Radovan Krejci

Radovan Krejci
Stockholm University | SU · Department of Environmental Science (ACES)

PhD

About

281
Publications
52,197
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,887
Citations
Additional affiliations
January 2015 - present
Stockholm University
Position
  • Senior Researcher
Description
  • www.aces.su.se
November 2008 - December 2014
Stockholm University
Position
  • Researcher
January 2011 - December 2013
University of Helsinki
Position
  • Researcher
Education
February 1998 - September 2002
Stockholm University
Field of study
  • Atmospheric Science
September 1990 - June 1996
Charles University in Prague
Field of study
  • Geology & Geochemistry
September 1988 - June 1990
Gubkin Russian State University of Oil and Gas
Field of study
  • Oil and gas geology

Publications

Publications (281)
Article
Full-text available
In this study, we investigate atmospheric new particle formation (NPF) across 65 d in the Bolivian central Andes at two locations: the mountaintop Chacaltaya station (CHC, 5.2 km above sea level) and an urban site in El Alto–La Paz (EAC), 19 km apart and at 1.1 km lower altitude. We classified the days into four categories based on the intensity of...
Preprint
Full-text available
Boreal forests emit terpenoid biogenic volatile organic compounds (BVOCs) that significantly impact atmospheric chemistry. Our understanding of the variation of BVOC species emitted from boreal ecosystems is based on relatively few datasets, especially at the ecosystem-level. We conducted measurements to obtain BVOC flux observations above the bore...
Article
The Italian Po Valley is one of the most polluted regions in Europe. During winter, meteorological conditions favor long and dense fogs, which strongly affect visibility and human health. In spring, the frequency of nighttime fogs reduces while daytime new particle formation events become more common. This transition is likely caused by a reduction...
Article
Full-text available
The biogenic volatile organic compounds isoprene and α‐pinene are abundant over the Amazon and can be efficiently transported to the upper troposphere by deep convective clouds (DCC). We simulate their transport and chemistry following DCC updrafts and upper tropospheric outflow using a multi‐phase chemistry model with aerosol microphysics constrai...
Article
Full-text available
Atmospheric aerosol particles are essential for forming clouds and precipitation, thereby influencing Earth’s energy budget, water cycle and climate on regional and global scales. However, the origin of aerosol particles over the Amazon rainforest during the wet season is poorly understood. Earlier studies showed new particle formation in the outfl...
Article
Full-text available
Black carbon (BC) is a major component of submicron particulate matter (PM), with significant health and climate impacts. Many cities in emerging countries lack comprehensive knowledge about BC emissions and exposure levels. This study investigates BC concentration levels, identifies its emission sources, and characterizes the optical properties of...
Article
Full-text available
The aerosol particles serving as cloud condensation and ice nuclei contribute to key cloud processes associated with cold-air outbreak (CAO) events but are poorly constrained in climate models due to sparse observations. Here we retrieve aerosol number size distribution modes from measurements at Andenes, Norway, during the Cold-Air Outbreaks in th...
Preprint
Full-text available
In this study, we investigate atmospheric new particle formation (NPF) across 65 days in the Bolivian Central Andes at two locations: the mountain-top Chacaltaya station (CHC, 5.2 km above sea level) and an urban site in El Alto-La Paz (EAC), 19 km apart and at 1.1 km lower altitude. We categorize days into four groups based on NPF intensity, deter...
Article
Full-text available
Mixed-phase clouds (MPCs) are key players in the Arctic climate system due to their role in modulating solar and terrestrial radiation. Such radiative interactions rely, among other factors, on the ice content of MPCs, which is regulated by the availability of ice-nucleating particles (INPs). While it appears that INPs are associated with the prese...
Preprint
Full-text available
Black carbon (BC) is a major component of sub-micron particulate matter (PM) with significant health and climate impacts. Many cities in emerging countries lack comprehensive knowledge about BC emissions and exposure levels. This study investigates BC concentration levels, identify its emission sources, and characterize the optical properties of BC...
