
Active Comparison Based Learning
Incorporating User Uncertainty and Noise

Rachel Holladay
Robotics Institute

Carnegie Mellon University
rmh@andrew.cmu.edu

Shervin Javdani
Robotics Institute

Carnegie Mellon University
sjavdani@cmu.edu

Anca Dragan
EECS Department

University of California, Berkeley
anca@berkeley.edu

Siddhartha Srinivasa
Robotics Institute

Carnegie Mellon University
siddh@cs.cmu.edu

Abstract—Our goal is to facilitate better human-robot collab-
oration by enabling robots to learn our preferences. To learn
preferences, robots need to interact with users. We propose
using comparison based learning, which learns preferences by
asking a user to compare several alternatives. To minimize user
burden, we use active learning. A challenge of comparison based
learning is that it can be difficult for a user to say which item
they prefer. Forcing the user to provide a preference in these
cases leads to noisy responses, which increases the number of
needed queries. Our key insight is that users can identify difficult
comparisons and that we can use this information to learning
their uncertainty. We present CLAUS (Comparison Learning
Algorithm for Uncertain Situations), which model uncertainty
and uses it to select and process comparison queries. Our user
study suggests that CLAUS uses fewer queries than algorithms
which force users to choose, while maintaining nearly the same
accuracy.

I. INTRODUCTION

We want to work alongside robots partners that understand
and accommodate our preferences. To enable this, we need to
properly communicate these preferences.

One method of communication is to directly interact with
the robot, physically manipulating the robot to demonstrate the
preferred way of executing a task [9, 7, 31]. However, it can
be difficult and time consuming to provide demonstrations to
complex robots [36, 17] and nearly impossible in domains
such as swarm robotics [3]. To ease the former difficulty,
previous methods include mixing trajectory demonstrations
with keyframe poses [2] and using demonstrations to improve
existing trajectories rather than provide optimal examples [21].

Moving away from demonstrations for preference learning,
Daniel et. al [12] asked users to directly score robot perfor-
mance. An alternate method is to ask users to rank paths or
policies generated by the robot [17, 3].

Fürnkranz et. al [14] explored preference elicitation learning
when it is difficult to provide a real-valued reward and instead
easier to express a preference. This method of comparison
based learning captures that it is easier for users to express
these preferences relatively, rather than absolutely with a score.

Usually, comparison based learning presents the user with
two examples and asks the user which item they prefer [10].
We assume the user’s preferences are the result of optimizing
some unknown cost function. These pairwise preferences
induce a ranking in the space of possible cost functions [20].
This method of ranking or comparing for preference elicitation
was found to be more efficient and as least as accurate,
theoretically and empirically, as scoring individual labels [8].

Fig. 1: An example query, asking a user to compare the lengths of two lines.
Instead of forcing users to provide a comparison when they are not sure, we
enable them to inform the learner about their uncertainty through the middle
uncertainty button. The learner leverages this additional information in how
it updates the probability distribution over hypotheses. This results in making
fewer queries to the user.

Preference elicitation is often combined with active learn-
ing techniques. In active learning, the learner selects which
training data to use as queries. This is in contrast to passive
learning, where the learner receives whatever the user pro-
vides. In preference elicitation, active learning techniques can
be used to reduce the number of queries the learner needs to
make to the user [32]. Ailon [1] showed that active learning
combined with pairwise preference elicitation produces almost
optimal query complexity, performing strictly better than the
passive alternative.

While active comparison based learning is efficient and
user friendly, it needs to account for the fact that users are
not perfect when making these comparison [25]. Nowak [29]
handles noise by using a Bayesian model and assuming the
user is only probably correct. Guillory and Blimes [18] deal
with noise through repeat queries, eliminating a hypothesis
only after a user has confirmed their preferences multiple
times.

These approaches must make additional queries to account
for noisy responses because they ask the user to make a
decision when the user is uncertain. Not only are more queries
burdensome to the user, but particular questions make it
difficult to provide strict comparisons, frustrating the user [6].
Instead, users have reported that they would like to be able to
express their uncertainty in difficult to judge situations [18].

Incorporating this, Guo and Sanner [19] presented a model
where the user can express either that they prefer one item to
another or are indifferent between the two items. When a user

expresses indifference, this informs the model that the user’s
cost function of the two items is within some fixed value ε.
Hence, if the cost of two items is within some small ε, the
user is indifferent between the two. The model is evaluated
with simulated users that follow the model’s assumptions.

