
Rafael Gutierrez- TUD Dresden University of Technology
Rafael Gutierrez
- TUD Dresden University of Technology
About
218
Publications
27,913
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,886
Citations
Introduction
Current institution
Additional affiliations
June 2007 - present
Publications
Publications (218)
Sensing and discriminating between enantiomers of chiral molecules remains a significant challenge in the design of sensor platforms. In the case of chemoresistive sensors, where detection relies on changes in electrical response upon analyte adsorption, the sensor substrate is typically functionalized with chirality sensitive molecular receptors....
We introduce the MORE-Q dataset, a quantum-mechanical (QM) dataset encompassing the structural and electronic data of non-covalent molecular sensors formed by combining 18 mucin-derived olfactorial receptors with 102 body odor volatilome (BOV) molecules. To have a better understanding of their intra- and inter-molecular interactions, we have perfor...
Photoswitchable molecules with structural flexibility can exhibit acomplex ground state potential energy landscape due to the accessibility ofmultiple metastable states at merely low energy barriers. However, conventionalbulk analytical techniques are limited in their ability to probe these metastableground states and their relative energies. This...
Changes in the work function provide a fingerprint to characterize analyte binding in charge transfer-based sensor devices. Hence, a rational sensor design requires a fundamental understanding of the microscopic factors controlling the modification of the work function. In the current investigation, we address the mechanisms behind the work functio...
Chiral structures, breaking spatial inversion symmetry, exhibit non-zero chiroptical activity (COA) due to the coupling between their electric and magnetic responses under external electromagnetic fields, an effect absent in achiral systems. Non-magnetic chiral structures also exhibit Chiral-Induced Spin Selectivity (CISS), primarily detected in tw...
We introduce the MORE-Q dataset, a quantum-mechanical (QM) dataset encompassing the structural and electronic data of non-covalent molecular sensors formed by combining 18 mucin-derived olfactorial receptors with 102 body odor volatilome (BOV) molecules. To have a better understanding of their intra- and inter-molecular interactions, we have perfor...
Understanding the interaction mechanisms between volatile organic compounds (VOCs) with graphene-based materials is the primary and crucial step for human health and the advancement of digital olfaction. In this study, we investigated the adsorption behavior of four common odor molecules (toluene, ethanol, 2-Furfurylthiol, and guaiacol) on various...
We analyze from a theoretical perspective recent experiments where chiral discrimination in biological systems was established using Atomic Force Microscopy (AFM). Even though intermolecular forces involved in AFM measurements have different origins, i.e., electrostatic, bonding, exchange, and multipole interactions, the key molecular forces involv...
The coupling of different two‐dimensional materials (2DMs) to form van der Waals heterostructures (vdWHs) is a powerful strategy for adjusting the electronic properties of 2D semiconductors, for applications in opto‐electronics and quantum computing. 2D molybdenum disulfide (MoS 2 ) represents an archetypical semiconducting, monolayer thick versati...
Chiral structures, breaking spatial inversion symmetry, exhibit non-zero chiroptical activity (COA) due to the interaction between their electric and magnetic responses under external electromagnetic fields, an effect that is otherwise absent in achiral systems. Non-magnetic chiral structures also exhibit Chiral Induced Spin Selectivity (CISS), whe...
In this research, we explore sequence-dependent chiral-induced spin selectivity (CISS) in double-stranded (ds)-DNA using time-correlated single-photon counting and electrochemical impedance spectroscopy supplemented by tight-binding calculations of the phenomenon for the first time. The average lifetime of the photo-excited electrons in a Quantum D...
The recent Coronavirus Disease 2019 (COVID‐19) outbreak strongly propels advancements in biosensor technology, leading to the emergence of novel methods for virus detection. Among them, those using nanostructured field‐effect transistors (FETs) provide an ultrasensitive approach toward point‐of‐care diagnostics. However, the application of these bi...
We address the electron-spin-phonon coupling in an effective model Hamiltonian for DNA to assess its role in spin transfer involved in the Chiral-Induced Spin Selectivity (CISS) effect. The envelope function approach is used to describe semiclassical electron transfer in a tight-binding model of DNA at half filling in the presence of intrinsic spin...
