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Distributed first and second order hyperpolarizabilities: An improved
calculation of nonlinear optical susceptibilities of molecular crystals
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The method of calculating distributed polarizabilities is extended to the first and second dipole
hyperpolarizabilities, in order to describe more accurately the molecular response to strong and
inhomogeneous external time-dependent electric fields. The dipolar response is expressed in terms
of both potential related charge-density response functions and electric field related dipole-density
response functions. The macroscopic linear, quadratic, and cubic optical dipole susceptibilities of
molecular crystals are expressed in terms of the distributed~hyper! polarizabilities. This formulation
differs from previous theories using distributed dipoles in that it allows for a rigorous treatment of
both local induced dipoles and charge flow between different regions of the molecule. As an
example, the distributed polarizabilities and first hyperpolarizabilities of urea at the
self-consistent-field level are used to calculate the linear and quadratic susceptibilities of the urea
crystal. The linear susceptibility does not differ substantially from that calculated with previous less
rigorous models for distributed response, but the quadratic susceptibility is about 50% of that
calculated with previous models. This indicates that the present treatment of distributed response
should give a quadratic susceptibility in good agreement with experimental data, once the effects of
electronic correlation, frequency dispersion, and the permanent crystal field are taken into account.
© 2000 American Institute of Physics.@S0021-9606~00!30111-8#
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I. INTRODUCTION

Quantitative understanding of the nonlinear optical
sponse of molecular crystals and other molecular materia
desirable for systematic development of optimized molecu
materials for nonlinear optics~NLO!. Central to such under
standing is the molecular hyperpolarizability. Improveme
in computing power and advances in techniques of quan
chemistry have provided valuable insights into the fact
that influence the hyperpolarizabilites of different molecul
Studies of frequency dependence also inform about work
resonance enhancement and re-absorption in NLO.

However, much of this work has been performed on i
lated molecules in uniform electric fields, which afford on
a first approximation to molecules in the material enviro
ment. In particular, the molecules are subject to large
strongly varying electric fields caused by the perman
charge distributions of the surrounding molecules, and to
cal electric fields caused by electric moments induced on
surrounding molecules by the external field. Furthermore,
response is not local within each molecule but involves c
tributions from flow of charge between different regions. T
total molecular response depends on the pattern of fields
6160021-9606/2000/112(14)/6161/12/$17.00
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plied, and the same total response in a uniform field can g
different responses in nonuniform fields, depending on h
it is distributed in space, as shown by calculations of line
response for model Langmuir–Blodgett films.1 This situation
is analogous to that in tomography, where nonuniform fie
are used to obtain information about the distribution of
sponse in the material under study.

We have therefore sought to calculate the distributed
perpolarizability by extending Stone’s treatment of the d
tributed polarizability.2 In Stone’s treatment the molecula
charge distribution is expanded in a multicentered multipo
series around~atomic! sites and one considers the changes
the site multipoles that are caused by changes in the exte
potential. The induced molecular multipole moments o
given order can be exactly reproduced from the distribu
contributions of the same order and from those of all low
orders. In particular, the usual dipole polarizability conta
contributions from charge flow between basins. Nonlo
distributed hyperpolarizabilities are needed for a rigoro
treatment not only of NLO3 but also of other properties.4

One technical problem that arises is that relating chan
of charge distribution to changes of potential, while conv
nient for calculations of interaction energies, does not yi
1 © 2000 American Institute of Physics
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the response coefficients customarily used in nonlinear
tics. These relate changes of multipole moment to change
electric and magnetic fields~both of which must be presen
in an electromagnetic wave!. This problem is resolved by a
suitable choice of gauge. We therefore derive sets of hy
polarizabilities in both schemes, in order to provide inp
suitable for interaction energies as well as for nonlinear
tics.

Once the distributed hyperpolarizability is obtained,
must be incorporated into a suitable theory for the mate
response. Theories have been developed for molec
crystals5 and for ordered Langmuir–Blodgett films.6 These
go beyond the point-dipole approximation to allow for d
tributed dipoles. However, they do not allow for the distri
uted charges necessary to treat charge flow between at
basins, as described by the distributed response coeffici
Hence it is necessary to generalize the previous treatmen
incorporate not only induced dipoles but also induc
charges in each basin, both of which contribute to the in
nal electric fields and to the macroscopic polarization fr
which the nonlinear optical susceptibilities follow. This
done for the case of a molecular crystal, where suitable
definitions allow results to be obtained that are similar
algebraic form to those obtained previously for dipo
alone.

II. THEORY

A. The distributed „hyper …polarizabilities of a
molecule

Consider an isolated molecule interacting with an el
tromagnetic field. In the semiclassical approach the field
not quantized and can be characterized by the electrical
tential f(rI ,t) and the vector potentialAI (rI ,t), obeying the
Maxwell equations, while the molecule is described by
methods of quantum mechanics. The Hamiltonian of the s
tem can be written asH(t)5H01V(t), where H0 is the
Hamiltonian of the unperturbed molecule, with eigenfun
tions uj&, andV(t) is the time-dependent interaction or pe
turbation term:

V~ t !5(
i 51

N F qi

2mi
~AI ~rI i ,t !•pI i1pI i•AI ~rI i ,t !!

1
qi

2

2mi
AI ~rI i ,t !22qif~rI i ,t !G , ~1!

whereqi ,mi ,rI i ,pI i are the charge, mass, space coordina
and canonical momentum of thei th particle of the molecule
Interaction effects with spin have been neglected.

We are interested in the induced molecular dipole m
mentpI (t), which is given by

pI ~ t !5E d3r rI ^cg~ t !ur̂~rI ,t !ucg~ t !&2pI 0 , ~2!

where cg(t) is the perturbed ground state wave functio
r̂(rI ,t) is the molecular charge density operator

r̂~rI !5(
i 51

N

qid~rI2rI i !, ~3!
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andpI 0 is the permanent molecular dipole moment.
Using time-dependent perturbation theory, Orr a

Ward7 worked out a solution for the Fourier components
pI (t) up to third order in the perturbation, i.e.,

pI ~v!5pI
~1!~v!1pI

~2!~v!1pI
~3!~v!. ~4!

Particular termspI
( i )(v) ( i 51,2,3), are characterized by th

frequencies involved and the dependence on the pertu
tion, e.g., for a third-order process

pI
~3!~v!}V~v1!V~v2!V~v3!, ~5!

v5v11v21v3 , ~6!

whereV(v) denotes a Fourier component of the perturbat
V(t). The equations for thepI

( i )(v) are

pI
~1!~v!52I ~@pI ,2v#,@V,v#!

1

\ (
j Þ0

^pI &0 j^V
v& j 0

v j 02v
, ~7!

p~2!~v!5K2v,v1 ,v2

1

2\2 I ~@pI ,2v#,@V̄,v1#,@V,v2# !

3 (
j ,kÞ0

^pI &0 j^V̄
v1& jk^V

v2&k0

~v j 02v!~vk02v2!
, ~8!

pI
~3!~v!52K2v,v1 ,v2 ,v3

3
1

6\3 I ~@pI ,2v#,@V̄,v1#,@V̄,v2#,@V,v3# !

