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The method of calculating distributed polarizabilities is extended to the first and second dipole
hyperpolarizabilities, in order to describe more accurately the molecular response to strong and
inhomogeneous external time-dependent electric fields. The dipolar response is expressed in terms
of both potential related charge-density response functions and electric field related dipole-density
response functions. The macroscopic linear, quadratic, and cubic optical dipole susceptibilities of
molecular crystals are expressed in terms of the distribiimgaen polarizabilities. This formulation

differs from previous theories using distributed dipoles in that it allows for a rigorous treatment of
both local induced dipoles and charge flow between different regions of the molecule. As an
example, the distributed polarizabilities and first hyperpolarizabilities of urea at the
self-consistent-field level are used to calculate the linear and quadratic susceptibilities of the urea
crystal. The linear susceptibility does not differ substantially from that calculated with previous less
rigorous models for distributed response, but the quadratic susceptibility is about 50% of that
calculated with previous models. This indicates that the present treatment of distributed response
should give a quadratic susceptibility in good agreement with experimental data, once the effects of
electronic correlation, frequency dispersion, and the permanent crystal field are taken into account.
© 2000 American Institute of Physids50021-96060)30111-§

I. INTRODUCTION plied, and the same total response in a uniform field can give
different responses in nonuniform fields, depending on how
Quantitative understanding of the nonlinear optical re-it is distributed in space, as shown by calculations of linear
sponse of molecular crystals and other molecular materials issponse for model Langmuir—Blodgett fill$his situation
desirable for systematic development of optimized moleculafs analogous to that in tomography, where nonuniform fields
materials for nonlinear optiodNLO). Central to such under- are used to obtain information about the distribution of re-
standing is the molecular hyperpolarizability. Improvementssponse in the material under study.
in computing power and advances in techniques of quantum We have therefore sought to calculate the distributed hy-
chemistry have provided valuable insights into the factorgperpolarizability by extending Stone’s treatment of the dis-
that influence the hyperpolarizabilites of different moleculestributed polarizability? In Stone’s treatment the molecular
Studies of frequency dependence also inform about work ogharge distribution is expanded in a multicentered multipolar
resonance enhancement and re-absorption in NLO. series aroungatomig sites and one considers the changes in
However, much of this work has been performed on isothe site multipoles that are caused by changes in the external
lated molecules in uniform electric fields, which afford only potential. The induced molecular multipole moments of a
a first approximation to molecules in the material environ-given order can be exactly reproduced from the distributed
ment. In particular, the molecules are subject to large andontributions of the same order and from those of all lower
strongly varying electric fields caused by the permanentrders. In particular, the usual dipole polarizability contains
charge distributions of the surrounding molecules, and to loeontributions from charge flow between basins. Nonlocal
cal electric fields caused by electric moments induced on thdistributed hyperpolarizabilities are needed for a rigorous
surrounding molecules by the external field. Furthermore, théreatment not only of NL&but also of other propertiés.
response is not local within each molecule but involves con-  One technical problem that arises is that relating changes
tributions from flow of charge between different regions. Theof charge distribution to changes of potential, while conve-
total molecular response depends on the pattern of fields apient for calculations of interaction energies, does not yield
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the response coefficients customarily used in nonlinear opandp, is the permanent molecular dipole moment.

tics. These relate changes of multipole moment to changes of [Jsing time-dependent perturbation theory, Orr and
electric and magnetic field®oth of which must be present ward’ worked out a solution for the Fourier components of
in an electromagnetic way€eThis problem is resolved by a p(t) up to third order in the perturbation, i.e.,

suitable choice of gauge. We therefore derive sets of hyper-

polarizabilities in both schemes, in order to provide input  p(w)=p®(w)+p?(w)+p®(w). (4)
suitable for interaction energies as well as for nonlinear op- - - -
tics. Particular termp™(w) (i=1,2,3), are characterized by the

Once the distributed hyperpolarizability is obtained, 'tfrequenmes involved and the dependence on the perturba-
must be incorporated into a suitable theory for the materla{Ion e.g., for a third-order process

response. Theories have been developed for molecular

crystal$ and for ordered Langmuir—Blodgett filfisThese P ()= V(w)V(wy)V(w3), (5)
go beyond the point-dipole approximation to allow for dis- B
tributed dipoles. However, they do not allow for the distrib-
uted charges necessary to treat charge flow between atomic
basins, as described by the distributed response coefficientghereV(w) denotes a Fourier component of the perturbation
Hence it is necessary to generalize the previous treatments {f(t). The equations for thp(')(w) are

incorporate not only induced dipoles but also induced

w=w1+w2+w3, (6)

charges in each basin, both of which contribute to the inter- (P)oi(V®);
1) _ I jo
nal electric fields and to the macroscopic polarization fromp'”(w)=—1([p,~w],[V,0]) - 7 ; oo (7)
which the nonlinear optical susceptibilities follow. This is ) 10
done for the case of a molecular crystal, where suitable re-
definitions al Its to be obtained that are similar inp( 1 v
efinitions allow results to be obtained that are similar inp(w)=K_,, wzml([P,—w]'[V,wﬂ,[V,wz])
algebraic form to those obtained previously for dipoles
alone. Tw ©
(Poi{V1k(V“20 ®
Il THEORY iko (wjo—w)(w— )’
A. The distributed (hyper )polarizabilities of a PP (w)=—K_, oy gy
molecule -
. . . . . 1 _ _
Consider an isolated molecule interacting with an elec- > | ol IV 010V 017V @
tromagnetic field. In the semiclassical approach the field is 67° (tp.mell bl 2l 3
not quantized and can be characterized by the electrical po- N w5
tential ¢(r,t) and the vector potentia(r,t), obeying the « (Poi{ V1V 2V )10
Maxwell equations, while the molecule is described by the j k10 (00— @) (wk— W~ w3) (W~ w3)
methods of quantum mechanics. The Hamiltonian of the sys- . . "
tem can be written a$i(t)=H,+V(t), whereH, is the 2 (Prok( VDol V2 ai(V 3o ©
Hamiltonian of the unperturbed molecule, with eigenfunc- 20 (wo— ) (w9~ w3) (W g+ wy) |’
tions [j), and V/(t) is the time-dependent interaction or per- .
turbation term: where(V) = (j|V(0)|K), (V)mn={(V)mn= mn{V) 00, and
N omo=(En—Ep)/h. The operatot([a,w,],[b,wp],...) gen-
V(t)=2 i(é\([i ) pi+pi-Ar 1) erates additional terms by permuting the quantitgs...,
=1 [2m - together with the frequencies, ,wy,,... in allpossible ways,
¥ and theK—wl,wZ,... denote numerical factors depending on
+ A H)2—gio(r; b |, (1) the number of zero and repeated frequencies in the set
2m; w1,w,,.... Thevalues ofK for different processes are given

