
R. O. Parke Loyd- Doctor of Philosophy
- PostDoc Position at Arizona State University
R. O. Parke Loyd
- Doctor of Philosophy
- PostDoc Position at Arizona State University
About
94
Publications
4,786
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,197
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (94)
Exoplanet surveys have shown a class of abundant exoplanets smaller than Neptune on close, <100-day orbits1, 2, 3–4. These planets form two populations separated by a natural division at about 1.8 R⊕ termed the radius valley. It is uncertain whether these populations arose from separate dry versus water-rich formation channels, evolved apart becaus...
We present 5–1 × 10 ⁷ Å spectral energy distributions (SEDs) for 12 M dwarf stars covering spectral types M0–M8. Our SEDs are provided for community use as a sequel to the Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems (MUSCLES) survey. The 12 stars include eight known exoplanet hosts and four stars chosen...
We present 5-1x10^7 Angstrom spectral energy distributions (SEDs) for twelve M dwarf stars covering spectral types M0-M8. Our SEDs are provided for community use as a sequel to the Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems (MUSCLES) survey. The twelve stars include eight known exoplanet hosts and four...
Lyman-α transits provide an opportunity to test models of atmospheric escape directly. However, translating observations into constraints on the properties of the escaping atmosphere is challenging. The major reason for this is that the observable parts of the outflow often comes from material outside the planet’s Hill sphere, where the interaction...
The far-ultraviolet (FUV) flare activity of low-mass stars has become a focus in our understanding of the exoplanet atmospheres and how they evolve. However, direct detection of FUV flares and measurements of their energies and rates are limited by the need for space-based observations. The difficulty of obtaining such observations may push some wo...
The far-ultraviolet (FUV) flare activity of low-mass stars has become a focus in our understanding of the exoplanet atmospheres and how they evolve. However, direct detection of FUV flares and measurements of their energies and rates are limited by the need for space-based observations. The difficulty of obtaining such observations may push some wo...
We present the results of a multiwavelength Professional–Amateur campaign to study the behaviour of flares from the active M1.5V star binary CR Draconis. CR Dra was observed with Transiting Exoplanet Survey Satellite (TESS) 20-s photometry, Swift near-ultraviolet (NUV) grism spectroscopy and with ground-based optical photometry and spectroscopy fro...
The Ly α emission line is the brightest UV emission line in M and K dwarf spectra and serves as an important tool for studies of stellar chromospheres, the interstellar medium, and exoplanet atmospheres. However, Ly α observations have proven difficult due to the strong absorption by the interstellar medium, necessitating a reconstruction of the in...
The high-energy X-ray and ultraviolet (UV) radiation fields of exoplanet host stars play a crucial role in controlling the atmospheric conditions and the potential habitability of exoplanets. Major surveys of the X-ray/UV emissions from late-type (K and M spectral types) exoplanet hosts have been conducted by the Measurements of the Ultraviolet Spe...
The high energy X-ray and ultraviolet (UV) radiation fields of exoplanet host stars play a crucial role in controlling the atmospheric conditions and the potential habitability of exoplanets. Major surveys of the X-ray/UV emissions from late-type (K and M spectral type) exoplanet hosts have been conducted by the MUSCLES and Mega-MUSCLES Hubble Spac...
Variability in the far-ultraviolet (FUV) emission produced by stellar activity affects photochemistry and heating in orbiting planetary atmospheres. We present a comprehensive analysis of the FUV variability of GJ 436, a field-age M2.5V star ( P rot ≈ 44 days) that is orbited by a warm Neptune-sized planet ( M ≈ 25 M ⊕ , R ≈ 4.1 M ⊕ , P orb ≈ 2.6 d...
Variability in the far ultraviolet (FUV) emission produced by stellar activity affects photochemistry and heating in orbiting planetary atmospheres. We present a comprehensive analysis of the FUV variability of GJ 436, a field-age, M2.5V star ($P_\mathrm{rot}\approx44$ d) orbited by a warm, Neptune-size planet ($M \approx 25\ M_\oplus$, $R \approx...
