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Abstract

The aim of this work is to investigate the global stability, periodic
nature, oscillation and boundedness of the positive solutions of the dif-
ference equation

Azp_op—1

= ,n=0,1,2,...
B + Cxy oy ok

Tn+1

where A, B, C' are nonnegative real numbers and [, r, k are nonnegative
integers, such that [ < k and r < k.
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1 Introduction

Difference equations have always played an important role in the construction
and analysis of mathematical models of biology, ecology, physics, economic
processes, etc. [6].
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Recently there has been a great interest in studying the qualitative prop-
erties of rational difference equations. For the systematical studies of ratio-
nal and nonrational difference equations, one can refer to the monographs
[7, 4, 11, 5, 6] and the papers [2, 3, 12, 13, 14, 15, 10, 9, 8] and references
therein.

The study of nonlinear rational difference equations of higher order is of
paramount importance, since we still know so little about such equations.

In [1], we have discussed the asymptotic behavior of solutions of the differ-
ence equation

Axn—l
Ty =
1 B -+ C Hf:l Tn—2i

n=012...

where A, B, C are nonnegative real numbers and [, k are nonnegative integers,
such that [ < k
In this paper, we study the global asymptotic stability of the difference
equation
o ATy 91
B+ Cl‘n_gll‘n_gk

Tpit n=012... (1)

where A, B, C are nonnegative real numbers and [, r, k are nonnegative integers,
such that [ < k and r < k.
The following particular cases can be obtained:

1. When A = 0, equation (1) reduces to x,+1 = 0,n =0, 1,2, ... which has
the trivial solution.

2. When B = 0, equation (1) reduces to

Axn72r71

Tpt1 = ,n:O,l,Q,...

Cznfﬂxn72k

This equation can be reduced to the linear difference equation

Ynt1l — Yn—2r—1 + Yn—21 + Yn—2k = 7,

by taking
A

Tp=¢e"" ~v=In—.

C

3. When C' = 0, equation (1) reduces to z,,1 = %xn_gr_l,n =0,1,2,...
Which is a linear difference equation.

For various values of [,r and k, we can get more equations.
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2 Preliminaries

Consider the difference equation
Tot1 = [(Tny Tpo1y- oy Tn_g) n=01,... (2)

where f: R*1 — R.

Definition 2.1 [11]

An equilibrium point for equation (2) is a point £ € R such that z = f(Z,z,..., ).
Definition 2.2 [11]

1. An equilibrium point Z for equation (2) is called locally stable if for
every € > 0,39 > 0 such that every solution{x, }with initial conditions
T ks T fi1ye -+, 20 €]JT — 0, T + 0[ is such that x, €]T —€,T + €[,Vn € N.
Otherwise ¥ is said to be unstable.

2. The equilibrium point  of equation (2) is called locally asymptotically
stable if it is locally stable and there exists v > 0 such that for any initial
conditions x_g, T_gy1,...,%o €]JT — v, T + 7[, the corresponding solution
{z,,} tends to Z.

3. An equilibrium point z for equation (2) is called global attractor if every
solution {x,} converges to T as n — oo.

4. The equilibrium point Z for equation (2) is called globally asymptotically
stable if it is locally asymptotically stable and global attractor.

The linearized equation associated with equation (2) is

k
0
Yn+1 = Z f

=0

e 7((3‘:,...,3‘:)@/”4 ,n=0,1,2,... (3)

the characteristic equation associated with equation (3) is

ARFL f: o (@,...,0)AN"" =0 (4)

=0 OTn—i

Theorem 2.1 [11] Assume that f is a C function and let T be an equilib-
rium point of equation (2). Then the following statements are true:

1. If all roots of equation (4) lie in the open disk |\| < 1, then T is locally
asymptotically stable.

2. If at least one root of equation (4) has absolute value greater than one,
then T is unstable.



842 Al-Shabi and Abo-Zeid

3 Linearized stability analysis

Consider the difference equation

Axnf2r71
B + CzanIxank

Tnt+1 = ,n:O,l,Q,...

where A, B, C are nonnegative real numbers and [, r, k are nonnegative integers,
such that [ < k and r < k.