However, considering different people might have different
ε’s, it is nearly impossible to know the user’s true ε in advance.
We present a new method of learning in which we not only
learn the user’s cost function but also their level of uncertainty:
their unique ε. Our model, CLAUS (Comparison Learning
Algorithm for Uncertain Situations), accounts for the fact
that users can identify when questions are difficult, i.e. when
they are uncertain. Through a large user study, we show that
modeling this user uncertainty allows the model to ask fewer
queries.

As an example, perhaps the user prefers paths that are
shorter for some task. Our goal is to learn that preference.
If presented with the two paths in Fig.1, they may have a
difficult time assessing which path they prefer. In CLAUS,
we allow the user to specify that they are uncertain of their
preference on these items. This indicates to our algorithm that
user’s cost function has similar costs for these items, providing
useful feedback for learning.

Our work makes the following contributions:
1. CLAUS (Comparison Learning Algorithm for Uncer-

tain Situations). We describe and evaluate a comparison based
learning method that models user uncertainty, and utilizes a
query-dependent noise model rooted in psychology research.

2. Formulation within an Active Learning Framework
We frame CLAUS as an extension of EC2, an active learning
framework [16]. Importantly, this framework allows us to
model uncertainty with a latent variable that need not be
learned explicitly.

3. Evaluation with Real Users We conduct a large-scale
user study that compared CLAUS to a method that did not
model user uncertainty. Our results show that CLAUS required
fewer queries to achieve nearly the same accuracy.

II. PROBLEM FORMULATION

We assume that user preference corresponds to some cost
function, c∗ ∈ C, where preferred items have lower cost. Our
goal is to determine c∗ with the fewest queries.

A. Setup
We cast our problem in the general framework of Bayesian

active learning [16]. In this setting, we are given a discrete
set of hypotheses h ∈ H, and wish to distinguish among them
by performing a sequence of tests t ∈ T . Each test results
in some observation o ∈ O, giving us information about the
hypotheses. The objective is to quickly determine the true
hypothesis h∗ ∈ H.

In the simplest comparison based learning formulation, the
hypotheses are the cost functions, H = C. Each test is
composed of two items t = (x, y) that the user compares.
The user’s response to a test corresponds to some observation
o ∈ O, e.g. indicating that x >c∗ y or x <c∗ y. After
performing m tests and receiving observations, our evidence is
captured by the sequence of test-observation pairs S ⊆ T ×O,
where S = {(t1, o1), · · · , (tm, om)}.

In the noiseless setting, this problem has been formulated
as an adapative submodular maximization [15]. Here, an
objective function f is defined that is maximized if and only
if the true hypothesis has been determined. The goal is to
maximize f with the fewest tests. Importantly, if f is adaptive
submodular, then maximizing the expected gain in f with an
efficient greedy algorithm produces a provably near-optimal
solution [15]. This algorithm is given in Algorithm 1.

Algorithm 1 Greedy Test Selection

1: Given: Utility function f , Hypotheses H, Tests T
2: Initialize: Set Evidence so far S = ∅
3: procedure WHILE NOTDONE
4: best test = argmaxt∈T Eo[f(S ∪ (t, o))]
5: Execute best test, Receive Observation o
6: S = S ∪ (t, o)

If our goal is to determine h∗ ∈ H, and our test responses
are noiseless, we can utilize the objective defined by Gen-
eralized Binary Search (GBS) [28]. We review this in the
following section, and extend it to the noisy and uncertain
settings.