Lyman-α transits have been detected from several nearby exoplanets and are one of our best insights into the atmospheric escape process. However, due to ISM absorption, we typically only observe the transit signature in the blue-wing, making them challenging to interpret. This challenge has been recently highlighted by non-detections from planets t...
Seventy-five billion low-mass stars in our galaxy host at least one small planet in their habitable zone (HZ). The stellar ultraviolet (UV) radiation received by the planets is strong and highly variable, and has consequences for atmospheric loss, composition, and habitability. SPARCS is a NASA-funded mission to characterize the quiescent and flare...
The ultraviolet (UV) emission of stellar flares may have a pivotal role in the habitability of rocky exoplanets around low-mass stars. Previous studies have used white-light observations to calibrate empirical models which describe the optical and UV flare emission. However, the accuracy of the UV predictions of models have previously not been test...
M-dwarfs are thought to be hostile environments for exoplanets. Stellar events are very common on such stars. These events might cause the atmospheres of exoplanets to change significantly over time. It is not only the major stellar flare events that contribute to this disequilibrium, but the smaller flares might also affect the atmospheres in an a...
The ultraviolet (UV) emission of stellar flares may have a pivotal role in the habitability of rocky exoplanets around low-mass stars. Previous studies have used white-light observations to calibrate empirical models which describe the optical and UV flare emission. However, the accuracy of the UV predictions of models have previously not been test...
We present millimeter, optical, and soft X-ray observations of a stellar flare with an energy squarely in the regime of typical X1 solar flares. The flare was observed from Proxima Cen on 2019 May 6 as part of a larger multi-wavelength flare monitoring campaign and was captured by Chandra, the Las Cumbres Observatory Global Telescope, the Iréné du...
The near-ultraviolet (NUV) spectral region is a useful diagnostic for stellar flare physics and assessing the energy environment of young exoplanets, especially as relates to prebiotic chemistry. We conducted a pilot NUV spectroscopic flare survey of the young M dwarf AU Mic with the Neil Gehrels Swift Observatory's UltraViolet and Optical Telescop...
The near-ultraviolet (NUV) spectral region is a useful diagnostic for stellar flare physics and assessing the energy environment of young exoplanets, especially as relates to prebiotic chemistry. We conducted a pilot NUV spectroscopic flare survey of the young M dwarf AU Mic with the Neil Gehrels Swift Observatory's UltraViolet and Optical Telescop...
Coronal mass ejections (CMEs) are a prominent contributor to solar system space weather and might have impacted the Sun’s early angular momentum evolution. A signal diagnostic of CMEs on the Sun is coronal dimming: a drop in coronal emission, tied to the mass of the CME, that is the direct result of removing emitting plasma from the corona. We pres...
We present millimeter, optical, and soft X-ray observations of a stellar flare with an energy squarely in the regime of typical X1 solar flares. The flare was observed from Proxima Cen on 2019 May 6 as part of a larger multi-wavelength flare monitoring campaign and was captured by Chandra, LCOGT, du Pont, and ALMA. Millimeter emission appears to be...
UV-SCOPE is a mission concept to determine the causes of atmospheric mass loss in exoplanets, investigate the mechanisms driving aerosol formation in hot Jupiters, and study the influence of the stellar environment on atmospheric evolution and habitability. As part of these investigations, the mission will generate a broad-purpose legacy database o...
Accurately measuring and modeling the Ly α (Ly α ; λ 1215.67 Å) emission line from low-mass stars is vital for our ability to build predictive high energy stellar spectra, yet interstellar medium (ISM) absorption of this line typically prevents model-measurement comparisons. Ly α also controls the photodissociation of important molecules, like wate...
Coronal mass ejections (CMEs) are a prominent contributor to solar system space weather and might have impacted the Sun's early angular momentum evolution. A signal diagnostic of CMEs on the Sun is coronal dimming: a drop in coronal emission, tied to the mass of the CME, that is the direct result of removing emitting plasma from the corona. We pres...
