
Article
Full-text available
We investigated the influence of a range of factors-temperature, redox midpoint potential of an electron carrier, and protein dynamics-on nanosecond electron transfer within a protein. The model reaction was back electron transfer from a bacteriopheophytin anion, HA-, to an oxidized primary electron donor, P+, in a wild type Rhodobacter sphaeroides...
Article
Full-text available
Colloidal quantum dots (QDs) are nanoparticles that are able to photoreduce redox proteins by electron transfer (ET). QDs are also able to transfer energy by resonance energy transfer (RET). Here, we address the question of the competition between these two routes of QDs’ excitation quenching, using cadmium telluride QDs and cytochrome c (CytC) or...
Article
Full-text available
Biohybrid photoelectrochemical systems in photovoltaic or biosensor applications have gained considerable attention in recent years. While the photoactive proteins engaged in such systems usually maintain an internal charge separation quantum yield of nearly 100%, the subsequent steps of electron and hole transfer beyond the protein often limit the...
Article
Full-text available
Excitation decay in closed Photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 and dissolved in a buffer solution occurs predominantly with a ~ 24-ps lifetime, as measured both by time-resolved fluorescence and transient absorption. The same PSI particles deposited in mesoporous matrix made of TiO2 nanoparticles exhibit sign...
Article
Full-text available
We demonstrate photovoltaic activity of electrodes composed of fluorine-doped tin oxide (FTO) conducting glass and a multilayer of trimeric photosystem I (PSI) from cyanobacterium Synechocystis sp. PCC 6803 yielding, at open circuit potential (OCP) of + 100 mV (vs. SHE), internal quantum efficiency of (0.37 ± 0.11)% and photocurrent density of up t...
Article
Photosystem I core-light-harvesting antenna supercomplexes (PSI-LHCI) were isolated from the extremophilic red alga Cyanidioschyzon merolae and studied by three fluorescence techniques in order to characterize chlorophylls (Chls) energetically uncoupled from the PSI reaction center (RC). Such Chls are observed in virtually all optical experiments o...
Article
Full-text available
The field of biophotoelectrochemistry and its application in biophotovoltaics and biosensors has gained more and more attention in recent years. Knowledge of the redox potentials of the catalytically active protein cofactors in biophotovoltaic devices is crucial for accurate modelling and in discerning the mechanisms of their operation. Here, for t...
Article
Full-text available
Photosynthetic PSI-LHCI complexes from an extremophilic red alga C. merolae grown under varying light regimes are characterized by decreasing size of LHCI antenna with increasing illumination intensity [1]. In this study we applied time-resolved fluorescence spectroscopy to characterize the kinetics of energy transfer processes in three types of PS...
Article
Full-text available
As one of a number of new technologies for the harnessing of solar energy, there is interest in the development of photoelectrochemical cells based on reaction centres (RCs) from photosynthetic organisms such as the bacterium Rhodobacter (Rba.) sphaeroides. The cell architecture explored in this report is similar to that of a dye-sensitized solar c...
Article
Full-text available
Femtosecond transient absorption was used to study excitation decay in monomeric and trimeric cyanobacterial Photosystem I (PSI) being prepared in three states: (1) in aqueous solution, (2) deposited and dried on glass surface (either conducting or non-conducting), and (3) deposited on glass (conducting) surface but being in contact with aqueous so...
Article
Full-text available
It is well established that photoexcitation of Rhodobacter sphaeroides reaction centers (RC) with reduced quinone acceptors results in the formation of a triplet state localized on the primary electron donor P with a significant yield. The energy of this long-lived and therefore potentially damaging excited state is then efficiently quenched by ene...
Article
Full-text available
In contrast with findings on the wild-type Rhodobacter sphaeroides reaction center, biexponential P⁺HA− → PHA charge recombination is shown to be weakly dependent on temperature between 78 and 298 K in three variants with single amino acids exchanged in the vicinity of primary electron acceptors. These mutated reaction centers have diverse overall...

Network

Cited By