Rafael Ballester-Ripoll

Rafael Ballester-Ripoll
  • PhD
  • Professor (Assistant) at IE University

About

34
Publications
4,579
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
520
Citations
Introduction
Current institution
IE University
Current position
  • Professor (Assistant)

Publications

Publications (34)
Preprint
Full-text available
Traditionally, the sensitivity analysis of a Bayesian network studies the impact of individually modifying the entries of its conditional probability tables in a one-at-a-time (OAT) fashion. However, this approach fails to give a comprehensive account of each inputs' relevance, since simultaneous perturbations in two or more parameters often entail...
Article
Full-text available
Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many computational science and engineering disciplines. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to their input parameters. The method performs dimensionality reduction on t...
Preprint
Full-text available
Sensitivity analysis measures the influence of a Bayesian network's parameters on a quantity of interest defined by the network, such as the probability of a variable taking a specific value. Various sensitivity measures have been defined to quantify such influence, most commonly some function of the quantity of interest's partial derivative with r...
Preprint
Full-text available
Sensitivity analysis measures the influence of a Bayesian network's parameters on a quantity of interest defined by the network, such as the probability of a variable taking a specific value. In particular, the so-called sensitivity value measures the quantity of interest's partial derivative with respect to the network's conditional probabilities....
Preprint
Full-text available
Collaborative filtering models generally perform better than content-based filtering models and do not require careful feature engineering. However, in the cold-start scenario collaborative information may be scarce or even unavailable, whereas the content information may be abundant, but also noisy and expensive to acquire. Thus, selection of part...
Article
We show how to apply Sobol’s method of global sensitivity analysis to measure the influence exerted by a set of nodes’ evidence on a quantity of interest expressed by a Bayesian network. Our method exploits the network structure so as to transform the problem of Sobol index estimation into that of marginalization inference and, unlike Monte Carlo b...
Article
We propose an algorithm to approximate the semivalues of general transferable-utility cooperative games that involve a large set of players 1,…,|N| and possibly depend on uncertain parameters. We first encode the game's utility function using a low-rank tensor decomposition, namely the tensor train (TT) model, which requires a limited number of fun...
Preprint
Full-text available
We show how to apply Sobol's method of global sensitivity analysis to measure the influence exerted by a set of nodes' evidence on a quantity of interest expressed by a Bayesian network. Our method exploits the network structure so as to transform the problem of Sobol index estimation into that of marginalization inference. This way, we can efficie...
Article
Full-text available
Sobol's method is one of the most powerful and widely used frameworks for global sensitivity analysis, and it maps every possible combination of input variables to an associated Sobol index. However, these indices are often challenging to analyze in depth, due in part to the lack of suitable, flexible enough, and fast‐to‐query data access structure...
Preprint
Full-text available
We propose an end-to-end trainable framework that processes large-scale visual data tensors by looking \emph{at a fraction of their entries only}. Our method combines a neural network encoder with a \emph{tensor train decomposition} to learn a low-rank latent encoding, coupled with cross-approximation (CA) to learn the representation through a subs...
Chapter
Full-text available
Tensor decomposition methods and multilinear algebra are powerful tools to cope with challenges around multidimensional and multivariate data in computer graphics, image processing and data visualization, in particular with respect to compact representation and processing of increasingly large-scale data sets. Initially proposed as an extension of...
Article
Full-text available
While color plays a fundamental role in film design and production, existing solutions for film analysis in the digital humanities address perceptual and spatial color information only tangentially. We introduce VIAN, a visual film annotation system centered on the semantic aspects of film color analysis. The tool enables expert‐assessed labeling,...
Article
Full-text available
Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for multidimensional data over regular grids. It leverages the higher-order singular value d...
Preprint
Insightful visualization of multidimensional scalar fields, in particular parameter spaces, is key to many fields in computational science and engineering. We propose a principal component-based approach to visualize such fields that accurately reflects their sensitivity to input parameters. The method performs dimensionality reduction on the vast...