Article
Emissions from biomass burning (BB) occurring at midlatitudes can reach the Arctic, where they influence the remote aerosol population. By using measurements of levoglucosan and black carbon, we identify seven BB events reaching Svalbard in 2020. We find that most of the BB events are significantly different to the rest of the year (nonevents) for...
Preprint
Full-text available
The aerosol particles that provide cloud condensation and ice nuclei contribute to key cloud processes associated with cold-air outbreak (CAO) events but are poorly constrained in climate models due to sparse observations. Here we retrieve aerosol size distribution modes from measurements at Andenes, Norway during the Cold-Air Outbreaks in the Mari...
Article
Full-text available
Plain Language Summary Wildfires are large sources of aerosol particles and affect human health and climate. Aerosols from fires are transported long distances in the atmosphere and affect the aerosol and cloud properties at places far from the actual sources. In this study, we measured the long‐range transported (LRT) fire air masses from south‐ea...
Article
Full-text available
The chemical composition of PM10 and non-overlapping PM2.5 was studied at the summit of Mt. Chacaltaya (5380 m a.s.l., lat. -16.346950°, long. -68.128250°) providing a unique long-term record spanning from December 2011 to March 2020. The chemical composition of aerosol at the Chacaltaya Global Atmosphere Watch (GAW) site is representative of the r...
Article
Full-text available
We investigated long-term changes using a harmonised 22-year data set of aerosol light absorption measurements, in conjunction with air mass history and aerosol source analysis. The measurements were performed at Zeppelin Observatory, Svalbard, from 2002 to 2023. We report a statistically significant decreasing long-term trend for the light absorpt...
Article
The remoteness and low population in the Arctic allow us to study global environmental processes, where the analysis of indicators can provide useful information about local and distant pollution sources. Fresh snow represents a convenient indicator of regional and transboundary atmospheric contamination sources, entrapping aerosols, and particulat...
Article
Full-text available
Early growth of atmospheric particles is essential for their survival and ability to participate in cloud formation. Many different atmospheric vapors contribute to the growth, but even the main contributors still remain poorly identified in many environments, such as high-altitude sites. Based on measured organic vapor and sulfuric acid concentrat...
Article
Full-text available
Black carbon (BC) is a short-lived climate forcer affecting the Arctic climate through multiple mechanisms, which vary substantially from winter to summer. Several models still fail in reproducing BC seasonal variability, limiting the ability to fully describe BC climate implications. This study aims at gaining insights into the mechanisms controll...
Preprint
Full-text available
Mixed-phase clouds (MPC) are key players in the Arctic climate system due to their role in modulating solar and terrestrial radiation. Such radiative interactions critically rely on the ice content of MPC which, in turn, also depend on the availability of ice nucleating particles (INP). INP sources and concentrations are poorly understood in the Ar...
Article
Full-text available
This article aims to improve the understanding of the small-scale aerosol distribution affected by different atmospheric boundary layer (ABL) properties. In particular, transport and mixing of ultrafine aerosol particles (UFPs) are investigated as an indicator for possible sources triggering the appearance of new particle formation (NPF) at an Arct...
Article
Full-text available
The Arctic is one of the most rapidly warming regions of the globe. Low-level clouds and fog modify the energy transfer from and to space and play a key role in the observed strong Arctic surface warming, a phenomenon commonly termed “Arctic amplification”. The response of low-level clouds to changing aerosol characteristics throughout the year is...
Article
Full-text available
Interactions between atmospheric aerosols, clouds, and precipitation impact Earth's radiative balance and air quality, yet remain poorly constrained. Precipitating clouds serve as major sinks for particulate matter, but recent studies suggest that precipitation may also act as a particle source. The magnitude of the sources versus sinks, particular...
Article
Full-text available
Primary biological aerosol particles (PBAP) play an important role in the climate system, facilitating the formation of ice within clouds, consequently PBAP may be important in understanding the rapidly changing Arctic. Within this work, we use single-particle fluorescence spectroscopy to identify and quantify PBAP at an Arctic mountain site, with...
Article
Full-text available
La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. Located between 3200 and 4050 m a.s.l. (above sea level), these cities are home to a burgeoning population of approximately 1.8 million residents. The air quality in this conurbation is heavily influenced by urbanizati...
