R. Iestyn Woolway

R. Iestyn Woolway
Verified
R. verified their affiliation via an institutional email.
Verified
R. verified their affiliation via an institutional email.
  • Doctor of Philosophy
  • Reader & NERC Independent Research Fellow at Bangor University

About

144
Publications
84,626
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,657
Citations
Current institution
Bangor University
Current position
  • Reader & NERC Independent Research Fellow
Additional affiliations
October 2011 - October 2014
University College London
Position
  • PhD Student

Publications

Publications (144)
Article
Full-text available
Drylands with fragile ecosystems and severe water shortages are particularly vulnerable to climatic change. Northwestern China (NWC), a typical arid region, faces uncertainty regarding future wetting or drying trends. A comprehensive assessment and projection of these conditions are crucial for water resource management. In this study, we employ a...
Article
Lake water temperature serves as a significant indicator of global climate change, and its seasonal variability will affect fish habitats, their growth and reproduction cycles. Investigating potential fish habitats and periods of habitat stress is crucial for fisheries and the conservation of rare species, offering both economic and ecological bene...
Article
Full-text available
The rate of technological innovation within aquatic sciences outpaces the collective ability of individual scientists within the field to make appropriate use of those technologies. The process of in situ lake sampling remains the primary choice to comprehensively understand an aquatic ecosystem at local scales; however, the impact of climate chang...
Article
Full-text available
Lakes play a crucial role in shaping both local and regional climates through heat exchange with the atmosphere. Amid global climate change, these interactions have undergone significant shifts. However, our understanding of the global heat release from lakes to the atmosphere, and its future trajectory, remains limited. In this study, we investiga...
Article
Full-text available
Lake heatwaves (extreme hot water events) can substantially disrupt aquatic ecosystems. Although surface heatwaves are well studied, their vertical structures within lakes remain largely unexplored. Here we analyse the characteristics of subsurface lake heatwaves (extreme hot events occurring below the surface) using a spatiotemporal modelling fram...
Article
Full-text available
Research into lake outburst events has been mainly focused on small glacial lakes in the Himalaya, while historical events from large inland lakes are few and have received less attention. Large inland lakes on the Tibetan Plateau are expanding rapidly, with recent signs of increasing outburst risk, highlighting the need to elucidate their processe...
Article
Full-text available
A widespread decline in dissolved oxygen (DO) has been observed in rivers, temperate lakes, and oceans, yet the impacts of climatic warming on global lake deoxygenation remain unclear. Here, we train data-driven models using climatic data, satellite images, and geographic factors to reconstruct surface DO and quantify the climatic contribution to D...
Article
Lake ice thickness is a critical indicator of climate change, with profound implications for aquatic ecosystems. Despite its importance, our understanding of changes in lake ice thickness is relatively limited. Additionally, the influence of snow depth on ice thickness at a regional scale is not well understood, primarily due to the lack of long-te...
Article
Full-text available
Aquatic vegetation (AV) is vital for maintaining the health of lake ecosystems, with submerged aquatic vegetation (SAV) and floating/emergent aquatic vegetation (FEAV) representing clear and shaded states, respectively. However, global SAV and FEAV dynamics are poorly understood due to data scarcity. To address this gap, we developed an innovative...
Article
The recent increase in algal blooms in lakes, potentially exacerbated by climate warming, is of global concern. However, a spatially and temporally detailed characterization of algal bloom trends at a global scale has been lacking, posing challenges to definitively attribute warming as a primary driver. Here, we used daily MODIS satellite observati...
Article
Full-text available
The availability of surface water in global drylands is essential for both human society and ecosystems. However, the long-term drivers of change in surface water storage, particularly those related to anthropogenic activities, remain unclear. Here we use multi-mission remote sensing data to construct monthly time series of water storage changes fr...