B. Test Selection

In the noiseless setting, we can gather information by
determining that hypotheses are inconsistent with the evidence,
e.g. the cost function does not agree with the user’s preference
response. If a hypothesis is determined to be inconsistent, we
say that it is removed. In GBS, the goal is to quickly find h∗

by removing all other hypotheses.
Let w(H | S) correspond to the probability mass of all

hypotheses still consistent with evidence. Maximizing the GBS
objective fGBS corresponds to maximizing the number of
hypotheses removed:

fGBS(S) = w(H)− w(H | S)

The total weight of all the hypotheses, given our evidence,
is the summed weight of all the hypotheses. The weight of
each hypothesis is the probability of the evidence given that
hypothesis.

w(H | S) =
∑
h∈H

w(h | S)

w(h | S) = p(S | h)

We assume that the sequence of test-observation pairs (t, o)
in S is independent:

p(S | h) =
∏

(t,o)∈S

p((t, o) | h)

In the noiseless setting, we assume the user always selects
the item that minimizes their cost function:

p((t, o = x) | h) =
{

1 ch(x) < ch(y)
0 else

0

0

1
P

(L
ef

t)

(a) GBS (Left)

0

0

1

P
(R

ig
h
t)

(b) GBS (Right)

−ε ε

0

1

P
(L

ef
t)

(c) CLAUS (Left)

−ε ε

0

1

P
(E

q
u
al

)

(d) CLAUS (Equal)

−ε ε

0

1

P
(R

ig
h
t)

(e) CLAUS (Right)

Fig. 2: User response model in the noiseless setting

− 1√
γ

0 1√
γ

0

1

P
(L

ef
t)

(a) GBS (Left)

− 1√
γ

0 1√
γ

0

1

P
(R

ig
h
t)

(b) GBS (Right)

− 1√
γ

0 1√
γ

0

1

P
(L

ef
t)

(c) CLAUS (Left) (d) CLAUS (Equal)

− 1√
γ

0 1√
γ

0

1

P
(R

ig
h
t)

(e) CLAUS (Right)

Fig. 3: Luce Sheppard noise model

C. Modeling User Noise
Unfortunately, users are not perfect evaluators of a cost

function, and treating them as such leads to poor learning
performance [6]. Many previous works account for noisy
responses in active learning frameworks [18, 33, 23, 29]. The
majority of these models apply the same level of noise to all
queries, e.g. constant probability of a noisy response.

While these models can lead to impressive theoretical
results [16, 18, 11], they do not accurately reflect real-world
human behavior [13, 34]. Instead, Du and Ling [13] suggest
that noise be query-dependent; that for some queries the
user will be confident and relatively noiseless, while in other
situations the user could be very unsure and therefore very
noisy. For comparison based learning, this suggests that noise
be related to the difference in costs of items in the query.

This query-dependent noise is supported in the psychology
literature. In particular, the Luce-Sheppard Choice Rule states
that users are evaluating a cost function subject to this kind
of noise [34, 27, 26]. Viappiani and Boutilier [35] derive a
logistic model based on the Luce-Sheppard Choice Rule, thus
creating a noise model for this paradigm. Akrour et al. [5]
formulate a similar query-dependent noise model, though they
don’t utilize the logistic model.

We model noise based on the Luce-Sheppard Choice Rule
where the probability of observation for a given test is:

p((t, o = x) | h) ∝ exp (−γch(x))

D. CLAUS
Most comparison based learning methods require that users

perform strict comparisons, stating that one item is better than
another [20, 8, 10, 30, 18, 24, 4, 5]. But what should the user
do when the items being compared are nearly equivalent? In
the case of strict comparisons, the user is likely to provide a
noisy response. While there have been noise models developed
to alleviate this, it often leads to additional queries [4, 5].

In prior works, users have reported that they often have
difficulty making a comparison, and would like the ability to

indicate uncertainty [18]. We hypothesize that allowing the
user to express their uncertainty will both increase user satis-
faction, and increase the efficiency of our learning algorithm.

We present CLAUS, Comparison Learning Algorithm for
Uncertain Situations, which models and accounts for that fact
that users will be uncertain about their preference when the
cost of the items being compared is close.

We model user uncertainty through a new parameter ε ∈ E.
Just as each user has their own cost function c∗, we assume
they have their own ε∗, such that if |c(x) − c(y)| < ε the
user is uncertain. Importantly, if the user expresses uncertainty,
this indicates that the user’s cost function c∗ assigns similar
cost to the items, enabling us to gather information about cost
functions.

In order to allow the user to express this uncertainty, we
have to modify our queries. Our tests still correspond to
showing the user two items, t = (x, y). However, we now
have three possible observations: O(t) = (x, y, x̃y), where x̃y
corresponds to expressing uncertainty.