Accurately measuring and modeling the Lyman-$\alpha$ (Ly$\alpha$; $\lambda$1215.67 \AA) emission line from low mass stars is vital for our ability to build predictive high energy stellar spectra, yet interstellar medium (ISM) absorption of this line typically prevents model-measurement comparisons. Ly$\alpha$ also controls the photodissociation of...
M-dwarfs are thought to be hostile environments for exoplanets. Stellar events are very common on such stars. These events might cause the atmospheres of exoplanets to change significantly over time. It is not only the major stellar flare events that contribute to this disequilibrium, but the smaller flares might also affect the atmospheres in an a...
Efforts to discover and characterize habitable zone planets have primarily focused on Sun-like stars and M dwarfs. K stars, however, provide an appealing compromise between these two alternatives that has been relatively unexplored. Understanding the ultraviolet (UV) environment around such stars is critical to our understanding of their planets, a...
Efforts to discover and characterize habitable zone planets have primarily focused on Sun-like stars and M dwarfs. K stars, however, provide an appealing compromise between these two alternatives that has been relatively unexplored. Understanding the ultraviolet (UV) environment around such stars is critical to our understanding of their planets, a...
The Star-Planet Activity Research CubeSat (SPARCS) is a 6U CubeSat under development to monitor the flaring and chromospheric activity of M dwarfs at near-ultraviolet (NUV) and far-ultraviolet (FUV) wavelengths. The spacecraft hosts two UV-optimized delta-doped charge-coupled devices fed by a 9-cm telescope and a dichroic beam splitter. A dedicated...
The Star-Planet Activity Research CubeSat (SPARCS) is a 6U CubeSat under development to monitor the flaring and chromospheric activity of M dwarfs at near-ultraviolet (NUV) and far-ultraviolet (FUV) wavelengths. The spacecraft hosts two UV-optimized delta-doped charge-coupled devices fed by a 9-cm telescope and a dichroic beam splitter. A dedicated...
Lyman-$\alpha$ transits have been detected from a handful of nearby exoplanets and are one of our best insights into the atmospheric escape process. However, the fact interstellar absorption often renders the line-core unusable means we typically only observe the transit signature in the blue-wing, and they have been challenging to interpret. This...
Know thy star, know thy planet,... especially in the ultraviolet (UV). Over the past decade, that motto has grown from mere wish to necessity in the M dwarf regime, given that the intense and highly variable UV radiation from these stars is suspected of strongly impacting their planets' habitability and atmospheric loss. This has led to the develop...
Characterizing the atmospheres of planets orbiting M dwarfs requires understanding the spectral energy distributions of M dwarfs over planetary lifetimes. Surveys like MUSCLES, HAZMAT, and FUMES have collected multiwavelength spectra across the spectral type’s range of T eff and activity, but the extreme ultraviolet (EUV, 100–912 Å) flux of most of...
We present the discovery of an extreme flaring event from Proxima Cen by ASKAP, ALMA, HST, TESS, and the du Pont Telescope that occurred on 2019 May 1. In the millimeter and FUV, this flare is the brightest ever detected, brightening by a factor of >1000 and >14000 as seen by ALMA and HST, respectively. The millimeter and FUV continuum emission tra...
We present a 5 Å–100 μ m spectral energy distribution (SED) of the ultracool dwarf star TRAPPIST-1, obtained as part of the Mega-MUSCLES Treasury Survey. The SED combines ultraviolet and blue-optical spectroscopy obtained with the Hubble Space Telescope, X-ray spectroscopy obtained with XMM-Newton, and models of the stellar photosphere, chromospher...
We present the discovery of an extreme flaring event from Proxima Cen by the Australian Square Kilometre Array Pathfinder (ASKAP), Atacama Large Millimeter/submillimeter Array (ALMA), Hubble Space Telescope (HST), Transiting Exoplanet Survey Satellite (TESS), and the du Pont Telescope that occurred on 2019 May 1. In the millimeter and FUV, this fla...
