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Trust Management in Mobile Ad Hoc Networks
Using a Scalable Maturity-Based Model

Pedro B. Velloso, Rafael P. Laufer, Daniel de O. Cunha, Otto Carlos M. B. Duarte, and Guy Pujolle

Abstract—In this paper, we propose a human-based model
which builds a trust relationship between nodes in an ad hoc
network. The trust is based on previous individual experiences
and on the recommendations of others. We present the Rec-
ommendation Exchange Protocol (REP) which allows nodes to
exchange recommendations about their neighbors. Our proposal
does not require disseminating the trust information over the
entire network. Instead, nodes only need to keep and exchange
trust information about nodes within the radio range. Without
the need for a global trust knowledge, our proposal scales well
for large networks while still reducing the number of exchanged
messages and therefore the energy consumption. In addition,
we mitigate the effect of colluding attacks composed of liars
in the network. A key concept we introduce is the relationship
maturity, which allows nodes to improve the efficiency of the
proposed model for mobile scenarios. We show the correctness
of our model in a single-hop network through simulations. We
also extend the analysis to mobile multihop networks, showing
the benefits of the maturity relationship concept. We evaluate the
impact of malicious nodes that send false recommendations to
degrade the efficiency of the trust model. At last, we analyze the
performance of the REP protocol and show its scalability. We
show that our implementation of REP can significantly reduce
the number messages.

Index Terms—Trust, ad hoc networks, security.

I. INTRODUCTION

AD HOC networks lack the infrastructure seen in managed
wireless networks. As a result, nodes must play the roles

of router, server, and client, compelling them to cooperate for
the correct operation of the network [1]. Specific protocols
have been proposed for ad hoc networks considering not
only its peculiar characteristics, but also a perfect cooperation
among nodes. In general, it is assumed that all nodes behave
according to the application and protocol specifications. This
assumption, however, may be false, due to resource restrictions
(e.g., low battery power) or malicious behavior. Assuming a
perfect behavior can lead to unforeseen pitfalls, such as low
network efficiency, high resource consumption, and vulnera-
bility to attacks. Therefore, a mechanism that allows a node to
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infer the trustworthiness of other nodes becomes necessary [2],
[3].

Providing a trust metric to each node is not only useful when
nodes misbehave, but also when nodes exchange information.
According to the paradigm of autonomic networks [4], a
node should be capable of self-configuring, self-managing,
and self-learning by means of collecting local information and
exchanging information with its neighbors. Thus, it is impor-
tant to communicate only with trustworthy neighbors, since
communicating with misbehaving nodes can compromise the
autonomy of ad hoc networks.

We present a flexible trust model based on the concept of
human trust and apply this model to ad hoc networks. Our
model builds, for each node, a trust relationship to all neigh-
bors. The trust is based on previous individual experiences
of the node and on the recommendations of its neighbors.
The recommendations improve the trust evaluation process for
nodes that do not succeed in observing their neighbors due to
resource constraints or link outages. The ability of assessing
the trust level of its neighbors brings several advantages. First,
a node can detect and isolate malicious behaviors, avoiding
relaying packets to malicious neighbors. Secondly, cooperation
is stimulated by selecting the neighbors with higher trust
levels. Nodes learn based on the information exchanged with
trustworthy neighbors to build a knowledge plane [5], [6].

In our model nodes interact only with its neighbors. As
a result, nodes do not keep trust information about every
node in the network. Keeping neighborhood information im-
plies significant lower energy consumption, less processing
for trust level calculation, and less memory space. It also
fits well to ad hoc networks, which are usually composed
of portable devices with power, processing, and memory
restrictions [7]. Moreover, topology changes, due to mobility
or battery constraints, make it difficult to maintain information
for all nodes [8]. Another result is that recommendations
are only exchanged between neighbors, that is, recommen-
dations are not forwarded. This approach also minimizes the
probability of false recommendations since the number of
received recommendations is significantly smaller and there
is no intermediate node to increase the uncertainty of the
information. Besides, a node can always balance the received
recommendations with its own experiences to calculate the
trust level because nodes do not calculate the trust level of
nodes that are not neighbors. The decrease in the number of
messages sent not only alleviates the network traffic, but also
decreases the energy consumption.

We introduce the concept of relationship maturity, which
improves the efficiency of the trust evaluation process in the
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presence of mobility. The basic idea is to use the period of
time the recommender node knows the target node as a metric
to calculate the weight of its recommendation. Humans are
able to know each other better as time goes by and the same
idea applies here. Nodes increase the weight of the recom-
mendations coming from older neighbors and decrease the
weight of recommendations coming from new neighbors. We
also propose the Recommendation Exchange Protocol (REP),
which enables nodes to send and receive recommendations of
their neighbors.

We present the correctness of our model through simula-
tions. An analysis of the impact of the most relevant parame-
ters on the trust level evaluation process is performed [9]. We
also present the benefits of the proposed relationship maturity
in mobile ad hoc networks [10]. The effect of liars on the trust
evaluation process is analyzed [11]. The results show that the
relationship maturity parameter decreases the trust level error
up to 50%. Moreover, the proposed model is robust, tolerating
up to 35% of liars.

In this paper, we present a detailed description of our
model, which includes the architecture and its components.
The REP protocol scalability is evaluated, taking into account
our implementation design and our results show an overhead
reduction of almost 60% with roughly no impact at the
convergence rate. Finally, we present a brief discussion about
the results.

The paper is organized as follows. We present our model
in Section II. Details of the implementation of our model are
presented in Section III. Section IV shows our simulation re-
sults. We expose the related works in Section V. In Section VI
we present our conclusions and future work.

II. THE TRUST MODEL

The basic idea is to build a trust model that provides nodes
with a mechanism to evaluate the trust of its neighbors. A
node assigns a so-called trust level for each neighbor, which
represents how trustworthy each neighbor is.