whereq;,m; ,r;i,p; are the charge, mass, space coordinatedn the Appendlx of Ref. 7. Damping effects have been ne-
and canonical momentum of thth particle of the molecule. 9lected in Egs(7)—(9), which means that the frequencies of

Interaction effects with spin have been neglected. the external fields should be far away from any resonance.
We are interested in the induced molecular dipole mo-  The derivation is not restricted to the electric dipole po-
mentp(t), which is given by larization, but is equally suited for the calculation of electric
- polarizations of higher multipolar order and for magnetic
_ 3 N polarization as well, by using the respective operators instead
P(t)_f d*r £ (ug(DIA(EB (1) ~ o, @ of the electric dipole operatqp.

where (1) is the perturbed ground state wave function, In order to introduce the distribution scheme, the volume
p(r,t) is the molecular charge density operator ) occupied by the molecule is partitioned, in a way yet to be

specified, intang disjoint volumes) ¢, with no voids, so that

2= qor—r.). 3 Q:_EZilQS. The potentialsA(r,t) and 4(r,t) inside each

i=1 partial volume can be expanded around an interior pint
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” 1 leads, by using Eq913) and (14) with the corresponding
A0 =2 Gy(r) 2 —[r=r]Mn]VMg(rs.t), expansions of(r,t) andB(r,t), to the generalized Bloch
s n=0t 10 potentials:
- o1
1 B(r,t)=o(ro,t)+ >, Gq(r — VIUE(rg t
A= Gyn) 2 —[r—r ] ]V VA, SR =(ro )+ Go(r) X, VI UE(r,
S n=0 .
19 [n1([—rs]™=[r =), (16)
where the expressioal"! indicates am-fold tensor(outer 2 n+1
produc} of the vector quantitya, and[n] denotes am-fold AB(r,t)=2>, Gg(r)>, 2! [VI'B(rg,t)
tensor contraction. The quantity s n=0 ‘
Gur)=1 if r lies in Qg ®(r—rglnir—rst, (17)
=0 otherwise (12) where ¢(rq,t) is the potential at the molecular origin,

=(0,0,0). For the derivation of E416) we used the follow-
and hence picks out values ofthat lie inside the chosen ing expression for the first expansion term of H@0),
volume Q. &(rs.t):
The interaction between molecules and electromagnetic =
radiation may also be expressed in terms of the magnetic and _ n n—1
electric fieldsB(r,t) andE(r,t), respectively, instead of the ¢([S’t)_¢([°’t)+§1 H[_[S][ Ty HE(Ls .
potentials. The connection between the fields and the poten- (18

tials is given by This equation is proved in Appendix A. Due to the freedom

9 of choice for the point of origin of the potentiah(ry,t) can
E=-Vé-——. (13)  be set to zero for an isolated molecule, but has to be retained
in general, e.g., if intermolecular interactions are considered.
B=V®A. (14 According to Eqs(16) and(17), in the Bloch gauge the

. B . . .
There is freedom in the choice of the potentials, as the gaug%ector potentialA® is determined solely by the magnetic

transformation of the potentialss’ =d¢— af/dt,A’=A f|'elds'l§ while ¢B depends only on the electr'ic fiekel This.
+V*, wheref(r,t) is the gauge function, does not Ch;ingesmpllfles the separat_e treatment of magnetic an(_JI elec_tnc ef-
the fieldsE andB. A convenient gauge for our purpose usesfects and contrasts with other_ gauge transformations like the
the transformation considered by Blot the form used by Coulomb gauge, wher€ ¢=0 in vacuoandA depends both
Lazzeretti® and implicitly by Barron and Gra}f Here, the onE andB. The Coulomb gauge has often been usgd, for
expansions of the potentials in Eq40) and (11) are com- example, by Maaskant and Oostertibffor the calculation

pared with the corresponding Taylor series for the electricof polarizabilities and hyperpolarizabilities that occur in the

and magnetic fields. The original treatment was restricted téheory of opt;cal rotart]ory pOWer. Inftf;}e fcillow'mg, we W'”
a single expansion centeg, which is taken to be the origin, restrict ourselves to the treatment of the electric interactions,

and must be generalized to a multicenter expansion at th%m the magnetic effects can essentially be treated along the
centersr.. Choosing the gauge functidras same lines, taking into account that the term quadrati@ in
=S has to be treated as a second-order perturbation term.

B B 1 (n-1] In the approximation considered, the Fourier compo-
fE(r.n= _ES GS([)nZl T VA nents of the induced dipole momepfw) can generally be
expressed by nonlocéhypeppolarizability densities with re-
[n][r—rg]t™ (15  spect to the Fourier components of the potentials:

|
1
()= [ & [ @ atte—wit' )bt w1+ 5 [ o [ [ @k, .,

1
X@"S(L—w:t',wl,z",wm(r',w1)¢<z",wz>+gfd3ffd3r'fdgr"fdsrm

X K*w,wl,wz,w3ﬂ_y(b([!_w;[riwl![,’1w21fllllw3)¢([,vwl)d)(t”va) d’([mawB)! (19)

where the polarization density response functiong?(r,—w;r’,»), B%*r,—w;r’',0;,r",w,), and y(r,
—w;r’ w1, 0,,1'",w3) are the polarizability, first hyperpolarizability, and second hyperpolarizability densities, respec-
tively, which describe the response of the molecular charge distribution to applied external potentials.

