Applied Mathematical Sciences, Vol. 4, 2010, no. 17, 839 - 847

Global Asymptotic Stability of a Higher Order Difference Equation

M.A.Al-Shabi

Department of Computer Science College of Computer, Qassim University, Buraidah, 51411, Saudi Arabia.

R. Abo-Zeid

Department of Basic Science faculty of Engineering October 6 university 6th of October Governorate, Egypt abuzead73@yahoo.com

Abstract

The aim of this work is to investigate the global stability, periodic nature, oscillation and boundedness of the positive solutions of the difference equation

$$x_{n+1} = \frac{Ax_{n-2r-1}}{B + Cx_{n-2l}x_{n-2k}} \qquad , n = 0, 1, 2, \dots$$

where A, B, C are nonnegative real numbers and l, r, k are nonnegative integers, such that $l \leq k$ and $r \leq k$.

Mathematics Subject Classification: 39A11

Keywords: difference equation, periodic solution, globally asymptotically stable

1 Introduction

Difference equations have always played an important role in the construction and analysis of mathematical models of biology, ecology, physics, economic processes, etc. [6]. Recently there has been a great interest in studying the qualitative properties of rational difference equations. For the systematical studies of rational and nonrational difference equations, one can refer to the monographs [7, 4, 11, 5, 6] and the papers [2, 3, 12, 13, 14, 15, 10, 9, 8] and references therein.

The study of nonlinear rational difference equations of higher order is of paramount importance, since we still know so little about such equations.

In [1], we have discussed the asymptotic behavior of solutions of the difference equation

$$x_{n+1} = \frac{Ax_{n-1}}{B + C \prod_{i=l}^{k} x_{n-2i}} , n = 0, 1, 2, \dots$$

where A, B, C are nonnegative real numbers and l, k are nonnegative integers, such that $l \leq k$

In this paper, we study the global asymptotic stability of the difference equation

$$x_{n+1} = \frac{Ax_{n-2r-1}}{B + Cx_{n-2l}x_{n-2k}} \qquad , n = 0, 1, 2, \dots$$
(1)

where A, B, C are nonnegative real numbers and l, r, k are nonnegative integers, such that $l \leq k$ and $r \leq k$.

The following particular cases can be obtained:

- 1. When A = 0, equation (1) reduces to $x_{n+1} = 0, n = 0, 1, 2, ...$ which has the trivial solution.
- 2. When B = 0, equation (1) reduces to

$$x_{n+1} = \frac{Ax_{n-2r-1}}{Cx_{n-2l}x_{n-2k}} \qquad , n = 0, 1, 2, \dots$$

This equation can be reduced to the linear difference equation

$$y_{n+1} - y_{n-2r-1} + y_{n-2l} + y_{n-2k} = \gamma,$$

by taking

$$x_n = e^{y_n}, \gamma = \ln \frac{A}{C}.$$

3. When C = 0, equation (1) reduces to $x_{n+1} = \frac{A}{B}x_{n-2r-1}, n = 0, 1, 2, ...$ Which is a linear difference equation.

For various values of l, r and k, we can get more equations.

2 Preliminaries

Consider the difference equation

$$x_{n+1} = f(x_n, x_{n-1}, \dots, x_{n-k}) \qquad , n = 0, 1, \dots$$
(2)

where $f: \mathbb{R}^{k+1} \to \mathbb{R}$. Definition 2.1 [11] An equilibrium point for equation (2) is a point $\bar{x} \in \mathbb{R}$ such that $\bar{x} = f(\bar{x}, \bar{x}, \dots, \bar{x})$. Definition 2.2 [11]