The change of variables z,, = \/%yn reduces equation (1) to the difference
equation

Yppy = — 21 n=012.. (5)

Y+ Yn—20Yn—2k

where v = %

Now we examine the equilibrium points of equation (5) and their local
asymptotic behavior. Clearly equation (5) has two nonnegative equilibrium
points ¥ = 0 and §y = /1 — v when 7 < 1 and ¥ = 0 only when v > 1.

The linearized equation associated with equation (5) about y is

1 >
Zn+1 — — 5 ”Rn—2r—1 + 7_(2’71—21 + ZTL—Qk) =0 , = 07 ]-) 27 s (6>
T+ (v + 7

the characteristic equation associated with this equation is

1 7>
AQk—‘,—l o — AQk—QT—l + — ()\214:—2[ + 1) =0. (7)
v+ (v +92)?
We summarize the results of this section in the following theorem.

Theorem 3.1 1. If v > 1, then the zero equilibrium point is locally
asymptotically stable.

2. If v < 1, then the equilibrium points y = 0 and y = /1 — v are unstable
(saddle points).

Proof
The linearized equation associated with equation (5) about §y =0 is
1
Zn+1 — —Rn—2r—1 =0 ,n:0,1,2,...
g

The characteristic equation associated with this equation s

)\2k+1 _ l)\Qk*Z?‘*l =0
Y

50)\:0,/\::|:2’“+\2/g.
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1. If v > 1, then |\| < 1 for all roots and y = 0 is locally asymptotically
stable.

2. If v < 1, it follows that § = 0 is unstable (saddle point). The linearized
equation (6) about yj = /T — 7 becomes

Zn41 = Zn—2r—1 T+ (]- - 7)(271—21 + Zn—2k) =0 y = O) 17 2) s

The associated characteristic equation is
)\2k+1 _ )\2k72r71 4 (1 _ 7)(}\%721 + 1) =0.

Let f(A) = N2RFL — \2R=2r=1 (1 — 4)(A2*=2 - 1). We can see that f())
has a real root in (—oo,—1). Then the point y = /1 —~ is unstable
(saddle point).

4 Global behavior of equation (5)

Theorem 4.1 If v > 1, then the zero equilibrium point is globally asymp-
totically stable.

Proof
Let {yn}>2 91—y be a solution of equation (5). Hence

Uns1 = Yn—2r—1 < Yn—2r—1 m=012
Y+ Yn—20Yn—2k vy
then |
Yon(r4+1)+i < Wyi,%,%i = 1, 2, L 2r + 2.
Hence each of the subsequences {ygn(rﬂ)ﬂ}?:o,i =1,2...,2r+2, converges
to zero. Therefore
lim y, = 0.

In view of theorem (3.1), y = 0 is globally asymptotically stable.

5 Semicycle analysis

Theorem 5.1 Let {y,}5° _,. be a nontrivial solution of equation (5) and
let § denote the unique positive equilibrium of equation (5) such that either,

(C1) Y—obr Y—2kt2s - - -, Y0 > T aNAd Y—oki1, Y—2k43 - - - Y—1 < J
Or

(C2) Yok Y—2kt2s - -+, Y0 < Y and Yok i1, Y—2k435 - - -, Y—1 > Y
is satisfied, then {y,}° o oscillates about § with semicycles of length one.
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Proof
Assume that condition (C4) is satisfied. Then we have
— _ Y-2r—1 ¥y 5
V= S~ Y
Yo = 'y+y7;:f;72k+1 > ,Yfr’gg =1, by induction we obtain the result.

Assume that condition (Cy) is satisfied. Then we have

_ Y—2r—1 Yy 7
N Y+HY—21Y—2k > Y+g2 Y

_ Y—2r Y = . . -

= < L = by induction we obtain the result.
Y2 YHY—2141Y—2k+1 iz Y %Y

6 caser==%k

When r = k, equation (5) becomes

Yppg = ——n-1 n=012... (8)

Y+ Yn—2Yn—2k

The following theorem summarizes the linearized stability analysis of equation

(8).