In our work we define trust as the value that reflects the
behavior history that a node has about a specific neighbor. This
information is used as an expectation of its neighbor future
behavior. We extend this definition to include the recommen-
dations of others as well. Therefore, similar to the concept
of human trust, the computation of the trust level of a given
neighbor is based on previous experiences and also on the
opinion of other neighbors. By previous experiences, we mean
that a node keeps track of the good and bad actions taken by its
neighbors. A bad action is the one that does not correspond to
the expected behavior. As a result, previous experiences allow
a node to have a personal “opinion” about all its neighbors.
Neighbor nodes can further share their own opinions in order
to improve the trust level evaluation. The transmission of
a personal opinion about a specific node 𝑖 is defined as
a recommendation. Neighbor nodes take into account this
recommendation while calculating the trust level for node 𝑖.
The main goal of the recommendations is to compensate for
the lack of monitoring capabilities due to resource constraints.
Usually, a node is not able to observe the complete behavior
of a given neighbor over time. Recommendations from other
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Fig. 1. Example: node 𝐴 receives recommendations about node 𝐷.

neighbors are useful in this case for an accurate trust level
assignment. Moreover, the use of recommendations can speed
up the convergence of the trust evaluating process, as showed
in Section IV. For that purpose, we introduce the concept
of relationship maturity, which is based on the age of the
relationship between two nodes. This concept allows nodes
to give more importance to recommendations sent by long-
term neighbors rather than short-term neighbors. Nodes use
the Recommendation Exchange Protocol (REP) to send and
receive recommendations.

Figure 1 illustrates an example of a recommendation. Nodes
connected by a dotted arrow are neighbors and the number
indicates for how long they know each other, namely, the
relationship maturity parameter. A normal arrow represents
a recommendation and the letter indicates the target node.
First thing to notice is that recommendations concern one
common neighbor of different nodes. In that case, node 𝐷 is a
common neighbor of node 𝐴, 𝐵, and 𝐶. Node 𝐵 and 𝐶 send
their recommendation about node 𝐷 to node 𝐴. Node 𝐴 will
consider the recommendation from node 𝐶 more important
than the one received from node 𝐵 because node 𝐶 has
a longer relationship with node 𝐷. It is worth mentioning
that recommendations sent by node 𝐷 about node 𝐸 will be
ignored by node𝐴, 𝐵, and 𝐶 because node𝐸 is not a neighbor
of 𝐴.

Each node assigns a trust level for each neighbor. We
propose a continuous representation for the trust level, ranging
from 0 to 1 where 0 means the least reliable node and 1 means
the most reliable node.

Our model can be divided in two distinct plans as shown
in Fig. 2. The Learning plan is responsible for gathering and
converting information into knowledge. For instance, this plan
is responsible for monitoring the behavior of each neighbor.
The Trust plan defines how to assess the trust level of each
neighbor using the knowledge information provided by the
Learning plan and the information exchanged with neighbors.
Both plans can interact with all layers of the TCP/IP model.
Therefore, the learning process considers information from all
layers and the trust information generated by the Trust plan is
also available for all layers.

Since we take into account not only malicious nodes but
also selfish behaviors due to resource constraints, a trust value
is associated to a particular scope, like forwarding pack-
ets, sending recommendations, and other application-specific
scopes. Therefore, we consider that a node might behave
differently according to the scope and the resource constraints.
Consequently, the type of information to be collected by the
Learning plan depends on the defined scopes. For instance,
for the routing process, the Learning plan must observe if
neighbors respond to route requests, if they send false routes,
etc.
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The Learning plan relies on three basic components as
displayed in Fig. 3. The Behavior Monitor observes neighbors
in order to collect information about their behavior. It must be
able to notice other nodes’ actions and transmit them to the
Classifier. The Behavior Monitor also indicates the presence of
new neighbors to the Recommendation Manager. The Classi-
fier is the component dedicated to reason about the information
collected by the Monitor. The Classifier decides the quality of
an action according to a previously defined classification. The
Classifier then sends its verdict to the Experience Calculator.
Finally, the Experience Calculator estimates a partial trust
value for a given node based on the information received by
the Classifier.

In this paper, we focus on the Trust plan and we assume
an imperfect Learning plan, which only perceives part of the
behavior of other nodes. The definition of the Learning plan
functionalities is defined in Section III.

The Trust plan is composed of five main components as
depicted in Fig. 3. Each node must keep a main Trust Table
which contains the trust level for each neighbor. Additionally,
a node can also store the opinion of its neighbors about their
common neighbors on the Trust Table. Each entry on the
Trust Table is associated with a timeout. Therefore, an entry
is erased from the Trust Table whenever the node associated
to that entry is no longer a neighbor or when it expires. All
the recommendations related to that entry are erased as well.
In our model, nodes can also keep an additional table that is
not mandatory. The Auxiliary Trust Table (ATT) contains the
variance of each trust level and for how long they keep that

information, which indicates relationship maturity. The goal of
the Auxiliary Trust Table is to supply nodes with additional
information that improves the trust level evaluation. Neverthe-
less, this trust evaluation improvement requires more energy
consumption and nodes with power or storage constraints can
choose not to implement the entire trust system. Thus, in
order to cope with the heterogeneity that characterizes ad
hoc networks [12], we define three operation modes: simple,
intermediate, and advanced. Nodes with low power/storage
capacity operate in the simple mode, in which they use just
the main Trust Table and the Recommendation Exchange
Protocol (REP) protocol is optional. Nodes with a medium
capacity operate in the intermediate mode, which also keeps
the recommendations of other nodes. In the advanced mode,
nodes implement the whole trust system with all features. The
amount of saved resource and the accuracy of trust level for
each operation mode depends on the monitoring, which is
application-specific, and whether the REP protocol is used or
not. In the rest of this paper, we consider that nodes operate
in the advanced mode.

The Recommendation Manager is responsible for receiv-
ing, sending, and storing recommendations. The interactions
between the Network Interface and the Recommendation
Manager are performed by the Recommendation Exchange
Protocol (REP). The reception of a recommendation involves
two actions. First, the recommendation is stored in the Aux-
iliary Trust Table (ATT) and then it is forwarded to the
Recommendation Calculator component. The Recommenda-
tion Calculator computes all the recommendations for a given
neighbor and determines a trust value based on the opinions of
other nodes. This value is passed to the Trust Calculator com-
ponent. The Trust Calculator evaluates the trust level based
on the trust values received from the Experience Calculator
(individual experiences) and the Recommendation Calculator
(neighbor recommendations). The Trust Calculator also noti-
fies the Recommendation Manager the need of sending a trust
recommendation advertisement. Our proposition only requires
interactions with neighbors and only stores information about
neighbors. This is an important feature for mobile ad hoc
networks composed by portable devices that have energy,
processing, and memory restrictions [13]

A. Trust level evaluation

We define the trust level evaluation from node 𝑎 about
node 𝑏, 𝑇𝑎(𝑏), as a weighted sum of its own trust (monitor)
and the recommendations of neighbors, similar to Virendra et
al. [14]. The fundamental equation is

𝑇𝑎(𝑏) = (1− 𝛼)𝑄𝑎(𝑏) + 𝛼𝑅𝑎(𝑏), (1)

where the variable 𝑄𝑎(𝑏), that ranges from [0,1], represents
the trust node 𝑎 has on node 𝑏 based only on its own observa-
tions and 𝑅𝑎(𝑏), that ranges from [0,1], is the aggregate value
of the recommendations from all other neighbors, explained
in Section II-B. The variable 𝛼, that ranges from [0, 1], is a
parameter in our model that allows nodes to choose the most
relevant factor. In our model, the value of 𝑄𝑎(𝑏) is given by

𝑄𝑎(𝑏) = 𝛽𝐸𝑎(𝑏) + (1 − 𝛽)𝑇𝑎(𝑏), (2)
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where 𝐸𝑎 represents the trust value obtained by the judgment
of the actions of a neighbor performed by the Classifier
component, and the variable 𝑇𝑎(𝑏) gives the last trust level
value stored in the Trust Table. The variable 𝛽, that ranges
from [0, 1], allows different weights for the factors of the
equation, selecting which factor is the more relevant at a given
moment.