By employing a mechanically controllable break junction technique, we have realized an ideal single molecular linear actuator based on dithienylethene (DTE) based molecular architecture, which undergoes reversible photothermal isomerization when subjected to UV irradiation under ambient conditions. As a result, open form (compressed, UV OFF) and cl...
The recent COVID-19 outbreak has strongly pushed the field of biosensors, resulting in multiple new approaches for quantitative virus detection. Among them, those using nanostructured field-effect transistors (FETs) as transducers provide an ultrasensitive approach requiring simple setups for their miniaturization toward point-of-care diagnostics o...
By employing a mechanically controllable break junction technique, we have realized an ideal single molecular linear actuator based on dithienylethene (DTE) based molecular architecture, which undergoes reversible photothermal isomerization when subjected to UV irradiation under ambient conditions. As a result, Open form (compressed, UV OFF) and Cl...
This is my life-long achievement, impossible without my international co-authorship.
This review is an effort in putting together the latest results about room‐temperature magnetoresistive (MR) effects in nanoscale/single‐molecule electronic devices consisting of one (few) molecule(s) placed in electrical contact between two nanoscale electrodes. Molecules represent powerful building blocks for developing state‐of‐the‐art MR device...
Two-dimensional materials have great potential for applications as high-performance electronic devices and efficient thermal rectificators. Among them, pristine phosphorene, a single layer of black phosphorus, has shown promising properties such as ultrahigh charge mobility, a tunable band gap, and mechanical flexibility. However, the introduction...
Molecule- and solid-state gears build the elementary constituents of nanoscale mechanical machineries. Recent experimental advances in fabrication technologies in the field have strongly contributed to better delineate the roadmap towards the ultimate goal of engineering molecular-scale mechanical devices. To complement experimental studies, comput...
Dispersion interactions are one of the components of van der Waals (vdW) forces, which play a key role in the understanding of intermolecular interactions in many physical, chemical and biological processes. The theory of dispersion forces was developed by London in the early years of quantum mechanics. However, it was only in the 1960s that it was...
Molecule- and solid-state gears build the elementary constituents of nanoscale mechanical machineries. Recent experimental advances in fabrication technologies in the field have strongly contributed to better delineate the roadmap towards the ultimate goal of engineering molecular-scale mechanical devices. To complement experimental studies, comput...
Two-dimensional Covalent Organic Frameworks (2D COFs) have attracted considerable interest because of their potential for a broad range of applications. Different combinations of the monomeric units can lead to potentially novel materials with varying physico-chemical properties. In this study, we investigate the electronic properties of various 2D...
We perform molecular dynamics simulations to study the collective rotation of a graphene nanodisk functionalized on its circumference by tert-butylphenyl chemical groups in interaction with a molecule-gear hexa-tert-butylphenylbenzene supported by a Cu(111) surface. The rotational motion can be categorized underdriving, driving and overdriving regi...
Lubricants are widely used in macroscopic mechanical systems to reduce friction and wear. However, on the microscopic scale, it is not clear to what extent lubricants are beneficial. Therefore, in this study, we consider two diamond solid-state gears at the nanoscale immersed in different lubricant molecules and perform classical MD simulations to...
Lubricants are widely used in macroscopic mechanical systems to reduce friction and wear. However, on the microscopic scale, it is not clear to what extent lubricants are beneficial. Therefore, in this study, we consider two diamond solid-state gears at the nanoscale immersed in different lubricant molecules and perform classical MD simulations to...
Lubricants are widely used in macroscopic mechanical systems to reduce friction and wear. However, on the microscopic scale, it is not clear to what extent lubricants are beneficial. Therefore, in this study, we consider two diamond solid-state gears at the nanoscale immersed in different lubricant molecules and perform classical MD simulations to...