- 1. An equilibrium point \bar{x} for equation (2) is called locally stable if for every $\epsilon > 0, \exists \delta > 0$ such that every solution $\{x_n\}$ with initial conditions $x_{-k}, x_{-k+1}, \ldots, x_0 \in]\bar{x} - \delta, \bar{x} + \delta[$ is such that $x_n \in]\bar{x} - \epsilon, \bar{x} + \epsilon[, \forall n \in N.$ Otherwise \bar{x} is said to be unstable.
- 2. The equilibrium point \bar{x} of equation (2) is called locally asymptotically stable if it is locally stable and there exists $\gamma > 0$ such that for any initial conditions $x_{-k}, x_{-k+1}, \ldots, x_0 \in]\bar{x} \gamma, \bar{x} + \gamma[$, the corresponding solution $\{x_n\}$ tends to \bar{x} .
- 3. An equilibrium point \bar{x} for equation (2) is called global attractor if every solution $\{x_n\}$ converges to \bar{x} as $n \to \infty$.
- 4. The equilibrium point \bar{x} for equation (2) is called globally asymptotically stable if it is locally asymptotically stable and global attractor.

The linearized equation associated with equation (2) is

$$y_{n+1} = \sum_{i=0}^{k} \frac{\partial f}{\partial x_{n-i}} (\bar{x}, \dots, \bar{x}) y_{n-i} \qquad , n = 0, 1, 2, \dots$$
(3)

the characteristic equation associated with equation (3) is

$$\lambda^{k+1} - \sum_{i=0}^{k} \frac{\partial f}{\partial x_{n-i}} (\bar{x}, \dots, \bar{x}) \lambda^{k-i} = 0$$
(4)

Theorem 2.1 [11] Assume that f is a C^1 function and let \bar{x} be an equilibrium point of equation (2). Then the following statements are true:

- 1. If all roots of equation (4) lie in the open disk $|\lambda| < 1$, then \bar{x} is locally asymptotically stable.
- 2. If at least one root of equation (4) has absolute value greater than one, then \bar{x} is unstable.

3 Linearized stability analysis

Consider the difference equation

$$x_{n+1} = \frac{Ax_{n-2r-1}}{B + Cx_{n-2l}x_{n-2k}} \qquad , n = 0, 1, 2, \dots$$

where A, B, C are nonnegative real numbers and l, r, k are nonnegative integers, such that $l \leq k$ and $r \leq k$.

The change of variables $x_n = \sqrt{\frac{A}{C}} y_n$ reduces equation (1) to the difference equation

$$y_{n+1} = \frac{y_{n-2r-1}}{\gamma + y_{n-2l}y_{n-2k}} \qquad , n = 0, 1, 2, \dots$$
 (5)

where $\gamma = \frac{B}{A}$.

Now we examine the equilibrium points of equation (5) and their local asymptotic behavior. Clearly equation (5) has two nonnegative equilibrium points $\bar{y} = 0$ and $\bar{y} = \sqrt{1-\gamma}$ when $\gamma < 1$ and $\bar{y} = 0$ only when $\gamma \geq 1$.

The linearized equation associated with equation (5) about \bar{y} is

$$z_{n+1} - \frac{1}{\gamma + \bar{y}^2} z_{n-2r-1} + \frac{\bar{y}^2}{(\gamma + \bar{y}^2)^2} (z_{n-2l} + z_{n-2k}) = 0 \qquad , n = 0, 1, 2, \dots$$
(6)

the characteristic equation associated with this equation is

$$\lambda^{2k+1} - \frac{1}{\gamma + \bar{y}^2} \lambda^{2k-2r-1} + \frac{\bar{y}^2}{(\gamma + \bar{y}^2)^2} (\lambda^{2k-2l} + 1) = 0.$$
(7)

We summarize the results of this section in the following theorem.

- **Theorem 3.1** 1. If $\gamma > 1$, then the zero equilibrium point is locally asymptotically stable.
- 2. If $\gamma < 1$, then the equilibrium points $\bar{y} = 0$ and $\bar{y} = \sqrt{1 \gamma}$ are unstable (saddle points).

Proof

The linearized equation associated with equation (5) about $\bar{y} = 0$ is

$$z_{n+1} - \frac{1}{\gamma} z_{n-2r-1} = 0$$
, $n = 0, 1, 2, \dots$

The characteristic equation associated with this equation is

$$\lambda^{2k+1} - \frac{1}{\gamma}\lambda^{2k-2r-1} = 0$$

so $\lambda = 0, \lambda = \pm \sqrt[2r+2]{\frac{1}{\gamma}}$.