Equations 1 and 2 describe how the Trust Calculator com-
bines the information from the Experience Calculator (𝐸𝑎(𝑏)),
the Recommendation Calculator (𝑅𝑎(𝑏)), and the Trust Table
(𝑇𝑎(𝑏)) to derive a trust level.

B. Recommendation computation

The trust level calculation considers the recommendations
of neighbors obtained by the Recommendation Exchange
Protocol (REP) described in Section II-D. In our proposal,
𝑅𝑎(𝑏), in Equation 1, represents the aggregate trust that the
neighbors of node 𝑎 have on node 𝑏.

First, node 𝑎 defines a set 𝐾𝑎 which is a subset of the its
neighbors comprising all nodes whose trust level is above a
certain threshold, to increase the confidence of recommenda-
tions. The recommendation, 𝑅𝑎(𝑏), is defined as the weighted
average of the recommendations from all nodes 𝑖 ∈ 𝐾𝑎 about
node 𝑏. The weight for a recommendation from a neighbor 𝑖
is the trust level that node 𝑎 has on node 𝑖, as follows:

𝑅𝑎(𝑏) =

∑
𝑖∈𝐾𝑎

𝑇𝑎(𝑖)𝑀𝑖(𝑏)𝑋𝑖(𝑏)
∑

𝑗∈𝐾𝑎
𝑇𝑎(𝑗)𝑀𝑗(𝑏)

. (3)

The recommendations considers not only the trust level
of other nodes (𝑇𝑎), but also the accuracy (𝑋𝑖) and the
relationship maturity (𝑀𝑖). The accuracy of a trust level is
based on the standard deviation, similar to Theodorakopou-
los and Baras [15]. The value in the Trust Table of node 𝑎
regarding node 𝑏 is associated to a standard deviation 𝜎𝑎(𝑏),
which refers to the variations of the trust level that node 𝑎
has observed about node 𝑏. We use 𝑋 as a random variable
with a normal distribution to represent the uncertainty of the
recommendation. It can be expressed as

𝑋𝑖(𝑏) = 𝑁(𝑇𝑖(𝑏), 𝜎𝑖(𝑏)). (4)

The recommendation of node 𝑖 about node 𝑏 is weighted by
𝑀𝑖(𝑏), which defines the maturity of the relationship between
nodes 𝑖 and 𝑏, measured at node 𝑖. The relationship maturity
is a measure of the time that two nodes have known each
other. We use the relationship maturity to give more relevance
to the nodes that know the evaluated neighbor for a longer
time. Accordingly, we assume that the trust level of a older
neighbor has already converged to a common value within the
network and therefore its opinion should be more relevant than
the opinion of a new neighbor. It is important to notice that
maturity is only considered between the recommender, node
𝑖, and the node that is being evaluated, node 𝑏, as illustrated
in Fig. 1.

Malicious nodes can implement an attack exploiting the
concept of relationship maturity by attributing fake trust levels.
In order to minimize this effect, each node defines a maximum
relationship maturity value 𝑀𝑚𝑎𝑥, which represents an upper

bound for the relationship maturity. This value is based on
the average maturity relationship value of its most trusted
neighbors.

C. The First Trust Assignment

We divide the trust scheme in two distinct phases. In the
initial phase, nodes first meet and assign a trust level to
each other. The second phase is the trust level update, which
assumes that the nodes have already met each other.

When a node first meets a specific neighbor, it assigns an
initial level of trust to this neighbor. We classify the first trust
assignment strategy as prudent or optimistic. In the prudent
strategy the node does not trust strangers and considers that
every new neighbor as a possible threat to the network. As a
consequence, the node assigns a low value of trust for the new
neighbor. On the other hand, the optimistic strategy assumes
that every node is reliable until proven otherwise. In such case,
the node associates a high level of trust for new neighbors.
Right in the middle of these two strategies, one could think of
a moderate strategy, in which the node assigns an intermediate
level of trust for strangers.

The first trust assignment can also take into account the
recommendation of known neighbors weighted by their trust
levels. For a node 𝑎 to calculate the first trust level of a node
𝑏, we propose the same approach as Equation 1, but replacing
the term that reflects its own experience by the First Trust
Value, (𝐹𝑎), given by:

𝑇𝑎(𝑏) = (1− 𝛼)𝐹𝑎 + 𝛼𝑅𝑎(𝑏), (5)

where 𝐹𝑎 is the value used by node 𝑎 according to the adopted
strategy, 𝑅𝑎(𝑏) is the aggregate recommendation of neighbors
about node 𝑏, and 𝛼 is the weight factor that allows us to give
more relevance to the desired parameter.

D. The Recommendation Exchange Protocol

The recommendation from a node 𝑖 ∈ 𝐾𝑎 includes the trust
level 𝑇𝑖(𝑏) of the target node 𝑏, its accuracy 𝜎𝑖(𝑏) and for
how long they know each other, 𝑀𝑖(𝑏). For a node that does
not implement the Auxiliary Trust Table the recommendation
includes just the trust level 𝑇𝑖(𝑏).

We propose the Recommendation Exchange Protocol (REP)
as a part of the Recommender Manager in Fig. 3. This protocol
allows nodes to exchange recommendations among them and
only considers interactions with neighbors, which significantly
simplifies the protocol. Thus, all messages are transmitted by
one hop broadcasts avoiding flooding in multihop communi-
cations. When using IP to broadcast the message, the Time
to Live (TTL) field is set to 1. The protocol is composed of
three messages: Trust Request (TREQ) message, Trust Reply
(TREP) message, and Trust Advertisement (TA) message.