More customarilyp(w) is expressed by response functions with respect to the Fields
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1
9(w)=f d3rJ d3r’QE(L—w;z’.w)-E([’,wHEf d3rJ d3r’J K00,
1
X[_;E([!_w;[,1w1![”!wZ):E([”va)E([I!w1)+gf dsrf dsr,f dsr”f d3rll/
XK 0 s0p05Y (1= 031 01,1 02,1, 03) (E(1", 03) E(I", 0,) E(I', 01). (20)

Note that in treatments of nonlinear optics in molecular ma-

terials, the numerical factors in these two equations are ofteg(2>(w) == K_a, g .0y Z
omitted, leading to the so-called perturbation series conven-

tion or B conventiont?
With Egs. (10) and (16), the matrix elementgV®);
=[d3 (r,w){j|p(r)|k) that occur in Eqs(7)—(9) for a

D (B~ wi01,00)

Ssls//
ny,n2=0 gg g”

2

1nqn
Bssrlsrrz( —w, wlw2)]

[N+ o] VI g(re, ) VIMg(re  01),  (27)

neutral molecule can be written in the distributed scheme in

terms of the potential or in terms of the fields as

<Vw>1k_2 Z

<M[“]>,k[n]v[”1¢(rs,w> (21)

1
=2 2
[NV YE(rs,w), (22)

where the distributed moment matrix eleme(t.™);, are
defined by

(—1)M(agy = (M) ]

<M£“]>J-k=J d3r Go(r)(r—ro)"(j|p(r)|k)

—<J|Z G

We use the symbokgs)ix=(MN, (ws)=(MLH)y for

) ai(ri—roMk). (23

the (transition or permanenmoments of charge and dipole,

respectively, in volume).

The matrix elementgp); can be expressed in terms of ,8m1n2

the distributed moments as

<E)>jk=J d3r23 Gs(D)[rs+(r—roXilp(r)lk)

:23 ([s(qs>jk+<Hs>jk)- (24)

This is the generalization of a statement made by Sttira
the (induced or permanenmolecular dipole momenp is

the sum of distributed charge and dipole terms:

=2 (Tls+ ig). (25)

S

With Egs. (24) and (21) the p™(w) (i=1,2,3) of Egs.

(7)—(9) can be expressed as
PM(w)=— 2 > [Isaey(—0;0)+agl(—w;0)]
- n=0 g¢

[n]Y[n]d)([S’ 1w)1 (26)

i > Irs

ng,n, ’nS:O ss's”s"”

1
(3 =__
P (w) 6 wa,wl,wz,wg

0ngnyng

ss's"s" ( —w; w1,Wo, wS)

1nynyng
S s! SH S!/!

Vg1, w3)
V2lg(re,w) V(g 01), (28)

(—w,w1,0,,03) ][N+ N+ N3]

where the distributed polarizabilities and hyperpolarizabili-

ties are given by

" (—w; w)——l([M[”,—w].[M[” ])

SS’ s/

MUy My
2 < s >0]< s >0J, (29)

j#0 Wjo— @

SS’S’/(_w;wl’wz)

1 .
= 1M =0l Mg 0] Mg 0,])

i [nq] [ns]
<M[sl]>0|<M " YikM "2 Yko

s

>

_ : (30
j.k#0 (wjo

o)(w— wy)

in{nyng

SS’S"S’”( - w’ wl 1w2 ? (l)3)

2]1[M[n3] w3])

s !

= UMY~ 0] [V 0, (ML

s ! s !

(ML oMUy (M2, (el

g s

j k0 (wjo— ) (W= W~ w3) (W)~ w3)

(MEDo MUy (MU o (M3,

s s

- > . (3

ikzo (oo~ w)(wp— wz)(wpt wy)

In terms of the electric fields and their gradients, we find
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pP(w)=2 D [rsads(—w;0)+aki(—w;0)]
N n=1 sg

[n] Y[nil]l_z([s’ ),

<2><w>——K,M1 oy, 2 2 [1BINA— wi01,0)

SSIS”
npnp=1sgg”

uniny
B

ss’'s” (_w;wlin)]

[N +n,] V"2 UE(rg, ) VIM YE(rg ,@q),

Distributed hyperpolarizabilities 6165

§ > Irs

9(3)(w):

K*w,wl,wz,wS

6 Ny.N2.n3=1 gg'¢"g"”
aningng, .
SSISHSIH( w!wlin’ws)
Mn1nang .
ss's"s" ( T W,w,W3, wS)]

[N+ no+ng] VINIE(rgn,05) VI2IE(rgr, w,)
VIME(rg @), (34)

with the new response coefficients related to the previous

(33 ones b
y
J
Mn_ _ . \[n] 35
Qg = ( Is ) ass’+ass” ( )
Mnin 00 ion in;0 inin
ﬁssr;rrzz(_[s/)[nl](_[S//)[nZJIBISS/S’/_(_[S/)[nl]ﬂssr;r_(_rS”)[nZ]ﬂs;su Bss:rlsfv (36)
Mnqin,n {000 io0n ion,0
Ssr;/rszwsz - ( - [S’)[nl]( - [S’)[nz]( - [S’)[HS] ylssrsrrsrrr+ ( - [S’)[nl]( - [S”)[nZ] ’ySS’SES"’—'— ( - [S’)[nl]( - [S’”)[nS] ySS’i”S’"
in,00 ionyn in,0n inyn,0 inqnon
+ ( - [S, )[n2]( - [S”/)[ns] ’ySS:ILSHSIH - ( - [S, )[nl] ’ySS/ i’/;ﬂ/ - ( - [S”)[nz:l ’)’SS}SII:/II - ( - [S,”)[ns] ’ySS:ILSI?SIN SS:,LSESIs, (37)
[
wherei=0 for M=q andi=1 for M= and the frequency

dependencies have been dropped for convenience. These Z(_w§w11w21w3)—
equations show the relationship between the response func-

Z [rSySs’s/'s///( w, 0)1,0)2,(1)3)
ss's”
g

tions with respect to the fields and those with respect to

potentials.

