Rachael D Seidler

Rachael D Seidler
University of Florida | UF

PhD

About

261
Publications
40,268
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,812
Citations
Citations since 2017
108 Research Items
8187 Citations
201720182019202020212022202302004006008001,0001,2001,400
201720182019202020212022202302004006008001,0001,2001,400
201720182019202020212022202302004006008001,0001,2001,400
201720182019202020212022202302004006008001,0001,2001,400

Publications

Publications (261)
Article
Full-text available
For over 20 years, astronauts have lived and worked aboard the International Space Station. Astronauts face many challenges living in space, like not having Earth’s gravity. This means that astronauts do everything—from brushing their teeth to doing science experiments—while floating. Not having Earth’s gravity makes everything more difficult, and...
Preprint
Full-text available
Mobile brain imaging with high-density electroencephalography (EEG) can provide insight into the cortical processes involved in complex human walking tasks. While uneven terrain is common in the natural environment and poses challenges to human balance control, there is limited understanding of the supraspinal processes involved with traversing une...
Preprint
Full-text available
Microgravity alters vestibular signaling and reduces body loading, driving sensory reweighting and adaptation. The unloading effects can be modelled using head down tilt bedrest (HDT). Artificial gravity (AG) has been hypothesized to serve as an integrated countermeasure for the physiological declines associated with HDT and spaceflight. Here, we e...
Article
Full-text available
Spaceflight has numerous untoward effects on human physiology. Various countermeasures are under investigation including artificial gravity (AG). Here, we investigated whether AG alters resting-state brain functional connectivity changes during head-down tilt bed rest (HDBR), a spaceflight analog. Participants underwent 60 days of HDBR. Two groups...
Article
Full-text available
Spaceflight induces widespread changes in human brain morphology. It is unclear if these brain changes differ with varying mission duration or spaceflight experience history (i.e., novice or experienced, number of prior missions, time between missions). Here we addressed this issue by quantifying regional voxelwise changes in brain gray matter volu...
Article
Full-text available
Accuracy of electroencephalography (EEG) source localization relies on the volume conduction head model. A previous analysis of young adults has shown that simplified head models have larger source localization errors when compared with head models based on magnetic resonance images (MRIs). As obtaining individual MRIs may not always be feasible, r...
Article
The glymphatic system is a brain-wide network of perivascular pathways along which cerebrospinal fluid and interstitial fluid rapidly exchange, facilitating solute and waste clearance from the brain parenchyma. The characterization of this exchange process in humans has relied primarily upon serial magnetic resonance imaging following intrathecal g...
Article
Altered vestibular signaling and body unloading in microgravity results in sensory reweighting and adaptation. Microgravity effects are well-replicated in head-down tilt bed rest (HDBR). Artificial gravity (AG) is a potential countermeasure to mitigate the effects of microgravity on human physiology and performance. We examined the effectiveness of...
Preprint
Full-text available
Aging is associated with declines in walking function. To understand these mobility declines, many studies have obtained measurements while participants walk on flat surfaces in laboratory settings during concurrent cognitive task performance (dual-tasking). This may not adequately capture the real-world challenges of walking at home and around the...
Article
Full-text available
Mobility decline is a major concern for older adults. A key component of maintaining mobility with advancing age is the ability to learn and adapt to the environment. The split-belt treadmill paradigm is an experimental protocol that tests the ability to adapt to a dynamic environment. Here we examined the magnetic resonance imaging (MRI) derived s...
Article
Full-text available
IntroductionWhy do people help strangers? Prior research suggests that empathy motivates bystanders to respond to victims in distress. However, this work has revealed relatively little about the role of the motor system in human altruism, even though altruism is thought to have originated as an active, physical response to close others in immediate...
Article
Full-text available
Introduction People exhibit a strong attachment to possessions, observed in behavioral economics through loss aversion using new items in the Endowment or IKEA effects and in clinical psychology through pathological trouble discarding domestic items in Hoarding Disorder. These fields rarely intersect, but both document a reticence to relinquish a p...
Preprint
Full-text available
p>Accuracy of electroencephalography (EEG) source localization relies on the volume conduction head model. A previous analysis of young adults has shown that simplified head models have larger source localization errors when compared with head models based on magnetic resonance images (MRIs). As obtaining individual MRIs may not always be feasible,...
Preprint
Full-text available
p>Accuracy of electroencephalography (EEG) source localization relies on the volume conduction head model. A previous analysis of young adults has shown that simplified head models have larger source localization errors when compared with head models based on magnetic resonance images (MRIs). As obtaining individual MRIs may not always be feasible,...
