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Abstract—A fall detection and classification system is crucial 

for reducing the severe consequences of falls, which account for 

the leading cause of accidents on construction sites. Wearable 

sensors are one of the technologies used to detect falls. Although 

much academic work has been dedicated to the study of this 

class of systems, little attention has been paid to the evaluation 

of simpler algorithms prior to training on complex ones. This 

study utilizes the open-source UP Fall Detection Dataset and 

proposes that effective data processing and simpler baseline 

models give better results for fall-direction classification. 

Several data-processing techniques like windowing and filtering 

are used prior to using simpler baseline models like Neural 

Network (NN), K-Nearest Neighbor (kNN), Support Vector 

Machine (SVM), Naïve Bayes (NB) and Discriminant Analysis 

(DA) Classifiers. It is also investigated how to minimize 

multisensor cost while achieving acceptable detection accuracy. 

Based on this robustness analysis, fine kNN and wide NN yield 

99.5% accuracy for all five wearable sensors. In comparison, 

using the best of these sensors (belt and pocket) results in 99% 

accuracy, with accuracy of all 11 individual activities exceeding 

93%. The findings of this study bode well for the development 

of real-world fall-prediction systems as they enable accurate fall 

direction identification. 
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I. INTRODUCTION 

Falling is often dangerous and could cause serious injury 
or even death if medical attention is not provided promptly. 
Fall monitoring systems with reliable and effective fall-
prevention features would reduce the incidence of serious fall-
related injuries and improve quality of life for those in the fall 
risk group. Although falls can be detected and classified in 
many different areas, the construction industry has especially 
high fall-accident-related workplace safety hazards due to the 
confined and complex work environment [1–3]. It has been 
found that a considerable amount of academic and commercial 
work has been concentrated on identifying fall events as 
accurate and fast as possible [4,5]. 

Over the last few decades, sensor-based technology has 
been widely used to monitor workers' safety and health [11], 
[12], as well as identify various activities [13,14], and the 
protective equipment (PPE) they wear [6,7], such as hard hats 
[8,9], and safety hooks [10]. Sensors are primarily used in 
studies related to FFH safety in order to identify unsafe 
behavior and prevent FFH injuries [15–17]. These sensors can 
also detect workers' movements and body postures [3,13]. 
Three major factors were taken into account by Yang et al. 
[14]: recognizing unsafe behaviors, processing data, and 
recognizing actions. Workers' unsafe behaviors reported by 
them that led to accidents were initially classified. While 
performing the lab experiment, they attached the sensor to the 
workers' bodies (waist) to collect data about their movement 

(acceleration and angular velocity). With the accelerometer 
data extracted, the support vector machine (SVM) 
methodology was used to predict (classify) the unsafe 
behavior of the worker. Nevertheless, the system's accuracy 
was 98.6% for predicting unsafe behaviors and 60.96% for 
predicting safe behaviors. The predictor system did not 
perform well when predicting behaviors associated with 
movements outside the training set because movements are 
highly complex and unpredictable at the site.  

Numerous wearable sensors-based datasets have been 
proposed for fall and normal action detection. [18] uses DLR 
dataset collected from an IMU accelerometer attached to a belt 
to detect falls and normal activities using Bayesian analysis. 
Consequently, it achieves 100% recall and 80% precision. 
[19] uses MobiFall dataset collected from smartphone inertial 
sensors in trouser pockets to detect various fall directions and 
normal actions using kNN, which yielded fall detection and 
classification accuracy of 99% and 83%, respectively. 
Vilarinho e al. [20] uses smartphone and smartwatch inertial 
data to classify 12 types of falls with an accuracy of 68%. 
Using accelerometers worn in two pockets on two 
smartphones, the tFall dataset in [21] is used to classify eight 
types of falls with an accuracy of 95%. Using 5 wearable IMU 
sensors' data, [22] proposes a large-scale UP Fall Detection 
dataset whose statistical features are extracted to achieve 
accuracy and precision of 95% and 74%.  