3F (
j ,k,lÞ0

^pI &0 j^V̄
v1& jk^V̄

v2&kl^V
v3& l0

~v j 02v!~vk02v22v3!~v l02v3!

2 (
k,lÞ0

^pI &0k^V
v1&k0^V

v2&0l^V
v3& l0

~vk02v!~v l02v3!~v l01v2!G , ~9!

where^Vv& jk5^ j uV(v)uk&, ^V̄&mn5^V&mn2dmn̂ V&00, and
vm05(Em2E0)/\. The operatorI (@a,va#,@b,vb#,...) gen-
erates additional terms by permuting the quantitiesa,b,...,
together with the frequenciesva ,vb ,... in all possible ways,
and theK2v1 ,v2 ,... denote numerical factors depending o
the number of zero and repeated frequencies in the
v1 ,v2 ,... . Thevalues ofK for different processes are give
in the Appendix of Ref. 7. Damping effects have been n
glected in Eqs.~7!–~9!, which means that the frequencies
the external fields should be far away from any resonanc

The derivation is not restricted to the electric dipole p
larization, but is equally suited for the calculation of elect
polarizations of higher multipolar order and for magne
polarization as well, by using the respective operators inst
of the electric dipole operatorpI .

In order to introduce the distribution scheme, the volum
V occupied by the molecule is partitioned, in a way yet to
specified, intons disjoint volumesVs , with no voids, so that
V5(s51

ns Vs . The potentialsAI (rI ,t) andf(rI ,t) inside each
partial volume can be expanded around an interior pointrI s :
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f~rI ,t !5(
s

Gs~rI ! (
n50

`
1

n!
@rI2rI s#

@n#@n#“I @n#f~rI s ,t !,

~10!

AI ~rI ,t !5(
s

Gs~rI ! (
n50

`
1

n!
@rI2rI s#

@n#@n#“I @n#AI ~rI s ,t !,

~11!

where the expressionaI @n# indicates ann-fold tensor~outer
product! of the vector quantityaI , and@n# denotes ann-fold
tensor contraction. The quantity

Gs~rI !51 if rI lies in Vs

50 otherwise ~12!

and hence picks out values ofrI that lie inside the chosen
volumeVs .

The interaction between molecules and electromagn
radiation may also be expressed in terms of the magnetic
electric fieldsBI (rI ,t) andEI (rI ,t), respectively, instead of th
potentials. The connection between the fields and the po
tials is given by

EI 52“I f2
]AI

]t
, ~13!

BI 5“I ^ AI . ~14!

There is freedom in the choice of the potentials, as the ga
transformation of the potentialsf85f2] f /]t,AI 85AI
1“I f , where f (rI ,t) is the gauge function, does not chan
the fieldsEI andBI . A convenient gauge for our purpose us
the transformation considered by Bloch,8 in the form used by
Lazzeretti,9 and implicitly by Barron and Gray.10 Here, the
expansions of the potentials in Eqs.~10! and ~11! are com-
pared with the corresponding Taylor series for the elec
and magnetic fields. The original treatment was restricte
a single expansion centerrI0 , which is taken to be the origin
and must be generalized to a multicenter expansion at
centersrI s . Choosing the gauge functionf as

f B~rI ,t !52(
s

Gs~rI ! (
n51

`
1

n!
“I @n21#AI ~rI s ,t !

[n] @rI2rI s#
@n# ~15!
ic
nd

n-

ge

c
to

he

leads, by using Eqs.~13! and ~14! with the corresponding
expansions ofEI (rI ,t) and BI (rI ,t), to the generalized Bloch
potentials:

fB~rI ,t !5f~rI0 ,t !1(
s

Gs~rI ! (
n51

`
1

n!
“I @n21#EI ~rI s ,t !

[n] ~@2rI s#
@n#2@rI2rI s#

@n#!, ~16!

AI B~rI ,t !5(
s

Gs~rI ! (
n50

`
n11

~n12!!
@“I @n#BI ~rI s ,t !

^ ~rI2rI s!#@n#@rI2rI s#
@n#, ~17!

where f(rI0 ,t) is the potential at the molecular originrI0

5(0,0,0). For the derivation of Eq.~16! we used the follow-
ing expression for the first expansion term of Eq.~10!,
f(rI s ,t):

f~rI s ,t !5f~rI0 ,t !1 (
n51

`
1

n!
@2rI s#

@n#@n#“I @n21#EI ~rI s ,t !.

~18!

This equation is proved in Appendix A. Due to the freedo
of choice for the point of origin of the potential,f(rI0 ,t) can
be set to zero for an isolated molecule, but has to be reta
in general, e.g., if intermolecular interactions are consider

According to Eqs.~16! and~17!, in the Bloch gauge the
vector potentialAI B is determined solely by the magnet
fields BI while fB depends only on the electric fieldEI . This
simplifies the separate treatment of magnetic and electric
fects and contrasts with other gauge transformations like
Coulomb gauge, where“I f50 in vacuoandAI depends both
on EI and BI . The Coulomb gauge has often been used,
example, by Maaskant and Oosterhoff11 for the calculation
of polarizabilities and hyperpolarizabilities that occur in t
theory of optical rotatory power. In the following, we wi
restrict ourselves to the treatment of the electric interactio
but the magnetic effects can essentially be treated along
same lines, taking into account that the term quadratic inAI
has to be treated as a second-order perturbation term.

In the approximation considered, the Fourier comp
nents of the induced dipole momentpI (v) can generally be
expressed by nonlocal~hyper!polarizability densities with re-
spect to the Fourier components of the potentials:
spec-
pI ~v!5E d3r E d3r 8 aI f~rI ,2v;rI8,v!f~rI8,v!1
1

2 E d3r E d3r 8E d3r 9 K2v,v1 ,v2

3bI
f~rI ,2v;rI8,v1 ,rI9,v2!f~rI8,v1!f~rI9,v2!1

1

6 E d3r E d3r 8E d3r 9E d3r-

3K2v,v1 ,v2 ,v3
gI

f~rI ,2v;rI8,v1 ,rI9,v2 ,rI-,v3!f~rI8,v1!f~rI9,v2!f~rI-,v3!, ~19!

where the polarization density response functionsaI f(rI ,2v;rI8,v), bI
f(rI ,2v;rI8,v1 ,rI9,v2), and gI

f(rI ,

2v;rI8,v1 ,rI9,v2 ,rI-,v3) are the polarizability, first hyperpolarizability, and second hyperpolarizability densities, re
tively, which describe the response of the molecular charge distribution to applied external potentials.

