Global Asymptotic Stability of a Higher Order Difference Equation

M.A.Al-Shabi
Department of Computer Science
College of Computer, Qassim University, Buraidah, 51411, Saudi Arabia.
R. Abo-Zeid
Department of Basic Science
faculty of Engineering
October 6 university
$6^{\text {th }}$ of October Governorate, Egypt
abuzead73@yahoo.com

Abstract

The aim of this work is to investigate the global stability, periodic nature, oscillation and boundedness of the positive solutions of the difference equation $$
x_{n+1}=\frac{A x_{n-2 r-1}}{B+C x_{n-2 l} x_{n-2 k}} \quad, n=0,1,2, \ldots
$$ where A, B, C are nonnegative real numbers and l, r, k are nonnegative integers, such that $l \leq k$ and $r \leq k$.

Mathematics Subject Classification: 39A11
Keywords: difference equation, periodic solution, globally asymptotically stable

1 Introduction

Difference equations have always played an important role in the construction and analysis of mathematical models of biology, ecology, physics, economic processes, etc. [6].

Recently there has been a great interest in studying the qualitative properties of rational difference equations. For the systematical studies of rational and nonrational difference equations, one can refer to the monographs $[7,4,11,5,6]$ and the papers $[2,3,12,13,14,15,10,9,8]$ and references therein.

The study of nonlinear rational difference equations of higher order is of paramount importance, since we still know so little about such equations.

In [1], we have discussed the asymptotic behavior of solutions of the difference equation

$$
x_{n+1}=\frac{A x_{n-1}}{B+C \prod_{i=l}^{k} x_{n-2 i}} \quad, n=0,1,2, \ldots
$$

where A, B, C are nonnegative real numbers and l, k are nonnegative integers, such that $l \leq k$

In this paper, we study the global asymptotic stability of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{A x_{n-2 r-1}}{B+C x_{n-2 l} x_{n-2 k}} \quad, n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where A, B, C are nonnegative real numbers and l, r, k are nonnegative integers, such that $l \leq k$ and $r \leq k$.
The following particular cases can be obtained:

1. When $A=0$, equation (1) reduces to $x_{n+1}=0, n=0,1,2, \ldots$ which has the trivial solution.
2. When $B=0$, equation (1) reduces to

$$
x_{n+1}=\frac{A x_{n-2 r-1}}{C x_{n-2 l} x_{n-2 k}} \quad, n=0,1,2, \ldots
$$

This equation can be reduced to the linear difference equation

$$
y_{n+1}-y_{n-2 r-1}+y_{n-2 l}+y_{n-2 k}=\gamma,
$$

by taking

$$
x_{n}=e^{y_{n}}, \gamma=\ln \frac{A}{C} .
$$

3. When $C=0$, equation (1) reduces to $x_{n+1}=\frac{A}{B} x_{n-2 r-1}, n=0,1,2, \ldots$ Which is a linear difference equation.

For various values of l, r and k, we can get more equations.

2 Preliminaries

Consider the difference equation

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right) \quad, n=0,1, \ldots \tag{2}
\end{equation*}
$$

where $f: R^{k+1} \rightarrow R$.
Definition 2.1 [11]
An equilibrium point for equation (2) is a point $\bar{x} \in R$ such that $\bar{x}=f(\bar{x}, \bar{x}, \ldots, \bar{x})$. Definition 2.2 [11]

1. An equilibrium point \bar{x} for equation (2) is called locally stable if for every $\epsilon>0, \exists \delta>0$ such that every solution $\left\{x_{n}\right\}$ with initial conditions $\left.x_{-k}, x_{-k+1}, \ldots, x_{0} \in\right] \bar{x}-\delta, \bar{x}+\delta\left[\right.$ is such that $\left.x_{n} \in\right] \bar{x}-\epsilon, \bar{x}+\epsilon[, \forall n \in N$. Otherwise \bar{x} is said to be unstable.
2. The equilibrium point \bar{x} of equation (2) is called locally asymptotically stable if it is locally stable and there exists $\gamma>0$ such that for any initial conditions $\left.x_{-k}, x_{-k+1}, \ldots, x_{0} \in\right] \bar{x}-\gamma, \bar{x}+\gamma[$, the corresponding solution $\left\{x_{n}\right\}$ tends to \bar{x}.
3. An equilibrium point \bar{x} for equation (2) is called global attractor if every solution $\left\{x_{n}\right\}$ converges to \bar{x} as $n \rightarrow \infty$.
4. The equilibrium point \bar{x} for equation (2) is called globally asymptotically stable if it is locally asymptotically stable and global attractor.