For neutral molecules, the distributdttypeppolariz-
abilities defined in Eqs(29)—(31) obey the following sum
rules:

n0

2 ass’ 2 ago =0, (38
oniny nony

2s Bsgs = 2 Bsgsr = 39

S 0n1n2n3:z nonans g (40)

S ’yssl S!/s”/ S, ’ysz S”S”, )

for all n,nqy,n,,n3. The first equalities follow also from the
index interchange symmetries of the distributggpenpo-
larizabilities.

n y/.Llll

’s gs'g"’s"

(_w;wliw21w3)]- (43)

These expressions also apply under the assumption that a
nonuniform electric field varies only weakly over the dimen-
sions of a molecule. This would be appropriate for a mol-
ecule in an electromagnetic field at optical frequencies.

B. Crystal susceptibilities in terms of distributed
(hyper )polarizabilities

Consider a molecular crystal in an external, homoge-
neous electric fielde. In this section we will restrict the
multipole expansion to the dipole term, i.e., only the term
n=n,;=---=1 is retained in Eqs(26)—(34).

We assume that each molecule can be assigned a volume
( that contains this molecule and no oth&fEhe polariza-
tion P(w), approximated by the dipole densityis given in

If the applied electric field is uniform over the molecule, terms of the distributed moments by
all field derivatives vanish and the molecular response can be
described by the usual molecular dipole electric polarizabil-
ity e, first hyperpolarizability3 and second hyperpolariz-

ability y, which are given in terms of the distributed quan-

E<w>=v—12k pk(w):v—lkEs [P ksl @) + gie(@)]

=071, Ui @), (44)

tities by
o ql _ ul ] wherev is the volume of the unit cell, the sum runs over all
a(-ww)= 2 [Fsass(-wi0) T oy (—wio)l, (4D 7 molecules labelett in the unit cell,r < is the vector point-
ing from the molecular origin of moleculeto the reference
D point in sites and p,(w) is the induced dipole moment of
Bl wl’wZ)_SSS [rS’BSS’S”( ©;01,02) moleculek. This dipole moment is given by E20), with
E(r,) replaced by the respective local fieldr, ) effec-
+,355/5~( w;w1,w5)], (42 tive atr inside the crystal, caused by the external figle).
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In turn, f(r, @) is given by the sum of the external fietdw)  L(%)_, and L), are symmetric in their indices, while
and the field created by all the induced moments in the crys|-_(01) = |_(10),k The transpose of the supermattiys s
tal (calculated using multipole lattice suité except if the ¢ tharefore g|vesn by )

point r happens to lie inside the volunfe¢ of a molecule,

.
when the field created by this molecutee self-field has to Lisiks' = Lbkrsiks: (51
be subtracted. The symbold)ys=(rys,1) and Il Using Egs.(46), (47), (49—(51) it can be shown that
=(qks,ks) have been introduced for convenience. Lysws Can be given as

The quantitiesqys(w), urs(w) in Eq. (44) are the in-
duced charge and dipole g of moleculek, and depend in
dipole approximation on the local potentiatﬂfg, and the
local fieldsf,y . The defining equations fal,s(w), urs(®)

Lksk's' —

(00) (01)
- LkOk’s’ [— L Ok’s’]T)
0 0

10 11
follow by comparison of Eqs(25), (2), and (26)—(28) and rks'l—(ksk)/sf lks' L(ksk),s,
can be compactly written in the form + L0 L ; (52
ksk's’ =ksk's’
(00) T
2 Uss Frs T35 E Bksss' EksEks r [ “Lwoks [0
S’S" B I;k’s’ks_ L(Ol) 0
1 k'Oks &
+ = E ‘}/kSS'S”S’”E Eks’”l_:ks”'_:ks’ , (45) rk’s’ L(lo [L(lo) T
s'g’g” E k’s'ks
. + L (1D L (1D , (53
where the quantity, is given by Twsbirsiks  Ekrsiks

(01) ;
— (=t )T (46) whereLkOk,S, andL,,/ . , etc., account for the potential at

the molecular origin of molecul& due to the surrounding
defined in such a way that the occurring electric fields areharges and dipoles, respectively.

positive. According to Eq(18) the local potentialgs is The terms involving¢s vanish when Eq(49) is in-
given in dipole approximation by serted in Eq.(45) owing to the sum rule$38)—(40), and
loc_ ploc_p 47) could _therefore be discardgd, bgF then the correspond.ing
ks “ksTZks terms in Eq.(49) have to be identified and subtracted. This
where ¢'°° is the potential at the molecular origin of mol- could be done using E¢52), but the remaining lattice sum
eculek. tensor, which is the second term on the right-hand side of Eq.
The quantitya,ss in Eq. (45) is given by (52) does not have the symmetry of the full lattice sum ten-
00 T sor given in Eq.(51), which complicates the treatment. A
| %kse [2ss] more convenient way to deal with thiS terms is to retain
Gkss =\ 10 att ’ 48 them at this point and to show later that they do not contrib-
—kss =ksg
ute to the momentsl .
and Bxsssr and ysysrsn are defined similarly. The fre- In order to express the macroscopic crystal suscepti-
quency dependencies have been dropped in(45). bilities XV (- w;0), Y~ 0 01,0,), and

The induced field quantitf,(w) is given by G~ w; wl,wz,w3) defined by

<

_ P(w)/eg= —w:w)-e
Fud0) ~ES @)+ () 'S Lo Tiow(o), (a9 B0y P(mwio)elw)
ks (- w;01,0;):e(w)e(w;)
where €o is the permittivity of free space and the quantity =

Er(0)=(— ¢ w),e(w))" is due to the external field +xP(—wi01,0;,03) e(ws)e(wy)e(w;)

e(w) assumed to be homogeneous over the unit cell, where ) (54)

rlis given by Eq.(47) with loc replaced by ext anfls by o o
e. Lk o IS given by in terms of the distributed polarizabilities, we adopt a proce-
T SKees dure developed by Malagoli and Munfiwhich allows one