- 1. If $\gamma > 1$, then $|\lambda| < 1$ for all roots and $\bar{y} = 0$ is locally asymptotically stable.
- 2. If $\gamma < 1$, it follows that $\bar{y} = 0$ is unstable (saddle point). The linearized equation (6) about $\bar{y} = \sqrt{1-\gamma}$ becomes

$$z_{n+1} - z_{n-2r-1} + (1 - \gamma)(z_{n-2l} + z_{n-2k}) = 0 \qquad , n = 0, 1, 2, \dots$$

The associated characteristic equation is

$$\lambda^{2k+1} - \lambda^{2k-2r-1} + (1-\gamma)(\lambda^{2k-2l} + 1) = 0.$$

Let $f(\lambda) = \lambda^{2k+1} - \lambda^{2k-2r-1} + (1-\gamma)(\lambda^{2k-2l}+1)$. We can see that $f(\lambda)$ has a real root in $(-\infty, -1)$. Then the point $\bar{y} = \sqrt{1-\gamma}$ is unstable (saddle point).

4 Global behavior of equation (5)

Theorem 4.1 If $\gamma > 1$, then the zero equilibrium point is globally asymptotically stable.

Proof

Let $\{y_n\}_{n=-2k-1}^{\infty}$ be a solution of equation (5). Hence

$$y_{n+1} = \frac{y_{n-2r-1}}{\gamma + y_{n-2l}y_{n-2k}} < \frac{y_{n-2r-1}}{\gamma} \qquad , n = 0, 1, 2, \dots$$

then

$$y_{2n(r+1)+i} < \frac{1}{\gamma^{n+1}} y_{i-2r-2}, i = 1, 2, \dots 2r + 2.$$

Hence each of the subsequences $\{y_{2n(r+1)+i}\}_{n=0}^{\infty}, i = 1, 2..., 2r+2, \text{ converges}$ to zero. Therefore

$$\lim_{n \to \infty} y_n = 0$$

In view of theorem (3.1), $\bar{y} = 0$ is globally asymptotically stable.

5 Semicycle analysis

Theorem 5.1 Let $\{y_n\}_{n=-2k}^{\infty}$ be a nontrivial solution of equation (5) and let \bar{y} denote the unique positive equilibrium of equation (5) such that either, $(C_1) \ y_{-2k}, y_{-2k+2}, \ldots, y_0 > \bar{y}$ and $y_{-2k+1}, y_{-2k+3}, \ldots, y_{-1} < \bar{y}$ Or $(C_2) \ y_{-2k}, y_{-2k+2}, \ldots, y_0 < \bar{y}$ and $y_{-2k+1}, y_{-2k+3}, \ldots, y_{-1} > \bar{y}$

is satisfied, then $\{y_n\}_{n=-2k}^{\infty}$ oscillates about \bar{y} with semicycles of length one.

Proof Assume that condition (C_1) is satisfied. Then we have $y_1 = \frac{y_{-2r-1}}{\gamma + y_{-2l}y_{-2k}} < \frac{\bar{y}}{\gamma + \bar{y}^2} = \bar{y},$ $y_2 = \frac{y_{-2r}}{\gamma + y_{-2l+1}y_{-2k+1}} > \frac{\bar{y}}{\gamma + \bar{y}^2} = \bar{y},$ by induction we obtain the result. Assume that condition (C_2) is satisfied. Then we have $y_1 = \frac{y_{-2r-1}}{\gamma + y_{-2l}y_{-2k}} > \frac{\bar{y}}{\gamma + \bar{y}^2} = \bar{y},$ $y_2 = \frac{y_{-2r}}{\gamma + y_{-2l+1}y_{-2k+1}} < \frac{\bar{y}}{\gamma + \bar{y}^2} = \bar{y},$ by induction we obtain the result.

6 case r = k

When r = k, equation (5) becomes

$$y_{n+1} = \frac{y_{n-2k-1}}{\gamma + y_{n-2l}y_{n-2k}} , n = 0, 1, 2, \dots$$
(8)

The following theorem summarizes the linearized stability analysis of equation (8).