More customarily,pI (v) is expressed by response functions with respect to the fields4



6164 J. Chem. Phys., Vol. 112, No. 14, 8 April 2000 Reis et al.
pI ~v!5E d3r E d3r 8 a= E~rI ,2v;rI8,v!•EI ~rI8,v!1
1

2 E d3r E d3r 8E d3r 9 K2v,v1 ,v2

3b
T

E~rI ,2v;rI8,v1 ,rI9,v2!:EI ~rI9,v2!EI ~rI8,v1!1
1

6 E d3r E d3r 8E d3r 9E d3r-

3K2v,v1 ,v2 ,v3
g
U

E~rI ,2v;rI8,v1 ,rI9,v2 ,rI-,v3!]EI ~rI-,v3!EI ~rI9,v2!EI ~rI8,v1!. ~20!
a
fte
e

,

of

ili-

nd
Note that in treatments of nonlinear optics in molecular m
terials, the numerical factors in these two equations are o
omitted, leading to the so-called perturbation series conv
tion or B convention.12

With Eqs. ~10! and ~16!, the matrix elementŝVv& jk

5*d3r f(rI ,v)^ j ur̂(rI )uk& that occur in Eqs.~7!–~9! for a
neutral molecule can be written in the distributed scheme
terms of the potential or in terms of the fields as

^Vv& jk5(
s

(
n50

`
1

n!
^Ms

@n#& jk@n#“I @n#f~rI s ,v! ~21!

5(
s

(
n51

`
1

n!
@~2rI s!

@n#^qs& jk2^Ms
@n#& jk#

[n]“I @n21#EI ~rI s ,v!, ~22!

where the distributed moment matrix elements^Ms
@n#& jk are

defined by

^Ms
@n#& jk5E d3r Gs~rI !~rI2rI s!

@n#^ j ur̂~rI !uk&

5^ j u(
i

Gs~rI i !qi~rI i2rI s!
@n#uk&. ~23!

We use the symbolŝqs& jk8^Ms
@0#& jk , ^mI s& jk8^Ms

@1#& jk for
the ~transition or permanent! moments of charge and dipole
respectively, in volumeVs .

The matrix elementŝpI & jk can be expressed in terms
the distributed moments as

^pI & jk5E d3r(
s

Gs~rI !@rI s1~rI2rI s!#^ j ur̂~rI !uk&

5(
s

~rI s^qs& jk1^mI s& jk!. ~24!

This is the generalization of a statement made by Stone2 that
the ~induced or permanent! molecular dipole momentpI is
the sum of distributed charge and dipole terms:

pI 5(
s

~rI sqs1mI s!. ~25!

With Eqs. ~24! and ~21! the pI
( i )(v) ( i 51,2,3) of Eqs.

~7!–~9! can be expressed as

pI
~1!~v!52 (

n50

`

(
ss8

@rI sass8
0n

~2v;v!1ass8
1n

~2v;v!#

[n]“I @n#f~rI s8 ,v!, ~26!
-
n

n-

in

pI
~2!~v!5

1

2
K2v,v1 ,v2 (

n1 ,n250

`

(
ss8,s9

@rI sbss8s9

0n1n2~2v;v1 ,v2!

1b
ss8s9

1n1n2~2v;v1v2!#

[n11n2]“I @n2#f~rI s9 ,v2!“I @n1#f~rI s8 ,v1!, ~27!

pI
~3!~v!52

1

6
K2v,v1 ,v2 ,v3 (

n1 ,n2 ,n350

`

(
ss8s9s-

@rI s

g
ss8s9s-
0n1n2n3~2v;v1 ,v2 ,v3!

1g
ss8s9s-
1n1n2n3~2v;v1 ,v2 ,v3!#@n11n21n3#

“I @n3#f~rI s- ,v3!

“I @n2#f~rI s9 ,v2!“I @n1#f~rI s8 ,v1!, ~28!

where the distributed polarizabilities and hyperpolarizab
ties are given by

ass8
in

~2v;v!5
1

\
I ~@Ms

@ i # ,2v#,@Ms8
@n# ,v#!

(
j Þ0

^Ms
@ i #&0 j^Ms8

@n#&0 j

v j 02v
, ~29!

b
ss8s9

in1n2~2v;v1 ,v2!

5
1

\2 I ~@Ms
@ i # ,2v#,@M̄

s8

@n1#
,v1#,@M

s9

@n2#
,v2# !

(
j ,kÞ0

^Ms
@ i #&0 j^M̄

s8

@n1#
& jk^M

s9

@n2#
&k0

~v j 02v!~vk02v2!
, ~30!

g
ss8s9s-
in1n2n3~2v;v1 ,v2 ,v3!

5
1

\3 I ~@Ms
@ i #,2v#,@M̄

s8

@n1#
,v1#,@M̄

s9

@n2#
,v2#,@M

s-
@n3#

,v3# !

F (
j ,k,lÞ0

^Ms
@ i #&0 j^M̄

s8

@n1#
& jk^M̄

s9

@n2#
&kl^M

s-
@n3#

& l0

~v j 02v!~vk02v22v3!~v l02v3!

2 (
j ,kÞ0

^Ms
@ i #&0k^M

s8

@n1#
&k0^M

s9

@n2#
&0l^M

s-
@n3#

& l0

~vk02v!~v l02v3!~v l01v2!
G . ~31!

In terms of the electric fields and their gradients, we fi
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pI
~1!~v!5 (

n51

`

(
ss8

@rI sass8
qn

~2v;v!1ass8
mn

~2v;v!#

[n]“I @n21#EI ~rI s8 ,v!, ~32!

pI
~2!~v!5

1

2
K2v,v1 ,v2 (

n1 ,n251

`

(
ss8s9

@rI sbss8s9

qn1n2~2v;v1 ,v2!

1b
ss8s9

mn1n2~2v;v1 ,v2!#

[n11n2]“I @n221#EI ~rI s9 ,v2!“I @n121#EI ~rI s8 ,v1!,

~33!
he
un
t

e,
n
bi
-
n-
pI
~3!~v!5

1

6
K2v,v1 ,v2 ,v3 (

n1 ,n2 ,n351

`

(
ss8s9s-

@rI s

g
ss8s9s-
qn1n2n3~2v;v1 ,v2 ,v3!

1g
ss8s9s-
mn1n2n3~2v;v1 ,v2 ,v3!#

[n11n21n3]“I @n3#EI ~rI s- ,v3!“I @n2#EI ~rI s9 ,v2!

“I @n1#EI ~r s8 ,v1!, ~34!

with the new response coefficients related to the previ
ones by
ass8
Mn

52~2rI s8!
@n#ass8

i0
1ass8

in , ~35!

b
ss8s9

Mn1n25~2rI s8!
@n1#~2rI s9!

@n2#bss8s9
i00

2~2rI s8!
@n1#b

ss8s9

i0n2 2~2rI s9!
@n2#b

ss8s9

in10
1b

ss8s9

in1n2, ~36!

g
ss8s9s-
Mn1n2n352~2rI s8!

@n1#~2rI s8!
@n2#~2rI s8!

@n3#gss8s9s-
i000

1~2rI s8!
@n1#~2rI s9!

@n2#g
ss8s9s-
i00n3 1~2rI s8!

@n1#~2rI s-!@n3#g
ss8s9s-
i0n20

1~2rI s8!
@n2#~2rI s-!@n3#g

ss8s9s-
in100

2~2rI s8!
@n1#g

ss8s9s-
i0n2n3 2~2rI s9!