To utilize this uncertainty model, we modify our hypotheses
to include ε, such that H ⊆ C ×E. Naively applying GBS in
this setting would correspond to learning a (c∗, ε∗) pair. While
ε is necessary for modelling the user responses, our objective
only corresponds to learning c∗. Learning ε∗ exactly may cause
us to perform more queries then necessary. Instead we want
to find the user’s c∗ for any viable ε.

We cast this problem as one of Equivalence Class Determi-
nation (ECD) [16], where the goal is not to determine the true
hypothesis, but rather to determine some equivalence class.
Each equivalence class corresponds to a set of hypotheses that
we do not need to distinguish between. We say an equivalence
class is determined when all remaining hypotheses are within
a single equivalence class. We adapt this framework in our
setting by creating an equivalence class for each cost function
c, to which we assign all hypotheses that have that cost
function c, and any ε.

To solve ECD, Golovin et al. introduced EC2 [16]. This
algorithm defines weighted edges between hypotheses in

Fig. 4: CLAUS using EC2. Each cost function c corresponds to an equivalence
class (blue ellipse). Hypotheses (black dots) are {c, ε} pairs. Hypotheses
sharing a cost c are said to be inside the equivalence class of c. The
algorithm constructs a graph, drawing an edge (black line) between hypotheses
in different equivalence classes. After performing a test and receiving an
observation, the evidence results in downweighting some hypotheses, which
in turn downweights the edges they connect to.

different equivalence classes. We say that an edge is cut
when either hypothesis it is connected to is removed. By
construction, we determine an equivalence class if and only all
edges have been cut. Fig.4 provides a visualization of applying
EC2to CLAUS .

We define a new objective function, fCLAUS, that optimizes
over edges, a ∈ A

fCLAUS(S) = w(A)− w(A | S)

The weight of all the edges given the evidence, is the sum
of weights over the edges:

w(A | S) =
∑
a∈A

w(a | S)

The weight of an edge is the product of the weights of the
hypotheses connected by that edge:

w(a | S) =
∏
h∈a

w(h | S)

From here w(h | S) is defined as it was in Sec. II-B.
Let ch be the cost function of the hypothesis, and εh is the

uncertainty parameter. In the noiseless setting, we assume user
response corresponds to:

p((t, o = x) | h) =
{

1 ch(x) < ch(y)− εh
0 else

p((t, o = x̃y) | h) =
{

1 |ch(x)− ch(y)|2 < ε2h
0 else

We extend this to model noise, stemming from the Luce-
Sheppard model from Sec. II-C.

p((t, o = x) | h) ∝ exp (−γ(ch(x)− ch(y)))

p((t, o = x̃y) | h) ∝ exp

(
− 1

ε2h
[ch(x)− ch(y)]2

)
c

Naively, we could compute this objective by iterating over
every pair of hypotheses. Thankfully, we do not need to do so,
as this computation is equivalent to computing an elementary
symmetric polynomial of order 2, which can be computed in
time linear in the number of hypotheses [16, 22, 11].

0.00 0.05 0.10 0.15 0.20

User’s True Epsilon

22

24

26

28

30

32

34

36

38

Q
u
er

y
C

o
u
n
t

GBS
2
4
6
8

Fig. 5: We compare the affect of the number of epsilons on CLAUS’s query
count across the user’s ε∗. We also show the query count of GBS. Note that
when the user expresses any uncertainty, ε∗ > 0, all CLAUS methods utilize
far fewer queries than GBS.

III. GBS VS CLAUS : SIMULATION EXPERIMENTS

We conduct several simulation experiments to test how al-
tering our noise and uncertainty parameters affects the quality
of the learning algorithms. Specifically we examined three
parameters: the number of epsilons, the noise parameter for
GBS and one of the noise parameters for CLAUS.

In CLAUS, we capture uncertainty through an epsilon
parameter, such that if two items are ε-close in cost, we model
the user as uncertain. For our algorithm, we first generate the
discrete set of epsilons E by linearly interpolating between
a minimum and maximum value. To test the effect of E on
our learning algorithm, we varied the interpolation rate and
recorded the query count for noiseless CLAUS across 100
trials each (Fig.5). As the number of epsilons increases, the
learning algorithm requires only slightly more queries, thanks
to the use of EC2which does not require learning the exact ε.

