Rafael Palacios

Rafael Palacios
Universidad Nacional Autónoma de México | UNAM · Centre for Genomic Sciences

About

164
Publications
4,578
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,046
Citations
Introduction
Skills and Expertise

Publications

Publications (164)
Article
Full-text available
When addressing a genomic question, having a reliable and adequate reference genome is of utmost importance. This drives the necessity to refine and customize reference genomes (RGs). Our laboratory has recently developed a strategy, the Perfect Match Genomic Landscape (PMGL), to detect variation between genomes [K. Palacios-Flores et al. . Genetic...
Article
Full-text available
Genomes are dynamic structures. Different mechanisms participate in the generation of genomic rearrangements. One of them is nonallelic homologous recombination (NAHR). This rearrangement is generated by recombination between pairs of repeated sequences with high identity. We analyzed rearrangements mediated by repeated sequences located in differe...
Article
Full-text available
The precise determination of de novo genetic variants has enormous implications across different fields of biology and medicine, particularly personalized medicine. Currently, de novo variations are identified by mapping sample reads from a parent-offspring trio to a reference genome, allowing for a certain degree of differences. While widely used,...
Chapter
It is now universally acknowledged that genomes are dynamic structures, subjected to different types of rearrangements. This is due to the fact that rearrangements can be considered as a by-product of the cell's replication and repair mechanisms. In addition to transposition events, which are discussed elsewhere, genomic rearrangements produce diff...
Chapter
Recombination between DNA segments bordered by two repeated sequences positioned in direct orientation relative to each other can lead to duplication and subsequent amplification of the intervening DNA. Such regions are sometimes called amplicons. Amplicons are dynamic structures that can lead to genomic rearrangements, either deletion, duplication...
Article
We have entered the era of individual genomic sequencing, and can already see exponential progress in the field. It is of utmost importance to exclude false-positive variants from reported datasets. However, because of the nature of the used algorithms, this task has not been optimized to the required level of precision. This study presents a uniqu...
Article
We used 15 short tandem repeat (STR) loci (D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, VWA, TPOX, D18S51, D5S818, and FGA) to genetically characterize 361 individuals from 11 indigenous populations (Amuzgo, Chinanteco, Chontal, Huave, Mazateco, Mixe, Mixteco, Triqui, Zapoteco del Istmo, Zapoteco del Valle, an...
Article
Strains of the same bacterial species often show considerable genomic variation. To examine the extent of such variation in Rhizobium etli, the complete genome sequence of R. etli CIAT652 and the partial genomic sequences of six additional R. etli strains having different geographical origins were determined. The sequences were compared with each o...
Data
Supplementary tables S1, S2, S3 Excel file that contains ICs descriptive statistics, the positions of all the genes that were completely contained within the IRB and the IRB positions they overlap, and IRB-NCBI reference genome gene ratios.
Article
Full-text available
Identical sequences with a minimal length of about 300 base pairs (bp) have been involved in the generation of various meiotic/mitotic genomic rearrangements through non-allelic homologous recombination (NAHR) events. Genomic disorders and structural variation, together with gene remodelling processes have been associated with many of these rearran...
Article
Full-text available
Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. We report here that the 3.93-Mbp chromosome (cNGR234) encodes most functions required for cellular growth. Few essential functions are encoded on the 2.43-Mbp megaplasmid (pNGR234b), and...
Article
Full-text available
Not Available Bibtex entry for this abstract Preferred format for this abstract (see Preferences) Find Similar Abstracts: Use: Authors Title Return: Query Results Return items starting with number Query Form Database: Astronomy Physics arXiv e-prints
Article
Full-text available
The comparative analysis of genomic characteristics and single-nucleotide polymorphism patterns from large fragments borne on different replicons of Sinorhizobium spp. genomes clearly demonstrate that DNA recombination among closely related bacteria is a major event in the diversification of this genome, especially in pSymA, resulting in mosaic str...
Article
Full-text available
Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome. In particular, we have identified intrachromosomal identi...
Article
Full-text available
Bacteria of the genus Rhizobium and related genera establish nitrogen-fixing symbioses with the roots of leguminous plants. The genetic elements that participate in the symbiotic process are usually compartmentalized in the genome, either as independent replicons (symbiotic plasmids) or as symbiotic regions or islands in the chromosome. The complet...
Article
Debate continues over the physical characteristics and even the existence of arginase isoenzymes. This paper gives additional support for such multiplicity and reports differences in physical characteristics among the various forms. After 2500–5000-fold purification of rat liver arginase, three molecular forms were separated on carboxymethyl-cellul...
Book
Genomes and Genomics of Nitrogen-fixing Organisms This is Volume 3 of a seven-volume series on all aspects of Nitrogen Fixation. The series aims to be the definitive authority in the field and to act as a benchmark for some years to come. Rather than attempting to cram the whole field into a single volume, the subject matter is divided among seven...
Article
Full-text available
Rhizobium etli, as well as some other rhizobia, presents nitrogenase reductase (nifH) gene reiterations. Several R. etli strains studied in this laboratory showed a unique organization and contained two complete nifHDK operons (copies a and b) and a truncated nifHD operon (copy c). Expression analysis of lacZ fusion demonstrated that copies a and b...
Article
Full-text available
The complete nucleotide sequence of the genome of Sinorhizobium meliloti, the symbiont of alfalfa, was reported in 2001 by an international consortium of laboratories. The genome comprises a chromosome of 3.65 megabases (Mb) and two megaplasmids, pSymA and pSymB, of 1.35 Mb and 1.68 Mb, respectively. Based on the nucleotide sequence of the whole ge...
Article
Full-text available
Bacterial genomes are usually partitioned in several replicons, which are dynamic structures prone to mutation and genomic rearrangements, thus contributing to genome evolution. Nevertheless, much remains to be learned about the origins and dynamics of the formation of bacterial alternative genomic states and their possible biological consequences....
Article
Full-text available
Based on the DNA sequence of the symbiotic plasmid of Rhizobium strain NGR234, we predicted potential rearrangements generated by homologous recombination. All predicted rearrangements were identified experimentally by using a PCR-based methodology. Thus, the predicted and the actual dynamic maps of the replicon coincide. By using an approach that...
Article
Full-text available
Bacteria belonging to the genus Rhizobium are able to develop two different lifestyles, in symbiotic association with plant roots or through saprophytic growth. The genome of Rhizobium strains is constituted by a chromosome and several large plasmids, one of them containing most of the genes involved in symbiosis (symbiotic plasmid or pSym). Our mo...