-1 LT to treat the frequency dependence of the susceptibilities in
Lisws' = L (10 L : (50)  general. According to Eq$49) and (45), the local fieldF
~ksk's’ =ksk's’ can be written as
with L{o,, and L), being charge—charge and charge—  F,(w)=F(w)+F@(w)+F3(w), (55)

dipole lattice sums® which account for the potential at site W . .
ks due to the charges and dipoles, respectively, of the surWhZ;efg;li'\:Ns s () depend on the external input frequencies
I

rounding molecules, and wnm‘kl;“k’,s, and L(klsf,s, being

Lorentz-factor tensors, which are the dipole—charge lattice-(1) _ ex 1 (1)
X . X i)=E i)+ L 10 i 56

sum and the regular part of the dipole—dipole lattice sum,” ks (1) =BG wi) + (ev) klzsl Listqs, Wigs, (@), (56)

respectively, accounting for the electric field at $iszlue to

the surrounding molecules. These quantities are given in Apg (2 (w.1+w. )=(eqv) 1>, Lisks,” ﬁ)sl(wiﬁwiz) (57)

pendix B. Due to their origin from field propagation tensors.
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@ . the fields present at the molecular ditewith matching fre-
Fis (wi, T @i, + i )=(eu) ES Lksks, quency dependence and order of nonlinearity, the induced
o momentsi{? (i=1,2,3) are
3, (0 o)+ o). (58)

The local field quantities(® and F(®) arise from the in-
duced nonlinear moments by way of combined action of two U&?(wi)=2 pss (@) Ef&s)(wi), (59)
and three input fields, respectively. Taking into account all =

I (0 + 0,)= 2 arsg (@, +0,) Fi& (0, + ;) + 122 Brsgs)(— (0, + )i 01,01,): Fie(0,)Fi (o)), (60)
$1

S8 =

H(k?;)(wil+wi2+wi3)2321 Ass (@i T o+ o) - Fd (ot o, o )+ U2, , .

@iy @iy @i

X 2 Brsgs,(— (01, F o, 0)i0 0+ o) FE (0, + 0 ) FiE (o)

S182 =

FUE 2 Yesgsys,( (01, T 01,0 )01, 01,01)  F (0 Fid (0, Fie (@), (61)

S1S,53 =

WhereTw_ o .o generates additional terms by interchanging 1_
' 2 = 2 @kss - Disrkys,

the frequencies; , w;,, i, together with their associated in- s'kyS;
dices. ext T
The coupled set of Eqg56)—(61) can be successively '[(_¢k10'0'0’0 +l=Jk151'§]’ (64)

solved to yield thdl{! as functions of the macroscopic field

quantitiesl_Eﬁ’S“(w). Equatlon(56) with (59) gives where we have separated the terms involv.iﬁ@}, ande in
Eys. In order to show that the first term vanishes, we use the
following identity:

Fle (o) = 2 Disys, (@) - Es (@), (62)
-
Dy kys; ™ kgss Lis koS, Qk252k153' gk15351+ | 5kkl5s’sl,
where the quadratic supermatiixof dimension Zn is the (65)
inverse of another supermatri built up from 4x4 matri-
ces which is a generalization of a relationship used previoldsly

for the connection of susceptibilities with molecular
(hypenpolarizabilities in the point dipole approximation. In-

Xk,s, k's' = Ok,k’ 5513,L—(eov)*12 Li,s,k's,” Qk’s,s’ - serting this expression into E¢64), we see with Eq(498)
S2 that the first term in Eq(64) is zero due to the sum rule Eq.

(63 (3g). Similar arguments hold in the case at2 and 1Y,

except that here the sum rules E89) and(40) are involved,
If Eq. (53) is inserted into this equation, the terms involving too.

the lattice sums at the molecular origin disappear because of The final results for the susceptibilities are
the sum rule Eq(38). Therefore only the Lorentz-factor ten-
sorsL(® and LV need to be calculated f@.

On substitution of Eq(62) in (59), I1{Y follows in terms i((l)(w)=(€ov)_12 Uks @kss (@) - dig (@), (66)
of EEX. Inserting Eqs(57) and (62) into Eq. (60) yields an kss
equation that can be solved to git&? in terms of E,s.
Similarly, Eq.(61) can be solved witHI{? in Eq. (57) and
Eq. (62 to giveIl{) as a function of,s. The macroscopic
susceptibilitiesx(l), X(Z) and y® can then be obtained by
inserting thel'[ |nto Eq.(44) and comparing with Eq(54).

At this point it |s necessary to show that the terms involving (67)
in the expressions for thd{") vanish. We will show this
epr|C|tIy for 1Y, which is given by

@(w)=(2€) ' D dis(®)T

kss's”

n><

',fkss's/( —0,03,01)1,3[ ks (©01) kg (@2) ],

(3)(w):)E(Ei:isr)(ac{w)+)(casad|n&w)' (68)

>
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ecule. For a molecule in an external electric field in the for-

Xereo @) =(6€qv) ~* > , dis(@)" mulation by CioslowsKP the atoms in molecules approach
) kss's's™ requires the consistent application of the zero-flux condition
- Yksgrsrs' (— @I w3,05,w1) on theperturbedmolecule, incorporating surface relaxation
. effects due to the electric field. Such an approach, however,
‘11,35 ks (01) deg (02) degr(@3) ], 69 does not lead to a real-space partitioning of the molecular
1 response functions as in Eq&6)—(28) or (32)—(34).2° Our
5 B - . LSV > ° = A
)E(E:a)scadin&w)_ 4(6—01))2|w1,w2,w3% dks(®) objective is a realistic description of the spatial distribution

of the charge density response rather than a rigorous atomic
partition of the(hypeppolarizabilities, which would be able
E Bks§52(— w; 03,01+ ©y) to reproduce atomic multipole moments at any finite external
k's's"s" | K2S2S384 = field, including the effect of the shift of the interatomic
boundaries. Further, both approaches conserve the(total
penpolarizabilities and the invariance with respect to inter-
change of the perturbation operatt® Therefore, we con-
PBrsgrsr(— (011 0r) 07,01) sider the application of the above distribution scheme on the
unperturbed molecule sufficient for our purposes.