This study uses UP Fall Detection dataset and proposes a 
stable tilt angle-based data-processing approach, resulting in a 
significant increase in detection accuracy to 99.5%. 

II. DATASET OVERVIEW 

 This study uses benchmark UP Fall Detection dataset [22] 
for sensing the normal and fall activities using wearables.  The 
data is collected in controlled laboratory room. Five Mbientlab 
MetaSensor wearable sensors are used to collect raw data from 
the 3-axis accelerometer and the 3-axis gyroscope. These 
wearables are located in the left wrist, under the neck, at right 
pocket of pants, at the middle of waist (in the belt), and in the 
left ankle, as shown in Fig. 1. The sensor position has always 
been a challenge in fall detection and human activity 
recognition.  According to [23,24], waist, thigh (pocket), 
wrist, chest, foot are the preferred locations for accelerometers 
and accelerometers embedded in smart devices. The IMU in 
the left wrist simulates that the participant is wearing a smart 
watch. Whereas the IMU in the right pocket simulates the 
place for wearing a smart phone. The sensor positions are 
chosen considering a right-handed person.  The raw data of 3-
axis accelerometer and 3-axis gyroscope is acquired 
corresponding to the activities shown in Table I. 



 

Fig. 1. Position of 5 wearable sensors on workers’ body 

TABLE I.  LIST OF ACTIVITIES PERFORMED BY SUBJECTS WEARING 5 

WEARABLE SENSORS 

Activity ID Description 
Duration 

(seconds) 

1 Falling forward using hands 10 

2 Falling forward using knees 10 

3 Falling backwards 10 

4 Falling sidewards 10 

5 Falling while sitting 10 

6 Walking 60 

7 Standing 60 

8 Sitting 60 

9 Picking up an object 10 

10 Jumping 30 

11 Laying 60 

III. DATASET PROCESSING 

The methodology of worker activity recognition adapted 
on IoT sensor data comprises of five steps: 1) data acquisition, 
2) window selection 3) feature extraction, 4) feature selection 
and 5) machine learning (ML) based classification. Detailed 
description of these steps is presented in this section. 

A. Data Acquisition 

 The data acquired in UP Fall Detection dataset is from 6-
axis IMU sensors synchronized for 11 activities performed by 
17 healthy individuals, each making three attempts. The raw 
data of 3-axis accelerometer and 3-axis gyroscope is acquired 
corresponding to the activities shown in Table I. 

B. Window Selection 

To learn the temporal features of the raw data signals of 

IMU sensor, features are extracted from data of different 

window sizes. Windows of one, two and three seconds are 

chosen to analyze the accuracy of fall detection system. The 

data size is varied as per different window and overlapping 

settings as shown in Table II. 

 

 

 

TABLE II.  WEARABLE SENSORS DATA SIZE CORRESPONDING TO 

DIFFERENT DATA WINDOWING 

Window Size (seconds) Number of Data Samples 

0 294678 

1 68680 

2 67147 

3 65604 

C. Feature Extraction 

The accelerometer exhibits a high pitch on a small-scale 
movement owing to the noise while recording the data. 
Therefore, noise in the data is suppressed by using a low pass 
filter and a complimentary filter. The raw data signals within 
a certain window and overlapping setting are processed to 
obtain stable and compensated values. The raw data is as 
follows: 

1. Measurement of acceleration along the x-, y-, and z-axes 
by the accelerometer (accx, accy, accz). In the z-axis 
direction, the acceleration data reflect the acceleration 
due to gravity (+9.8 m/s2). 

2. Measurement of angular velocity along x- and y-axes with 
a gyroscope (gyrox, gyroy). When rotating 
counterclockwise around an axis, angular velocity is 
positive. 