Computerpraktika stellen einen wichtigen Bestandteil vieler Lehrveranstaltungen dar, welche die Grundlagen und Details von computergestützten Methoden vermitteln sollen. In den Materialwissenschaften spielen solche Methoden eine zunehmend wichtige Rolle. Typischerweise setzen die Praktika eine physische Präsenz in den PC Pools voraus, u.a. da eine...
Dispersion interactions are one of the components of van der Waals forces, which play a key role in the understanding of intermolecular interactions in many physical, chemical and biological processes. The theory of dispersion forces was developed by London in the early years of quantum mechanics. However, it was only in the 1960s that it was recog...
Porphyrins, phthalocayanines and their derivatives have found interesting applications in various fields such as molecular electronics, optoelectronics, and sensorics. Common to this class of molecules with a metal-free core is the existence of hydrogen tautomerization reactions. Since the reaction only involves the motion of a pair of hydrogen ato...
The physical origin of the so-called chirality-induced spin selectivity (CISS) effect has puzzled experimental and theoretical researchers over the past few years. Early experiments were interpreted in terms of unconventional spin-orbit interactions mediated by the helical geometry. However, more recent experimental studies have clearly revealed th...
Compared to nanoscale friction of translational motion, the mechanisms of rotational friction have received less attention. Such motion becomes an important issue for the miniaturization of mechanical machinery that often involves rotating gears. In this study, molecular-dynamics simulations are performed to explore rotational friction for solid-st...
Thermal management is a current global challenge that must be exhaustively addressed. We propose the design of a nanoscale phononic analogue of the Ranque-Hilsch vortex tube in which heat flowing at a given temperature is split into two different streams going to the two ends of the device inducing a temperature asymmetry. Our nanoscale prototype c...
Chemical modification and vertical stacking of two-dimensional materials are promising techniques for new nanoelectronic devices. We present Density Functional Tight Binding (DFTB) calculations of a field-effect device, based on lateral and vertical heterostructures of 2D materials. The device consists of a phosphorene channel protected by graphene...
Formation of regularly structured silica valves of various diatom species is a particularly fascinating phenomenon in biomineralization. Intensive investigations have been devoted to elucidate the formation mechanisms of diatom valve structures. Phase-separation of species-specific organic molecules has been proposed to be involved in pattern forma...
The miniaturization of gears towards the nanoscale is a formidable task posing a variety of challenges to current fabrication technologies. In context, the understanding, via computer simulations, of the mechanisms mediating the transfer of rotational motion between nanoscale gears can be of great help to guide the experimental designs. Based on at...
The investigation of molecular interactions between silica phases and organic components is crucial for elucidating the main steps involved in the biosilica mineralization process. In this respect, the structural characterization of the organic/inorganic interface is particularly useful for a deeper understanding of the dominant mechanisms of biomi...
Compared to nanoscale friction of translational motion, the mechanisms of rotational friction have received less attention. Such motion becomes an important issue for the miniaturization of mechanical machineries which often involve rotating gears. In this study, molecular dynamics simulations are performed to explore rotational friction for solid-...
The interest in chiral degrees of freedom occurring in matter and in electromagnetic fields is experiencing a renaissance driven by recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials. The CISS effect underpins the fact that charge transport through nanoscopic chiral structures h...
The physical origin of so called Chirality-Induced Spin Selectivity (CISS) effect has puzzled experimental and theoretical researchers over the past few years. Early experiments were interpreted in terms of unconventional spin-orbit interactions mediated by the helical geometry. However, more recent experimental studies have clearly revealed that e...
Achieving efficient and stable ultraviolet emission is a challenging goal in optoelectronic devices. Herein, we investigate the UV luminescence of zinc germanate Zn2GeO4 microwires by means of photoluminescence measurements as a function of temperature and excitation conditions. The emitted UV light is composed of two bands (a broad one and a narro...
Achieving efficient and stable ultraviolet emission is a challenging goal in optoelectronic devices. Herein, we investigate the UV luminescence of zinc germanate Zn2GeO4 microwires by means of photoluminescence measurements as a function of temperature and excitation conditions. The emitted UV light is composed of two bands (a broad one and a narro...