Article
Anthropogenic inputs of nitrogen and phosphorus to lakes have increased worldwide, causing phytoplankton chlorophyll concentrations to increase at many sites, with negative implications for biodiversity and human usage of lake resources. However, the conversion of nutrients to chlorophyll varies among lakes, hindering effective management actions t...
Chapter
he Sixth Assessment Report of the Intergovernmental Panel on Climate Change stated that “it is unequivocal that human influence has warmed the atmosphere, ocean and land.” One key piece of evidence for this is the global average of the instrumental record of surface temperature. A change in surface temperature of 1.5°C relative to a reference “prei...
Article
Full-text available
The seasonal cycle of vertical mixing is crucial for lake ecosystems, yet its future under climate change remains uncertain. While lake stratification shifts have been widely studied, the annual overturning duration changes are less clear. Using sub-daily simulations from a fully coupled numerical Earth system model, we assess phenological changes...
Article
Full-text available
Millions of people rely on lake ice for safe winter recreation. Warming air temperatures impact the phenology (timing of formation and breakup) and quality (ratio of black to white ice) of lake ice cover, both critical components of ice safety. Later formation and earlier breakup of lake ice lead to overall shorter periods of use. However, greater...
Article
Full-text available
Lakes represent a vital source of freshwater, accounting for 87% of the Earth’s accessible surface freshwater resources and providing a range of ecosystem services, including water for human consumption. As climate change continues to unfold, understanding the potential evaporative water losses from lakes becomes crucial for effective water managem...
Article
Full-text available
Extremes in lake surface water temperature can have profound impacts on ecosystems. Although extensive research has been conducted on lake heatwaves, little is known about cold‐water extremes, referred to as lake cold spells. Here, we employ a numerical lake model to investigate global lake cold spell dynamics from 1979 to 2100. From 1979 to 2022,...
Research Proposal
For most of the last century, traditional limnological research has heavily relied on fieldwork, with a relatively small fraction of lakes subjected to extensive, in-depth investigations. High temporal resolution and long-term in-situ observations, often combined with well-calibrated and validated models, have so far provided detailed knowledge of...
Preprint
Full-text available
Subarctic West Greenland is populated by thousands of seasonally ice-free lakes. Using remotely sensed observations, we analyse the surface water temperatures of six lakes during 1995–2022 to identify factors influencing their variability. The connectivity to the Greenland Ice Sheet (GrIS) has a clear influence on lake surface temperature, with ice...
Article
Lake bathymetry is important for quantifying and characterizing underwater morphology and its geophysical state, which is critical for hydrological and ecological studies. Due primarily to the harsh environment of the Tibetan Plateau, there is a severe lack of lake bathymetry measurements, limiting the accurate estimation of total lake volumes and...
Article
Compound drought–heatwaves (CDHWs) accelerate the warming and drying of soils, triggering soil compound drought–heatwaves (SCDHWs) that jeopardize the health of soil ecosystems. Nevertheless, the behavior of these events worldwide and their responses to climatic warming are underexplored. Here, we show a global escalation in the frequency, duration...
Article
Ice phenology has shifted with anthropogenic warming such that many lakes are experiencing a shorter ice season. However, changes to ice quality — the ratio of black and white ice layers — remain little explored, despite relevance to lake physics, ecological function, human recreation and transportation. In this Review, we outline how ice quality i...
Article
Full-text available
Hot temperature extremes (HTEs) in the atmosphere can also affect lake surface water temperature, but how this impact changes with global warming is not well understood. Here we use numerical modelling and satellite observations to quantify the contribution of HTEs to variations in summer lake surface water temperature and lake heatwaves in 1,260 w...
Article
Full-text available
Previous studies typically assumed a constant total organic carbon (OC) storage in the lake water column, neglecting its significant variability within a changing world. Based on extensive field data and satellite monitoring techniques, we demonstrate considerable spatiotemporal variability in OC concentration and storage for 24,366 Chinese lakes d...