In noisy GBS and CLAUS, γ models the noise in the
user’s responses when selecting one test item. In order to
evaluate how robust the algorithm is to this parameter, we
simulate user responses with γu, and seed the model in our
noisy GBS algorithm with a different γl. We compare the
accuracy and query count in Fig.6. We see that the higher
γl generally corresponds to higher accuracy, though it also
requires a slightly higher query count. Nonetheless, the results
suggest it is better to model too much noise then not enough.

In noisy CLAUS, c models how likely the user is to express
uncertainty. In order to evaluate how robust the algorithm is to
this parameter, we simulate user responses with cu, and seed
the model in our noisy CLAUS algorithm with a different cl.
We compare the accuracy and query count in Fig.6. We see
that generally, it’s preferable to underestimate the c parameter,
which corresponds to underestimating how often the user will
express uncertainty. However, there is a lower limit as if γ = 0
then the model becomes GBS, since the model expects the user
to never express uncertainty.

For the user study in Sec. IV, we ran a small pilot study
and fit the noise parameters to user responses.

IV. USER EVALUATION OF GBS AND CLAUS

We compare GBS and CLAUS using our query-dependent
noise model (Sec. II-C) with real users. One challenge in eval-

0 2 4 6 8 10

User’s True Gamma

92

94

96

98

100
A

cc
u

ra
cy

4.00
5.64
7.00

0 2 4 6 8 10

User’s True Gamma

34.5

35.0

35.5

36.0

Q
u

er
y

C
ou

n
t 4.00

5.64
7.00

0.0 0.5 1.0 1.5 2.0

User’s True C

86
88
90
92
94
96
98

100

A
cc

u
ra

cy

0.50
1.04
1.50

0.0 0.5 1.0 1.5 2.0

User’s True C

24

25

26

27

Q
u

er
y

C
ou

n
t 0.50

1.04
1.50

Fig. 6: As part of our simulation experiments, we evaluate the robustness of our noise parameters. In the left two figures, we see the effect of varying the
learner’s γ as compared to the user’s true γ. On the right is the effect of varying the learner’s c compared to the user’s true c.

uating user preference learning is selecting a good evaluation
metric. User responses are noisy, making it difficult to get
ground truth test data to evaluate the quality of the learned
model.

To circumvent this and focus our assessment on the effect of
modeling noisy user responses and uncertainty, we ask users
to evaluate a well defined objective for which we know the
correct answer. For each query, users were shown two images
of black lines on a colorful background, and asked which line
is shorter. The set of possible cost functions C modeled both
the line length and the background colors. Our objective was
to learn the cost function c∗ ∈ C that assigned cost only to
line length, and ignored colors.

A. Experimental Setup

Procedure.
For both GBS and CLAUS, we randomly sample |C| =

10000 linear cost functions of the form c(x) = wTφx, where
φx corresponds to features dependent on path length and color.
For EC2, we also sample |E| = 6 epsilons, such that |H| =
|E| × |C|.

Users used GBS and CLAUS in a randomized order. When
using GBS, users could indicate which picture they believed
had the shorter line with buttons ’Left’ and ’Right’. When
using CLAUS, users had an additional button to express
uncertainty. We will discuss below how we test different
phrasings for this uncertainty button.

The study concluded with a few survey question comparing
experiences with each algorithm.

In the noiseless setting, we terminate the algorithm when
all hypotheses consistent with the evidence correspond to only
one c ∈ C. In the noisy setting, hypotheses are never declared
inconsistent, but only change in distribution. Therefore, we
select some threshold for our objective function given evidence
f(S) to terminate on.

Additionally, the classic GBS objective maximizes the
number of hypotheses declared inconsistent. However, we
are more interested in distinguishing between different cost
functions, an objective better captured by EC2. While these
are achieved at the same time in the noiseless setting, they are
different when modeling noise. In our experiments, instead of
using classic GBS, we utilize EC2where each cost function is
assigned to its own region, as this better captures our objective.

Hypotheses.
H1. The wording choice of the CLAUS uncertainty button

effects user’s preferences and performance.
H2. CLAUS, with the better performing uncertainty button

labeling, will require fewer queries than GBS.

H3. CLAUS, with the better performing uncertainty button
labeling, will be as accurate as GBS.

Manipulated Factor. Our study had two manipulated fac-
tors: algorithm and uncertainity labeling. The algorithms used
were GBS and CLAUS, implemented as described above.