Article
Full-text available
Black carbon (BC) from anthropogenic and natural sources has a pronounced climatic effect on the polar environment. The interaction of BC with low-level Arctic clouds, important for understanding BC deposition from the atmosphere, is studied using the first long-term observational data set of equivalent black carbon (eBC) inside and outside of clou...
Preprint
Full-text available
The chemical composition of PM10 and PM2.5 was studied at the summit of Mt. Chacaltaya (5380 masl, lat.-16.346950º, lon. -68.128250º) providing a unique long-term record spanning from December 2011 to March 2020. The chemical composition of aerosol at the Chacaltaya GAW site is representative of the regional background, seasonally affected by bioma...
Article
Full-text available
Dimethyl sulfide (DMS), a gas produced by phytoplankton, is the largest source of atmospheric sulfur over marine areas. DMS undergoes oxidation in the atmosphere to form a range of oxidation products, out of which sulfuric acid (SA) is well known for participating in the formation and growth of atmospheric aerosol particles, and the same is also pr...
Article
Full-text available
Secondary organic aerosol (SOA) is formed through the oxidation of volatile organic compounds (VOCs), which can be of both natural and anthropogenic origin. While the hydroxyl radical (OH) and ozone (O3) are the main atmospheric oxidants during the day, the nitrate radical (NO3) becomes more important during the nighttime. Yet, atmospheric nitrate...
Preprint
Full-text available
Black carbon (BC) is a short-lived climate forcer affecting Arctic climate through multiple mechanisms, which vary substantially from winter to summer. Several models still fail in reproducing BC seasonal variability, limiting the ability to fully describe BC climate implications. This study aims at gaining insights into the mechanisms controlling...
Article
Full-text available
The role aerosol chemical composition plays in Arctic low-level cloud formation is still poorly understood. In this study we address this issue by combining in situ observations of the chemical characteristics of cloud residuals (dried liquid cloud droplets or ice crystals) and aerosol particles from the Zeppelin Observatory in Ny-Ålesund, Svalbard...
Article
Full-text available
New particle formation (NPF) in the tropical free troposphere (FT) is a globally important source of cloud condensation nuclei, affecting cloud properties and climate. Oxidized organic molecules (OOMs) produced from biogenic volatile organic compounds are believed to contribute to aerosol formation in the tropical FT, but without direct chemical ob...
Preprint
Full-text available
The Arctic is one of the most rapidly warming regions of the globe. Low-level clouds and fog modify the energy transfer from and to space and play a key role in the observed strong Arctic surface warming, a phenomenon commonly termed "Arctic amplification". The response of low-level clouds to changing aerosol characteristics throughout the year is...
Preprint
Full-text available
Black carbon (BC), the most efficient atmospheric aerosol for absorbing light in the visible spectrum, exerts a warming effect on a region undergoing unprecedented climatic changes. Here, BC is studied indirectly using filter-based methods to ascertain aerosol light absorption parameters. We investigated long-term changes using a harmonised 21-year...
Preprint
Full-text available
This article aims to improve the understanding of the small scale aerosol distribution affected by different atmospheric boundary layer (ABL) properties. In particular, transport and mixing of ultrafine aerosol particles (UFP) are investigated, as an indicator for possible sources triggering the appearance of new particle formation (NPF) at an Arct...
Preprint
Full-text available
Early growth of atmospheric particles is essential for their survival and ability to participate in cloud formation. Many different atmospheric vapors contribute to the growth, but even the main contributors still remain poorly identified in many environments, such as high-altitude sites. Based on measured organic vapor and sulfuric acid concentrat...
Article
Full-text available
Air ions are the key components for a series of atmospheric physicochemical interactions, such as ion-catalyzed reactions, ion-molecule reactions, and ion-induced new particle formation (NPF). They also control atmospheric electrical properties with effects on global climate. We performed molecular-level measurements of cluster ions at the high-alt...
Preprint
Full-text available
New particle formation (NPF) in the tropical free troposphere (FT) is a globally important source of cloud condensation nuclei, affecting cloud properties and climate. Oxidized organic molecules (OOMs) produced from biogenic volatile organic compounds are believed to contribute to aerosol formation in the tropical FT, but without direct chemical ob...
