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Abstract

The aim of this work is to investigate the global stability, periodic
nature, oscillation and boundedness of the positive solutions of the dif-
ference equation

xn+1 =
Axn−2r−1

B + Cxn−2lxn−2k
, n = 0, 1, 2, . . .

where A,B,C are nonnegative real numbers and l, r, k are nonnegative
integers, such that l ≤ k and r ≤ k.
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1 Introduction

Difference equations have always played an important role in the construction
and analysis of mathematical models of biology, ecology, physics, economic
processes, etc. [6].
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Recently there has been a great interest in studying the qualitative prop-
erties of rational difference equations. For the systematical studies of ratio-
nal and nonrational difference equations, one can refer to the monographs
[7, 4, 11, 5, 6] and the papers [2, 3, 12, 13, 14, 15, 10, 9, 8] and references
therein.

The study of nonlinear rational difference equations of higher order is of
paramount importance, since we still know so little about such equations.

In [1], we have discussed the asymptotic behavior of solutions of the differ-
ence equation

xn+1 =
Axn−1

B + C
∏k

i=l xn−2i

, n = 0, 1, 2, . . .

where A, B, C are nonnegative real numbers and l, k are nonnegative integers,
such that l ≤ k

In this paper, we study the global asymptotic stability of the difference
equation

xn+1 =
Axn−2r−1

B + Cxn−2lxn−2k

, n = 0, 1, 2, . . . (1)

where A, B, C are nonnegative real numbers and l, r, k are nonnegative integers,
such that l ≤ k and r ≤ k.
The following particular cases can be obtained:

1. When A = 0, equation (1) reduces to xn+1 = 0, n = 0, 1, 2, . . . which has
the trivial solution.

2. When B = 0, equation (1) reduces to

xn+1 =
Axn−2r−1

Cxn−2lxn−2k
, n = 0, 1, 2, . . .

This equation can be reduced to the linear difference equation

yn+1 − yn−2r−1 + yn−2l + yn−2k = γ,

by taking

xn = eyn, γ = ln
A

C
.

3. When C = 0, equation (1) reduces to xn+1 = A
B
xn−2r−1, n = 0, 1, 2, . . .

Which is a linear difference equation.

For various values of l, r and k, we can get more equations.
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2 Preliminaries

Consider the difference equation

xn+1 = f(xn, xn−1, . . . , xn−k) , n = 0, 1, . . . (2)

where f : Rk+1 → R.
Definition 2.1 [11]
An equilibrium point for equation (2) is a point x̄ ∈ R such that x̄ = f(x̄, x̄, . . . , x̄).
Definition 2.2 [11]

1. An equilibrium point x̄ for equation (2) is called locally stable if for
every ε > 0, ∃δ > 0 such that every solution{xn}with initial conditions
x−k, x−k+1,. . . , x0 ∈]x̄ − δ, x̄ + δ[ is such that xn ∈]x̄ − ε, x̄ + ε[,∀n ∈ N .
Otherwise x̄ is said to be unstable.

2. The equilibrium point x̄ of equation (2) is called locally asymptotically
stable if it is locally stable and there exists γ > 0 such that for any initial
conditions x−k, x−k+1, . . . , x0 ∈]x̄ − γ, x̄ + γ[, the corresponding solution
{xn} tends to x̄.

3. An equilibrium point x̄ for equation (2) is called global attractor if every
solution {xn} converges to x̄ as n → ∞.

4. The equilibrium point x̄ for equation (2) is called globally asymptotically
stable if it is locally asymptotically stable and global attractor.

The linearized equation associated with equation (2) is

yn+1 =
k∑

i=0

∂f

∂xn−i
(x̄, . . . , x̄)yn−i , n = 0, 1, 2, . . . (3)

the characteristic equation associated with equation (3) is

λk+1 −
k∑

i=0

∂f

∂xn−i

(x̄, . . . , x̄)λk−i = 0 (4)

Theorem 2.1 [11] Assume that f is a C1 function and let x̄ be an equilib-
rium point of equation (2). Then the following statements are true:

1. If all roots of equation (4) lie in the open disk |λ| < 1, then x̄ is locally
asymptotically stable.

2. If at least one root of equation (4) has absolute value greater than one,
then x̄ is unstable.
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3 Linearized stability analysis

Consider the difference equation

xn+1 =
Axn−2r−1

B + Cxn−2lxn−2k
, n = 0, 1, 2, . . .

where A, B, C are nonnegative real numbers and l, r, k are nonnegative integers,
such that l ≤ k and r ≤ k.