Preprint
Full-text available
For over a century, ecologists have used the concept of trophic state (TS) to characterize an aquatic ecosystem’s biological productivity. Because measuring productivity can be challenging within an ecosystem and across landscapes, multiple TS classification schemes, each relying on a variety of proxies for productivity, have emerged to meet use-sp...
Preprint
Full-text available
Lake outburst events have been mainly focused on small glacial lakes in the Himalaya, while the historical events from inland large lakes are few and have received less attention. Inland large lakes on the Tibetan Plateau are expanding rapidly, with recent signs of increasing outburst risk, highlighting the need to elucidate the processes, causes a...
Preprint
A changing climate and increasing human population necessitate understanding global freshwater availability. To enable assessment of lake water variability from local-to-global and monthly-to-decadal scales, we extended the Global Lake area, Climate, and Population (GLCP) dataset, which contains monthly lake surface area for 1.42 million lakes with...
Article
Human-transformed agricultural and aquacultural ponds, collectively referred to as “dike-pond systems”, play a crucial role in ensuring food security but also contribute to the widespread loss of natural wetlands. However, spatially and temporally explicit patterns of dike-pond systems have not been thoroughly documented globally. Here, we map the...
Article
Full-text available
Lake surface temperatures are projected to increase under climate change, which could trigger shifts in the future distribution of thermally sensitive aquatic species. Of particular concern for lake ecosystems are when temperatures increase outside the range of natural variability, without analogue either today or in the past. However, our knowledg...
Article
Full-text available
Lake ice is an important socio-economic resource that is threatened by climate change. The cover and duration of lake ice are expected to decline as air temperatures warm in the coming decades, disrupting a previously reliable source of income for many activities dependent on lake ice. The economic consequences of climate-induced lake ice loss rema...
Article
Full-text available
As climate change progresses, there is increasing emphasis on net zero and energy system decarbonization. Several technologies are contributing to this agenda, but among these, the growth of solar photovoltaics has consistently exceeded all projections. With increasing land-use pressures, and the expense of building-mounted photovoltaics, water sur...
Article
Full-text available
Lake water quality assessment requires quantification of phytoplankton abundance. Optical satellite imagery allows us to map this information within the entire lake area. The ESA Climate Change Initiative (ESA-CCI) estimates Chl-a concentrations, based on medium resolution satellite data, on a global scale. Chl-a concentrations provided by the ESA-...
Article
Full-text available
Extreme within-lake conditions have the potential to exert detrimental effects on lakes. Here we use satellite observations to investigate how the occurrence of multiple types of extremes, notably algal blooms, lake heatwaves, and low lake levels, have varied in 2724 lakes since the 1980s. Our study, which focuses on bloom-affected lakes, suggests...
Article
Full-text available
Lakes on the Tibetan Plateau are expanding rapidly in response to climate change. The potential impact on the local environment if lake expansion continues remains uncertain. Here we integrate field surveys, remote sensing observations and numerical modelling to assess future changes in lake surface area, water level and water volume. We also asses...
Article
Full-text available
Climate change exerts a profound impact on lakes, eliciting responses that range from gradual to abrupt transitions. When reaching critical tipping points, the established lake dynamics stand to undergo substantial modifications, setting off a chain reaction that reverberates through the entire ecosystem. This lake shift ripples into related ecosys...
Article
Full-text available
Climate change is having a significant impact on the temperature dynamics of lakes worldwide, affirming the need for accurate modeling to inform management and conservation strategies.
Article
Climate change is contributing to rapid changes in lake ice cover across the Northern Hemisphere, thereby impacting local communities and ecosystems. Using lake ice cover time‐series spanning over 87 yr for 43 lakes across the Northern Hemisphere, we found that the interannual variability in ice duration, measured as standard deviation, significant...
Article
Full-text available
Plain Language Summary Lake thermal dynamics are fundamental in controlling mixing processes and have significant implications for biological and geochemical processes. Consequently, the impacts of climate change on these dynamics can have severe consequences for the health of lakes and their aquatic ecosystems. In this context, mathematical models...