@n2#g
ss8s9s-
in10n3 2~2rI s-!@n3#g

ss8s9s-
in1n20

1g
ss8s9s-
in1n2n3, ~37!
at a
n-
ol-

e-

rm

lume

ll

f

wherei 50 for M5q and i 51 for M5m and the frequency
dependencies have been dropped for convenience. T
equations show the relationship between the response f
tions with respect to the fields and those with respect
potentials.

For neutral molecules, the distributed~hyper!polariz-
abilities defined in Eqs.~29!–~31! obey the following sum
rules:

(
s

ass8
0n

5(
s8

ass8
n0

50, ~38!

(
s

b
ss8s9

0n1n25(
s8

b
ss8s9

n10n2
¯50, ~39!

(
s

g
ss8s9s-
0n1n2n35(

s8
g

ss8s9s-
n10n2n3

¯50, ~40!

for all n,n1 ,n2 ,n3 . The first equalities follow also from the
index interchange symmetries of the distributed~hyper!po-
larizabilities.

If the applied electric field is uniform over the molecul
all field derivatives vanish and the molecular response ca
described by the usual molecular dipole electric polariza
ity a= , first hyperpolarizabilityb

T
and second hyperpolariz

ability g
U
, which are given in terms of the distributed qua

tities by

a= ~2v;v!5(
ss8

@rI saI ss8
q1

~2v;v!1a= ss8
m1

~2v;v!#, ~41!

b
T
~2v;v1 ,v2!5 (

ss8s9
@rI sb= ss8s9

q11
~2v;v1 ,v2!

1b
T ss8s9

m11
~2v;v1 ,v2!#, ~42!
se
c-

o

be
l-

g
U
~2v;v1 ,v2 ,v3!5 (

ss8s9
s-

@rI sgT ss8s9s-
q111

~2v;v1 ,v2 ,v3!

1g
U ss8s9s-

m111
~2v;v1 ,v2 ,v3!#. ~43!

These expressions also apply under the assumption th
nonuniform electric field varies only weakly over the dime
sions of a molecule. This would be appropriate for a m
ecule in an electromagnetic field at optical frequencies.

B. Crystal susceptibilities in terms of distributed
„hyper …polarizabilities

Consider a molecular crystal in an external, homog
neous electric fieldeI . In this section we will restrict the
multipole expansion to the dipole term, i.e., only the te
n5n15¯51 is retained in Eqs.~26!–~34!.

We assume that each molecule can be assigned a vo
V that contains this molecule and no others.3 The polariza-
tion PI (v), approximated by the dipole density13 is given in
terms of the distributed moments by

PI ~v!5v21(
k

pI k~v!5v21(
ks

@rI ksqks~v!1mI ks~v!#

5v21(
ks

U= ks
T
•PI ks~v!, ~44!

wherev is the volume of the unit cell, the sum runs over a
Z molecules labeledk in the unit cell,rI ks is the vector point-
ing from the molecular origin of moleculek to the reference
point in sites and pI k(v) is the induced dipole moment o
moleculek. This dipole moment is given by Eq.~20!, with
EI (rI ,v) replaced by the respective local fieldfI (rI ,v) effec-
tive at rI inside the crystal, caused by the external fieldeI (v).
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In turn, fI (rI ,v) is given by the sum of the external fieldeI (v)
and the field created by all the induced moments in the c
tal ~calculated using multipole lattice sums!,14 except if the
point rI happens to lie inside the volumeV of a molecule,
when the field created by this molecule~the self-field! has to
be subtracted. The symbolsU= ks5(rI ks ,1= ) and PI ks

5(qks ,mI ks) have been introduced for convenience.
The quantitiesqks(v),mI ks(v) in Eq. ~44! are the in-

duced charge and dipole inVs of moleculek, and depend in
dipole approximation on the local potentialsfks8

loc and the
local fields fI ks8 . The defining equations forqks(v),mI ks(v)
follow by comparison of Eqs.~25!, ~2!, and ~26!–~28! and
can be compactly written in the form

PI ks5(
s8

a= kss8•FI ks81
1

2 (
s8s9

b
T kss8s9 :FI ks9FI ks8

1
1

6 (
s8s9s-

g
U kss8s9s-]FI ks-FI ks9FI ks8 , ~45!

where the quantityFI ks is given by

FI ks5~2fks
loc, fI ks!

T, ~46!

defined in such a way that the occurring electric fields
positive. According to Eq.~18! the local potentialfks

loc is
given in dipole approximation by

fks
loc5fk0

loc2rI ks• fI ks , ~47!

wherefk0
loc is the potential at the molecular origin of mo

eculek.
The quantitya= kss8 in Eq. ~45! is given by

a= kss85S akss8
00

@aI kss8
01

#T

aI kss8
10 a= kss8

11 D , ~48!

and b
T kss8s9 and g

U kss8s9s- are defined similarly. The fre
quency dependencies have been dropped in Eq.~45!.

The induced field quantityFI ks(v) is given by

FI ks~v!5EI ks
ext~v!1~e0v !21(

k8s8
L= ksk8s8•PI k8s8~v!, ~49!

wheree0 is the permittivity of free space and the quant
EI ks

ext(v)5(2fks
ext(v),eI (v))T is due to the external field

eI (v), assumed to be homogeneous over the unit cell, wh
fks

ext is given by Eq.~47! with loc replaced by ext andfI ks by
eI . L= ksk8s8 is given by

L= ksk8s85S 2Lksk8s8
~00!

@2LI ksk8s8
~01!

#T

LI ksk8s8
~10! L= ksk8s8

~11! D , ~50!

with Lksk8s8
(00) and LI ksk8s8

(01) being charge–charge and charge
dipole lattice sums,15 which account for the potential at sit
ks due to the charges and dipoles, respectively, of the
rounding molecules, and withLI ksk8s8

(10) and L= ksk8s8
(11) being

Lorentz-factor tensors, which are the dipole–charge lat
sum and the regular part of the dipole–dipole lattice su
respectively, accounting for the electric field at siteksdue to
the surrounding molecules. These quantities are given in
pendix B. Due to their origin from field propagation tenso
s-

e

re

r-

e
,

p-
.

Lksk8s8
(00) and L= ksk8s8

(11) are symmetric in their indices, while
LI ksk8s8

(01)
52LI k8s8ks

(10) . The transpose of the supermatrixL= ksk8s8
is therefore given by

L= ksk8s8
T

5L= k8s8ks . ~51!

Using Eqs.~46!, ~47!, ~49!–~51! it can be shown that
L= ksk8s8 can be given as

L= ksk8s85S 2Lk0k8s8
~00!

@2LI k0k8s8
~01!

#T

0I 0=
D

1S rI ks•LI ksk8s8
~10! rI ks•L= ksk8s8

~11!

LI ksk8s8
~10! L= ksk8s8

~11! D , ~52!

L= k8s8ks
T

5S 2Lk80ks
~00! @0I #T

2LI k80ks
~01! 0=

D
1S rI k8s8•LI k8s8ks

~10!
@LI k8s8ks

~10!
#T

rI k8s8•L= k8s8ks
~11! L= k8s8ks

~11! D , ~53!

whereLk0k8s8
(00) andLI k0k8s8

(01) , etc., account for the potential a
the molecular origin of moleculek due to the surrounding
charges and dipoles, respectively.