Diatoms are a significant group of algae displaying a sizeable morphological diversity, whose underlying structure arises from nanopatterned silica. Extensive experimental evidence suggests that a delicate interplay between various organic components and polysilicic acid plays a crucial role in biosilica mineralization. Thus, gaining insight into t...
The chirality-induced spin selectivity effect has been confirmed experimentally for a large class of organic molecules. Adequately modeling the effect remains a challenging task, with both phenomenological models and first-principles simulations yielding inconclusive results. Building upon a previously presented model by K. Michaeli and R. Naaman [...
The chirality-induced spin selectivity effect has been confirmed experimentally for a large class of organic molecules. Adequately modeling the effect remains a challenging task, with both phenomenological models and first-principles simulations yielding inconclusive results. Building upon a previously presented model by K. Michaeli and R. Naaman [...
The miniaturization of gears towards the nanoscale is a formidable task posing a variety of challenges to current fabrication technologies. In context, the understanding, via computer simulations, of the mechanisms mediating the transfer of rotational motion between nanoscale gears can be of great help to guide the experimental designs. Based on at...
The manipulation and coupling of molecule gears is the first step toward realizing molecular-scale mechanical machines. Here, we theoretically investigate the behavior of such gears using molecular-dynamics simulations. Within a nearly rigid-body approximation, we reduce the dynamics of the gears to the rotational motion around the orientation vect...
The enormous amount of data generated nowadays worldwide is increasingly triggering the search for unconventional and more efficient ways of processing and classifying information, eventually able to transcend the conventional von Neumann-Turing computational central dogma. It is, therefore, greatly appealing to draw inspiration from less conventio...
The chirality-induced spin selectivity (CISS) effect has been confirmed experimentally for a large class of organic molecules. Adequately modeling the effect remains a challenging task, with both phenomenological models and first-principle simulations yielding inconclusive results. Building upon a previously presented model by K. Michaeli and R. Na...
The helical distribution of the electronic density in chiral molecules, such as DNA and bacteriorhodopsin, has been suggested to induce a spin-orbit coupling interaction that may lead to the so-called chirality-induced spin selectivity (CISS) effect. Key ingredients for the theoretical modelling are, in this context, the helically shaped potential...
The helical distribution of the electronic density in chiral molecules, such as DNA and bacteriorhodopsin, has been suggested to induce a spin–orbit coupling interaction that may lead to the so-called chirality-induced spin selectivity (CISS) effect. Key ingredients for the theoretical modelling are, in this context, the helically shaped potential...
The enormous amount of data generated nowadays worldwide is increasingly triggering the search for unconventional and more efficient ways of processing and classifying information, eventually able to transcend the conventional von-Neumann-Turing computational central dogma. It is, therefore, greatly appealing to draw inspiration from less conventio...
Oxytocin is a peptide hormone with high affinity to both Zn2+ and Cu2+ ions compared to other metal ions. This affinity makes oxytocin an attractive recognition layer for monitoring the levels of these essential ions in biofluids. Native oxytocin cannot differentiate between Cu2+ and Zn2+ ions and hence it is not useful for sensing Zn2+ in the pres...
Manipulating and coupling molecule gears is the first step towards realizing molecular-scale mechanical machines. Here, we theoretically investigate the behavior of such gears using molecular dynamics simulations. Within a nearly rigid-body approximation we reduce the dynamics of the gears to the rotational motion around the orientation vector. Thi...
Manipulating and coupling molecule gears is the first step towards realizing molecular-scale mechanical machines. Here, we theoretically investigate the behavior of such gears using molecular dynamics simulations. Within a nearly rigid-body approximation we reduce the dynamics of the gears to the rotational motion around the orientation vector. Thi...
Spin-dependent effects in helical molecular systems, leading to the so called Chirality-Induced Spin Selectivity (CISS) effect, have strongly attracted the attention of the chemical and physics community over the past years. A large amount of experimental material has been collected so far and different theoretical approaches have been presented to...
Peptides are very common recognition entities which are usually attached to surfaces using multistep processes. These processes require modification of the native peptides and of the substrates. Using functional groups in native peptides for their assembly on surfaces without affecting their biological activity can facilitate the preparation of bio...