The linearized equation associated with equation (2) is

$$
\begin{equation*}
y_{n+1}=\sum_{i=0}^{k} \frac{\partial f}{\partial x_{n-i}}(\bar{x}, \ldots, \bar{x}) y_{n-i} \quad, n=0,1,2, \ldots \tag{3}
\end{equation*}
$$

the characteristic equation associated with equation (3) is

$$
\begin{equation*}
\lambda^{k+1}-\sum_{i=0}^{k} \frac{\partial f}{\partial x_{n-i}}(\bar{x}, \ldots, \bar{x}) \lambda^{k-i}=0 \tag{4}
\end{equation*}
$$

Theorem 2.1 [11] Assume that f is a C^{1} function and let \bar{x} be an equilibrium point of equation (2). Then the following statements are true:

1. If all roots of equation (4) lie in the open disk $|\lambda|<1$, then \bar{x} is locally asymptotically stable.
2. If at least one root of equation (4) has absolute value greater than one, then \bar{x} is unstable.

3 Linearized stability analysis

Consider the difference equation

$$
x_{n+1}=\frac{A x_{n-2 r-1}}{B+C x_{n-2 l} x_{n-2 k}} \quad, n=0,1,2, \ldots
$$

where A, B, C are nonnegative real numbers and l, r, k are nonnegative integers, such that $l \leq k$ and $r \leq k$.

The change of variables $x_{n}=\sqrt{\frac{A}{C}} y_{n}$ reduces equation (1) to the difference equation

$$
\begin{equation*}
y_{n+1}=\frac{y_{n-2 r-1}}{\gamma+y_{n-2 l} y_{n-2 k}} \quad, n=0,1,2, \ldots \tag{5}
\end{equation*}
$$

where $\gamma=\frac{B}{A}$.
Now we examine the equilibrium points of equation (5) and their local asymptotic behavior. Clearly equation (5) has two nonnegative equilibrium points $\bar{y}=0$ and $\bar{y}=\sqrt{1-\gamma}$ when $\gamma<1$ and $\bar{y}=0$ only when $\gamma \geq 1$.

The linearized equation associated with equation (5) about \bar{y} is

$$
\begin{equation*}
z_{n+1}-\frac{1}{\gamma+\bar{y}^{2}} z_{n-2 r-1}+\frac{\bar{y}^{2}}{\left(\gamma+\bar{y}^{2}\right)^{2}}\left(z_{n-2 l}+z_{n-2 k}\right)=0 \quad, n=0,1,2, \ldots \tag{6}
\end{equation*}
$$

the characteristic equation associated with this equation is

$$
\begin{equation*}
\lambda^{2 k+1}-\frac{1}{\gamma+\bar{y}^{2}} \lambda^{2 k-2 r-1}+\frac{\bar{y}^{2}}{\left(\gamma+\bar{y}^{2}\right)^{2}}\left(\lambda^{2 k-2 l}+1\right)=0 . \tag{7}
\end{equation*}
$$

We summarize the results of this section in the following theorem.
Theorem 3.1 1. If $\gamma>1$, then the zero equilibrium point is locally asymptotically stable.
2. If $\gamma<1$, then the equilibrium points $\bar{y}=0$ and $\bar{y}=\sqrt{1-\gamma}$ are unstable (saddle points).
Proof
The linearized equation associated with equation (5) about $\bar{y}=0$ is

$$
z_{n+1}-\frac{1}{\gamma} z_{n-2 r-1}=0 \quad, n=0,1,2, \ldots
$$

The characteristic equation associated with this equation is

$$
\lambda^{2 k+1}-\frac{1}{\gamma} \lambda^{2 k-2 r-1}=0
$$

so $\lambda=0, \lambda= \pm \sqrt[2 r+2]{\frac{1}{\gamma}}$.