These raw signals are processed as follows: 

1. The accelerometer's roll angle between z- and x-axes (also 
referred to as theta θ) in degrees, given by the following 
equation: 

Θ𝑎𝑐𝑐 =
−𝑎𝑡𝑎𝑛2(

𝑎𝑐𝑐𝑥
9.8

,
𝑎𝑐𝑐𝑧

9.8
)

2π
× 360                 (1) 

2. The accelerometer's pitch angle between z- and y-axes 
(also referred to as phi φ) in degrees, given by the 
following equation: 

Φ𝑎𝑐𝑐 =
−𝑎𝑡𝑎𝑛2(

𝑎𝑐𝑐𝑦

9.8
,
𝑎𝑐𝑐𝑧

9.8
)

2π
× 360             (2) 

3. Processed roll and pitch from the low pass filter, given by 
the following equations: 

Θ𝑙𝑝(𝑡) = (0.95 × Θ𝑙𝑝(𝑡 − 1)) + (0.05 × Θ𝑎𝑐𝑐(𝑡))    (3) 

Φ𝑙𝑝(𝑡) = (0.95 × Φ𝑙𝑝(𝑡 − 1)) + (0.05 × Φ𝑎𝑐𝑐(𝑡))    (4) 

4. Based on accelerometer and gyro measurements and the 
complementary filter, the tilt angle data is used to 
generate a quick and relatively vibrational-free response 
from the design system. 

Θ𝑐𝑜𝑚𝑝(𝑡) = (Θ𝑐𝑜𝑚𝑝(𝑡 − 1) + 𝑔𝑦𝑟𝑜𝑦(𝑡) × 𝑑𝑡) × 0.95 +

(Θ𝑎𝑐𝑐 × 0.05)                            (5) 

Φ𝑐𝑜𝑚𝑝(𝑡) = (Φ𝑐𝑜𝑚𝑝(𝑡 − 1) − 𝑔𝑦𝑟𝑜𝑥(𝑡) × 𝑑𝑡) × 0.95 +

(Φ𝑎𝑐𝑐 × 0.05)                            (6) 

The features computed in (3), (4), (5) and (6) are used for 

further training ML classifiers on workers' wearable sensors 

data. A machine learning model is then trained or tested using 

the extracted data features. 



D. Feature Selection 

ML models are trained by identifying the characteristics 

that separate the classes. To achieve high accuracy, this 

allows for the inclusion or exclusion of features. The 

accuracy of processed features was found to be higher than 

the accuracy of raw data. Both raw and processed features 

were used to train the model and to compare the evaluation 

metrics. 

E. ML Classification 

The machine learning (ML) models are trained on 

processed IMU data of fall & normal human activities, to 

make real-time predictions. Several classification models are 

trained with labeled data that contains ground truth before 

this classification and activity recognition task can be 

performed. The dataset is divided into two parts for training 

and validation in a 70:30 ratio. 

Existing research studies suggest that simpler learning 

models should be tried first before choosing a complex model 

for training so that there is a baseline for assessing 

performance. Furthermore, complex models are more likely 

to over-fit and consume a lot of resources [25].  Occam's razor 

[26] dictates that the simpler of the two methods is preferable 

if performance is similar between them. Therefore, simpler 

and common supervised machine learning classification 

algorithms are trained, which are listed as under: 

1. Neural Network Classifiers [27] 

2. k-Nearest Neighbor Classifiers [28] 

3. Support Vector Machine Classifiers [29] 

4. Naïve Bayes Classifiers [30] 

5. Discriminant Analysis Classifiers [31] 

IV. RESULTS 

A. Evaluation Metrics 

In this study, ML-based trained models are evaluated on 

the IoT data of wearable devices and are evaluated according 

to (7), (8), (9), (10) and (11) scores of recall, accuracy, 

precision, false-negative rate, and false discovery rate. The 

testing partition of the dataset demonstrates high accuracy. 

This is because the trend of tilt angle variation is distinctive 

in each class of various normal and fall relation activities. 