: L—ks2 Kopsg” Qk253k’s4(w1+ w5)

‘1agldesr(w1)dpg(wr)des (w3)],  (70)

where i, 5 denotes a nonstandard double contraction with
the first and third index of the tensor which follows, and Ill. APPLICATION TO UREA

5[1,3‘5 likewise a triple contraction. Here the local field ten- ] )
sordys is defined by As an illustrative example, we have chosen to calculate

the linear and quadratic susceptibilities of the urea crystal,
using the static distributed polarizabilities and first hyperpo-
ng:kES Disiys, Yigsy: (71) larizabilities calculated at the SCF level. Urea is a standard
o NLO crystal that we have studied previoudiso that direct
The equations may be compared with those resulting irtomparisons can be made.
the theory of the submolecule treatment, which was devel- The atomic multipole integrals required for the calcula-
oped by Hurst and Murlfito take into account effects on the tion of the distributedhypeppolarizabilities were provided
crystal susceptibilities arising from the finite sizes andby a modified version of the PROAIM progrdm(as de-
shapes of the molecules composing the crystal. In this theorgcribed in Ref. 3D The distributed static polarizabilities and
the molecules are divided into submolecules, assuming thdirst hyperpolarizabilities were determined at the SCF level
every submolecule gives the same contribution to the suscepf theory using the program FOURIER.
tibilities. The effect of the crystal environment is again cal-  The polarization-consistent Sadlej basis set has been
culated using the rigorous local field approach. The submolused for the calculation of the molecular properties. The mo-
ecules are in general chosen in such a way as to describecular geometry(at 123 K) has been taken from Ref. 29,
approximately the expected distribution of the polarizabilitywhere the crystal structure of urea at 12, 60, and 123 K was
over the molecule, but the choice is rather arbitrary. In spitedetermined by neutron diffraction. The moleculzaxis
of this arbitrariness the treatment has been shown to predigioints from the carbon to the oxygen atom, thaxis lies in
qualitatively correct crystal susceptibiliti€éFor small and  the molecular plane, and thxeaxis completes the orthogonal
compact molecules such as urea and benzene the theory preght-handed Cartesian system. The origin is placed at the
dicts x(*) even quantitatively®?° The main difference be- molecular center of mass.
tween the theory presented here and the submolecule treat- Owing to the limited precision of the numerical integra-
ment consists in a more realistic description of the chargdion procedure, the reconstructed hyperpolarizabilities calcu-
distribution of the molecules in the crystalline environment.lated by Eq.(42) differ slightly from the molecular hyperpo-
It can be shown by neglecting the charge terms that théarizabilities obtained by a coupled perturbed Hartree—Fock
Eqs.(66)—(67) reduce to those of the submolecule treatment{ CPHP calculation applying a homogeneous electric field to
[see, e.g., Eq¥39)—(40) in Ref. 14 and Eqs(4) and(6) in  the molecule, as can be seen from the last two lines in Tables
Ref. 16. I and I, where both quantities are given. For the polarizabil-
In the case of distributed polarizabilities, different parti- ity «, the differences are lower than 1% and gidower than
tion schemes have been used;??but apparently the most 3%. These inaccuracies may also mean that the molecular
stable one in terms of basis set dependence and physicai®parge is not fully conserved. Aad hoccorrection scheme
plausible contributions has been found to be that based oas already used in Ref. 30, has been employed to remedy this
the theory of atoms in molecules, developed by Bader andeficiency.
co-workers’®?# In this theory, three-dimensional space is  In Table | we present the unique components of the dis-
partitioned into regions); (basing bounded by surfaces tributed polarizabilities:)o , 2% , andats , of urea with an
S(r) on which the electronic charge densjiyr) satisfies absolute value larger than 0.1 a.u. and in Table Il the unique
the zero-flux conditiorW p(r) -n(r)=0Vr e Sy(r). We shall components of the distributed first hyperpolarizabilities that
apply this distribution scheme here to the unperturbed molare larger than certain given threshol(lEhe complete set of
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TABLE I. Unique components of the distributed polarizabilities of urea larger than 0.1 a.u., reconstructed
polarizabilities ¢"° and molecular polarizabilities calculated by CPHES™™: all units in a.u., conversion
factors to other unitsa®: 1 a.u=51.918<10 *° esu=0.588 7610 X C?J°%; o'°, o®% 1 a.u=2.8003<10 7
est=0.31156<10°m C2J 1 o' 1 a.u=0.148 18510 % esu=0.164 8710 *° (Cm)? J ™%,

00 01 10 a 11
Agg ass’,] ai,ss’ aij,ss’
ss i=y z i=z ij =xx yy zy zz

ccC 0.91 0.860 0.238 0.209
coO —0.384 —0.129 0.223 —0.157
C N1 —0.241
(o)} 1.034 0.536 5.638 3.918
O N1 -0.211 -0.127 —-0.106 —0.263 —0.138
N1 N1 1.406 0.301 -0.195 7.710 3.280 —0.140 3.054
N1 N2 —0.124 —0.244
N1 H11 —-0.375 —0.193 -0.104 0.164 0.109
N1 H12 —0.403 0.241 0.190 0.169
H11 H11 0.545 0.298 0.152 0.240 0.351 0.242
H12 H12 0.583 —0.369 0.290 0.258 0.424
ai'jec 24.424 35.883 0.000 37.210
i 24.451 35910  0.000  37.269

#0nly components given that are not equal by symmetry to any ofxiﬁq shown.