When nodes first meet, each one broadcasts a Trust Request
(TREQ) message to their neighbors with the IP address of the
new neighbor as the target node. All neighbors receive the
TREQ message and check if the target node is a neighbor
or not. Nodes that have the target node as a neighbor, will
answer with a Trust Reply (TREP) message, which contains
the recommendation about the target node, after waiting for a
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random period of time 𝑡𝑅𝐸𝑃 to avoid collisions and to wait
for receiving other TREQs. We also define a TREP threshold
under which it will not answer the TREQ. The threshold is
based on the trust level of the requesting node. This strategy
reduces the effect of non trustworthy nodes that repeatedly
send TREQ messages. Before sending a TREQ message, a
node waits for a specific period of time 𝑡𝑅𝐸𝑄 trying to gather
the maximum number of new neighbors. After 𝑡𝑅𝐸𝑄, the node
will request the recommendations of all the 𝑞 new neighbors
it has collected. Thus, instead of sending 𝑞 TREQ messages
it sends just one with 𝑞 node IDs. After sending a TREQ, the
trust requesting node will wait for a specific timeout period
to receive the TREPs from its neighbors. If a node does
not receive any TREP, it ignores the recommendation of its
neighbors by choosing 𝛼 = 0 in Equation 5.

During a trust level update, the Trust Level (TL) may
change. If the trust level changes significantly, the node sends
a Trust Advertisement (TA) message to notify its neighbors
about the change. In order to prevent nodes from sending
TA messages for every change in the Trust Level, we defined
the TA threshold (𝜋) as a minimum difference, between the
new TL and the TL in the last recommendation sent, above
which nodes must announce the new TL by sending a TA.
The reception of a TA message does not imply a recalculation
of the trust level to reduce the effect of malicious nodes that
send TAs to trigger trust level recalculation in other nodes.
The recalculation is triggered by the perception of an action.

E. Authentication mechanism

An authentication mechanism is essential, because mali-
cious nodes may pretend to be another node. Nevertheless,
our model does not require a sophisticated authentication
mechanism. Nodes do not need to know nor recognize any
other node a priori, namely, a node does not need to identify
a new neighbor when it arrives. In our system, nodes must be
able to identify neighbors that they already know. Therefore,
there is no need of a certification authority. Hence, nodes must
exchange identifiers when they first meet and keep a neighbor
identifier during all the period they remain in the radio range
of each other. Thus, a pair of public/private key for each node
is enough to allow our mechanism to work adequately. It
is important to notice that there is no correct identifier and
a node might use different identifiers. However, the Sybil
attack is not a real problem for the proposed mechanism,
because nodes must behave in order to have a high trust level.
Therefore, even though a node may have multiple identities,
its neighbors will be able to identify the benign ones, and
will avoid interacting with the malicious ones Nevertheless,
authentication mechanisms are not in the scope of this work.

III. THE TRUST MODEL IMPLEMENTATION

We have developed a simulator, which is specifically de-
signed for our model, in order to evaluate and identify the
main characteristics of the proposed model.

In ad hoc networks, nodes can perform several actions, like
sending packets, forwarding packets, responding to routing
messages, sending recommendations, among others. The set
of performed actions define the node’s behavior. Therefore,
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Fig. 4. The Learning plan implementation.

the Learning plan monitors the neighbor’s actions trying to
evaluate their behavior. In our simulator, each node performs
good actions and/or bad actions. The time between two
consecutive actions performed by a node is exponentially
distributed (mean = 5 time units). The kind of action that
will be performed depends solely on the nature of the node.
A node with a nature equals to 0.8 means that it performs
eight good actions out of ten.

The nature of a node ranges from 0 to 1. Trustworthy nodes
have nature equals to 1 while untrustworthy nodes have nature
equals to 0. The nature is used as a reference of the ideal global
trust level that a node should receive by its neighbors. We use
it here as a metric to evaluate how close the measured global
trust level of a node actually gets from its nature.

We emulate the Behavior Monitor (Fig. 3) by introducing
in our simulator the concept of perception. The perception
indicates the probability of noticing a certain action. Each
Behavior Monitor presents its own perception. Therefore, a
node with a perception of 0.6 is able of noticing 60% of all
the actions performed by its neighbors. Figure 4 illustrates
the Learning plan components. The Behavior Monitor passes
all the perceived actions to the Classifier without knowing
its nature. In our simulator, we assume a perfect Classifier,
which means that the judgment of an action always matches
with the original nature of the action. It is worth to mention
that noticing and judging an action does not imply using
promiscuous mode. We believe that a node should be able
to decide whether it will use promiscuous mode or not based
on its own constraints and needs. Thus, nodes may decide not
to use promiscuous mode at the expense of having a lower
perception. Therefore, the perception parameter can reflect
nodes that operate in simple and intermediate modes. Finally,
the judgments are transmitted to the Experience Calculator.

For the Experience Calculator, we propose a simple ap-
proach which consists of evaluating the trust value based on a
set of the last 𝑖 perceived actions from the same neighbor. This
implies the existence of a minimum number of actions 𝑖𝑚𝑖𝑛

that a node must notice from each neighbor before having a
concrete opinion about them, based on its own experience.
It means that during the initial phase of first contact, nodes
use just the recommendations of its neighbors to evaluate the
trust level of the new one. The minimum number of perceived
actions is crucial for the accuracy of the measure. A higher
perception allows a more accurate result. At the same time,
a large number of necessary initial actions leads to a longer
delay for assessing the trust value for new neighbors, leading
to a higher convergence time. For the simulations, we assume
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the Experience Calculator considers the last 10 actions from
a neighbor to estimate the trust value.

IV. RESULTS

In this section, we present the results of the experiments.
First, we expose the results that demonstrate the correctness of
our model and the impact of the main parameters on the trust
evaluation process. Then, we evaluate our model in mobile
multihop ad hoc networks. We show the effectiveness of the
relationship maturity parameter and how the other parameters
are tuned to improve the trust evaluation in mobile scenarios.
The last results assess the robustness of our model to slander
attacks. All nodes operate in the advanced mode, which means
that they implement all the features of the proposed system, as
described in Section II. The mean value of the time between
two actions performed by a node is set to 5 units of time. All
results are presented with a confidence interval of 95%.