Theorem 6.1 1. If $\gamma > 1$, then the zero equilibrium point is locally asymptotically stable.

2. If $\gamma < 1$, then the equilibrium points $\bar{y} = 0$ is unstable (repeller) and $\bar{y} = \sqrt{1 - \gamma}$ are unstable (saddle points). Proof

It is sufficient to consider the linearized equation

$$z_{n+1} + \frac{\bar{y}^2}{\gamma + \bar{y}^2} (z_{n-2l} + z_{n-2k}) - \frac{1}{\gamma + \bar{y}^2} z_{n-2k-1} = 0 \qquad , n = 0, 1, 2, \dots$$

and its associated characteristic equation

$$\lambda^{2k+2} + \frac{\bar{y}^2}{\gamma + \bar{y}^2} (\lambda^{2k-2l+1} + \lambda) - \frac{1}{\gamma + \bar{y}^2} = 0.$$

Therefore, the results follows.

Theorem 6.2 The following statements are true:

- 1. Assume that $\gamma > 1$. Then the zero equilibrium point is globally asymptotically stable.
- 2. Assume that $\gamma = 1$. Then every solution of equation (8) converges to a periodic solution of equation (8) with period 2(k+1) and there exist periodic solutions of equation (8) with prime period 2(k+1).

3. Assume that $\gamma < 1$. Then there exist solutions of equation (8) which are neither bounded nor persist.

Proof

- 1. The proof is similar to that of theorem (4.1).
- 2. Assume that $\gamma = 1$. Let $\{y_n\}_{n=-2k-1}^{\infty}$ be a solution of equation (8). For $n \ge 0$ we have

$$y_{n+1} = \frac{y_{n-2k-1}}{1 + y_{n-2l}y_{n-2k}} \le y_{n-2k-1} \qquad , n = 0, 1, 2, \dots$$

Hence the subsequences $\{y_{2n(k+1)+i}\}_{n=-1}^{\infty}$ are decreasing for each $1 \leq i \leq 2k+2$. Let

$$\lim_{n \to \infty} y_{(2k+2)n+i} = \rho_i \qquad i = 1, 2, \dots, 2k+2.$$

It is clear that $\{\ldots, \rho_1, \rho_2, \ldots, \rho_{2k+2}, \rho_1, \rho_2, \ldots, \rho_{2k+2}, \ldots\}$ is a 2(k+1)-periodic solution of equation (8).

Now let $\varphi_0, \varphi_1, \ldots, \varphi_k$ be distinct positive real numbers. It follows that the sequence

$$\ldots, \varphi_0, 0, \varphi_1, 0, \ldots, \varphi_k, 0, \varphi_0, 0, \varphi_1, 0, \ldots, \varphi_k, \ldots$$

is a periodic solution of equation (8) with prime period 2(k+1).

3. Assume that $\gamma < 1$. Let $\{y_n\}_{n=-2k-1}^{\infty}$ be a nontrivial solution of equation (8) and let \bar{y} denote the unique positive equilibrium of equation (8) such that

 $0 < \bar{y} < y_{-2k}, y_{-2k+2}, \dots, y_0$ and $0 < y_{-2k-1}, y_{-2k+1}, y_{-2k+3}, \dots, y_{-1} < \bar{y}$ is satisfied.

It follows that for all $m \ge 0$ and $0 \le j \le k$, we have

$$y_{(2k+2)(m+1)+2j} > y_{(2k+2)m+2j}$$

and

$$y_{(2k+2)(m+1)+2j+1} < y_{(2k+2)m+2j+1}$$

Hence for each $0 \leq j \leq k$ $\lim_{m\to\infty} y_{(2k+2)m+2j} = L_{2j} \in (\sqrt{1-\gamma}, \infty)$ and $\lim_{m\to\infty} y_{(2k+2)m+2j+1} = L_{2j+1} \in [0, \sqrt{1-\gamma}).$ We show that for each $0 \leq j \leq k$, $L_{2j+1} = 0$. For the sake of contradiction, suppose that there exists $j \in \{0, 1, \dots, k\}$ with $L_{2j+1} \in (0, \sqrt{1-\gamma}).$ $L_{2j+1} = \lim_{m \to \infty} y_{(2k+2)(m+1)+2j+1}$ $= \lim_{m \to \infty} \frac{y_{(2k+2)m+2j+1}}{\gamma + y_{(2k+2)(m+1)+2j-2l}y_{(2k+2)m+2j+2}}$ $=\frac{L_{2j+1}}{\gamma + L_{2j-2l}L_{2j+2}}.$