Article
Full-text available
In the present cross-sectional study, we examined age and sex differences in sensorimotor adaptation. We tested 253 individuals at a local science museum (NEMO Science Museum, Amsterdam). Participants spanned a wide age range (8–70 years old; 54% male), allowing us to examine effects of both development and healthy aging within a single study. Part...
Article
Full-text available
We developed a method for altering terrain unevenness on a treadmill to study gait kinematics. Terrain consisted of rigid polyurethane disks (12.7 cm diameter, 1.3-3.8 cm tall) which attached to the treadmill belt using hook-and-loop fasteners. Here, we tested four terrain unevenness conditions: Flat, Low, Medium, and High. The main objective was t...
Preprint
Full-text available
Spaceflight has numerous untoward effects on human physiology. Various countermeasures are under investigation including artificial gravity (AG). Here, we investigated whether AG alters resting-state brain functional connectivity changes during head-down tilt bed rest (HDBR), a spaceflight analog. Participants underwent 60 days of HDBR. Two groups...
Preprint
Altered vestibular signaling and body unloading in microgravity results in sensory reweighting and adaptation. Microgravity effects are well-replicated in head-down tilt bed rest (HDBR). Artificial gravity (AG) is a potential countermeasure to mitigate effects of microgravity. We examined the effectiveness of daily AG for mitigating brain and/or be...
Preprint
Full-text available
Mobility decline is a major concern for older adults.A key component of maintaining mobility with advancing age is the ability to learn and adapt to the environment.The split-belt treadmill paradigm is an experimental protocol that tests the ability to adapt to a dynamic environment.Here we examined the magnetic resonance imaging (MRI) derived stru...
Article
Full-text available
A team of experts on the effects of the spaceflight environment on the brain and eye (SANS: Spaceflight-Associated Neuro-ocular Syndrome) was convened by NASA and ESA to (1) review spaceflight-associated structural and functional changes of the human brain and eye, and any interactions between the two; and (2) identify critical future research dire...
Article
Full-text available
Nearly 75% of older adults in the US report balance problems. Although it is known that aging results in widespread brain atrophy, less is known about how brain structure relates to balance in aging. We collected T 1- and diffusion-weighted MRI scans and measured postural sway of 36 young (18-34 years) and 22 older (66-84 years) adults during eyes...
Article
Full-text available
Some patients with Parkinson’s disease (PD) experience impulse control disorders (ICDs), characterized by deficient voluntary control over impulses, drives, or temptations regarding excessive hedonic behavior. The present study aimed to better understand the neural basis of impulsive, risky decision making in PD patients with ICDs by disentangling...
Article
Full-text available
Motor adaptations to the microgravity environment during spaceflight allow astronauts to perform adequately in this unique environment. Upon return to Earth, this adaptation is no longer appropriate and can be disruptive for mission critical tasks. Here, we measured if metrics derived from MRI scans collected from astronauts can predict motor perfo...
Article
Full-text available
Humans are exposed to extreme environmental stressors during spaceflight and return with alterations in brain structure and shifts in intracranial fluids. To date, no studies have evaluated the effects of spaceflight on perivascular spaces (PVSs) within the brain, which are believed to facilitate fluid drainage and brain homeostasis. Here, we exami...
Article
The ability to adapt to environmental and task demands while walking is critical to independent mobility outside the home and this ability wanes with age. Such adaptability requires individuals to acutely change their walking speed. Regardless of age, changes between walking speeds are common in daily life, and are a frequent type of walking adapta...
Article
Full-text available
Vibrotactile sensory augmentation (SA) decreases postural sway during real-time use; however, limited studies have investigated the long-term effects of training with SA. This study assessed the retention effects of long-term balance training with and without vibrotactile SA among community-dwelling healthy older adults, and explored brain-related...
Article
Objectives Complex walking in older adults can be improved with task practice and might be further enhanced by pairing transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex. We tested the hypothesis that a single session of practice of a complex obstacle negotiation task paired with active tDCS in older adults would p...
Article
The work of the wood harvest machine operator is an important variable for the performance of a forestry company, impacting the operation quality, productivity, and profit. However, the lack of skilled operators with the desirable profile for machine operation is a current challenge. This research proposes a method to evaluate the operational skill...
Preprint
Full-text available
We developed a method for altering terrain unevenness on a treadmill to study gait kinematics. We attached rigid polyurethane disks (12.7 cm diameter, 1.3-3.8 cm tall) to the treadmill belt using hook-and-loop fasteners. We tested four terrain conditions: Flat, Low, Medium, and High. The main objective was to test the hypothesis that increasing the...