With respect to the label of the uncertainty response, our
pilot studies revealed that different labels can lead to different
interpretations of what level of uncertainty is appropriate for
such a response. H1 states that how this uncertainty is labeled
and presented to the user will effect how the user views and
uses it. This, in turn, can effect performance. We decided to
test two alternatives: ‘About Equal’ and ‘I am not Sure’.

These capture two perspectives about uncertainty. ‘About
Equal’ communicates that the two items compared are so close
that the user cannot distinguish them. Hence, in the binary
setting, the user would be uncertain of which is better. ‘I am
not sure’ communicates that the user does not know how to
judge the two items or feels uncertain doing so. In the binary
case, the user would have otherwise felt at ease and probably
provided a noisy answer.

In both cases, for CLAUS with ‘About Equal’ and CLAUS
with ‘I am not Sure’, the algorithm remained unchanged.

Participants. We used a mixed design for subject allocation.
The algorithm factor was within-subjects, meaning that every
user saw both GBS and CLAUS. We chose this design so that
users can directly compare between the two. The uncertainty
labeling factor was between-subjects. We did this to insure that
the users’ understanding of uncertainty would not be biased
by what they saw first.

We recruited a total of 120 users (30 per condition) on Ama-
zon’s Mechanical Turk. After eliminating users who answered
a control question incorrectly, we had 111 users (56 female,
55 male, aged 18-69).

B. Analysis

The results regarding query count and accuracy, split by the
dependent measures, are shown in Table I and the CLAUS
parameters, such as the ε value and the number of times user’s
expressed uncertainty, are shown in Table II.

With respect to H1 we wish to see if the labeling of the
CLAUS uncertainty button effects performance, comparing
‘About Equal’ to ‘I am not Sure’. If one performs better than
the other we will declare this CLAUS labeling the best. Then
we will compare this best CLAUS labeling with GBS in terms
of the same performance metrics. Our performance metrics
are: user preference, as captured in our Likert data, query count
and accuracy.

In eliciting user preference we asked four Likert questions
where 1 corresponded to a preference of GBS and 7 corre-
sponded to a preference for CLAUS, with which ever label
the participant used. We asked which method the user enjoyed,
preferred, felt would learn best and trusted. The results can be
seen in Fig.7.

User responses showed that many people preferred the
variants of CLAUS to GBS since expressing their uncertainty
made them feel more confident in their answer, and gave
“some leeway, rather than a binary decision”. Some users
reported feeling “frustrated” when they couldn’t state the lines
where similar in length and “didn’t like being restricted”.

Those who liked GBS better enjoyed fewer buttons and
liked that they were forced into make a decision, although
they did admit it was harder and coerced them into examining
the query “with a sharper eye”.

With respect to H1, a t-test showed a marginal decrease in
query count for the ”About Equal” option, (t(110) = 1.77, p =
.0794). For accuracy, an equivalence test using TOST and a
3% threshold showed that the two options produce equivalent
accuracies, p = .0179.

The subjective measures were correlated, with Cronbach’s
α = .84. The effect of the question text on the combined
measure was not significant (t(110) = .65, p = .5144). An
equivalence test using TOST showed that the two options
produce preferences within 1 Likert point of each other,
p = .0152.

While the two manipulated factors were approximately
equal with respect to accuracy and preference, since ’About
Equal’ had a smaller query count, we determined this to be
the better labeling and proceeded to compare its performance
to GBS .

For H2, a repeated measures ANOVA for query count
resulted in a good fit of the data (adjusted R2 = .85) and
showed that CLAUS significantly reduced the number of
queries compared to GBS (F (1, 117) = 632.11, p < .0001).
The reduction compared to responses is plotted in Fig.8.

For H3, a repeated measures ANOVA for accuracy did not
yield as good of a fit (adjusted R2 = .19). It did suggest
that CLAUS had lower accuracy than GBS (F (1, 117) =
13.64, p < .001), reducing accuracy from a least squares mean
of 94.74 for GBS to 91.11 for CLAUS. Despite the poor fit
which indicates we have to take this result with a grain of salt,
it seems that reducing query count can come at the expense
of slight loss of accuracy.