A. Performance on Small Networks

Our main goal in this experiment is to evaluate and analyze
the influence of the number of neighbors, the first trust
assignment strategy, and the variation of the parameters 𝛼 and
the perception 𝜏 on the trust evaluation process. We assumed
in this experiment small ad hoc networks in which all nodes
are at most one hop away from each other, which we call
single hop networks. The reason for only analyzing single hop
networks is to isolate all the problems related to multihop
networks and focus strictly on the dynamics of our model.
Results for multihop networks are presented in the next section

The simulation scenario consists of nodes with 250 m
transmission range, which are randomly placed in a 150 m
× 150 m area. We defined three values for the first trust
assignment: 0.1 for the prudent, 0.5 for the moderate, and 0.9
for the optimistic strategy. All nodes adopt the same strategy.
We also assume 𝛼 = 𝛽 = 𝜏 = 0.5. These are the standard
values for the simulations. For each specific configuration, the
parameters that differ from these standard values are outlined.
At last, in each configuration, all nodes have the same nature.
The time unit corresponds to seconds.

Figure 5 presents the time response of the average trust
level from all neighbors about a specific node. In this specific
scenario, composed of 4 nodes, the nature of nodes is set to
0.2 and the simulation time is 900 units.

We observe in Fig. 5 that the trust level value begins in a
certain level but tends to the expected trust level. The expected
(correct) level is the nature of the node that is being analyzed,
which is set to 0.2. After a specific amount of time 𝑡1 ≈
350 units, the curve approximates the correct value. Thus, we
verify the existence of a transient period and stationary period.
In the transient period, nodes are trying to approximate to the
expected value, while in the stationary period the trust level
is stable, very close to the correct value.

From now on, instead of presenting the average trust level,
we present the average error for the trust value evaluated, that
is, the difference between the trust level and the correct value,
given by the nature of the node. The ideal result is a curve
that reaches the zero value, which means that there is no error
between the average trust values calculated by the neighbors
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and the value of the nature of the node. For the next results,
the scale corresponds to a minute (60 time units).

In Fig. 6, nodes adopt an optimistic strategy. We vary
the number of nodes, 𝑁 , and, consequently, the number of
neighbors of each node, which is given by 𝑁 − 1. The nature
is set to 0.2. We can notice that the error gets closer to zero
as the number of neighbors increases. This behavior occurs
because increasing the number of neighbors results in an
increase of the number of recommendations, which implies
a greater probability of receiving recommendations closer to
the correct value.

Figure 7 shows the influence of the parameter 𝛼 on the trust
level evaluation with 15 neighbors. Decreasing 𝛼 implies that
the recommendation of other nodes has a minor effect in the
trust level calculation. Although the global opinion about a
specific node changes slower when 𝛼 is larger, the convergence
value is closer to the expected one (lower TLE) and presents
a smaller variation.

As discussed in the Section III, the perception 𝜏 is the
fraction of actions a node can notice from its neighbors.
Figure 8 shows the impact of the perception on the trust level
evaluation. It is clear that the perception is strongly related to
the duration of the transient period. It occurs because a node
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requires a minimum number of actions from each neighbor
to consider its own experiences. If we increase the number
of actions a node must notice before judging the nature of a
neighbor, it will increase the precision of the judgment, but it
will also increase the convergence time.

B. Performance on Multihop Mobile Ad Hoc Networks

Our main goal with this experiment is to evaluate the trust
system performance in mobile multihop networks. We are also
interested in analyzing the impact of the relationship maturity
and the influence of the variation of parameters 𝛼 and 𝜏 . All
figures present the trust level error (TLE) as a function of
time, as in the previous section. Although we present a simple
scenario with a specific mobility pattern, it represents a non-
favorable scenario for our model.

The simulation scenario consists of 21 nodes with 250 m
transmission range, which are placed in a 1000 m × 400 m
area, as shown in Fig. 9. The distance between nodes is 150 m.
We defined the first trust assignment equals to 0.9 for every
node in the simulation. We also assume 𝛼 = 𝛽 = 𝜏 = 0.5.
These are the standard values for the simulations. For each
specific configuration, the parameters that differ from its
standard values are outlined. At last, for each configuration,
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Fig. 9. The multihop experiment scenario.
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all nodes have the same nature equals to 0.2. The mobility
model chosen for these experiments represents the worst-case
scenario for our trust model. In this case, a node moves to a
region with completely new neighbors. As a result, it can not
take advantage of maturity and must start new relationships
"from scratch".

In the first configuration, node mobility is represented by
𝑚1, where node 8, initially in zone B2, moves away to a
specific place, zone D2, and then, after a pause, comes back to
its origin. In the second configuration, mobility is represented
by 𝑚2, where node 8 goes to zone F2. Figure 10 presents the
average Trust Level Error for all neighbors of node 8. The
main difference between the two configurations is the number
of new neighbors. In the shorter movement,𝑚1, node 8 keeps
3 old neighbors while in𝑚2 all neighbors are new ones. We set
the speed equals to 1 m/s and 2 m/s, respectively. Thus, node 8
takes the same amount of time to move to both destinations.
We observe in Fig. 10 that the TLE begins in a certain level,
tends to zero, but never reaches it.

The first thing we notice is that the transient period begins
with a lower value than the first trust assignment value (0.9)
because when node 8 arrives the other nodes have already
converged to the trust level of their neighbors. Thus, it will
receive “correct” recommendations from its neighbors. There-
fore, when we use a higher 𝛼 to increase the importance of
the neighbor recommendation, TLE decreases in the transient
period, as showed in Fig. 10. It is clear that knowing some
neighbors at the destination place decrease the Trust Level
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Error (TLE) in the transient period because the node will con-
sider their recommendations since its arrival. In addition, when
nodes increase the 𝛼 parameter, it is possible to decrease the
TLE because it increases the importance of recommendations.
Figure 11 shows the same scenario but node 8 moves three
times faster. It is clear that in these conditions, node 8 does
not stay long enough to evaluate the trust level of its neighbors
and TLE remains high.

Figure 12 presents the results from the same movement
pattern previously described (speed = 1 m/s and 2 m/s), and
we vary the perception of node 8. It shows that if node 8,
the one that moves, has a lower perception, it takes longer
to correctly evaluate the nature of its neighbors, reducing the
accuracy in the node classification.

C. Relationship maturity

Next, we analyze the impact of the relationship maturity in
the evaluation of the trust level. For this purpose, we use a
new configuration in the same scenario of Fig. 9. In the new
configuration, nodes 1, 8, 15 are going to move to zone F2, the
same zone as node 12. Instead of monitoring the trust level of
all neighbors of node 8, we consider the trust level evaluation
of node 8 about node 7 and node 20. Therefore, when node

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 300  400  500

T
ru

st
 L

ev
el

 E
rr

or
 (

T
LE

)

Time (units)

α   = 0.5 − no maturity

α   = 0.8 − with maturity

α   = 0.8 − no maturity 

α   = 0.5 with maturity 

Fig. 13. The impact of the relationship maturity varying 𝛼, for 𝜏 = 0.5.