Article
Full-text available
Lake trophic state is a key ecosystem property that integrates a lake’s physical, chemical, and biological processes. Despite the importance of trophic state as a gauge of lake water quality, standardized and machine-readable observations are uncommon. Remote sensing presents an opportunity to detect and analyze lake trophic state with reproducible...
Article
Full-text available
Global lake ecosystems are subjected to an increased occurrence of heat extremes, yet their impact on lake warming remains poorly understood. In this study, we employed a hybrid physically-based/statistical model to assess the contribution of heat extremes to variations in surface water temperature of 2260 lakes in China from 1985 to 2022. Our stud...
Article
Widespread increases in lake surface water temperature have been documented in recent decades. Yet our understanding of global lake warming is mainly based on summertime measurements and includes relatively few observations from high latitudes (>60° N) where half of the world’s lakes are located. Here we provide temporally and spatially detailed hi...
Article
Depth-resolved water temperature data on the thermal environment of lakes are often hindered by sparse temporal frequency, limited depth resolution, or short duration that create many challenges for long-term analysis. Where high frequency and depth-resolved data exist, they can provide a wealth of knowledge about how lakes are responding to a chan...
Article
Heatwaves are increasing and expected to intensify in coming decades with global warming. However, direct evidence and knowledge of the mechanisms of the effects of heatwaves on harmful cyanobacteria blooms are limited and unclear. In 2022, we measured chlorophyll-a (Chla) at 20-s intervals based on a novel ground-based proximal sensing system (GBP...
Article
Full-text available
Climate change could seriously threaten global lake ecosystems by warming lake surface water and increasing the occurrence of lake heatwaves. Yet, there are great uncertainties in quantifying lake temperature changes globally due to a lack of accurate large-scale model simulations. Here, we integrated satellite observations and a numerical model to...
Preprint
Lake trophic state is a key ecosystem property that integrates a lake’s physical, chemical, and biological processes. Despite the importance of trophic state as a gauge of lake water quality, standardized and machine-readable observations are uncommon. Remote sensing presents an opportunity to detect and analyze lake trophic state with reproducible...
Article
Full-text available
Lake ecosystems are vulnerable to seasonal thermal cues, with subtle alterations in the timing of seasonal temperatures having a dramatic influence on aquatic species. Here, a measure of seasonal change in temperature is used to describe the pace of shifting seasons in lakes. Since 1980 spring and summer temperatures in Northern Hemisphere lakes ha...
Article
Full-text available
Plain Language Summary The Tibetan Plateau, commonly referred to as “the roof of the world,” has experienced substantial warming during the past 50 years, at a rate twice that of the global average. Previous studies in this climate sensitive environment have primarily focused on air temperature changes measured from a limited number of ground‐based...
Article
Lake thermal stratification is important for regulating lake environments and ecosystems and is sensitive to climate change and human activity. However, numerical simulation of coupled hydrodynamics and heat transfer processes in deep lakes using one-dimensional lake models remains challenging because of the insufficient representation of key param...
Preprint
Full-text available
Climate change could seriously threaten global lake ecosystems by warming lake surface water and increasing the occurrence of lake heatwaves. Yet, there are great uncertainties in quantifying lake temperature changes globally due to lack of accurate large-scale model simulations. Here, we integrated satellite observations and a numerical model to i...
Article
Full-text available
Aim Many freshwater fishes are migrating poleward to more thermally suitable habitats in response to warming climates. In this study, we aimed to identify which freshwater fishes are most sensitive to climatic changes and asked: (i) how fast are lakes warming? (ii) how fast are fishes moving? and (iii) are freshwater fishes tracking climate? Locat...
Article
Full-text available
Lake evaporation plays an important role in the water budget of lakes. Predicting lake evaporation responses to climate change is thus of paramount importance for the planning of mitigation and adaption strategies. However, most studies that have simulated climate change impacts on lake evaporation have typically utilised a single mechanistic model...