Hence, this distinction in features of safe and unsafe behavior 

results in high accuracy of the fall classification system. 

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒(𝑇𝑃𝑅) 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (7) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                         (8) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒𝑉𝑎𝑙𝑢𝑒(𝑃𝑃𝑉) 𝑜𝑟 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (9) 

𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒(𝐹𝑁𝑅) =
𝐹𝑁

𝑇𝑃+𝐹𝑁
              (10) 

𝐹𝑎𝑙𝑠𝑒𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦𝑅𝑎𝑡𝑒(𝐹𝐷𝑅) =
𝐹𝑃

𝑇𝑃+𝐹𝑃
             (11) 

In these formulas, TP denotes True Positive, FN denotes 

False Negative, FP denotes False Positive, and TN denotes 

True Negative. 

B. Evaluation Results 

The accuracy achieved on the 5 wearable sensors data 
corresponding to window size of 1-, 2- and 3-seconds is shown 
in the Table III. The results indicate that in most of the models 
accuracy increases when window size increases. The highest 
accuracy in less time on all 5 wearable sensors data is 99.5% 
achieved from wide neural network model, which stays same 
even if the window size is increased. 

TABLE III.  ACCURACY ON THE COMBINED 5 WEARABLE SENSORS 

DATA CORRESPONDING TO WINDOW SIZE OF 1-, 2- AND 3-SECONDS 

Model 

Accuracy 

Ankle + Neck + Pocket + Belt + Wrist 

1 sec 2 sec 3 sec 

Neural Network Classifiers 

Narrow NN 95.2 95.9 96.3 

Medium NN 98.8 99.1 99.2 

Wide NN 99.5 99.5 99.5 

K-Nearest Neighbor Classifiers 

Fine KNN 99.3 99.5 99.5 

Weighted KNN 99.2 99.4 99.4 

Support Vector Machine Classifiers 

Linear SVM 89.9 91.3 92.2 

Quadratic SVM 98.4 98.5 99.0 

Naïve Bayes Classifiers 

Gaussian NB 70.3 69.6 68.0 

Kernel NB 89.6 90.1 90.4 

Discriminant Analysis Classifiers 

Linear DA 71.3 72.5 73.5 

Quadratic DA 90.3 90.4 91.6 

 The contribution of individual sensor in distinguishing 11 
activities under consideration is also evaluated using the ML 
classifiers. This analysis is done to achieve high detection 
accuracy while decreasing the sensors count and hence the 
cost. Table IV shows the results on 1-, 2- and 3-seconds 
windowed data. It can be seen the sensors in pocket and belt 
give highest accuracy as compared to other wearable sensors. 

TABLE IV.  ACCURACY ON THE INDIVIDUAL 5 WEARABLE SENSORS 

DATA CORRESPONDING TO WINDOW SIZE OF 1-, 2- AND 3-SECONDS 

Model 

Accuracy 

Ankle Neck Pocket Belt Wrist 

1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 1 sec 2 sec 3 sec 

Neural Network Classifiers 

Narrow 
NN 

78.9 81.5 83.2 74.6 74.1 72.7 82.8 84.7 85.0 81.5 82.5 83.6 71.0 71.4 70.2 

Medium 
NN 

84.2 85.8 86.0 80.4 79.9 81.5 88.3 88.6 88.7 87.0 88.3 88.6 76.9 77.8 78.6 

Wide NN 87.7 88.6 89.3 83.4 85.1 85.7 92.3 93.3 93.4 90.9 91.8 93.0 83.2 82.8 84.4 