The terms involvingfk0
loc vanish when Eq.~49! is in-

serted in Eq.~45! owing to the sum rules~38!–~40!, and
could therefore be discarded, but then the correspond
terms in Eq.~49! have to be identified and subtracted. Th
could be done using Eq.~52!, but the remaining lattice sum
tensor, which is the second term on the right-hand side of
~52! does not have the symmetry of the full lattice sum te
sor given in Eq.~51!, which complicates the treatment.
more convenient way to deal with thefk0

loc terms is to retain
them at this point and to show later that they do not contr
ute to the momentsPI ks .

In order to express the macroscopic crystal susce
bilities x

=

(1)(2v;v), x
T

(2)(2v;v1,v2), and
x
U

(3)(2v;v1,v2,v3), defined by

PI ~v!/e05x
=

~1!~2v:v!•eI ~v!

1x
T

~2!~2v;v1 ,v2!:eI ~v2!eI ~v1!

1x
U

~3!~2v;v1 ,v2 ,v3!]eI ~v3!eI ~v2!eI ~v1!

~54!

in terms of the distributed polarizabilities, we adopt a proc
dure developed by Malagoli and Munn,16 which allows one
to treat the frequency dependence of the susceptibilitie
general. According to Eqs.~49! and ~45!, the local fieldFI ks

can be written as

FI ks~v!5FI ks
~1!~v!1FI ks

~2!~v!1FI ks
~3!~v!, ~55!

where theFI ks
(u)(v) depend on the external input frequenci

v i as follows:

FI ks
~1!~v i !5EI ks

ext~v i !1~e0v !21(
k1s1

LT ksk1s1
•PI k1s1

~1! ~v i ! , ~56!

FI ks
~2!~v i 1

1v i 2
!5~e0v !21(

k1s1

L= ksk1s1
•PI k1s1

~2! ~v i 1
1v i 2

!, ~57!
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FI ks
~3!~v i 1

1v i 2
1v i 3

!5~e0v !21(
k1s1

L= ksk1s1

•PI k1s1

~3! ~v i1v j1vk!. ~58!

The local field quantitiesFI (2) and FI (3) arise from the in-
duced nonlinear moments by way of combined action of t
and three input fields, respectively. Taking into account
ng

-

y
ld

g
e
-

y

ng
o
ll

the fields present at the molecular sitek, with matching fre-
quency dependence and order of nonlinearity, the indu
momentsPI ks

( i ) ( i 51,2,3) are

PI ks
~1!~v i !5(

s1

a= kss1
~v i !•FI ks1

~1! ~v i !, ~59!
PI ks
~2!~v i 1

1v i 2
!5(

s1

a= kss1
~v i 1

1v i 2
!•FI ks1

~2! ~v i 1
1v i 2

!11/2(
s1s2

b
T kss1s2

~2~v i 1
1v i 2

!;v i 1
,v i 2

!:FI ks2

~1! ~v i 2
!FI ks1

~1! ~v i 1
!, ~60!

PI ks
~3!~v i 1

1v i 2
1v i 3

!5(
s1

a= kss1
~v i 1

1v i 2
1v i 3

!•FI ks1

~3! ~v i 1
1v i 2

1v i 3
!11/2Î v i 1

,v i 2
,v i 3

3(
s1s2

b
T kss1s2

~2~v i 1
1v i 2

1v i 3
!;v i 1

,v i 2
1v i 3

!:FI ks2

~2! ~v i 2
1v i 3

!FI ks1

~1! ~v i 1
!

11/6 (
s1s2s3

gU kss1s2s3
~2~v i 1

1v i 2
1v i 3

!;v i 1
,v i 2

,v i 3
!]FI ks3

~1! ~v i 3
!FI ks2

~1! ~v i 2
!FI ks1

~1! ~v i 1
!, ~61!
the

y
ar
-

.

whereÎ v i 1
, v i 2

,v i 3
generates additional terms by interchangi

the frequenciesv i 1
,v i 2

,v i 3
together with their associated in

dices.
The coupled set of Eqs.~56!–~61! can be successivel

solved to yield thePI ks
( i ) as functions of the macroscopic fie

quantitiesEI ks
ext(v). Equation~56! with ~59! gives

FI ks
~1!~v i !5(

k1s1

D= ks,k1s1
~v i !•EI k1s1

ext ~v i !, ~62!

where the quadratic supermatrixD= of dimension 4Zns is the
inverse of another supermatrixX= built up from 434 matri-
ces

X= k1s1 ,k8s85dk1k8ds1s8I=2~e0v !21(
s2

L= k1s1k8s2
•a= k8s2s8 .

~63!

If Eq. ~53! is inserted into this equation, the terms involvin
the lattice sums at the molecular origin disappear becaus
the sum rule Eq.~38!. Therefore only the Lorentz-factor ten
sorsLI (10) andL= (11) need to be calculated forD= .

On substitution of Eq.~62! in ~59!, PI ks
(1) follows in terms

of EI ks
ext. Inserting Eqs.~57! and ~62! into Eq. ~60! yields an

equation that can be solved to givePI ks
(2) in terms of EI ks .

Similarly, Eq. ~61! can be solved withPI ks
(2) in Eq. ~57! and

Eq. ~62! to givePI ks
(3) as a function ofEI ks . The macroscopic

susceptibilitiesx
=

(1), x
T

(2), andx
U

(3) can then be obtained b

inserting thePI ks
( i ) into Eq.~44! and comparing with Eq.~54!.

At this point it is necessary to show that the terms involvi
fk0

ext in the expressions for thePI ks
( i ) vanish. We will show this

explicitly for PI ks
(1) , which is given by
of

PI ks
~1!5 (

s8k1s1

a= kss8•D= ks8k1s1

•@~2fk10
ext ,0,0,0!T1U= k1s1

•eI #, ~64!

where we have separated the terms involvingfk10
ext andeI in

EI ks . In order to show that the first term vanishes, we use
following identity:

D= ks8k1s1
5 (

k2s2s3

L= ks8k2s2
•D= k2s2k1s3

T
•a= k1s3s1

1I=dkk1
ds8s1

,

~65!

which is a generalization of a relationship used previousl17

for the connection of susceptibilities with molecul
~hyper!polarizabilities in the point dipole approximation. In
serting this expression into Eq.~64!, we see with Eq.~48!
that the first term in Eq.~64! is zero due to the sum rule Eq
~38!. Similar arguments hold in the case ofPI ks

(2) andPks
(3) ,

except that here the sum rules Eq.~39! and~40! are involved,
too.

The final results for the susceptibilities are

x
=

~1!~v!5~e0v !21(
kss8

U= ks•a= kss8~v!•d= ks8~v!, ~66!

x
T

~2!~v!5~2e0v !21 (
kss8s9

d= ks~v!T

•b
T kss9s8~2v;v2,v1!: @1,3#@d= ks8~v1!d= ks9~v2!#,

~67!

x
U

~3!~v!5x
U direct

~3! ~v!1x
U casading

~3! ~v!, ~68!
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x
U direct

~3! ~v!5~6e0v !21 (
kss8s9s-

d= ks~v!T

•gU kss-s9s8~2v:v3 ,v2 ,v1!