Article
Full-text available
Space-based Earth observation (EO), in the form of long-term climate data records, has been crucial in the monitoring and quantification of slow changes in the climate system—from accumulating greenhouse gases (GHGs) in the atmosphere, increasing surface temperatures, and melting sea-ice, glaciers and ice sheets, to rising sea-level. In addition to...
Article
Full-text available
Millions of lakes from around the world freeze during winter. These frozen surfaces provide essential ecosystem services that are vital to many northern communities. However, the availability of safe lake ice that is oftentimes required to support these services is under threat from climate change. Here we use a 100‐member ensemble of climate model...
Article
Full-text available
The majority of lake temperature studies have investigated climate‐induced changes occurring at the lake surface, primarily by analyzing detailed satellite images of surface water temperature. Whilst essential to observe long‐term change, satellite images do not provide information on the thermal environment at depth, thus limiting our understandin...
Article
Full-text available
How lake temperatures across large geographic regions are responding to widespread alterations in ice phenology (i.e., the timing of seasonal ice formation and loss) remains unclear. Here, we analyse satellite data and global-scale simulations to investigate the contribution of long-term variations in the seasonality of lake ice to surface water te...
Technical Report
Full-text available
In the 2020/21 winter, lake ice phenology (timing of ice-on and ice-off) across the Northern Hemisphere (NH, calculated from Copernicus Climate Change Service [C3S] ERA5 [Hersbach et al. 2020]) continued to exhibit later ice-on dates, earlier ice-off dates, and shorter seasonal ice cover, thus continuing the pattern observed in recent decades (Shar...
Preprint
Full-text available
Depth-resolved water temperature data on the thermal environment of lakes are often hindered by sparse temporal frequency, limited depth resolution, or short duration that create many challenges for long-term analysis. Where high frequency and depth-resolved data exist, they can provide a wealth of knowledge about how lakes are responding to a chan...
Article
Full-text available
Our planet is being subjected to unprecedented climate change, with far-reaching social and ecological repercussions. Below the waterline, aquatic ecosystems are being affected by multiple climate-related and anthropogenic stressors, the combined effects of which are poorly understood and rarely appreciated at the global stage. A striking consequen...
Article
Full-text available
Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a...
Article
Full-text available
Lakes are significant emitters of methane to the atmosphere, and thus are important components of the global methane budget. Methane is typically produced in lake sediments, with the rate of methane production being strongly temperature dependent. Local and regional studies highlight the risk of increasing methane production under future climate ch...
Article
Full-text available
Much of the focus of global warming impacts on lakes have focused on changes in mean temperature. However, lakes are also highly vulnerable to thermal extremes. Such extremes occur, by definition, during lake heatwaves. Heatwaves in lakes have occurred globally in recent decades and have had severe negative impacts. However, unlike their atmospheri...
Preprint
Full-text available
Lake ice phenology has been used extensively to study the impacts of anthropogenic climate change, owing to the widespread occurrence of lake ice and the length of time series available for such studies. The proliferation of process-based lake models and gridded climate data have enabled the modeling of ice phenology across broad spatial scales, fo...
Preprint
Full-text available
Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a...
Article
Full-text available
Millions of lakes inversely stratify during winter. Seemingly subtle variations in the duration of winter stratification can have major ecological effects by, for example, altering the vertical distribution of oxygen and nutrients in lakes. Yet, the influence of climate change on winter stratification has been largely unexplored. To fill this knowl...
Article
Full-text available
An emerging concern for lake ecosystems is the occurrence of compound extreme events i.e., situations where multiple within-lake extremes occur simultaneously. Of particular concern are the co-occurrence of lake heatwaves (anomalously warm temperatures) and high chlorophyll-a extremes, two important variables that influence the functioning of aquat...