1. If $\gamma>1$, then $|\lambda|<1$ for all roots and $\bar{y}=0$ is locally asymptotically stable.
2. If $\gamma<1$, it follows that $\bar{y}=0$ is unstable (saddle point). The linearized equation (6) about $\bar{y}=\sqrt{1-\gamma}$ becomes

$$
z_{n+1}-z_{n-2 r-1}+(1-\gamma)\left(z_{n-2 l}+z_{n-2 k}\right)=0 \quad, n=0,1,2, \ldots
$$

The associated characteristic equation is

$$
\lambda^{2 k+1}-\lambda^{2 k-2 r-1}+(1-\gamma)\left(\lambda^{2 k-2 l}+1\right)=0 .
$$

Let $f(\lambda)=\lambda^{2 k+1}-\lambda^{2 k-2 r-1}+(1-\gamma)\left(\lambda^{2 k-2 l}+1\right)$. We can see that $f(\lambda)$ has a real root in $(-\infty,-1)$. Then the point $\bar{y}=\sqrt{1-\gamma}$ is unstable (saddle point).

4 Global behavior of equation (5)

Theorem 4.1 If $\gamma>1$, then the zero equilibrium point is globally asymptotically stable.
Proof
Let $\left\{y_{n}\right\}_{n=-2 k-1}^{\infty}$ be a solution of equation (5). Hence

$$
y_{n+1}=\frac{y_{n-2 r-1}}{\gamma+y_{n-2 l} y_{n-2 k}}<\frac{y_{n-2 r-1}}{\gamma} \quad, n=0,1,2, \ldots
$$

then

$$
y_{2 n(r+1)+i}<\frac{1}{\gamma^{n+1}} y_{i-2 r-2}, i=1,2, \ldots 2 r+2
$$

Hence each of the subsequences $\left\{y_{2 n(r+1)+i}\right\}_{n=0}^{\infty}, i=1,2 \ldots, 2 r+2$, converges to zero. Therefore

$$
\lim _{n \rightarrow \infty} y_{n}=0
$$

In view of theorem (3.1), $\bar{y}=0$ is globally asymptotically stable.

5 Semicycle analysis

Theorem 5.1 Let $\left\{y_{n}\right\}_{n=-2 k}^{\infty}$ be a nontrivial solution of equation (5) and let \bar{y} denote the unique positive equilibrium of equation (5) such that either, $\left(C_{1}\right) y_{-2 k}, y_{-2 k+2}, \ldots, y_{0}>\bar{y}$ and $y_{-2 k+1}, y_{-2 k+3}, \ldots, y_{-1}<\bar{y}$ Or
$\left(C_{2}\right) y_{-2 k}, y_{-2 k+2}, \ldots, y_{0}<\bar{y}$ and $y_{-2 k+1}, y_{-2 k+3}, \ldots, y_{-1}>\bar{y}$ is satisfied, then $\left\{y_{n}\right\}_{n=-2 k}^{\infty}$ oscillates about \bar{y} with semicycles of length one.

Proof
Assume that condition $\left(C_{1}\right)$ is satisfied. Then we have
$y_{1}=\frac{y_{-2 r-1}}{\gamma+y_{-2 l} y_{-2 k}}<\frac{\bar{y}}{\gamma+\bar{y}^{2}}=\bar{y}$,
$y_{2}=\frac{y-2 r}{\gamma+y_{-2 l+1} y_{-2 k+1}}>\frac{\bar{y}}{\gamma+\bar{y}^{2}}=\bar{y}$, by induction we obtain the result.
Assume that condition $\left(C_{2}\right)$ is satisfied. Then we have
$y_{1}=\frac{y_{-2 r-1}}{\gamma+y_{-2 l} y_{-2 k}}>\frac{\bar{y}}{\gamma+\bar{y}^{2}}=\bar{y}$,
$y_{2}=\frac{y-2 r}{\gamma+y_{-2 l+1} y_{-2 k+1}}<\frac{\bar{y}}{\gamma+\bar{y}^{2}}=\bar{y}$, by induction we obtain the result.

6 case $r=k$

When $r=k$, equation (5) becomes

$$
\begin{equation*}
y_{n+1}=\frac{y_{n-2 k-1}}{\gamma+y_{n-2 l} y_{n-2 k}} \quad, n=0,1,2, \ldots \tag{8}
\end{equation*}
$$

The following theorem summarizes the linearized stability analysis of equation (8).