TABLE I: Accuracy and Query Count

Category Accuracy Query Count
GBS - About Equal 94.15± 0.52 36.02± 0.03

GBS - Not Sure 94.66 ± 0.55 35.95± 0.04
CLAUS - About Equal 91.56± 0.84 25.93 ± 0.41

CLAUS - Not Sure 90.86± 0.74 26.98± 0.47

TABLE II: CLAUS Parameters

Category Marked Uncertainty Epsilon
About Equal 7.80± 0.70 0.07± 0.00

Not Sure 5.57± 0.71 0.06± 0.01

Enjoy Learn Trust Prefer
0

1

2

3

4

5

6

F
ro

m
G

B
S

to
C

L
A

U
S

About Equal I am not Sure

Fig. 7: The Likert data from the study showed that users narrowly favored
‘About Equal’ to ‘I am not sure’

Users
0

5

10

15

20

25

30

35

40

Q
u
er

y
C

o
u
n
t

Certain Response
Uncertain Response

Fig. 8: We categorize ’Certain Responses’ as ’Left’ or ’Right’ while an ’Un-
certain Responses’ as either uncertainty labeling. CLAUS uses the additional
information provided by each uncertain response to make fewer queries.

V. CONCLUSION

Comparison based learning traditionally forces users to
make comparisons between two options, even when those two
options are hard to compare and users would be uncertain in
their answer. Our key insight is that users can identify that they
are uncertain, and that we can leverage this additional informa-
tion to design learners that make fewer queries. We introduced
CLAUS, which models user uncertainty as occurring when the
two options are within an ε difference in cost. It then uses this
model when deciding on queries and on reweighing/removing
hypothesized cost functions.

We also account for user noise, drawing on previous work
and psychology models to develop our noise model. We ran a
user study, with results suggesting that our method asks fewer
queries while achieving almost the same accuracy level, as
compared to GBS.

We acknowledge that our uncertainty and noise models
may not perfectly model humans. However, their performance
suggests that despite their simplicity, accounting for human
behavior can lead to better human-in-the-loop machine learn-
ing techniques.

ACKNOWLEDGMENTS

This material is based upon work supported by NSF
1227495 and CMU’s SRC URO’s undergraduate research
grants. We thank the members of the Personal Robotics Lab
for helpful discussion and advice.

REFERENCES

[1] Nir Ailon. Active learning ranking from pairwise pref-
erences with almost optimal query complexity. In NIPS,
pages 810–818, 2011.

[2] Baris Akgun, Maya Cakmak, Karl Jiang, and Andrea L
Thomaz. Keyframe-based learning from demonstration.
IJSR, 4(4):343–355, 2012.

[3] Riad Akrour, Marc Schoenauer, and Michele Sebag.
Preference-based policy learning. In ecmlpkdd, pages
12–27. Springer, 2011.

[4] Riad Akrour, Marc Schoenauer, and Michèle Sebag.
April: Active preference learning-based reinforcement
learning. In ECMLPKDD, 2012.

[5] Riad Akrour, Marc Schoenauer, , Jean-Christophe Sou-
plet, and Michèle Sebag. Programming by feedback. In
ICML, 2014.

[6] Saleema Amershi, Maya Cakmak, W. Bradley Knox, and
Todd Kulesza. Power to the people: The role of humans
in interactive machine learning. AI Magazine, 2014.

[7] Brenna D Argall, Sonia Chernova, Manuela Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57
(5):469–483, 2009.

[8] Klaus Brinker, Johannes Fürnkranz, and Eyke
Hüllermeier. Label ranking by learning pairwise
preferences. Technical report, Citeseer, 2007.

[9] Sylvain Calinon and Aude Billard. Incremental learning
of gestures by imitation in a humanoid robot. In Pro-
ceedings of the ACM/IEEE international conference on
Human-robot interaction, pages 255–262. ACM, 2007.

[10] Ben Carterette, Paul N. Bennett, David Maxwell Chick-
ering, and Susan T. Dumais. Here or there: Preference
judgments for relevance. In ECIR, 2008.

[11] Yuxin Chen, Shervin Javdani, Amin Karbasi, J Andrew
Bagnell, Siddhartha S Srinivasa, and Andreas Krause.
Submodular surrogates for value of information. In AAAI,
pages 3511–3518, 2015.