Article
Full-text available
Lake ecosystems are jeopardized by the impacts of climate change on ice seasonality and water temperatures. Yet historical simulations have not been used to formally attribute changes in lake ice and temperature to anthropogenic drivers. In addition, future projections of these properties are limited to individual lakes or global simulations from s...
Article
Full-text available
Long‐term lake ice phenological records from around the Northern Hemisphere provide unique sensitive indicators of climatic variations, even prior to the existence of physical meteorological measurement stations. Here, we updated ice phenology records for 60 lakes with time‐series ranging from 107–204 years to provide the first re‐assessment of Nor...
Article
Full-text available
Lake heatwaves – prolonged periods of hot surface water temperature in lakes – have recently been shown to increase in intensity and duration, with numerous potential implications for aquatic ecosystems. However, an important physical attribute of lake heatwaves that has not yet been investigated is their spatial extent, and how it varies within a...
Article
Full-text available
A year of measurements by Doppler Current Profilers, a chain of temperature sensors and a suite of meteorological instruments has been analyzed to elucidate the seasonal cycle of the dynamical response of a temperate lake (Windermere) to surface forcing. The efficiency of energy input to the lake (Eff) was determined by comparing the rate of workin...
Article
Full-text available
The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known abo...
Article
Full-text available
Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we...
Article
Full-text available
One of the most important physical characteristics driving lifecycle events in lakes is stratification. Already subtle variations in the timing of stratification onset and break-up (phenology) are known to have major ecological effects, mainly by determining the availability of light, nutrients, carbon and oxygen to organisms. Despite its ecologica...
Article
Full-text available
Annual maximum lake surface temperature influences ecosystem structure and function and, in particular, the rates of metabolic activities, species survival and biogeography. Here, we evaluated 50 years of observational data, from 1966 to 2015, for ten European lakes to quantify changes in the annual maximum surface temperature and the duration abov...
Article
Full-text available
Lake ecosystems, and the organisms that live within them, are vulnerable to temperature change1–5, including the increased occurrence of thermal extremes⁶. However, very little is known about lake heatwaves—periods of extreme warm lake surface water temperature—and how they may change under global warming. Here we use satellite observations and a n...
Chapter
Lake ecosystems are sensitive to local weather conditions, and especially to extremes such as storms and heatwaves. Here we provide an overview of the shorter and longer term effects on lake physics, chemistry and biology. Use of high frequency data from in situ sensors to monitor lakes has provided new insights into these impacts. Many knowledge g...
Article
Full-text available
Inland standing waters are particularly vulnerable to increasing water temperature. Here, using a high-resolution numerical model, we find that the velocity of climate change in the surface of inland standing waters globally was 3.5±2.3 km decade-1 from 1861-2005, which is similar to, or lower than, rates of active dispersal of some motile species....
Article
Full-text available
The epilimnion is the surface layer of a lake typically characterised as well mixed and is decoupled from the metalimnion due to a steep change in density. The concept of the epilimnion (and, more widely, the three-layered structure of a stratified lake) is fundamental in limnology, and calculating the depth of the epilimnion is essential to unders...
Article
Northern Hemisphere lakes are losing their ice cover due to climate change. Here we explored six decades of observational data (1961-2017) showing trends in air temperature, wind speed and precipitation over northern Poland, as well as changes in the ice conditions for five lakes with different morphometry. We evaluated whether and to what extent c...
Article
Full-text available
As the global climate warms, the fate of lacustrine fish is of huge concern, especially given their sensitivity as ectotherms to changes in water temperature. The Arctic charr (Salvelinus alpinus L.) is a salmonid with a Holarctic distribution, with peripheral populations persisting at temperate latitudes, where it is found only in sufficiently col...
Article
Full-text available
Climate change is one of the most severe threats to global lake ecosystems. Lake surface conditions, such as ice cover, surface temperature, evaporation and water level, respond dramatically to this threat, as observed in recent decades. In this Review, we discuss physical lake variables and their responses to climate change. Decreases in winter ic...

Network

Cited By