Theorem 6.1 1. If $\gamma>1$, then the zero equilibrium point is locally asymptotically stable.
2. If $\gamma<1$, then the equilibrium points $\bar{y}=0$ is unstable (repeller) and $\bar{y}=\sqrt{1-\gamma}$ are unstable (saddle points).
Proof
It is sufficient to consider the linearized equation

$$
z_{n+1}+\frac{\bar{y}^{2}}{\gamma+\bar{y}^{2}}\left(z_{n-2 l}+z_{n-2 k}\right)-\frac{1}{\gamma+\bar{y}^{2}} z_{n-2 k-1}=0 \quad, n=0,1,2, \ldots
$$

and its associated characteristic equation

$$
\lambda^{2 k+2}+\frac{\bar{y}^{2}}{\gamma+\bar{y}^{2}}\left(\lambda^{2 k-2 l+1}+\lambda\right)-\frac{1}{\gamma+\bar{y}^{2}}=0 .
$$

Therefore, the results follows.
Theorem 6.2 The following statements are true:

1. Assume that $\gamma>1$. Then the zero equilibrium point is globally asymptotically stable.
2. Assume that $\gamma=1$. Then every solution of equation (8) converges to a periodic solution of equation (8) with period $2(k+1)$ and there exist periodic solutions of equation (8) with prime period 2(k+1).
3. Assume that $\gamma<1$. Then there exist solutions of equation (8) which are neither bounded nor persist.

Proof

1. The proof is similar to that of theorem (4.1).
2. Assume that $\gamma=1$. Let $\left\{y_{n}\right\}_{n=-2 k-1}^{\infty}$ be a solution of equation (8). For $n \geq 0$ we have

$$
y_{n+1}=\frac{y_{n-2 k-1}}{1+y_{n-2 l} y_{n-2 k}} \leq y_{n-2 k-1} \quad, n=0,1,2, \ldots
$$

Hence the subsequences $\left\{y_{2 n(k+1)+i}\right\}_{n=-1}^{\infty}$ are decreasing for each $1 \leq i \leq$ $2 k+2$. Let

$$
\lim _{n \rightarrow \infty} y_{(2 k+2) n+i}=\rho_{i} \quad i=1,2, \ldots, 2 k+2
$$

It is clear that $\left\{\ldots, \rho_{1}, \rho_{2}, \ldots \rho_{2 k+2}, \rho_{1}, \rho_{2}, \ldots \rho_{2 k+2}, \ldots\right\}$ is a $2(k+1)$ periodic solution of equation (8).
Now let $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{k}$ be distinct positive real numbers. It follows that the sequence

$$
\ldots, \varphi_{0}, 0, \varphi_{1}, 0, \ldots, \varphi_{k}, 0, \varphi_{0}, 0, \varphi_{1}, 0, \ldots, \varphi_{k}, \ldots
$$

is a periodic solution of equation (8) with prime period $2(k+1)$.
3. Assume that $\gamma<1$. Let $\left\{y_{n}\right\}_{n=-2 k-1}^{\infty}$ be a nontrivial solution of equation (8) and let \bar{y} denote the unique positive equilibrium of equation (8) such that
$0<\bar{y}<y_{-2 k}, y_{-2 k+2}, \ldots, y_{0}$ and $0<y_{-2 k-1}, y_{-2 k+1}, y_{-2 k+3}, \ldots, y_{-1}<\bar{y}$ is satisfied.
It follows that for all $m \geq 0$ and $0 \leq j \leq k$, we have

$$
y_{(2 k+2)(m+1)+2 j}>y_{(2 k+2) m+2 j}
$$

and

$$
y_{(2 k+2)(m+1)+2 j+1}<y_{(2 k+2) m+2 j+1}
$$

Hence for each $0 \leq j \leq k$
$\lim _{m \rightarrow \infty} y_{(2 k+2) m+2 j}=L_{2 j} \in(\sqrt{1-\gamma}, \infty)$ and $\lim _{m \rightarrow \infty} y_{(2 k+2) m+2 j+1}=$ $L_{2 j+1} \in[0, \sqrt{1-\gamma})$.
We show that for each $0 \leq j \leq k, L_{2 j+1}=0$.
For the sake of contradiction, suppose that there exists $j \in\{0,1, \ldots, k\}$
with $L_{2 j+1} \in(0, \sqrt{1-\gamma})$.
Then