] @1,3,5#@d= ks8~v1!d= ks9~v2!d= ks-~v3!#, ~69!

x
U cascading

~3! ~v!5
1

4~e0v !2 Î v1 ,v2 ,v3(ks
d= ks~v!T

• (
k8s8s9s-

F (
k2s2s3s4

b
T kss8s2

~2v;v3 ,v11v2!

•L= ks2 ,k2s3
•D= k2s3k8s4

~v11v2!

•b
T k8s4s9s-~2~v11v2!;v2 ,v1!G

] @1,3,5#@d= k8s-~v1!d= k8s9~v2!d= ks8~v3!#, ~70!

where :@1,3# denotes a nonstandard double contraction w
the first and third index of the tensor which follows, an
] @1,3,5# likewise a triple contraction. Here the local field te
sor d= ks is defined by

d= ks5(
k1s1

D= ksk1s1
•U= k1s1

. ~71!

The equations may be compared with those resulting
the theory of the submolecule treatment, which was de
oped by Hurst and Munn18 to take into account effects on th
crystal susceptibilities arising from the finite sizes a
shapes of the molecules composing the crystal. In this the
the molecules are divided into submolecules, assuming
every submolecule gives the same contribution to the sus
tibilities. The effect of the crystal environment is again c
culated using the rigorous local field approach. The subm
ecules are in general chosen in such a way as to des
approximately the expected distribution of the polarizabil
over the molecule, but the choice is rather arbitrary. In sp
of this arbitrariness the treatment has been shown to pre
qualitatively correct crystal susceptibilities.16 For small and
compact molecules such as urea and benzene the theory
dicts x

=

(1) even quantitatively.19,20 The main difference be
tween the theory presented here and the submolecule t
ment consists in a more realistic description of the cha
distribution of the molecules in the crystalline environme
It can be shown by neglecting the charge terms that
Eqs.~66!–~67! reduce to those of the submolecule treatm
@see, e.g., Eqs.~39!–~40! in Ref. 14 and Eqs.~4! and ~6! in
Ref. 16#.

In the case of distributed polarizabilities, different par
tion schemes have been used,2,21,22 but apparently the mos
stable one in terms of basis set dependence and physi
plausible contributions has been found to be that based
the theory of atoms in molecules, developed by Bader
co-workers.23,24 In this theory, three-dimensional space
partitioned into regionsVs ~basins! bounded by surface
Ss(rI ) on which the electronic charge densityr(rI ) satisfies
the zero-flux condition“I r(rI )•nI (rI )50;rIPSs(rI ). We shall
apply this distribution scheme here to the unperturbed m
h
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ecule. For a molecule in an external electric field in the f
mulation by Cioslowski25 the atoms in molecules approac
requires the consistent application of the zero-flux condit
on theperturbedmolecule, incorporating surface relaxatio
effects due to the electric field. Such an approach, howe
does not lead to a real-space partitioning of the molecu
response functions as in Eqs.~26!–~28! or ~32!–~34!.26 Our
objective is a realistic description of the spatial distributi
of the charge density response rather than a rigorous ato
partition of the~hyper!polarizabilities, which would be able
to reproduce atomic multipole moments at any finite exter
field, including the effect of the shift of the interatom
boundaries. Further, both approaches conserve the total~hy-
per!polarizabilities and the invariance with respect to inte
change of the perturbation operators.25,26 Therefore, we con-
sider the application of the above distribution scheme on
unperturbed molecule sufficient for our purposes.

III. APPLICATION TO UREA

As an illustrative example, we have chosen to calcul
the linear and quadratic susceptibilities of the urea crys
using the static distributed polarizabilities and first hyperp
larizabilities calculated at the SCF level. Urea is a stand
NLO crystal that we have studied previously,20 so that direct
comparisons can be made.

The atomic multipole integrals required for the calcu
tion of the distributed~hyper!polarizabilities were provided
by a modified version of the PROAIM program27 ~as de-
scribed in Ref. 30!. The distributed static polarizabilities an
first hyperpolarizabilities were determined at the SCF le
of theory using the program FOURIER.28

The polarization-consistent Sadlej basis set has b
used for the calculation of the molecular properties. The m
lecular geometry~at 123 K! has been taken from Ref. 29
where the crystal structure of urea at 12, 60, and 123 K w
determined by neutron diffraction. The molecularz-axis
points from the carbon to the oxygen atom, they-axis lies in
the molecular plane, and thex-axis completes the orthogona
right-handed Cartesian system. The origin is placed at
molecular center of mass.

Owing to the limited precision of the numerical integr
tion procedure, the reconstructed hyperpolarizabilities ca
lated by Eq.~42! differ slightly from the molecular hyperpo
larizabilities obtained by a coupled perturbed Hartree–F
~CPHF! calculation applying a homogeneous electric field
the molecule, as can be seen from the last two lines in Ta
I and II, where both quantities are given. For the polarizab
ity a, the differences are lower than 1% and forb, lower than
3%. These inaccuracies may also mean that the molec
charge is not fully conserved. Anad hoccorrection scheme
as already used in Ref. 30, has been employed to remedy
deficiency.

In Table I we present the unique components of the d
tributed polarizabilitiesass8

00 , aI ss8
01 , anda= ss8

11 , of urea with an
absolute value larger than 0.1 a.u. and in Table II the uni
components of the distributed first hyperpolarizabilities th
are larger than certain given thresholds.~The complete set of
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TABLE I. Unique components of the distributed polarizabilities of urea larger than 0.1 a.u., reconstr
polarizabilitiesa= rec and molecular polarizabilities calculated by CPHF,a= CPHF; all units in a.u., conversion
factors to other units:a00: 1 a.u.551.918310210 esu50.588 76310220 C2 J21; a10, a01: 1 a.u.52.8003310217

esu50.311 56310230 m C2 J21: a11: 1 a.u.50.148 185310224 esu50.164 87310240 ~C m!2 J21.

ss8

ass8
00 ass8, j

01 a i ,ss8
10 a a i j ,ss8

11

i 5y z i 5z i j 5xx yy zy zz

C C 0.91 0.860 0.238 0.209
C O 20.384 20.129 0.223 20.157
C N1 20.241
O O 1.034 0.536 5.638 3.918
O N1 20.211 20.127 20.106 20.263 20.138
N1 N1 1.406 0.301 20.195 7.710 3.280 20.140 3.054
N1 N2 20.124 20.244
N1 H11 20.375 20.193 20.104 0.164 0.109
N1 H12 20.403 0.241 0.190 0.169
H11 H11 0.545 0.298 0.152 0.240 0.351 0.242
H12 H12 0.583 20.369 0.290 0.258 0.424

a i j
rec 24.424 35.883 0.000 37.210

a i j
CPHF 24.451 35.910 0.000 37.269

aOnly components given that are not equal by symmetry to any of theass8,i
01 shown.