8 arrives at the destination, zone F2, nodes 1 and 15 have
just arrived there. It means that node 20 has 3 new neighbors
and 3 old ones. The old ones have a more accurate trust
level of node 20 than the new ones. Without the relationship
maturity, when node 8 receives the recommendations of its
neighbors, it will treat them all the same manner. Using the
relationship maturity, node 8 gives more importance to the
recommendations of the oldest neighbors of node 20. The
result can be seen in Fig. 13.

It can be noticed in Fig. 13 that the transient is shorter
with the relationship maturity. We can have almost the same
effect of increasing 𝛼 just by using the relationship maturity.
The figure also shows that with a greater 𝛼 the impact of
the relationship maturity in the transient is more significant.
It improves the efficiency of the system due to the fact that
node 8 prioritizes the recommendations of its neighbors.

Figure 14 displays the impact of the relationship maturity
when node 8 has a lower perception (𝜏 = 0.2). We can
observe that it presents a lower peak when node 8 arrives at
the destination, but the difference is not significant as in the
other figures. In this case, node 8 has a longer transient caused
by the lower perception. It happens because trust updates are
triggered only by actions, thus a low of perception implies a
longer transient. The result when we decrease the perception of
node 8 and increase the value of 𝛼 indicates that this is a good
combination for a mobile network. Moreover, the effect of the
relationship maturity is more evident. In this case when nodes
have some difficulty to notice the actions of its neighbors,
expressed by the low perception, the recommendations have
greater importance. Therefore, giving more weight to the
recommendations from nodes that have a longer relationship
with the target node is more effective. Although node 8 is not
able to reach the stationary period, it achieves a lower TLE
than without using the relationship maturity.

D. Lying Attacks

The objective of this experiment is to evaluate the trust
system performance under slander and collusion attacks in
single-hop ad hoc networks. Mundinger and Le Boudec [16]
perform an analysis of a reputation system for mobile ad hoc
networks in the presence of liars. They conclude that there
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is a threshold proportion of lying nodes above which the
reputations system cannot work. Below this threshold liars
do not cause a significant impact on the system. Therefore,
we aim at finding that threshold below which our trust model
fails to work properly. The scenario consists of 20 nodes with
250 m transmission range, which are randomly placed in a
150 m × 150 m area. All figures present the trust evaluation
of node 2 about node 1. It means that node 2 is trying to
assess the trust level of node 1. We defined the first trust
assignment equal to 0.9 and 𝛼 = 𝛽 = 𝜏 = 0.5 for all
nodes. These are the standard values for the simulations. For
each specific configuration, the parameters that differ from its
standard values are outlined. At last, in each configuration, all
nodes have nature equals to 0.9, which means one out of ten
actions taken is bad on average.

1) Changing behavior: In Section IV-A, we show that
nodes are capable of evaluating their neighbor nature using
our trust model. However, a node might change its behavior
and consequently its nature during its lifetime. The behavior
variation of a node occurs due to several reasons. For instance,
a node may behave well at first, but after being compromised
it starts to misbehave. Another possibility is a good node
that experiences an energy consumption problem which causes
an anomalous behavior. A third option consists of malicious
nodes that continuously change their behavior between good
and bad in order to cause damage to the trust system. There-
fore, it is important for a trust model to provide nodes with
the capability of identifying such behavior variations as quick
as possible. Thus, in the first set of simulations we analyze
the trust evaluation of a node that changes its behavior during
the simulation. In this first scenario, node 1 changes its nature
and malicious nodes might try to cover the behavior variations
of each other in order to keep a good reputation even though
they have a bad behavior.

Figures 15 and 16 show a scenario where node 1 changes
its nature from 0.9 to 0.2 and malicious nodes lie about node 1
trying to convince the other nodes that node 1 still has a trust
level equals to 0.9. The first thing we can notice is that node 2
perfectly succeeds in remarking a change in node 1 behavior
when there is no liar. Figure 15 also reveals the effect of a
collusion attack varying the percentage of malicious nodes
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participating in the attack. We observe that malicious nodes
can deteriorate the trust evaluation. However, it shows that
node 2 manages to identify node 1 as a bad node, namely
trust level less than 0.5, if the percentage of malicious nodes
is smaller than 35%.

Next, we propose a scenario similar to the last one, but
we fixed the percentage of malicious nodes in 40%. In this
scenario, we consider that nodes are capable of identifying
when a neighbor lies about its recommendations after a
certain amount of time. After detecting a neighbor as a liar,
the node can degrade the trust level of its neighbor. The
results show that detecting liars can significantly improve the
trust evaluation performance, as we see in curve “ident” in
Fig. 16, in the presence of liars. An even better solution is
to detect and then to completely ignore the recommendations
of malicious nodes, as shown by curve “dent + ignore” in
Fig. 16. Ignoring liars is a simple task. Node can simply ignore
all recommendations of neighbors with a trust level under a
certain threshold. We observe that ignoring liars can neutralize
a lying collusion attack. The only damage is during the process
of liar detection.

2) Slander attack: The slander attack consists of sending
false recommendations to injure the reputation of a node.
Malicious nodes can collude to improve the effect of the
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attack. In this experiment, node 2 tries to evaluate the trust
level of node 1, whose nature is equal to 0.9. Malicious nodes
send false recommendations saying that node 1 has a trust
level equals to 0.2. Node 2 adopts a pessimistic strategy, which
means it assigns a low trust level (0.1) for new neighbors. In
Fig. 17, we vary the percentage of liars to show that node 2
can succeed in identifying node 1 as a good node, assuming
that a good node has a Trust Level > 0.5, for a percentage of
liars smaller than 35%.

Figures 18 and 19 present the result for the variation of
two important parameters in our model. First, in Fig. 18, we
vary 𝛼. The parameter 𝛼 is the one that controls the weight
of recommendations and own experiences in the calculation
of the trust level in Equation 1. With a higher 𝛼 the recom-
mendations of other nodes has a higher weight on the trust
level evaluation. It is clear that the more a node considers the
recommendations of other nodes, the more it is vulnerable to
lying attacks. Therefore, a node might have a low value for 𝛼
(e.g.,𝛼 < 0.5) in order to be more resistant to liars.

Figure 19 displays the impact of the perception on the
slander attack. The first remark is that the perception does not
impact the trust level evaluation under a slander attack. The
perception has strong influence only in the duration of the
transient period and has no influence on the level achieved
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after convergence, in the stationary period. In the transient
period, nodes are trying to approximate to the expected value,
while in the stationary period, the trust level is stable, very
close to the correct value.