A crucial goal for increasing thermal energy harvesting will be to progress towards atomistic design strategies for smart nanodevices and nanomaterials. This requires the combination of computationally efficient atomistic methodologies with quantum transport based approaches. Here, we review our recent work on this problem, by presenting selected a...
The Molecular Quantum Cellular Automata paradigm (m-QCA) offers
a promising alternative framework to current CMOS implementations. A crucial
aspect for implementing this technology concerns the construction of a device which
effectively controls intramolecular charge-transfer processes. Tentative experimental
implementations have been developed in...
With the advances in fabrication of materials with feature sizes at the order of nanometers, it has been possible to alter their thermal transport properties dramatically. Miniaturization of device size increases the power density in general, hence faster electronics require better thermal transport, whereas better thermoelectric applications requi...
Recent progress in nanostructuring of materials opens up possibilities to achieve more efficient thermoelectric devices. Nanofilms, nanowires, and nanorings may show increased phonon scattering while keeping good electron transport, two of the basic ingredients for designing more efficient thermoelectric systems. Here, we argue that graphene nanori...
We report how the electron transport through a solid-state metal/Gly-Gly-His tripeptide (GGH) monolayer/metal junction and the metal/GGH work function are modified by the GGH complexation with Cu2+ ions. Conducting AFM is used to measure the current-voltage histograms. The work function is characterized by combining macroscopic Kelvin probe and Kel...
A self-assembled two-dimensional (2D) film of tetra-phenyl-porphyrin-4-ferrocene molecules on Au(111) is studied by STM for the presence of intra- and intermolecular correlations in the configurations of the four-pendant ferrocenyl moieties. A statistical analysis of STS images exploits the Pearson’s linear correlation coefficient derived from chan...
A fundamental problem for thermal energy harvesting is the development of atomistic design strategies for smart nano-devices and nano-materials that can be used to selectively transmit heat. We carry out here an extensive computational study demonstrating that heterogeneous molecular junctions, consisting of molecular wires bridging two different n...
We report how the electron transport through a solid-state metal/Gly-Gly-His tripeptide (GGH) monolayer/metal junction and the metal/GGH work function are modified by the GGH complexation with Cu2+ ions. Conducting AFM is used to measure the current-voltage histograms. The work function is characterized by combining macroscopic Kelvin probe and Kel...
Full paper with supporting information
Downsizing of devices opens the question of how to tune not only their electronic properties, but also of how to influence ‘mechanical’ degrees of freedom such as translational and rotational motions. Experimentally, this has been meanwhile demonstrated by manipulating individual molecules with e.g. current pulses from a Scanning Tunneling Microsco...
Despite the uniquely high thermal conductivity of graphene is well known, the exploitation of graphene into thermally conductive nanomaterials and devices is limited by the inefficiency of thermal contacts between the individual nanosheets. A fascinating yet experimentally challenging route to enhance thermal conductance at contacts between graphen...
The ability to tune the electronic properties of oxide bearing semiconductors such as Si/SiO2 or transparent metal oxide such as Indium-Tin oxide (ITO) is of great importance in both electronic and optoelectronic device applications. In this work we describe a process which was conducted on n-type Si/SiO2 and ITO to induce changes in the substrate...
Despite the uniquely high thermal conductivity of graphene is well known, the exploitation of graphene nanosheets into thermally conductive nanomaterials and devices is limited by the inefficiency of thermal contacts between the individual nanosheets. A fascinating yet experimentally challenging route to enhance thermal conductance at contacts betw...
BNC heteronanotubes are promising materials for the design of nanoscale thermoelectric devices. In particular, the structural BN doping pattern can be exploited to control the electrical and thermal transport properties of BNC nanostructures. We here address the thermoelectric transport properties of (6,6)-BNC heteronanotubes with helical and horiz...
Mass transport through graphene is receiving increasing attention due to the potential for molecular sieving. Experimental studies are mostly limited to the translocation of protons, ions, and water molecules, and results for larger molecules through graphene are rare. Here, we perform controlled radical polymerization with surface-anchored self-as...