TABLE II. Unique components of the distributed first hyperpolarizabilities of urea with absolute values l
than 0.3 a.u. (bss8s9

000 ,bss8s9,i
001 ), 0.5 a.u. (bss8s9,i j

011 ,b i j ,ss8s9
110 ), and 1 a.u. (b i jk ,ss8s9

111 ); reconstructed first hyperpo
larizabilities b

T

rec and molecular first hyperpolarizabilities calculated by CPHF,b
T

CPHF; all units in a.u., con-
version factors to other units:b000: 1 a.u.55.8306310213 esu52.1639310222 C3 J22; b001, b010, b100:
1 a.u.53.0854310216 esu51.1451310232 C3 m J22; b011, b101, b110: 1 a.u51.6327310224

esu56.0596310243 C3 m2 J22; b111: 1 a.u.50.864310232 esu50.320 66310252 C3 m3 J22.

ss8s9

bss8s9
000 bss8s9,i

001 bss8s9,i j
011 b i j ,ss8s9

110 a

i 5y z i j 5xx yy zz xx yy

C C C 20.44 20.57
C C O 20.93
C O O 0.90 0.95
C C N1 20.39
O O O 1.64 24.66 23.64 22.55
O O N1 0.98 0.82
O N1 N1 2.45 0.72
N1 N1 N1 1.00 27.91 21.55 21.06
N1 N2 N2 0.78
N1 N1 H11 1.79
N1 N1 H21 1.85 0.51
N1 H11 H11 0.49 0.46 0.66
N1 H12 H12 0.49 20.55 0.87
H11 H11 H11 20.69 20.69 20.34 20.50 21.09 20.56
H12 H12 H12 20.71 0.86 20.62 20.52 21.41

ss8s9

b i j ,ss8s9
110 a b i jk ,ss8s9

111

zz i jk 5xxy xxz zxx yyy yyz yzz zzz

O O O 211.50 211.50 214.01 218.30
O O N1 0.61 1.07 21.54 21.30
O N1 N1 2.29
N1 N1 N1 212.61 8.66 8.66 27.72 3.32 22.52 2.56
N1 N1 N2 21.98
N1 N1 H12 1.24
H11 H11 H11 22.05
H12 H12 H12 2.70

b i jk
rec 0.0 16.3 16.3 0.0 244.1 0.0 67.9

b i jk
CPHF 0.0 16.8 16.8 0.0 244.6 0.0 68.5

aOnly components given that are not equal by symmetry to any of thebss8s9,i j
011 shown.
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data is available from the authors.! The data show that the
most polarizable centers are the oxygen and the nitrogen
oms, while the carbon atom has low polarizabilities and fi
hyperpolarizabilities, due to the three electron-withdraw
atoms attached to it~the atomic charge on C is 2.27ueu!.

Using Eqs.~66! and ~67!, the macroscopic susceptibil
ties x

=

(1) and x
T

(2) can be calculated from the distribute
~hyper!polarizabilities. The results are shown in Table I
together with experimental results and results obtained u
the point dipole approximation and the submolecule tre
ment of Hurst and Munn, using one submolecule on each
O, and N atom. In order to be comparable, the reconstru
molecular~hyper!polarizabilities were used in the latter tw
calculations. The data show that the values of the calcula
linear susceptibility for the different calculational metho
are quite similar, while the quadratic susceptibility calcula
with the distributed model is only about half the value c
culated with the other methods. We cannot expect the ca
lated susceptibilities to reproduce the experimental data
actly, as neither electronic correlation nor dispersion effe
are included in the molecular properties. Further, our res
are calculated for a urea crystal atT5123 K, while the ex-
periments were performed at room temperature. It has b
shown in Ref. 20 that, using the same basis set, both
point dipole approximation and the 4 submolecule model
able to reproduce approximately the experimental values
the first order susceptibilitiesx i i

(1) , if electronic correlation at
the MP2 level, frequency dispersion and the effect of
permanent crystal field are taken into account. Further,
inclusion of those effects increased the absolute value of
quadratic susceptibilityxabc

(2) by a factor of about 2.6, yield
ing values~4.7 pm/V and 4.8 pm/V! that are much too large
compared with the experimental data. Applying this e
hancement factor to the value calculated here with the
tributed model gives exactly the experimental value,
pm/V. Although this agreement is certainly fortuitous, it ne
ertheless shows that the value forxabc

(2) in the distributed
model would probably be much closer to the experimen
value, if the additional effects mentioned are included, th
those calculated with the simpler point dipole and subm
ecule models.

UsingEI ks
ext50I in Eq. ~49! and adding the permanent di

tributed charges and dipolesPks
(0) to the induced ones in Eq

~45! allows us to calculate the permanent electric local fi
fI ks

(0) at the different sites in the molecule, after subtracting
potential at the molecular origin. In a first approximation, t

TABLE III. Calculated and experimental components of the linear (x
=

(1))
and quadratic (x

T

(2)/10212 V21 m) macroscopic susceptibility tensors of th
urea crystal.

xaa
(1) xcc

(1) xabc
(2)

Distributed 1.085 1.414 21.07
4 Submolecules 1.009 1.443 21.98
Point dipole 1.038 1.353 21.97
Expt. 1.221a 1.569a 2.8a,b

aAt l5597 nm.
bSecond harmonic generation~Ref. 31!. Only the absolute value was dete
mined.
at-
t

g

g
t-
,

ed

ed

d
-
u-
x-
ts
ts

en
he
e
or

e
e
e

-
s-
8

l
n
l-

d
e

contribution of the distributed hyperpolarizabilities may
ignored, whence the fieldfI ks

(0) is given by

U= ks
T
• fI ks

~0!5~e0v !21 (
k1s1k2s2

D= ks,k1s1

f
•L= k1s1 ,k2s2

f
•PI k2s2

~0! ,

~72!

whereL= k1s1 ,k2s2

f denotes the second term on the right-ha

side of Eq.~52! andD= f is the inverse tensor of theX= tensor
given in Eq.~63! with L= replaced byL= f . The left-hand side
of Eq. ~72! is the four component vector (rI ks• fI ks

(0), fI ks
(0))T.

The fields calculated within this approximation are giv
in Table IV. It is evident that the permanent local field
strongly inhomogeneous, even over this comparatively sm
molecule, indicating that a distributed description would
mandatory in a further refinement of the susceptibility calc
lations, where the permanent local field effect on t
~hyper!polarizabilities would have to be considered.20

Also given in Table IV are the contributions to the tot
permanent local field caused by the distributed charges
dipoles alone~i.e., the fields produced by the two permane
contributionsqks

(0) andmI ks
(0) occurring inPI ks

(0) , including the
fields due to theinducedcharges and dipoles!. The data show
that the most important contribution to the total field com
from the charges and that the dipole fields nearly alw
oppose the charge fields. If the fields from higher distribu
multipoles follow the same opposing behavior, their con
butions could change the local field considerably. In orde
have a reliable description of the permanent local field,
contributions from distributed multipoles higher than dipo
~and from the hyperpolarizabilities! should therefore be in-
cluded.