We present a 5A-100um Spectral Energy Distribution (SED) of the ultracool dwarf star TRAPPIST-1, obtained as part of the Mega-MUSCLES Treasury Survey. The SED combines ultraviolet and blue-optical spectroscopy obtained with the Hubble Space Telescope, X-ray spectroscopy obtained with XMM-Newton, and models of the stellar photosphere, chromosphere,...
Characterizing the atmospheres of planets orbiting M dwarfs requires understanding the spectral energy distributions of M dwarfs over planetary lifetimes. Surveys like MUSCLES, HAZMAT, and FUMES have collected multiwavelength spectra across the spectral type's range of Teff and activity, but the extreme ultraviolet flux (EUV, 100 to 912 Angstroms)...
The ultraviolet (UV) emission from the most numerous stars in the universe, M dwarfs, impacts the formation, chemistry, atmospheric stability, and surface habitability of their planets. We have analyzed the spectral evolution of UV emission from M0–M2.5 (0.3–0.6 M ⊙ ) stars as a function of age, rotation, and Rossby number using Hubble Space Telesc...
We present the results of a search for stellar flares from stars neighbouring the target sources in the Kepler short cadence data. These flares have been discarded as contaminants in previous surveys and therefore provide an unexplored resource of flare events, in particular high energy events from faint stars. We have measured M dwarf flare energi...
We present the results of a search for stellar flares from stars neighbouring the target sources in the Kepler short cadence data. These flares have been discarded as contaminants in previous surveys and therefore provide an unexplored resource of flare events, in particular high energy events from faint stars. We have measured M dwarf flare energi...
The ultraviolet (UV) emission from the most numerous stars in the universe, M dwarfs, impacts the formation, chemistry, atmospheric stability, and surface habitability of their planets. We have analyzed the spectral evolution of UV emission from M0-M2.5 (0.3-0.6 Msun) stars as a function of age, rotation, and Rossby number, using Hubble Space Teles...
M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planet’s host star. This wavelength regime is important because molecules in the planetary atmo...
Recent work has demonstrated that high levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present more promising candidates for biomarker searches. I...
We propose a suite of telescopes be deployed as part of the Artemis III human-crewed expedition to the lunar south pole, able to collect wide-field simultaneous far-ultraviolet (UV), near-UV, and optical band images with a fast cadence (10 seconds) of a single part of the sky for several hours continuously. Wide-field, high-cadence monitoring in th...
Our nearest stellar neighbour, Proxima Centauri, is a low-mass star with spectral type dM5.5 and hosting an Earth-like planet orbiting within its habitable zone. However, the habitability of the planet depends on the high-energy radiation of the chromospheric and coronal activity of the host star. We report the AstroSat, Chandra, and HST observatio...
M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of the planet's host star. This wavelength regime is important because molecules in the planetary atmo...
High levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the liquid water habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present more promising candidates for biomarker searches. We present new HST and...
Our nearest stellar neighbour, Proxima Centauri, is a low mass star with spectral typedM5.5 and hosting an Earth-like planet orbiting within its habitable zone. However, the habitability of the planet depends on the high-energy radiation of the chromo-spheric and coronal activity of the host star. We report the Astrosat, Chandra and HST observation...
GJ 887 has been spotlighted for the apparently gentle space environment it provides to its recently discovered planets. In 27 days of optical monitoring by the Transiting Exoplanet Survey Satellite (TESS), the star exhibited no detectable flares. Ultraviolet observations reveal a different story. Two high-contrast flares occurred in just 2.8 hr of...
Quantifying the evolution of stellar extreme ultraviolet (EUV, 100–1000 Å) emission is critical for assessing the evolution of planetary atmospheres and the habitability of M dwarf systems. Previous studies from the HAbitable Zones and M dwarf Activity across Time (HAZMAT) program showed the far- and near-UV (FUV, NUV) emission from M stars at vari...