Article
Full-text available
The altered vestibular signaling and somatosensory unloading of microgravity result in sensory reweighting and adaptation to conflicting sensory inputs. Aftereffects of these adaptive changes are evident postflight as impairments in behaviors such as balance and gait. Microgravity also induces fluid shifts toward the head and an upward shift of the...
Article
Full-text available
Aging is associated with declines in sensorimotor function. Several studies have demonstrated that transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, can be combined with training to mitigate age-related cognitive and motor declines. However, in some cases, the application of tDCS disrupts performance and lear...
Preprint
Full-text available
Spaceflight induces widespread changes in human brain morphology. It is unclear if these brain changes differ with varying mission durations or one's history of spaceflight experience (e.g., number of prior missions, time between missions). Here we addressed this issue by quantifying voxelwise post-flight changes in gray matter volume, white matter...
Article
Full-text available
Active exploration of novel spatial environments enhances memory for subsequently presented explicit, declarative information in humans. These effects have been attributed to novelty promoting dopamine release via mesolimbic dopaminergic pathways in the brain. As procedural motor learning has been linked to dopamine as well, we predict that novelty...
Article
Full-text available
Spaceflight induces lasting enlargement of the brain's ventricles as well as intracranial fluid shifts. These intracranial fluid shifts have been attributed to prolonged microgravity exposure, however, the potential effects of hypergravity exposure during launch and landing have yet to be elucidated. Here we describe a case report of a Crewmember w...
Preprint
Full-text available
Almost 25% of all older adults experience difficulty walking. Mobility difficulties for older adults are more pronounced when performing a simultaneous cognitive task while walking (i.e., dual task walking). Although it is known that aging results in widespread brain atrophy, few studies have integrated across more than one neuroimaging modality to...
Article
Full-text available
The split-belt treadmill has been used to examine the adaptation of spatial and temporal gait parameters. Historically, similar studies have focused on anterior-posterior (AP) spatiotemporal gait parameters because this paradigm is primarily a perturbation in the AP direction, but it is important to understand whether and how medial-lateral (ML) co...
Article
Full-text available
Astronauts returning from spaceflight typically show transient declines in mobility and balance. Other sensorimotor behaviors and cognitive function have not been investigated as much. Here, we tested whether spaceflight affects performance on various sensorimotor and cognitive tasks during and after missions to the International Space Station (ISS...
Preprint
Full-text available
Humans are exposed to extreme environmental stressors during spaceflight and return with alterations in brain structure and shifts in intracranial fluids. To date, no studies have evaluated the effects of spaceflight on perivascular spaces (PVSs) within the brain, which are believed to facilitate fluid drainage and brain homeostasis. Here, we exami...
Article
Microgravity alters vestibular signaling. In-flight adaptation to altered vestibular afferents is reflected in post-spaceflight aftereffects, evidenced by declines in vestibularly mediated behaviors (e.g., walking/standing balance), until readaptation to Earth’s 1G environment occurs. Here we examine how spaceflight affects neural processing of app...
Preprint
Full-text available
The split-belt treadmill (SBT) has been used to examine the adaptation of spatial and temporal gait parameters. Historically, SBT studies have focused on anterior-posterior (AP) spatiotemporal gait parameters because SBT is primarily a perturbation in the anterior-posterior direction, but it is important to understand whether and how ML control ada...
Article
Full-text available
Purpose Following prolonged stays on the International Space Station (ISS), some astronauts exhibit visual acuity changes, ophthalmological findings, and mildly elevated intracranial pressures as part of a novel process called spaceflight-associated neuro-ocular syndrome (SANS). To determine the pathophysiology of SANS, NASA conducted a multi-inves...
Article
Full-text available
Spaceflight has widespread effects on human performance, including on the ability to dual task. Here, we examine how a spaceflight analog comprising 30 days of head-down-tilt bed rest (HDBR) combined with 0.5% ambient CO2 (HDBR + CO2) influences performance and functional activity of the brain during single and dual tasking of a cognitive and a mot...
Article
Full-text available
Background While it is well-known that deficits in motor performance and brain structural connectivity occur in the course of healthy aging, it is still unclear if and how these changes are related to each other. While some cross-sectional studies suggest that white matter (WM) microstructure is positively associated with motor function in healthy...
Preprint
Full-text available
Astronauts returning from spaceflight typically show transient declines in mobility and balance. These whole-body postural control behaviors have been investigated thoroughly, while study of the effects of spaceflight on other sensorimotor behaviors is prevalent. Here, we tested the effects of the spaceflight environment of microgravity on various...