So as

Then

$$\lim_{m \to \infty} y_{(2k+2)m+2j+1} = L_{2j+1} \in (0, \sqrt{1-\gamma})$$

we have

$$1 = \gamma + L_{2j-2l}L_{2j+2} > 1$$

which is a contradiction. Thus it is true that for each $0 \le j \le k$, $L_{2j+1} = 0$, and so

$$\lim_{n \to \infty} y_{2n+1} = 0.$$

Now we show that for each $0 \leq j \leq k$, $L_{2j} = \infty$. For the sake of contradiction, suppose that there exists $j \in \{0, 1, ..., k\}$ with $L_{2j} \in (\sqrt{1-\gamma}, \infty)$. Then

$$L_{2j} = \lim_{m \to \infty} y_{(2k+2)(m+1)+2j}$$

=
$$\lim_{m \to \infty} \frac{y_{(2k+2)m+2j}}{\gamma + y_{(2k+2)(m+1)+2j-2l-1}y_{(2k+2)m+2j+1}}$$

=
$$\frac{L_{2j}}{\gamma}$$

So $\gamma = 1$, which is a contradiction. Hence $\lim_{n\to\infty} y_{2n} = \infty$, and the proof is complete.

References

- [1] A.E. Hamza, R. Khalaf-Allah, Global behavior of a higher order difference equation, Journal of Mathematics and Statistics, 3 (1) (2007) 17-20.
- [2] A.M. Amleh, N. Kruse, G. Ladas, On a class of difference equations with strong negative feedback, J. Difference Equ. Appl. 5 (1999) 497-515.
- [3] A.M. Amleh, E.A. Grove, D.A. Georgiou, G. Ladas, On the recursive sequence $x_{n+1} = \alpha + \frac{x_{n-1}}{x_n}$, J. Math. Anal. Appl. 233 (1999) 790-798.

- [4] E.A. Grove and G. Ladas, *Periodicities in Nonlinear Difference Equations*, Chapman and Hall/CRC, 2005.
- [5] M.R.S. Kulenović and G. Ladas, Dynamics of second order rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.
- [6] R.E. Mickens, Difference Equations, Theory and Applications second edition, Van Nostrand Renhold, 1990.
- [7] R.P. Agarwal, Difference Equations and Inequalities, second edition, Dekker, New York, 1992.
- [8] S. Stević, On the recursive sequence $x_{n+1} = \frac{g(x_n, x_{n-1})}{A+x_n}$, Appl. Math. Lett. 15 (2002) 305-308.
- [9] S. Stević, More on a rational recurrence relation, Appl. Math. E-Notes 4 (2004) 80-84.
- [10] T. Nesemann, Positive nonlinear difference equations: some results and applications, Nonlinear Anal. 47 (2001) 4707-4717.
- [11] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with applications, Kluwer Academic, Dordrecht, 1993.
- [12] X. Li, D. Zhu, Global asymptotic stability in a rational equation, J. Difference Equ. Appl. 9 (2003) 833-839.
- [13] X. Li, D. Zhu, Global asymptotic stability for two recursive difference equations, Appl. Math. Comput. 150 (2004) 481-492.
- [14] X. Li, D. Zhu, Global asymptotic stability of a nonlinear recursive sequence, Appl. Math. Lett. 17 (2004) 833-838.
- [15] X. Li, D. Zhu, Two rational recursive sequences, Comput. Math. Appl. 47 (10-11) (2004) 1487-1494.

Received: February, 2009