Quantifying the evolution of stellar extreme ultraviolet (EUV, 100 -- 1000 $\overset{\circ}{A}$) emission is critical for assessing the evolution of planetary atmospheres and the habitability of M dwarf systems. Previous studies from the HAbitable Zones and M dwarf Activity across Time (HAZMAT) program showed the far- and near-UV (FUV, NUV) emissio...
We search for evidence of the cause of the exoplanet radius gap, i.e., the dearth of planets with radii near 1.8 R ⊕ . If the cause were photoevaporation, the radius gap should trend with proxies for the early-life high-energy emission of the planet-hosting stars. If, alternatively, the cause were core-powered mass loss, no such trends should exist...
We search for evidence of the cause of the exoplanet radius gap, i.e. the dearth of planets with radii near $1.8\ R_\oplus$. If the cause was photoevaporation, the radius gap should trend with proxies for the early-life high-energy emission of planet-hosting stars. If, alternatively, the cause was core-powered mass loss, no such trends should exist...
The discovery of habitable zone (HZ) planets around low-mass stars has highlighted the need for a comprehensive understanding of the radiation environments in which such planets reside. Of particular importance is knowledge of the far-ultraviolet (FUV) radiation, as low-mass stars are typically much more active than solar-type stars and the proximi...
The discovery of habitable zone (HZ) planets around low-mass stars has highlighted the need for a comprehensive understanding of the radiation environments in which such planets reside. Of particular importance is knowledge of the far-ultraviolet (FUV) radiation, as low-mass stars are typically much more active than solar-type stars and the proximi...
As part of the Mega-Measurements of the Ultraviolet Spectral Characteristics of Low-Mass Exoplanetary Systems Hubble Space Telescope (HST) Treasury program, we obtained time-series ultraviolet spectroscopy of the M2.5V star, GJ 674. During the far-ultraviolet (FUV) monitoring observations, the target exhibited several small flares and one large fla...
As part of the Mega MUSCLES Hubble Space Telescope (HST) Treasury program, we obtained time-series ultraviolet spectroscopy of the M2.5V star, GJ~674. During the FUV monitoring observations, the target exhibited several small flares and one large flare (E_FUV = 10^{30.75} ergs) that persisted over the entirety of a HST orbit and had an equivalent d...
We present a survey of far-ultraviolet (FUV; 1150-1450) emission line spectra from 71 planet-hosting and 33 non-planet-hosting F, G, K, and M dwarfs with the goals of characterizing their range of FUV activity levels, calibrating the FUV activity level to the 90-360 extreme-ultraviolet (EUV) stellar flux, and investigating the potential for FUV emi...
M stars are powerful emitters of far-ultraviolet light. Over long timescales, a significant, possibly dominant, fraction of this emission is produced by stellar flares. Characterizing this emission is critical to understanding the atmospheres of the stars producing it and the atmospheric evolution of the orbiting planets subjected to it. Ultraviole...
M dwarf stars are known for their vigorous flaring. This flaring could impact the climate of orbiting planets, making it important to characterize M dwarf flares at the short wavelengths that drive atmospheric chemistry and escape. We conducted a far-ultraviolet flare survey of six M dwarfs from the recent MUSCLES (Measurements of the Ultraviolet S...
M stars are powerful emitters of far-ultraviolet light. Over long timescales, a significant, possibly dominant, fraction of this emission is produced by stellar flares. Characterizing this emission is critical to understanding the atmospheres of the stars producing it and the atmospheric evolution of the orbiting planets subjected to it. Ultraviole...
M dwarf stars are known for their vigorous flaring. This flaring could impact the climate of orbiting planets, making it important to characterize M dwarf flares at the short wavelengths that drive atmospheric chemistry and escape. We conducted a far-ultraviolet flare survey of 6 M dwarfs from the recent MUSCLES (Measurements of the Ultraviolet Spe...