In this work, we demonstrate the tunability of electronic properties of Si/SiO2 substrate by molecular and ionic surface modifications. The change in the electronic properties such as the work function (WF) and electron affinity (EA), were experimentally measured by contact potential difference (CPD) technique and theoretically supported by DFT cal...
Inorganic materials such as semiconductors, oxides, and metals are ubiquitous in a wide range of device technologies owing to the outstanding robustness and mature processing technologies available for such materials. However, while the important contribution of inorganic materials to the advancement of device technologies has been well established...
We use a nonlinear master equation formalism to account for thermal and disorder effects on spin-dependent electron transport in helical organic molecules coupled to two ideal leads. The inclusion of these two effects has important consequences in understanding the observed length and temperature dependence of spin polarization in the experiments,...
Chirality-induced Spin Selectivity (CISS) is a recently discovered effect, whose precise microscopic origin has not yet been fully elucidated; it seems, however, clear that spin-orbit interaction plays a pivotal role. Various model Hamiltonian approaches have been proposed, suggesting a close connection between spin selectivity and filtering and he...
Phonons play a major role for the performance of nanoscale devices and, conse- quently, a detailed understanding of phonon dynamics is required. Using an auxiliary-mode approach, which has successfully been applied for the case of electrons, we develop a new method to numerically describe time-dependent phonon transport. This method allows one to g...
When investigating possible molecular forms for next-generation electronics, the architectures and computing paradigms – either resembling those of classical electronics, or being entirely new - are often established a priori. Research on materials is a subsequent step, which aims to find, in the vast world of molecular materials, those most closel...
Controlling and improving the interfacial thermal conductance between graphene nanosheets plays a crucial role with respect to the preparation of highly thermal conductive nanomaterials and devices. In the present work, we investigate the effect of interfacial thermal conductance on molecule chains working as thermal bridge between two adjacent gra...
We combine ambient (air) and ultra-high vacuum (UHV) scanning tunneling microscopy (STM) and spectroscopy (STS) investigations together with density functional theory (DFT) calculations to gain a sub-nanometer insight into the structure and dynamic of two dimensional (2D) surface-supported molecular networks. The planar tetraferrocene-porphyrin mol...
The interaction of low-energy photoelectrons with well-ordered monolayers of enantiopure helical heptahelicene molecules adsorbed on metal surfaces leads to a preferential transmission of one longitudinally polarized spin component, which is strongly coupled to the helical sense of the molecules. Heptahelicene, comprised only of carbon and hydrogen...
The integrity of phonon transport properties of large graphene (linear and curved) grain boundaries (GBs) is investigated under the influence of structural and dynamical disorder. To do this, density functional tight-binding (DFTB) method is combined with atomistic Green's function technique. The results show that curved GBs have lower thermal cond...
The need to control the electronic properties of hydroxyl-terminated substrates such as Si/SiO2 or Indium-Tin oxide (ITO) is of great importance in both electronics and optoelectronics device applications. Specifically, the relevant electronic properties are the work function (WF) and the electron affinity (EA) of the substrate, which can be tailor...
The calculation of time-dependent charge and energy currents in nanoscale systems is a challenging task. Nevertheless it is crucial for gaining a deep understanding of the relevant processes at the nanoscale. We extend the auxiliary-mode approach for time-dependent charge transport to allow for the calculation of energy currents for arbitrary time-...
The calculation of time-dependent charge and energy currents in nanoscale systems is a challenging task. Nevertheless it is crucial for gaining a deep understanding of the relevant processes at the nanoscale. We extend the auxiliary-mode approach for time-dependent charge transport to allow for the calculation of energy currents for arbitrary time-...
Copper ions play a major role in biological processes. Abnormal Cu2+ ions concentrations are associated with various diseases, hence, can be used as diagnostic target. Monitoring copper ion is currently performed by non-portable, expensive and complicated to use equipment. We present a label free and a highly sensitive electrochemical ion-detecting...