K-Nearest Neighbor Classifiers 

Fine 

KNN 

K=1 

93.3 94.3 94.5 92.1 93.0 93.4 95.9 96.3 96.3 94.9 95.3 95.8 90.9 91.5 92.1 

Weighted 

KNN 
K=10 

92.6 93.6 94.2 91.5 92.2 92.5 95.3 96.0 95.9 94.5 94.9 95.2 90.2 90.6 91.3 

Support Vector Machine Classifiers 

Linear 
SVM 

53.6 54.8 55.3 52.1 53.9 54.2 46.2 46.5 47.9 56.3 57.4 58.4 37.2 38.5 39.8 

Quadrati
c SVM 

65.4 71.0 68.3 65.2 65.8 66.9 48.2 48.4 49.8 61.9 62.1 63.2 52.1 52.7 53.7 

Naïve Bayes Classifiers 

Gaussian 

NB 
55.1 56.7 57.7 49.9 50.5 51.6 57.0 57.7 58.9 52.5 53.7 51.4 26.1 26.2 25.8 

Kernel 

NB 
76.7 77.4 78.5 68.6 67.2 70.5 78.8 80.7 80.7 77.5 78.2 79.6 66.0 67.4 67.9 

Discriminant Analysis Classifiers 

Linear 

DA 
49.7 50.5 51.7 26.5 26.3 26.9 41.8 42.8 42.9 38.0 38.3 39.2 44.3 46.7 43.3 

Quadrati

c DA 
59.4 60.2 61.5 51.4 51.9 53.9 66.5 68.0 68.9 56.3 58.6 58.7 28.7 29.6 29.7 

 After analyzing the individual contribution of wearable 
sensors in distinguishing the 11 activities, the data of 
significant sensors, i.e., sensors on belt and pocket, are fed to 
the ML classifiers. Table V shows that using wearable 
sensors on belt and pocket results in 99.0% accurate activity 
recognition while reducing the wearable sensor cost. The 
TPR, PPV, FNR and FDR scores of 11 activities trained on 



the highly accurate wide neural network are shown in Table 
VI. The corresponding confusion matrix is shown in Fig. 2. 

TABLE V.  ACCURACY ON BELT AND POCKET WEARABLE SENSORS 

DATA CORRESPONDING TO WINDOW SIZE OF 1-, 2- AND 3-SECONDS 

Models 

Accuracy 

Belt + Pocket 

1 sec 2 sec 3 sec 

Neural Network Classifiers 

Narrow NN 88.0 88.9 89.1 

Medium NN 95.0 96.3 96.1 

Wide NN 98.7 98.9 99.0 

K-Nearest Neighbor Classifiers 

Fine KNN 

K=1 
98.6 98.8 99.0 

Weighted KNN 

K=10 
98.2 98.6 98.7 

Support Vector Machine Classifiers 

Linear SVM 67.2 67.7 68.4 

Quadratic SVM 95.4 95.8 96.4 

Naïve Bayes Classifiers 

Gaussian NB 63.5 65.9 61.5 

Kernel NB 84.0 85.9 85.5 

Discriminant Analysis Classifiers 

Linear DA 39.0 39.3 40.2 

Quadratic DA 77.9 80.0 80.8 

TABLE VI.   EVALUATION METRIC SCORES OF 11 ACTIVITIES 

CAPTURED BY BELT AND POCKET WEARABLES AND TRAINED ON WIDE 

NEURAL NETWORK 

 

 

Fig. 2. Confusion matrix of 11 activities captured by belt and pocket 

wearables and trained on wide neural network model 

V. CONCLUSION 

      This study uses an open-source large-scale wearable 

sensors data to propose a stable tilt-angle based fall detection 

approach. Current detection techniques either rely on 

statistical features-based processing techniques prior to 

feeding the data to a machine learning detector algorithm, or 

they utilize complex models for fall detection. The proposed 

techniques extract stable tilt angle within a certain data 

window and uses simpler baseline models to achieve an 

accuracy up to 99.5%, which is the highest amongst all 

current approached. This study aims to provide a reliable, 

fast, and accurate fall and normal action detection approach, 

so as to ensure that in time medical attention is given in case 

of fall detection. 
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