We present a survey of far-ultraviolet (FUV; 1150 - 1450 Ang) emission line spectra from 71 planet-hosting and 33 non-planet-hosting F, G, K, and M dwarfs with the goals of characterizing their range of FUV activity levels, calibrating the FUV activity level to the 90 - 360 Ang extreme-ultraviolet (EUV) stellar flux, and investigating the potential...
Proxima b is a terrestrial-mass planet in the habitable-zone of Proxima Centauri. Proxima Centauri's high stellar activity however casts doubt on the habitability of Proxima b: sufficiently bright and frequent flares and any associated proton events may destroy the planet's ozone layer, allowing lethal levels of UV flux to reach its surface. In Mar...
Proxima b is a terrestrial-mass planet in the habitable-zone of Proxima Centauri. Proxima Centauri's high stellar activity however casts doubt on the habitability of Proxima b: sufficiently bright and frequent flares and any associated proton events may destroy the planet's ozone layer, allowing lethal levels of UV flux to reach its surface. In Mar...
The environment around protoplanetary disks (PPDs) regulates processes which drive the chemical and structural evolution of circumstellar material. We perform a detailed empirical survey of warm molecular hydrogen (H$_2$) absorption observed against H I-Ly$\alpha$ (Ly$\alpha$: $\lambda$ 1215.67 {\AA}) emission profiles for 22 PPDs, using archival H...
The environment around protoplanetary disks (PPDs) regulates processes which drive the chemical and structural evolution of circumstellar material. We perform a detailed empirical survey of warm molecular hydrogen (H$_2$) absorption observed against H I-Ly$\alpha$ (Ly$\alpha$: $\lambda$ 1215.67 {\AA}) emission profiles for 22 PPDs, using archival H...
Observations of molecular hydrogen (H$_2$) fluorescence are a potentially useful tool for measuring the H$_2$ abundance in exoplanet atmospheres. This emission was previously observed in M$\;$dwarfs with planetary systems. However, low signal-to-noise prevented a conclusive determination of its origin. Possible sources include exoplanetary atmosphe...
Observations of molecular hydrogen (H$_2$) fluorescence are a potentially useful tool for measuring the H$_2$ abundance in exoplanet atmospheres. This emission was previously observed in M$\;$dwarfs with planetary systems. However, low signal-to-noise prevented a conclusive determination of its origin. Possible sources include exoplanetary atmosphe...
Characterizing the UV spectral energy distribution (SED) of an exoplanet host star is critically important for assessing its planet's potential habitability, particularly for M dwarfs as they are prime targets for current and near-term exoplanet characterization efforts and atmospheric models predict that their UV radiation can produce photochemist...
Characterizing the UV spectral energy distribution (SED) of an exoplanet host star is critically important for assessing its planet's potential habitability, particularly for M dwarfs as they are prime targets for current and near-term exoplanet characterization efforts and atmospheric models predict that their UV radiation can produce photochemist...
Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) fluxes from their host stars that can initiate atmospheric erosion. Atmospheric loss affects exoplanetary habitability in terms of surface water inventory, atmospheric pressure, the efficiency of greenhouse warming, and the do...
Hydrogen gas evaporating from the atmosphere of the hot-Neptune GJ436b absorbs over 50% of the stellar Ly$\alpha$ emission during transit. Given the planet's atmospheric composition and energy-limited escape rate, this hydrogen outflow is expected to entrain heavier atoms such as C and O. We searched for C and Si in the escaping atmosphere of GJ436...
Hydrogen gas evaporating from the atmosphere of the hot-Neptune GJ436b absorbs over 50% of the stellar Ly$\alpha$ emission during transit. Given the planet's atmospheric composition and energy-limited escape rate, this hydrogen outflow is expected to entrain heavier atoms such as C and O. We searched for C and Si in the escaping atmosphere of GJ436...
gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project's stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a...
gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project's stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a...