Theorem 6.1 1. If v > 1, then the zero equilibrium point is locally
asymptotically stable.

2. If v < 1, then the equilibrium points y = 0 is unstable (repeller) and

y = +/1 — are unstable (saddle points).
Proof

It is sufficient to consider the linearized equation

52

Y 1
Zn— +an - _

Tt )

Zn+1—|— angkflzo ,77,:0,1,2,...

and its associated characteristic equation

)\2k+2 + g2 ()\2k721+1 + )\) . 1

= 0.
v+

Y+ 5

Therefore, the results follows.

Theorem 6.2 The following statements are true:

1. Assume that v > 1. Then the zero equilibrium point is globally asymp-
totically stable.

2. Assume that v = 1. Then every solution of equation (8) converges to
a periodic solution of equation (8) with period 2(k+1) and there exist
periodic solutions of equation (8) with prime period 2(k+1).
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3. Assume that v < 1. Then there exist solutions of equation (8) which are
neither bounded nor persist.

Proof

1. The proof is similar to that of theorem (4.1).

2. Assume that v = 1. Let {yn}>> _o._1 be a solution of equation (8). For
n > 0 we have

Yn—2k—1
1 + Yn—20Yn—2k

Yn+1 = S Yn—2k—1 , W= 07 ]-7 27 s

Hence the subsequences {ygn(kJrl)H}?:_l are decreasing for each 1 <1 <
2k 4+ 2. Let

im yorto)nt = pi i=1,2,...,2k+ 2.

It is clear that {...,p1, P2, P2kt2s P1, P2, - - - P2ki2s-- -} 18 a 2(k + 1)-
periodic solution of equation (8).

Now let g, @1, ..., 0 be distinct positive real numbers. It follows that
the sequence

"7(;00707(;01707'")on707900707§01707‘“)onw”
is a periodic solution of equation (8) with prime period 2(k + 1).

3. Assume that v < 1. Let {y,}>> _,. | be a nontrivial solution of equation
(8) and let § denote the unique positive equilibrium of equation (8) such
that

0 <Yy <Y-ok,Y-2kt+2---5Y0 and 0 < Y ok 1,Y—2k+1,Y—2k+35-- - Y-1 < Y
18 satisfied.
It follows that for allm >0 and 0 < j < k, we have

Y(2k+2)(m+1)+25 = Y(2k+2)m+2;

and
Y(2k+2) (m+1)+2j+1 < Y(2k+2)m+2j+1
Hence for each 0 < j <k
My, oo Yht2ymizi = Loj € (VI —7,00) and limy, o Y2kt2ymi2j41 =

Lajr1 € 10,v/1—7).
We show that for each 0 < j <k, Lgjy1 = 0.
For the sake of contradiction, suppose that there exists j € {0,1,...,k}
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with L2j+1 € (O, \/1 — ")/)

Then
Loji1 = WM Yo 4y mr1)42+1
— lim Y(2k+2)m+2j+1
=00 7Y A Y (oh 4 9) (mt-1)42j— 20 Y(2k+2)m+2j+2
_ Loj iy
Y+ Loj_oLojio
So as
Trlblif})o Ykt2ym+2i+1 = Lojr1 € (0,4/1 =)
we have

1= ¥+ ng_21L2j+2 >1

which is a contradiction.
Thus it us true that for each 0 < j <k, Loj11 = 0, and so

lim = 0.
L Yon+1

Now we show that for each 0 < j <k, Ly; = oo.

For the sake of contradiction, suppose that there exists j € {0,1,...

with ng € (\/1 -7, OO)

Then
Ly = nlblj%o Y(2k42) (m41)+25
— lim Y(2k+2)m+2;
M0 Y+ Yok 4 2) (mA1)+2j— 21— 1Y (2k+2)m+2j+1
_ Ly
oy

kY

So v = 1, which is a contradiction. Hence lim,_ ., Y2, = 00, and the

proof is complete.
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