Preprint
Full-text available
Memory and network bandwidth are decisive bottlenecks when handling high-resolution multidimensional data sets in visualization applications, and they increasingly demand suitable data compression strategies. We introduce a novel lossy compression algorithm for $N$-dimensional data over regular grids. It leverages the higher-order singular value de...
Article
Histograms are a fundamental tool for multidimensional data analysis and processing, and many applications in graphics and visualization rely on computing histograms over large regions of interest (ROI). Integral histograms (IH) greatly accelerate the calculation in the case of rectangular regions, but come at a large extra storage cost. Based on t...
Article
Following up on the success of the analysis of variance (ANOVA) decomposition and the Sobol indices (SI) for global sensitivity analysis, various related quantities of interest have been defined in the literature, including the effective and mean dimensions, the dimension distribution, and the Shapley values. Such metrics combine up to exponential...
Article
Full-text available
Following up on the success of the analysis of variance (ANOVA) decomposition and the Sobol indices (SI) for global sensitivity analysis, various related quantities of interest have been defined in the literature including the effective and mean dimensions, the dimension distribution, and the Shapley values. Such metrics combine up to exponential n...
Article
Full-text available
Sobol indices are a widespread quantitative measure for variance-based global sensitivity analysis, but computing and utilizing them remains challenging for high-dimensional systems. We propose the tensor train decomposition (TT) as a unified framework for surrogate modeling and global sensitivity analysis via Sobol indices. We first overview sever...
Preprint
Sobol indices are a widespread quantitative measure for variance-based global sensitivity analysis, but computing and utilizing them remains challenging for high-dimensional systems. We propose the tensor train decomposition (TT) as a unified framework for surrogate modeling and global sensitivity analysis via Sobol indices. We first overview sever...
Article
Signal processing and filter operations are important tools for visual data processing and analysis. Due to GPU memory and bandwidth limitations, it is challenging to apply complex filter operators to large-scale volume data interactively. We propose a novel and fast multiscale compression-domain volume filtering approach integrated into an interac...
Article
Most visual computing domains are witnessing a steady growth in sheer data set size, complexity, and dimensionality. Flexible and scalable mathematical mod- els that can efficiently compress, process, store, manipulate, retrieve and visual- ize such data sets are therefore of paramount importance, especially for higher dimensions. In this context,...
Conference Paper
Full-text available
Complex simulations and numerical experiments typically rely on a number of parameters and have an associated score function, e.g. with the goal of maximizing accuracy or minimizing computation time. However, the influence of each individual parameter is often poorly understood a priori and the joint parameter space can be difficult to explore, vis...
Conference Paper
Material reflectance properties play a central role in photorealistic rendering. Bidirectional texture functions (BTFs) can faithfully represent these complex properties, but their inherent high dimensionality (texture coordinates, color channels, view and illumination spatial directions) requires many coefficients to encode. Numerous algorithms ba...
Article
Tensor decompositions, in particular the Tucker model, are a powerful family of techniques for dimensionality reduction and are being increasingly used for compactly encoding large multidimensional arrays, images and other visual data sets. In interactive applications, volume data often needs to be decompressed and manipulated dynamically; when des...
Article
As modern high-resolution imaging devices allow to acquire increasingly large and complex volume data sets, their effective and compact representation for visualization becomes a challenging task. The Tucker decomposition has already confirmed higher-order tensor approximation (TA) as a viable technique for compressed volume representation; however...
Article
This paper studies the joint order batching and order picker routing problem in conventional multi-parallel-aisle picker-to-part order picking systems. It complements prior publications by considering a capacity constraint that is formulated as a function of total item weight, instead of item count. A mathematical model is formulated and a simulate...
Article
Task period selection is often used to adjust the workload to the available computational resources. In this paper, we propose a model where each selected period is not restricted to be a natural number, but can be any rational number within a range. Under this generalization, we contribute a period selection algorithm that yields a much smaller hy...

Network

Cited By