We present a catalog of panchromatic spectral energy distributions (SEDs) for 7 M and 4 K dwarf stars that span X-ray to infrared wavelengths (5 {\AA} - 5.5 {\mu}m). These SEDs are composites of Chandra or XMM-Newton data from 5 - ~50 {\AA}, a plasma emission model from ~50 - 100 {\AA}, broadband empirical estimates from 100 - 1170 {\AA}, HST data...
We present a catalog of panchromatic spectral energy distributions (SEDs) for 7 M and 4 K dwarf stars that span X-ray to infrared wavelengths (5 {\AA} - 5.5 {\mu}m). These SEDs are composites of Chandra or XMM-Newton data from 5 - ~50 {\AA}, a plasma emission model from ~50 - 100 {\AA}, broadband empirical estimates from 100 - 1170 {\AA}, HST data...
The ultraviolet (UV) spectral energy distributions of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Lyman alpha line (the dominant source of UV photons from low-mass stars) are challenging, as i...
The ultraviolet (UV) spectral energy distributions of low-mass (K- and M-type) stars play a critical role in the heating and chemistry of exoplanet atmospheres, but are not observationally well-constrained. Direct observations of the intrinsic flux of the Lyman alpha line (the dominant source of UV photons from low-mass stars) are challenging, as i...
Ground- and space-based planet searches employing radial velocity techniques and transit photometry have detected thousands of planet-hosting stars in the Milky Way. The chemistry of these atmospheres is controlled by the shape and absolute flux of the stellar spectral energy distribution, however, flux distributions of relatively inactive low-mass...
Ground- and space-based planet searches employing radial velocity techniques and transit photometry have detected thousands of planet-hosting stars in the Milky Way. The chemistry of these atmospheres is controlled by the shape and absolute flux of the stellar spectral energy distribution, however, flux distributions of relatively inactive low-mass...
Young solar-type stars grow through the accretion of material from the circumstellar disk during pre-main-sequence (PMS) evolution. The ultraviolet radiation generated in this process plays a key role in the chemistry and evolution of young planetary disks. In particular, the hydrogen Lyα line (Lyα) etches the disk surface by driving photoevaporati...
The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. High-energy photons (X-ray to NUV) from these stars regulate the atmospheric temperature profiles and photochemistry on orbiting planets, influencing the production of potential “biomarker” gases. We repo...
We present an analysis of a sample of flares on “quiescent” (i.e. non-flare) M and K stars using temporally resolved UV spectroscopy from the growing body of MUSCLES Treasury Survey data. Specifically, our analysis quantified the response of the far-UV C II, Si III, Si IV, and N V emission lines and the far-UV continuum during the flares. Using the...
Understanding the surface and atmospheric conditions of Earth-size, rocky
planets in the habitable zones (HZs) of low-mass stars is currently one of the
greatest astronomical endeavors. Knowledge of the planetary effective surface
temperature alone is insufficient to accurately interpret biosignature gases
when they are observed in the coming decad...
The EUV (200-911 Å), FUV (912-1750 Å), and NUV (1750-3200 Å) spectral energy distribution of exoplanet host stars has a profound influence on the atmospheres of Earth-like planets in the habitable zone. The stellar EUV radiation drives atmospheric heating, while the FUV (in particular, Lyα) and NUV radiation fields regulate the atmospheric chemistr...
To date, more than 750 planets have been discovered orbiting stars other than
the Sun. Two sub-classes of these exoplanets, "hot Jupiters" and their less
massive counterparts "hot Neptunes," provide a unique opportunity to study the
extended atmospheres of planets outside of our solar system. We describe here
the first far-ultraviolet transit study...
Variations in stellar flux can potentially overwhelm the photometric signal of a transiting planet. Such variability has not previously been well-characterized in the ultraviolet lines used to probe the inflated atmospheres surrounding hot Jupiters. Therefore, we surveyed 38 F-M stars for intensity variations in four narrow spectroscopic bands: two...
0.35-m f/6 reflector + CCD
USNO-B1.0
[21, 3, 0*, 2008/03/12{2008/03/21]