$$
\begin{gathered}
L_{2 j+1}=\lim _{m \rightarrow \infty} y_{(2 k+2)(m+1)+2 j+1} \\
=\lim _{m \rightarrow \infty} \frac{y_{(2 k+2) m+2 j+1}}{\gamma+y_{(2 k+2)(m+1)+2 j-2 l} y_{(2 k+2) m+2 j+2}} \\
=\frac{L_{2 j+1}}{\gamma+L_{2 j-2 l} L_{2 j+2}} .
\end{gathered}
$$

So as

$$
\lim _{m \rightarrow \infty} y_{(2 k+2) m+2 j+1}=L_{2 j+1} \in(0, \sqrt{1-\gamma})
$$

we have

$$
1=\gamma+L_{2 j-2 l} L_{2 j+2}>1
$$

which is a contradiction.
Thus it is true that for each $0 \leq j \leq k, L_{2 j+1}=0$, and so

$$
\lim _{n \rightarrow \infty} y_{2 n+1}=0
$$

Now we show that for each $0 \leq j \leq k, L_{2 j}=\infty$.
For the sake of contradiction, suppose that there exists $j \in\{0,1, \ldots, k\}$ with $L_{2 j} \in(\sqrt{1-\gamma}, \infty)$.
Then

$$
\begin{gathered}
L_{2 j}=\lim _{m \rightarrow \infty} y_{(2 k+2)(m+1)+2 j} \\
=\lim _{m \rightarrow \infty} \frac{y_{(2 k+2) m+2 j}}{\gamma+y_{(2 k+2)(m+1)+2 j-2 l-1} y_{(2 k+2) m+2 j+1}} \\
=\frac{L_{2 j}}{\gamma}
\end{gathered}
$$

So $\gamma=1$, which is a contradiction. Hence $\lim _{n \rightarrow \infty} y_{2 n}=\infty$, and the proof is complete.

References

[1] A.E. Hamza, R. Khalaf-Allah, Global behavior of a higher order difference equation, Journal of Mathematics and Statistics, 3 (1) (2007) 17-20.
[2] A.M. Amleh, N. Kruse, G. Ladas, On a class of difference equations with strong negative feedback, J. Difference Equ. Appl. 5 (1999) 497-515.
[3] A.M. Amleh, E.A. Grove, D.A. Georgiou, G. Ladas, On the recursive sequence $x_{n+1}=\alpha+\frac{x_{n-1}}{x_{n}}$, J. Math. Anal. Appl. 233 (1999) 790-798.
[4] E.A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005.
[5] M.R.S. Kulenović and G. Ladas, Dynamics of second order rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.
[6] R.E. Mickens, Difference Equations, Theory and Applications second edition, Van Nostrand Renhold, 1990.
[7] R.P. Agarwal, Difference Equations and Inequalities, second edition, Dekker, New York, 1992.
[8] S. Stević, On the recursive sequence $x_{n+1}=\frac{g\left(x_{n}, x_{n-1}\right)}{A+x_{n}}$, Appl. Math. Lett. 15 (2002) 305-308.
[9] S. Stević, More on a rational recurrence relation, Appl. Math. E-Notes 4 (2004) 80-84.
[10] T. Nesemann, Positive nonlinear difference equations: some results and applications, Nonlinear Anal. 47 (2001) 4707-4717.
[11] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with applications, Kluwer Academic, Dordrecht, 1993.
[12] X. Li, D. Zhu, Global asymptotic stability in a rational equation, J. Difference Equ. Appl. 9 (2003) 833-839.
[13] X. Li, D. Zhu, Global asymptotic stability for two recursive difference equations, Appl. Math. Comput. 150 (2004) 481-492.
[14] X. Li, D. Zhu, Global asymptotic stability of a nonlinear recursive sequence, Appl. Math. Lett. 17 (2004) 833-838.
[15] X. Li, D. Zhu, Two rational recursive sequences, Comput. Math. Appl. 47 (10-11) (2004) 1487-1494.

Received: February, 2009