TABLE Il. Unique components of the distributed first hyperpolarizabilities of urea with absolute values larger
than 0.3 a.u. B30 Bege), 0.5 au. Bogw Bl ewe), and 1 au. Bl ); reconstructed first hyperpo-
larizabilities ™ and molecular first hyperpolarizabilities calculated by CPIFY™; all units in a.u., con-
version factors to other units8®® 1 a.u=5.8306<107 % esu=2.1639%x10 %% C3J2 pB00% g0 pgloe

1 au=3.0854<10"% esu=1.1451x10"%2 C*mJ?% p°% gL g% 1 Zu=1.632710%*

esu=6.0596x10 * C®*m?J°2%; gL 1 a.u=0.864x10 %2 esu=0.320 66<10 >2 C*m°>J 2

B Bess) Bessi Bijsss”

ss's” i=y z ij =xx yy 7z XX yy
ccc -0.44 -0.57
cco —-0.93
CcCOO 0.90 0.95
CCN1 —-0.39
00O 1.64 -4.66 —3.64 —2.55
OON1 0.98 0.82
O N1 N1 2.45 0.72
N1 N1 N1 1.00 —-791 -1.55 —1.06
N1 N2 N2 0.78
N1 N1 H11 1.79
N1 N1 H21 1.85 0.51
N1 H11 H11 0.49 0.46 0.66
N1 H12 H12 0.49 —0.55 0.87
H11 H11 H11 —-0.69 —-0.69 -034 -050 -109 -0.56
H12 H12 H12 -0.71 0.86 -0.62 -0.52 —-1.41

'3 ﬁlgs' s"a 18 ﬁﬁss’ s”

ss's” zz ijk =xxy XXZ ZXX yyy yyz yzz 777
000 —-11.50 -11.50 —14.01 —18.30
OON1 0.61 1.07 —1.54 —1.30
O N1 N1 2.29
N1 N1 N1 -12.61 8.66 8.66 —7.72 332 -252 2.56
N1 N1 N2 —1.98
N1 N1 H12 1.24
H11 H11 H11 —2.05
H12 H12 H12 2.70
Bij 0.0 16.3 16.3 0.0 -441 0.0 67.9
B 0.0 16.8 16.8 0.0 -44.6 0.0 68.5

#0nly components given that are not equal by symmetry to any oﬁgﬁénv” shown.



6170 J. Chem. Phys., Vol. 112, No. 14, 8 April 2000 Reis et al.

TABLE IlI. Calculated and experimental components of the lineg)j TABLE IV. Permanent local electric field at the atoms of an urea molecule
and quadratic ¢?/10712V 1 m) macroscopic susceptibility tensors of the in the crystal, due to the chargeB{®), the dipoles E{“?)) and due to both
urea crystal. ~ moments FQ=Fd)+F¥9) of the surrounding molecules; due to the
crystal symmetry the-components are zero. All values are in GVin
Xea Xed Xabe (q0) (q0) 10) (10) (0) 0)
Distributed 1.085 1.414 -1.07 ° Fys Fas Fis Fas Fys Fas
4 Submolecules 1.009 1.443 —1.98 C 0.00 -2252 0.00 7.52 0.00 —14.99
Point dipole 1.038 1.353 —-1.97 (6] 0.00 —2453 0.00 7.21 0.00 —17.32
Expt. 1.22% 1.568 2.8b N1 289 —16.43 0.49 5.94 3.35 —10.48
H11 23.07 —-11.34 -338 525 19.69 —6.10
°At A\ =597 nm. H12  -16.18 -22.92 658 6.47 —9.60 —16.45
bSecond harmonic generatigRef. 31). Only the absolute value was deter- N2 —289 —16.43 -049 5094 ~335 —10.48
mined. H21  —23.07 -11.34 338 525 -1969 —6.10
H22 16.18 —-22.92 —6.58 6.47 9.60 -—16.45

data is available from the authord’he data show that the
T e Igﬁgi?aﬁggbtiEteieg't;‘r’]%ef?r;éontribution of the distrbuted hyperpolatizabiltes may be
hyperpolarizabilities, due to the three electron-withdrawing'gnored’ whence the f'elg(@ is given by
atoms attached to ithe atomic charge on C is 2.24)). B

Using Egs.(66) and (67), the macroscopic suii'eptibili- Ugs: fie = (€ov) 1k Szk s Qisyklsl' ELlsl’kZSZ'Uf(g)SZ'
ties x* and y(® can be calculated from the distributed e (72)
(hypebpolarizabilities. The results are shown in Table Ill,
together with experimental results and results obtained usin
the point dipole approximation and the submolecule treat> :
ment of Hurst and Munn, using one submolecule on each (3'Ven IN =4
0O, and N atom. In order to be comparable, the reconstructe@f Ed- (72) is the four component vector (.- fis’, _
molecular(hypeppolarizabilities were used in the latter two T ne fields calculated within this approximation are given
calculations. The data show that the values of the calculatel] Table IV. It is evident that the permanent local field is
linear susceptibility for the different calculational methods Strongly inhomogeneous, even over this comparatively small
are quite similar, while the quadratic susceptibility calculatedMl€cule, indicating that a distributed description would be
with the distributed model is only about half the value Ca|_ma'mdatory in a further refinement of the ;usceptlblllty calcu-
culated with the other methods. We cannot expect the calcd@tions, where the permanent local field effect on the
lated susceptibilities to reproduce the experimental data exhyPenpolarizabilities would have to be _con_3|der7é?d.
actly, as neither electronic correlation nor dispersion effects A0 given in Table IV are the contributions to the total
are included in the molecular properties. Further, our resultgérmanent local field caused by the distributed charges and
are calculated for a urea crystal Bt 123K, while the ex-  dipoles qlone(l.(()a., the fields produced by the two permanent
periments were performed at room temperature. It has begiPntributionsa) and u{Q) occurring inII{g), including the
shown in Ref. 20 that, using the same basis set, both thilds due to thénducedcharges and dipolgsThe data show
point dipole approximation and the 4 submolecule model ardhat the most important contrlbuthn to the total field comes
able to reproduce approximately the experimental values folfom the charges and that the dipole fields nearly always
the first order susceptibilitieg(" , if electronic correlation at OPPOSe the charge fields. If the fields from higher distributed
the MP2 level, frequency dispersion and the effect of theMultipoles follow the same opposing behavior, their contri-
permanent crystal field are taken into account. Further, thButions could change the local field considerably. In order to
inclusion of those effects increased the absolute value of thBave @ reliable description of the permanent local field, the
quadratic susceptibilitygzb)c by a factor of about 2.6, yield- contributions from dlstanted.r_n.ultlpoles higher than dlpole
ing values(4.7 pm/V and 4.8 pm/Ythat are much too large (and from the hyperpolarizabiliti¢should therefore be in-
compared with the experimental data. Applying this en-cluded.
hancement factor to the value calculated here with the dis-
tributed model gives exactly the experimental value, 2.gV. CONCLUSIONS
pm/V. Although this agreement is certainly fortuitous, it nev- We have extended Stone’s treatment of the nonlocal po-
ertheless shows that the value fpf2); in the distributed larizability function to nonlocal first and second dipolar hy-
model would probably be much closer to the experimentaperpolarizability functions, introducing the respective dis-
value, if the additional effects mentioned are included, thanributed hyperpolarizabilities by way of multicentered
those calculated with the simpler point dipole and submolmultipole expansions. Extensions to higher multipolar elec-
ecule models. tric hyperpolarizabilities and magnetic hyperpolarizabilities