We changed the perception of node 2 to 0.2 and the
parameter 𝛼 to 0.8 to evaluate a more convenient scenario
for a slander attack. Figure 20 presents the results when
malicious nodes begin to lie after 200 time units so they
already have a good reputation. We observe that if node 2
detects the misbehavior of the malicious nodes and ignore
their recommendations (curve “lying at 200 + ident.”) there
is no damage to the trust evaluation process, except for the
period during which node 2 has not yet notice the liars. This
period depends solely on the capacity of the node in detecting
a lie.

In Fig. 21 we vary the duration of the detection of liars. The
results show that identifying liars is an important task to avoid
damage to the trust system. A fast liar detection mechanism
can offer a robust trust system against slander attacks. It can be
noticed that the recovery delay, namely, the time a node take to
achieve the correct trust value after identifying all liars in the
neighborhood, remains the same regardless of the detection
delay.
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E. Recommendation Exchange Protocol

The Recommendation Exchange Protocol (REP) (Sec-
tion II-D) is an important feature in our trust model. In
order to evaluate the performance of the REP protocol we
use a single-hop network because it is a "local" protocol,
that is, the interactions are limited to neighbors, and thus
mobility does not have a real impact on the performance of
REP. The scenario consists of 𝑛 nodes randomly placed in
a 150 𝑚 × 150 𝑚 area, which means that each node has
𝑛 − 1 neighbors. The first trust value is 0.9 and node 2 has
a nature equals 2. All nodes arrive at the same time and
try to evaluate the trust level of their neighbors. We believe
that this is a representative scenario, since in this scenario all
types of messages are used. The first set of simulations aims
at evaluating the impact of the number of neighbors on the
performance of the REP protocol, more specifically on the
number of sent messages. Therefore, we vary the number of
nodes 𝑛 from 4 to 32.

Figure 22 presents the result of the number of messages
sent per node in the scenario described above. The TREQ
message is sent just once when two nodes first meet. Thus,
each node should send at most 𝑛 − 1 TREQs. However, we
implemented a timer before sending a TREQ message that
is used to collect the maximum number of TREQs in one
single message. The timer also permits the TREQ suppression
when the node receives a TREP during the timer period. This
approach allows reducing significantly the number of TREQs
when the neighborhood changes in short-term period, as in the
case of a network in which nodes start simultaneously. Results
show the effectiveness of our approach. In this scenario we
reach more than 85% of reduction (the case with 32 nodes).
The TREP message is sent just once per TREP request, which
means that the expected number of TREPs (𝑛 − 1)(𝑛 − 2)
messages. First, we implement the TREP as a broadcast
message which is only considered by nodes that have sent a
TREQ recently. Thus, the number of expected messages drop
to (𝑛 − 1). Finally, we implement the same timer approach
for the TREP. Figure 22 shows that for the TREP, these two
approaches are can reduce the number of TREPs by more than
99%.

We notice from the previous result (Fig. 22) that the TA
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message is more sensitive to the increase of the number of
neighbors. However, we observe that there is no exponential
increase (mostly 3𝑛

2 → 𝑂(𝑛)) and if we consider that these
messages are sent at each transient period, we have less than
one TA message per unit of time during the transient period.

We can try to optimize the number of TA messages sent
during the transient period. TA messages are sent by nodes
whenever the trust level of a given neighbor has varied more
than a certain threshold (𝜋). This approach avoids sending
trust level information after every change in the trust level of
a neighbor, instead, we advertise the trust level information
just after a significant change compared to the last advertised
value.

In Fig. 23 we use the same scenario but with 20 nodes.
Figure 23(a) shows the impact of the value of 𝜋 on the number
of messages and Fig. 23(b) shows the impact of 𝜋 on the trust
evaluation process. The first important observation is that, as
expected, TREQ and TREP messages are not influenced by
the value of 𝜋. Second, the lower is the value of 𝜋, the larger
is the number of TA messages and the faster is the transient
period. An interesting result is that setting 𝜋 = 0.2 does not
reduce significantly the number of messages, comparing to
𝜋 = 0.1, because the trust level variation is smoother which
leads to a longer transient period. Moreover, for 𝜋 = 0.2 the
trust evaluation process does not converge to the correct value
(0.2). Therefore, there is an optimum value for 𝜋 that reduces
the number of TA messages and provides a fast and correct
convergence.

F. Discussion

In our simulations, we exploited the advantages of our
model that limits the interactions to the neighbors. Therefore,
we are able to evaluate the performance of our model in a
single hop network, instead of using a more complex scenario,
without loss of generality.

The simple mobility model in this paper is used to demon-
strate the basic characteristics of our model. For instance, we
show that in a scenario where the topology changes faster than
the convergence of the proposed model, the node will not be
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Fig. 23. The impact of the trust level variation threshold (𝜋) on the number
of messages per node.

capable of evaluating the trust level of its neighbors. We show
also that we can increase 𝛼 to mitigate this problem. These
two results are independent of the mobility model and can be
applied in different scenarios.

The simulation results show that our implementation using
smart timers to suppress redundant messages scales well to
larger networks, reducing the trust management overhead by
85-99%. We also show that using a threshold heuristic is
useful to reduce the overhead since we only send updates
if a significant change in the trust level occurs. Our results
show an overhead reduction of almost 60% (Fig. 23(a)) with
roughly no impact at the convergence rate (Fig. 23(b)).

We also shows that increasing the value of 𝛼 is a good
strategy to improve the trust model efficiency, since we give
more weight to the neighbor recommendations. Nevertheless,
𝛼 plays a key role in reducing the influence of liars. Nodes
with a large 𝛼 are more vulnerable to false recommendations.
Therefore, we observe the existence of an important trade-
off between mobility and vulnerability to slander attacks. A
possible solution to overcome the trade-off problem consists of
implementing a liar detection mechanism. A feasible approach
for liar detection is to compare the recommendations of all
neighbors. Considering that the percentage of malicious nodes

is smaller than 50%, a node might assume as a liar every node
that keeps sending conflicting recommendations.

Another important aspect is that our model provides nodes
with a mechanism to assess the trust level of its neighbors.
Therefore we consider that each service/application must
define and implement how the information will be used and
disseminated, if necessary, instead of adding complexity to
REP protocol.