The change of variables xn =
√

A
C
yn reduces equation (1) to the difference

equation

yn+1 =
yn−2r−1

γ + yn−2lyn−2k
, n = 0, 1, 2, . . . (5)

where γ = B
A

.
Now we examine the equilibrium points of equation (5) and their local

asymptotic behavior. Clearly equation (5) has two nonnegative equilibrium
points ȳ = 0 and ȳ =

√
1 − γ when γ < 1 and ȳ = 0 only when γ ≥ 1.

The linearized equation associated with equation (5) about ȳ is

zn+1 − 1

γ + ȳ2
zn−2r−1 +

ȳ2

(γ + ȳ2)2
(zn−2l + zn−2k) = 0 , n = 0, 1, 2, . . . (6)

the characteristic equation associated with this equation is

λ2k+1 − 1

γ + ȳ2
λ2k−2r−1 +

ȳ2

(γ + ȳ2)2
(λ2k−2l + 1) = 0. (7)

We summarize the results of this section in the following theorem.

Theorem 3.1 1. If γ > 1, then the zero equilibrium point is locally
asymptotically stable.

2. If γ < 1, then the equilibrium points ȳ = 0 and ȳ =
√

1 − γ are unstable
(saddle points).

Proof
The linearized equation associated with equation (5) about ȳ = 0 is

zn+1 − 1

γ
zn−2r−1 = 0 , n = 0, 1, 2, . . .

The characteristic equation associated with this equation is

λ2k+1 − 1

γ
λ2k−2r−1 = 0

so λ = 0, λ = ± 2r+2

√
1
γ
.



Global asymptotic stability 843

1. If γ > 1, then |λ| < 1 for all roots and ȳ = 0 is locally asymptotically
stable.

2. If γ < 1, it follows that ȳ = 0 is unstable (saddle point). The linearized
equation (6) about ȳ =

√
1 − γ becomes

zn+1 − zn−2r−1 + (1 − γ)(zn−2l + zn−2k) = 0 , n = 0, 1, 2, . . .

The associated characteristic equation is

λ2k+1 − λ2k−2r−1 + (1 − γ)(λ2k−2l + 1) = 0.

Let f(λ) = λ2k+1 − λ2k−2r−1 + (1− γ)(λ2k−2l + 1). We can see that f(λ)
has a real root in (−∞,−1). Then the point ȳ =

√
1 − γ is unstable

(saddle point).

4 Global behavior of equation (5)

Theorem 4.1 If γ > 1, then the zero equilibrium point is globally asymp-
totically stable.
Proof
Let {yn}∞n=−2k−1 be a solution of equation (5). Hence

yn+1 =
yn−2r−1

γ + yn−2lyn−2k
<

yn−2r−1

γ
, n = 0, 1, 2, . . .

then

y2n(r+1)+i <
1

γn+1
yi−2r−2, i = 1, 2, . . . 2r + 2.

Hence each of the subsequences {y2n(r+1)+i}∞n=0, i = 1, 2 . . . , 2r+2, converges
to zero. Therefore

lim
n→∞ yn = 0.

In view of theorem (3.1), ȳ = 0 is globally asymptotically stable.

5 Semicycle analysis

Theorem 5.1 Let {yn}∞n=−2k be a nontrivial solution of equation (5) and
let ȳ denote the unique positive equilibrium of equation (5) such that either,
(C1) y−2k, y−2k+2, . . . , y0 > ȳ and y−2k+1, y−2k+3, . . . , y−1 < ȳ
Or
(C2) y−2k, y−2k+2, . . . , y0 < ȳ and y−2k+1, y−2k+3, . . . , y−1 > ȳ
is satisfied, then {yn}∞n=−2k oscillates about ȳ with semicycles of length one.
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Proof
Assume that condition (C1) is satisfied. Then we have
y1 = y−2r−1

γ+y−2ly−2k
< ȳ

γ+ȳ2 = ȳ,

y2 = y−2r

γ+y−2l+1y−2k+1
> ȳ

γ+ȳ2 = ȳ, by induction we obtain the result.

Assume that condition (C2) is satisfied. Then we have
y1 = y−2r−1

γ+y−2ly−2k
> ȳ

γ+ȳ2 = ȳ,

y2 = y−2r

γ+y−2l+1y−2k+1
< ȳ

γ+ȳ2 = ȳ, by induction we obtain the result.

6 case r = k

When r = k, equation (5) becomes

yn+1 =
yn−2k−1

γ + yn−2lyn−2k
, n = 0, 1, 2, . . . (8)

The following theorem summarizes the linearized stability analysis of equation
(8).