Article
Full-text available
Following long‐duration spaceflight, some astronauts exhibit ophthalmic structural changes referred to as Spaceflight Associated Neuro‐ocular Syndrome (SANS). Optic disc edema is a common sign of SANS. The origin and effects of SANS are not understood as signs of SANS have not manifested in previous spaceflight analog studies. In the current spacef...
Article
Full-text available
Astronauts on board the International Space Station (ISS) must adapt to several environmental challenges including microgravity, elevated carbon dioxide (CO 2 ), and isolation while performing highly controlled movements with complex equipment. Head down tilt bed rest (HDBR) is an analog used to study spaceflight factors including body unloading an...
Article
Full-text available
Brain markers of oxidative damage increase with advancing age. In response, brain antioxidant levels may also increase with age, although this has not been well investigated. Here, we used edited magnetic resonance spectroscopy to quantify endogenous levels of glutathione (GSH, one of the most abundant brain antioxidants) in 37 young [mean: 21.8 (2...
Article
A prominent trend in the functional brain imaging literature is that older adults exhibit increased brain activity compared to young adults to perform a given task. This phenomenon has been extensively studied for cognitive tasks, with the field converging on interpretations described in two alternative accounts. One account interprets over-activat...
Article
Full-text available
Astronauts are exposed to elevated CO2 levels onboard the International Space Station (ISS). Here, we investigated structural brain changes in 11 participants following 30-days of head-down tilt bed rest (HDBR) combined with 0.5% ambient CO2 (HDBR+CO2) as a spaceflight analog. We contrasted brain changes observed in the HDBR+CO2 group with those of...
Article
Age-related neural dedifferentiation – a decline in the distinctiveness of neural representations in the aging brain– has been associated with age-related declines in cognitive abilities. But why does neural distinctiveness decline with age? Based on prior work in non-human primates and more recent work in humans, we hypothesized that the inhibitor...
Article
Full-text available
Astronauts are exposed to microgravity and elevated CO2 levels onboard the International Space Station. Little is known about how microgravity and elevated CO2 combine to affect the brain and sensorimotor performance during and after spaceflight. Here we examined changes in resting-state functional connectivity (FC) and sensorimotor behavior associ...
Article
Emerging plans for travel to Mars and other deep space destinations make it critical for us to understand how spaceflight affects the human brain and behavior. Research over the past decade has demonstrated two co-occurring patterns of spaceflight effects on the brain and behavior: dysfunction and adaptive plasticity. Evidence indicates the spacefl...
Article
Full-text available
Age-related decline in executive function is associated with walking deficits in older adults. The main objective of this study was to better understand the cognitive control of obstacle negotiation in older adults by identifying predictors of prefrontal recruitment during the task. The study also examined the association between prefrontal recruit...
Article
Aboard the International Space Station (ISS), astronauts must adapt to altered vestibular and somatosensory inputs due to microgravity. Sensorimotor adaptation on Earth is often studied with a task that introduces visuomotor conflict. Retention of the adaptation process, known as savings, can be measured when subjects are exposed to the same adapti...
Article
Full-text available
Visual and auditory brain network connectivity decline with age, but less is known about age effects on vestibular functional connectivity and its association with behavior. We assessed age differences in the connectivity of the vestibular cortex with other sensory brain regions, both during rest and during vestibular stimulation. We then assessed...
Preprint
Full-text available
A prominent trend in the functional brain imaging literature is that older adults exhibit increased brain activity compared to young adults to perform a given task. This phenomenon has been extensively studied for cognitive tasks, with the field converging on interpretations described in two alternative accounts. One account interprets over-activat...
Preprint
Full-text available
Astronauts are exposed to microgravity and elevated CO 2 levels onboard the International Space Station. Little is known about how microgravity and elevated CO 2 combine to affect the brain and sensorimotor performance during and after spaceflight. Here we examined changes in resting-state functional connectivity (FC) and sensorimotor behavior asso...
Preprint
Emerging plans for travel to Mars and other deep space destinations make it critical for us to understand how spaceflight affects the human brain and behavior. Research over the past decade has demonstrated two co-occurring patterns of spaceflight effects on the brain and behavior: dysfunction and adaptive plasticity. Evidence indicates the spacefl...
Preprint
Full-text available
Importance Following long-duration missions onboard the International Space Station, some astronauts develop ophthalmic abnormalities collectively referred to as Spaceflight Associated Neuro-ocular Syndrome (SANS). Optic disc edema is a common sign of SANS. SANS presents significant potential risk to astronaut health and performance; however, the o...
Article
Full-text available
Background and Objectives The influence of inter-individual differences on brain activation during obstacle negotiation and the implications for walking performance are poorly understood in older adults. This study investigated the extent to which prefrontal recruitment during obstacle negotiation is explained by differences in age, executive funct...