V. RELATED WORK

Although researchers usually assume that nodes collaborate
in ad hoc networks, it is not so obvious that this collaboration
exists in practical networks. Each node must forward packets
for other nodes and spend its energy without receiving any
direct gain for this act. There is no real incentive for nodes
to participate in the routing and forwarding process. Yu and
Liu [17] state that before ad hoc networks can be successfully
deployed in autonomous ways, the issues of cooperation
stimulation and security must be resolved first. Several works
propose mechanisms to stimulate the cooperation among
nodes. Their goal is to avoid selfish and malicious behavior to
guarantee the right implementation of routing and forwarding
tasks by all nodes of the network [17]–[24]. Nevertheless,
all these works are restricted to stimulate the collaboration
of nodes to relay traffic for other nodes. We are concerned
with all kinds of distributed mechanisms and applications,
such as authentication, key distribution, access control, and
management.

In general, the trust models in ad hoc networks try to protect
or enforce the two basic functions of the network layer: routing
and packet forwarding [25]. Sun et al. [26] investigate the
benefits of using trust models in distributed networks, the
vulnerabilities in trust establishment methods, and the defense
mechanisms.

Several works propose monitoring schemes to generate trust
values describing the trustworthiness, reliability, or compe-
tence of individual nodes. Theodorakopoulos and Baras [27]
analyze the issue of evaluating the trust level as a generaliza-
tion of the shortest-path problem in an oriented graph, where
the edges correspond to the opinion that a node has about other
node. They consider that nodes use just their own information
to establish their opinions. The opinion of each node includes
the trust level and its precision. The main goal is to enable
nodes to indirectly build trust relationships using exclusively
monitored information.

Sun et al. [28] have developed a framework capable of
measuring the trust level and propagating it through the
network in order to make routing more secure and to as-
sist intrusion detection systems. The framework includes a
defense mechanism against malicious nodes. The authors use
a probabilistic model based on the uncertainty of a neighbor to
execute one specific action and consider only the monitoring
information.

He et al. [29] propose an architecture for stimulating the
collaboration based on the reputation of nodes. The system
is based only on the monitored information to evaluate the
reputation of nodes. The goal is to detect and to punish nodes
that do not participate in the routing process.
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The main difference of these works and our trust model
is that they use only the node own experience, namely, the
monitored information on the trust evaluation process. Our
trust model considers the monitored information and the
recommendations of neighbors to achieve a faster convergence
time and an accurate trust level for each neighbor.

In probabilistic-based models, a common approach consists
of using Bayesian networks, which is a probabilistic tool that
provides a flexible means of dealing with probabilistic prob-
lems involving causality [30]. Buchegger and Le Boudec [31]
investigate the trade-off between robustness and efficiency of
reputation systems in mobile ad hoc networks. A mechanism
based on Bayesian statistics is used to filter slanderer nodes.
The proposed system considers the monitored information and
the recommendation of other nodes to compute the reputation
of a specific node. They show that taking into account the
recommendations of other nodes can speed up the process
of discovery of malicious nodes. Chinni et al. [32] offer
a distributed trust model for certificate revocation in ad
hoc networks. This model allows trust to be built based on
the interactions between nodes, using monitored information.
Furthermore, trust in a node is defined not only in terms
of its potential for maliciousness, but also in terms of the
quality of the service it provides. The trust level of nodes
where there is little or no history of interactions is determined
by recommendations from other nodes. If the nodes in the
network are selfish, trust is obtained by an exchange of
portfolios. Bayesian networks form the underlying basis for
this model.

Another approach consists of using linear functions to infer
trust. Pirzada and McDonald [33] propose another trust model
for ad hoc networks to compute the trustworthiness of differ-
ent routes. Nodes can use this information as an additional
metric on routing algorithms. Although the authors present an
interesting approach, the model presents disadvantages. For
instance, it is currently restricted to Dynamic Source Routing
(DSR) protocol. It also relies on using the promiscuous mode,
ignoring the energy constraints of mobile nodes. Finally, it
requires each node to store information for all other nodes in
the network, which is not scalable.

Virendra et al. [14] present a trust-based architecture that
allows nodes to make decisions on establishing keys with other
nodes and forming groups of trust. Their scheme considers
trust self-evaluation and recommendation of other nodes to
compute trust. Their trust self-evaluation is based on moni-
toring nodes and a challenge-response system. Some authors
present trust models specifically designed to work with a
particular routing protocol. Komathy and Narayanasamy [34]
add a trust-based evolutionary game model to the AODV
routing protocol in order to cope with selfish nodes.

Kostoulas et al. [35] propose a decentralized trust model
to improve reliable information dissemination in large-scale
disasters. The proposed model includes a distributed recom-
mendation scheme, incorporated into an existing membership
maintenance service for ad hoc networks. In addition, trust-
based information is propagated through a nature-inspired
activation spreading mechanism.

The main differences of our work from all the related work
are that nodes interact only with neighbors. Neighborhood

interactions imply low resource consumption and minimize
the effect of false recommendations. Another important issue
is the introduction of the concept of relationship maturity in
our model which improves the efficiency of the trust model in
MANETS. At last, only a few works analyze the robustness
of the trust model against liars and its scalability, as we do in
Sections IV-D and IV-E.

VI. CONCLUSION

This paper addresses the problem of trust evaluation and
management in ad hoc networks. We propose a flexible trust
model based on the concept of human trust, which provides
nodes with a mechanism to evaluate the trust level of its
neighbors. The basic idea consists of using previous expe-
riences and recommendations of other neighbors to appraise
the trust level of other nodes. We introduce the concept of
relationship maturity, which allows nodes to attribute more
relevance to the recommendations issued by nodes that know
the evaluated neighbor for a long time. We also propose the
Recommendation Exchange Protocol (REP) which enables
nodes to send and receive recommendations.

In our model, the interactions among nodes are confined to
neighbors. Such approach implies lower resource consumption
and a lower vulnerability to false recommendations attack.
Another important quality is the flexibility due to the possi-
bility of operating in three different modes, depending on the
node resource restrictions. Thus, our model is suitable for het-
erogeneous network, where nodes present distinct constraints.
Besides, the presence of nodes that do not implement at all our
trust system do not disturb the other nodes that are using the
system, since nodes are capable of evaluating the trust level
even in the presence of a few cooperating neighbors.

We perform a number of simulations to evaluate the per-
formance of the Recommendation Exchange Protocol and
show its scalability. We show that our implementation of the
REP protocol can significantly reduce the number messages.
We also present other results that indicate that our model
detects behavior changes of nodes and is robust to slander and
colluding attacks. The results reveal that the proposed model
tolerates up to 35% of liars. We also evaluate our model in
mobile multihop ad hoc networks. We show the effectiveness
of the relationship maturity parameter, which reduces the trust
level error by almost 50%, in certain scenarios.

Future work includes defining and implementing a mon-
itoring scheme for a specific application and applying our
model to improve the service/application performance, as for
instance, an authentication protocol.
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