Theorem 6.1 1. If γ > 1, then the zero equilibrium point is locally
asymptotically stable.

2. If γ < 1, then the equilibrium points ȳ = 0 is unstable (repeller) and
ȳ =

√
1 − γ are unstable (saddle points).

Proof
It is sufficient to consider the linearized equation

zn+1 +
ȳ2

γ + ȳ2
(zn−2l + zn−2k) − 1

γ + ȳ2
zn−2k−1 = 0 , n = 0, 1, 2, . . .

and its associated characteristic equation

λ2k+2 +
ȳ2

γ + ȳ2
(λ2k−2l+1 + λ) − 1

γ + ȳ2
= 0.

Therefore, the results follows.

Theorem 6.2 The following statements are true:

1. Assume that γ > 1. Then the zero equilibrium point is globally asymp-
totically stable.

2. Assume that γ = 1. Then every solution of equation (8) converges to
a periodic solution of equation (8) with period 2(k+1) and there exist
periodic solutions of equation (8) with prime period 2(k+1).
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3. Assume that γ < 1. Then there exist solutions of equation (8) which are
neither bounded nor persist.

Proof

1. The proof is similar to that of theorem (4.1).

2. Assume that γ = 1. Let {yn}∞n=−2k−1 be a solution of equation (8). For
n ≥ 0 we have

yn+1 =
yn−2k−1

1 + yn−2lyn−2k
≤ yn−2k−1 , n = 0, 1, 2, . . .

Hence the subsequences {y2n(k+1)+i}∞n=−1 are decreasing for each 1 ≤ i ≤
2k + 2. Let

lim
n→∞ y(2k+2)n+i = ρi i = 1, 2, . . . , 2k + 2.

It is clear that {. . . , ρ1, ρ2, . . . ρ2k+2, ρ1, ρ2, . . . ρ2k+2, . . .} is a 2(k + 1)-
periodic solution of equation (8).
Now let ϕ0, ϕ1, . . . , ϕk be distinct positive real numbers. It follows that
the sequence

. . . , ϕ0, 0, ϕ1, 0, . . . , ϕk, 0, ϕ0, 0, ϕ1, 0, . . . , ϕk, . . .

is a periodic solution of equation (8) with prime period 2(k + 1).

3. Assume that γ < 1. Let {yn}∞n=−2k−1 be a nontrivial solution of equation
(8) and let ȳ denote the unique positive equilibrium of equation (8) such
that
0 < ȳ < y−2k, y−2k+2, . . . , y0 and 0 < y−2k−1, y−2k+1, y−2k+3, . . . , y−1 < ȳ
is satisfied.
It follows that for all m ≥ 0 and 0 ≤ j ≤ k, we have

y(2k+2)(m+1)+2j > y(2k+2)m+2j

and

y(2k+2)(m+1)+2j+1 < y(2k+2)m+2j+1

Hence for each 0 ≤ j ≤ k
limm→∞ y(2k+2)m+2j = L2j ∈ (

√
1 − γ,∞) and limm→∞ y(2k+2)m+2j+1 =

L2j+1 ∈ [0,
√

1 − γ).
We show that for each 0 ≤ j ≤ k, L2j+1 = 0.
For the sake of contradiction, suppose that there exists j ∈ {0, 1, . . . , k}
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with L2j+1 ∈ (0,
√

1 − γ).
Then

L2j+1 = lim
m→∞ y(2k+2)(m+1)+2j+1

= lim
m→∞

y(2k+2)m+2j+1

γ + y(2k+2)(m+1)+2j−2ly(2k+2)m+2j+2

=
L2j+1

γ + L2j−2lL2j+2
.

So as
lim

m→∞ y(2k+2)m+2j+1 = L2j+1 ∈ (0,
√

1 − γ)

we have
1 = γ + L2j−2lL2j+2 > 1

which is a contradiction.
Thus it is true that for each 0 ≤ j ≤ k, L2j+1 = 0, and so

lim
n→∞ y2n+1 = 0.

Now we show that for each 0 ≤ j ≤ k, L2j = ∞.
For the sake of contradiction, suppose that there exists j ∈ {0, 1, . . . , k}
with L2j ∈ (

√
1 − γ,∞).

Then
L2j = lim

m→∞ y(2k+2)(m+1)+2j

= lim
m→∞

y(2k+2)m+2j

γ + y(2k+2)(m+1)+2j−2l−1y(2k+2)m+2j+1

=
L2j

γ

So γ = 1, which is a contradiction. Hence limn→∞ y2n = ∞, and the
proof is complete.
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