Using Efs=0 in Eq. (49) and adding the permanent dis- can easily be carried out. The response functions have been
tributed charges and dipolﬂ;(k? to the induced ones in Eq. expressed both in terms of charge density changes related to
(45) allows us to calculate the permanent electric local fieldchanges in the electric potential, which is suitable for prob-
£(9) at the different sites in the molecule, after subtracting thdems involving the calculation of intermolecular interaction
potential at the molecular origin. In a first approximation, theenergies, and in terms of dipole density changes related to

whereL{ . , . denotes the second term on the right-hand
="1°1072°2

de of Eq.(52) andDf is the inverse tensor of thé tensor

Eq.(63) with L replaced byLf. The left-hand side
[ e K, HT.
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changes of the electric field, which is the more customary > 1

point of view in the field of nonlinear optics. With the help — 2 rln]vin=YE(ry)

of the distributed(hypeppolarizabilities a theory for the =int

macroscopic nonlinear optical susceptibilities of molecular ®

crystals has been developed, which is formally similar to = >, > T ————— (=)™ ]V HE(r).
existing theories that go beyond the point dipole approxima- m=1n=m M:(N~ m)

tion, but provides a more satisfactory distribution scheme for (A4)

the molecular response, if coupled with a rigorous partition-

ing scheme like Bader’s atoms in molecules approach.  Comparing terms of equal order1 of derivatives yields
The application of the formalism to the macroscopic sus-

ceptibilities of the urea crystal shows that even for this quite

small molecule the multicentred description of the molecular— —r[”][n]V[” UE(ry)

response yields very different results for the quadratic sus- n!

ceptibility, compared to the point-dipole approximation, and n

will probably be in much better agreement with experimental = >, | - (

data once correlation effects, dispersion and permanent field m=1 M: (n m)!

effects are taken into account. For larger molecules the inca-

pability of the monocentered description to describe the an- ==

isotropy of the charge density will become much more pro- m=1

nounced and it will be necessary to use more distributed

schemes. These might use the rigorous method presentdtie last equation can be recast into

here, perhaps simplified by integrating over basins that rep-

resent functional groups rather than individual atoms, or else n

simpler schemes, developed previously, that distribute the >, ( )(—1)"’“:0, (AB)

response functions in more intuitive ways. But the results of ™0 :

the present work on urea show that the effects of the strongly

inhomogeneous permanent local field can be described mokghich is a known property of the binomial coefficients.

accurately only by methods using physically meaningful dis-

tribution schemes.

(—1)™c M)V YE(rg)

(="
m'(n m)!-

M:

(A5)

APPENDIX B
APPENDIX A
The equations for the calculation of a general Lorentz-
factor tensor(that is, a dipole—multipole lattice synm the
point-dipole approximation have been given in Ref. 32. The

Here we show thatp(r) can be given by Eq(18).
Expanding the potentiadp(r) aroundr,=(0,0,0), we can

write ) : ) )
extension for the dipole—charge and dipole—dipole tensors to
® 4 the case of a molecule composed of several subunits has
_ N T [n-1] been treated by Bounds and MdAfor the calculation of the
r ro)= rt"rn]v E(ro). Al . o
) nzl nt- [n]Y E(Lo) (A1) effects of a localized charge on the polarization energy of a
crystal. The charge—charge lattice s ?(),s, is the essen-
We want to show that tial ingredient of the Madelung constant and the charge—
dipole lattice sum L(k(;llz,s i Is determined by L(k(;lﬁ,s i
—L(k%g) ks It is shown in connection with E¢63) that
_ 2 _r[n][n]v[nfl]E(r ) (00) i, . ey
“~nres Y =10 L. sws iS Not needed for the calculation of the susceptibilities
and will therefore not be given here.
* _ (10) (11)
_ 1 ]V (). (A2) The Lorentz-factor tensols ;¢ » andL o/, in Eq.

=~ n! (50) for the reference unit cell=0 (in component formare

The termsV[""YE(r,) can be expressed as series around the L (10 ?

_ V™ _ a, L
origin, by means of Eq(Al): ksik's' =~ 47 B (1= 055 HTMTRIC okt ~ Lokl
VI HE(r) +2| (1= 8108k ) HPM R s — T okl ]

=2 " M m=n] VT HE(r). (A3)

=n(m o + o2 S GL(mIRY)y(h)?lyi(h)
2R“ 170

Inserting into Eq(A2) gives xsin2ay(h) - (roks—okrs) ], (BY)
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R® vaR3
(12) _Va a
Lisikrs'j= 3,32 %1 Oss ke + 7 —
X{ S (1= 85 ) HI T RI ok — Lokl ]

+2| (1= 8108k ) HERIN s — ok ]

2
~ g2 2 iy (N GL(nR)y(h)?]

xcog2my(h)- (roks—rokrs)], (B2
where
q,n _ X
H; H)‘(H_Wg — Sno erf(|x[) + 6,1 erfol[x])
2|x| )
+—mexp (X7, (B3)
n 1 3XiX;
Hi [|>_<|]=|—| _5i'+W [— Snoerf(|x])
1 3XiX;
+5n1erf0(|)_(|)]+W _5ij+W+2Xin
2 2
X —mexp{— x|, (B4)
1
G(x)=;exp(—x). (B5)

Herewv, is the volume of the unit celly(l) are reciprocal
lattice vectors, erf)=2/7Y2[¥ exp(—x?) is the error func-

tion, erfck)=1—erf(x) is the complementary error function
andR is a parameter that determines the rate of convergence

of the lattice sums: usuafly it is sufficient to set
R= 712,13
s
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