Preprint
Full-text available
Dimethyl sulfide (DMS), a gas produced by phytoplankton, is the largest source of atmospheric sulfur over marine areas. DMS undergoes oxidation in the atmosphere to form a range of oxidation products, out of which methanesulfonic acid (MSA) and sulfuric acid (SA) are well-known for participating in the formation and growth of atmospheric aerosol pa...
Article
Full-text available
The Arctic is a rapidly changing ecosystem, with complex ice–ocean–atmosphere feedbacks. An important process is new particle formation (NPF), from gas-phase precursors, which provides a climate forcing effect. NPF has been studied comprehensively at different sites in the Arctic, ranging from those in the High Arctic and those at Svalbard to those...
Article
Full-text available
The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance and hence the climate response in the region, yet direct obse...
Book
Full-text available
Popular science book about atmospheric aerosol particles in Sweden through the eyes of the Swedish environmental monitoring program at Swedish-EPA.
Preprint
Full-text available
Air ions are the key components for a series of atmospheric physicochemical interactions, such as ion-catalyzed reactions, ion-molecule reactions, and ion-induced new particle formation. They also control atmospheric electrical properties with effects on global climate. We performed molecular-level measurements of cluster ions at the high-altitude...
Preprint
Full-text available
The role aerosol chemical composition plays in Arctic low-level cloud formation is still poorly understood. In this study we address this issue by combining in situ observations of the chemical characteristics of cloud residuals (dried liquid cloud droplets or ice crystals) and aerosol particles from the Zeppelin Observatory in Ny-Ålesund, Svalbard...
Preprint
Full-text available
La Paz and El Alto are two fast-growing high-altitude Bolivian cities forming the second largest metropolitan area in the country, located between 3200 and 4050 m a.s.l. Together they host a growing population of around 1.8 million people. The air quality in this conurbation is strongly influenced by urbanization. However, there are no comprehensiv...
Article
Full-text available
The Arctic region is sensitive to climate change and is warming faster than the global average. Aerosol particles change cloud properties by acting as cloud condensation nuclei and ice-nucleating particles, thus influencing the Arctic climate system. Therefore, understanding the aerosol particle properties in the Arctic is needed to interpret and s...
Preprint
Full-text available
Secondary organic aerosol (SOA) is formed through the oxidation of volatile organic compounds (VOC), which can be of both natural and anthropogenic origin. While the hydroxyl radical (OH) and ozone (O3) are the main atmospheric oxidants during the day, the nitrate radical (NO3) becomes more important during the night time. Yet, atmospheric nitrate...
Article
Full-text available
Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investig...
Article
Full-text available
Deep convective clouds can redistribute gaseous species and particulate matter among different layers of the troposphere with important implications for atmospheric chemistry and climate. The large number of atmospheric trace gases of different volatility makes it challenging to predict their partitioning between hydrometeors and gas phase inside h...
Article
Full-text available
Predictions of cloud droplet activation in the late summertime (September) central Arctic Ocean are made using κ- Köhler theory with novel observations of the aerosol chemical composition from a high-resolution time-of-flight chemical ionization mass spectrometer with a filter inlet for gases and aerosols (FIGAERO-CIMS) and an aerosol mass spectrom...
Preprint
Full-text available
The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance, and hence the climate response, in the region; yet direct ob...
Preprint
Full-text available
The Arctic region is sensitive to climate change and is warming faster than the global average. Aerosol particles change cloud properties by acting as cloud condensation nuclei and ice nucleating particles, thus influencing the Arctic climate system. Therefore, understanding the aerosol particle properties in the Arctic is needed to interpret and s...
Article
Full-text available
In this study, we modeled the aerosol particle formation along air mass trajectories arriving at the remote Arctic research stations Gruvebadet (67 m a.s.l.) and Zeppelin (474 m a.s.l.), Ny-Ålesund, during May 2018. The aim of this study was to improve our understanding of processes governing secondary aerosol formation in remote Arctic marine envi...