IV. CONCLUSIONS

We have extended Stone’s treatment of the nonlocal
larizability function to nonlocal first and second dipolar h
perpolarizability functions, introducing the respective d
tributed hyperpolarizabilities by way of multicentere
multipole expansions. Extensions to higher multipolar el
tric hyperpolarizabilities and magnetic hyperpolarizabiliti
can easily be carried out. The response functions have b
expressed both in terms of charge density changes relate
changes in the electric potential, which is suitable for pro
lems involving the calculation of intermolecular interactio
energies, and in terms of dipole density changes relate

TABLE IV. Permanent local electric field at the atoms of an urea molec
in the crystal, due to the charges (FI s

(q0)), the dipoles (FI s
(m0)) and due to both

moments (FI s
(0)5FI s

(q0)1FI s
(m0)) of the surrounding molecules; due to th

crystal symmetry thex-components are zero. All values are in GV m21.

s Fy,s
(q0) Fz,s

(q0) Fy,s
(m0) Fz,s

(m0) Fy,s
(0) Fz,s

(0)

C 0.00 222.52 0.00 7.52 0.00 214.99
O 0.00 224.53 0.00 7.21 0.00 217.32
N1 2.89 216.43 0.49 5.94 3.35 210.48
H11 23.07 211.34 23.38 5.25 19.69 26.10
H12 216.18 222.92 6.58 6.47 29.60 216.45
N2 22.89 216.43 20.49 5.94 23.35 210.48
H21 223.07 211.34 3.38 5.25 219.69 26.10
H22 16.18 222.92 26.58 6.47 9.60 216.45
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changes of the electric field, which is the more custom
point of view in the field of nonlinear optics. With the he
of the distributed~hyper!polarizabilities a theory for the
macroscopic nonlinear optical susceptibilities of molecu
crystals has been developed, which is formally similar
existing theories that go beyond the point dipole approxim
tion, but provides a more satisfactory distribution scheme
the molecular response, if coupled with a rigorous partitio
ing scheme like Bader’s atoms in molecules approach.

The application of the formalism to the macroscopic s
ceptibilities of the urea crystal shows that even for this qu
small molecule the multicentred description of the molecu
response yields very different results for the quadratic s
ceptibility, compared to the point-dipole approximation, a
will probably be in much better agreement with experimen
data once correlation effects, dispersion and permanent
effects are taken into account. For larger molecules the in
pability of the monocentered description to describe the
isotropy of the charge density will become much more p
nounced and it will be necessary to use more distribu
schemes. These might use the rigorous method prese
here, perhaps simplified by integrating over basins that r
resent functional groups rather than individual atoms, or e
simpler schemes, developed previously, that distribute
response functions in more intuitive ways. But the results
the present work on urea show that the effects of the stron
inhomogeneous permanent local field can be described m
accurately only by methods using physically meaningful d
tribution schemes.

APPENDIX A

Here we show thatf(rI s) can be given by Eq.~18!.
Expanding the potentialf(rI ) around rI05(0,0,0), we can
write

f~rI !2f~rI0!52 (
n51

`
1

n!
rI @n#@n#“I @n21#EI ~rI0!. ~A1!

We want to show that

2 (
n51

`
1

n!
rI s

@n#@n#“I @n21#EI ~rI0!

5 (
n51

`
1

n!
@2rI s#

@n#@n#“I @n21#EI ~rI s!. ~A2!

The terms“I @n21#EI (rI s) can be expressed as series around
origin, by means of Eq.~A1!:

“I @n21#EI ~rI s!

5 (
m5n

`
1

~m2n!!
rI s

@m2n#@m2n#“I @m21#EI ~rI0!. ~A3!

Inserting into Eq.~A2! gives
y
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-

-
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2 (
n51

`
1

n!
rI s

@n#@n#“I @n21#E~rI0!

5 (
m51

`

(
n5m

`
1

m! ~n2m!!
~21!mrI s

@n#@n#“I @n21#EI ~rI0!.

~A4!

Comparing terms of equal ordern21 of derivatives yields

2
1

n!
rI s

@n#@n#“I @n21#E~rI0!

5 (
m51

n
1

m! ~n2m!!
~21!mrI s

@n#@n#“I @n21#E~rI0!

⇒2
1

n!
5 (

m51

n
~21!m

m! ~n2m!!
. ~A5!

The last equation can be recast into

(
m50

n S m
n D ~21!m1150, ~A6!

which is a known property of the binomial coefficients.

APPENDIX B

The equations for the calculation of a general Loren
factor tensor~that is, a dipole–multipole lattice sum! in the
point-dipole approximation have been given in Ref. 32. T
extension for the dipole–charge and dipole–dipole tensor
the case of a molecule composed of several subunits
been treated by Bounds and Munn33 for the calculation of the
effects of a localized charge on the polarization energy o
crystal. The charge–charge lattice sumLksk8s8

(00) is the essen-
tial ingredient of the Madelung constant and the charg
dipole lattice sum Lks,k8s8 i

(01) is determined by Lks,k8s8 i
(01)

52Lk8s8 i ,ks
(10) . It is shown in connection with Eq.~63! that

Lksk8s8
(00) is not needed for the calculation of the susceptibilit

and will therefore not be given here.
The Lorentz-factor tensorsLksi,k8s8

(10) , andLksi,k8s8 j
(11) in Eq.

~50! for the reference unit celll 50 ~in component form! are

Lksi,k8s8
~10!

52
vaR2

4p S dkk8~12dss8!Hi
q,0@RurI0ks82rI0ksu#

1(
l

~12d l0dkk8!Hi
q,1@RurI lk8s82rI0ksu# D

1
p

2R2 (
hÞ0

G@~p2/R2!yI ~h!2#yi~h!

3sin@2pyI ~h!•~rI0ks2rI0k8s8!#, ~B1!
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Lksi,k8s8 j
~11!

5
vaR3

3p3/2d i j dss8dkk81
vaR3

4p

3H dkk8~12dss8!Hi j
m,0@RurI0ks82rI0ksu#

1(
l

~12d l0dkk8!Hi j
m,1@RurI lk8s82rI0ksu#J

2
p2

R2 (
hÞ0

yi~h!yj~h!G@~p2/R2!yI ~h!2#

3cos@2pyI ~h!•~rI0ks2rI0k8s8!#, ~B2!

where

Hi
q,n@ uxI u#5

xi

uxI u3 F2dn0 erf~ uxI u!1dn1 erfc~ uxI u!

1
2uxI u
p1/2 exp$2uxI u2%G , ~B3!

Hi j
m,n@ uxI u#5

1

uxI u3 F2d i j 1
3xixj

uxI u2 G@2dn0 erf~ uxI u!

1dn1 erfc~ uxI u!#1
1

uxI u2 F2d i j 1
3xixj

uxI u2
12xixj G

3
2

p1/2exp$2uxI u2%, ~B4!

G~x!5
1

x
exp~2x!. ~B5!

Here va is the volume of the unit cell,yI ( l ) are reciprocal
lattice vectors, erf(x)52/p (1/2)*0

x exp(2x2) is the error func-
tion, erfc(x)512erf(x) is the complementary error functio
andR is a parameter that determines the rate of converge
of the lattice sums: usually32 it is sufficient to set
R5p1/2va

21/3.
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