[12] Christian Daniel, Malte Viering, Jan Metz, Oliver Kroe-
mer, and Jan Peters. Active reward learning. In RSS,
2014.

[13] Jun Du and Charles X Ling. Active learning with human-
like noisy oracle. In ICDM, pages 797–802. IEEE, 2010.

[14] Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng,
and Sang-Hyeun Park. Preference-based reinforcement
learning: a formal framework and a policy iteration
algorithm. Machine learning, 89(1-2):123–156, 2012.

[15] Daniel Golovin and Andreas Krause. Adaptive submod-
ularity: Theory and applications in active learning and
stochastic optimization. JAIR, pages 427–486, 2011.

[16] Daniel Golovin, Andreas Krause, and Debajyoti Ray.
Near-optimal bayesian active learning with noisy obser-
vations. In NIPS, pages 766–774, 2010.

[17] Artem Gritsenko and Dmitry Berenson. Learning task-
specific path-quality cost functions from expert prefer-
ences. 2014.

[18] Andrew Guillory and Jeff Bilmes. Simultaneous learning
and covering with adversarial noise. In ICML, 2011.

[19] Shengbo Guo and Scott Sanner. Real-time multiattribute

bayesian preference elicitation with pairwise comparison
queries. In AISTATS, pages 289–296, 2010.

[20] Eyke Hüllermeier and Johannes Fürnkranz. Comparison
of ranking procedures in pairwise preference learning. In
IPMU, 2004.

[21] Ashesh Jain, Brian Wojcik, Thorsten Joachims, and
Ashutosh Saxena. Learning trajectory preferences for
manipulators via iterative improvement. In NIPS, 2013.

[22] Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas
Krause, J Andrew Bagnell, and Siddhartha Srinivasa.
Near optimal bayesian active learning for decision mak-
ing. In AISTATS, 2014.

[23] Matti Kääriäinen. Active learning in the non-realizable
case. In Algorithmic Learning Theory, pages 63–77.
Springer, 2006.

[24] Amin Karbasi, Stratis Ioannidis, and Laurent Massoulie.
Comparison-based learning with rank nets. In ICML,
2012.

[25] Todd Kulesza, Saleema Amershi, Rich Caruana, Danyel
Fisher, and Denis Charles. Structured labeling for facil-
itating concept evolution in machine learning. In CHI,
2014.

[26] Christopher G Lucas, Thomas L Griffiths, Fei Xu, and
Christine Fawcett. A rational model of preference learn-
ing and choice prediction by children. In NIPS, pages
985–992, 2009.

[27] R Duncan Luce. Individual choice behavior: A theoret-
ical analysis. Courier Corporation, 2005.

[28] Robert Nowak. Generalized binary search. In Commu-
nication, Control, and Computing, Allerton Conference
on, pages 568–574. IEEE, 2008.

[29] Robert Nowak. Noisy generalized binary search. In
NIPS, pages 1366–1374, 2009.

[30] Kira Radinsky and Nir Ailon. Ranking from pairs
and triplets: information quality, evaluation methods and
query complexity. In WSDM, pages 105–114. ACM,
2011.

[31] Stefan Schaal. Learning from demonstration. Advances
in neural information processing systems, pages 1040–
1046, 1997.

[32] Burr Settles. Active learning literature survey. University
of Wisconsin, Madison, 52(55-66):11, 2010.

[33] Victor S Sheng, Foster Provost, and Panagiotis G Ipeiro-
tis. Get another label? improving data quality and data
mining using multiple, noisy labelers. In SIGKDD, pages
614–622. ACM, 2008.

[34] Roger N Shepard. Stimulus and response generalization:
A stochastic model relating generalization to distance
in psychological space. Psychometrika, 22(4):325–345,
1957.

[35] Paolo Viappiani and Craig Boutilier. Optimal bayesian
recommendation sets and myopically optimal choice
query sets. In NIPS, pages 2352–2360, 2010.

[36] Aaron Wilson, Alan Fern, and Prasad Tadepalli. A
bayesian approach for policy learning from trajectory
preference queries. In NIPS, 2012.

	Introduction
	Problem Formulation
	Setup
	Test Selection
	Modeling User Noise
	CLAUS

	GBS vs CLAUS : Simulation Experiments
	User Evaluation of GBS and CLAUS
	Experimental Setup
	Analysis

	Conclusion

