
R. Venkatesh Babu- PhD
- Professor at Indian Institute of Science Bangalore
R. Venkatesh Babu
- PhD
- Professor at Indian Institute of Science Bangalore
About
344
Publications
43,659
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
13,737
Citations
Introduction
R. Venkatesh Babu currently works as a professor at the Department of Computational and Data Sciences, Indian Institute of Science. Venkatesh Babu does research in Computer Vision, Image Processing and Deep Learning. Their current projects include: Depth estimation from monocular image, Crowd counting, Multi-exposure image fusion, Human pose estimation and generation, adversarial attacks and adversarial training.
Current institution
Additional affiliations
August 2010 - December 2016
August 2010 - May 2016
Publications
Publications (344)
Diffusion models have become central to various image editing tasks, yet they often fail to fully adhere to physical laws, particularly with effects like shadows, reflections, and occlusions. In this work, we address the challenge of generating photorealistic mirror reflections using diffusion-based generative models. Despite extensive training dat...
Existing approaches for controlling text-to-image diffusion models, while powerful, do not allow for explicit 3D object-centric control, such as precise control of object orientation. In this work, we address the problem of multi-object orientation control in text-to-image diffusion models. This enables the generation of diverse multi-object scenes...
Current monocular 3D detectors are held back by the limited diversity and scale of real-world datasets. While data augmentation certainly helps, it's particularly difficult to generate realistic scene-aware augmented data for outdoor settings. Most current approaches to synthetic data generation focus on realistic object appearance through improved...
Novel-view synthesis is an important problem in computer vision with applications in 3D reconstruction, mixed reality, and robotics. Recent methods like 3D Gaussian Splatting (3DGS) have become the preferred method for this task, providing high-quality novel views in real time. However, the training time of a 3DGS model is slow, often taking 30 min...
We tackle the problem of generating highly realistic and plausible mirror reflections using diffusion-based generative models. We formulate this problem as an image inpainting task, allowing for more user control over the placement of mirrors during the generation process. To enable this, we create SynMirror, a large-scale dataset of diverse synthe...
Recently, we have seen a surge of personalization methods for text-to-image (T2I) diffusion models to learn a concept using a few images. Existing approaches, when used for face personalization, suffer to achieve convincing inversion with identity preservation and rely on semantic text-based editing of the generated face. However, a more fine-grain...
For a given scene, humans can easily reason for the locations and pose to place objects. Designing a computational model to reason about these affordances poses a significant challenge, mirroring the intuitive reasoning abilities of humans. This work tackles the problem of realistic human insertion in a given background scene termed as \textbf{Sema...
Text-to-image generation from large generative models like Stable Diffusion, DALLE-2, etc., have become a common base for various tasks due to their superior quality and extensive knowledge bases. As image composition and generation are creative processes the artists need control over various parts of the images being generated. We find that just a...
The need for abundant labelled data in supervised Adversarial Training (AT) has prompted the use of Self-Supervised Learning (SSL) techniques with AT. However, the direct application of existing SSL methods to adversarial training has been sub-optimal due to the increased training complexity of combining SSL with AT. A recent approach, DeACL, mitig...
Conventional Domain Adaptation (DA) methods aim to learn domain-invariant feature representations to improve the target adaptation performance. However, we motivate that domain-specificity is equally important since in-domain trained models hold crucial domain-specific properties that are beneficial for adaptation. Hence, we propose to build a fram...
Neural Radiance Field (NeRF) approaches learn the underlying 3D representation of a scene and generate photo-realistic novel views with high fidelity. However, most proposed settings concentrate on modelling a single object or a single level of a scene. However, in the real world, we may capture a scene at multiple levels, resulting in a layered ca...
Advances in adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks. However, the robust accuracy of present state-ofthe-art defenses is far from the requirements in critical applications such as robotics and autonomous navigation systems. Further, in practical use cases, network prediction alone might n...
Real-world objects perform complex motions that involve multiple independent motion components. For example, while talking, a person continuously changes their expressions, head, and body pose. In this work, we propose a novel method to decompose motion in videos by using a pretrained image GAN model. We discover disentangled motion subspaces in th...
Recent progress in generative models has resulted in models that produce both realistic as well as relevant images for most textual inputs. These models are being used to generate millions of images everyday, and hold the potential to drastically impact areas such as generative art, digital marketing and data augmentation. Given their outsized impa...
Self-training based semi-supervised learning algorithms have enabled the learning of highly accurate deep neural networks, using only a fraction of labeled data. However, the majority of work on self-training has focused on the objective of improving accuracy, whereas practical machine learning systems can have complex goals (e.g. maximizing the mi...
Randomized smoothing (RS) is a well known certified defense against adversarial attacks, which creates a smoothed classifier by predicting the most likely class under random noise perturbations of inputs during inference. While initial work focused on robustness to $\ell_2$ norm perturbations using noise sampled from a Gaussian distribution, subseq...
In this paper, we propose to develop a method to address unsupervised domain adaptation (UDA) in a practical setting of continual learning (CL). The goal is to update the model on continually changing domains while preserving domain-specific knowledge to prevent catastrophic forgetting of past-seen domains. To this end, we build a framework for pre...
StyleGANs are at the forefront of controllable image generation as they produce a latent space that is semantically disentangled, making it suitable for image editing and manipulation. However, the performance of StyleGANs severely degrades when trained via class-conditioning on large-scale long-tailed datasets. We find that one reason for degradat...
We present a framework to use recently introduced Capsule Networks for solving the problem of Optical Flow, one of the fundamental computer vision tasks. Most of the existing state of the art deep architectures either uses a correlation oepration to match features from them. While correlation layer is sensitive to the choice of hyperparameters and...
Enhancing practical low light raw images is a difficult task due to severe noise and color distortions from short exposure time and limited illumination. Despite the success of existing Convolutional Neural Network (CNN) based methods, their performance is not adaptable to different camera domains. In addition, such methods also require large datas...
Generalization of neural networks is crucial for deploying them safely in the real world. Common training strategies to improve generalization involve the use of data augmentations, ensembling and model averaging. In this work, we first establish a surprisingly simple but strong benchmark for generalization which utilizes diverse augmentations with...
Real-world datasets exhibit imbalances of varying types and degrees. Several techniques based on re-weighting and margin adjustment of loss are often used to enhance the performance of neural networks, particularly on minority classes. In this work, we analyze the class-imbalanced learning problem by examining the loss landscape of neural networks...
The prime challenge in unsupervised domain adaptation (DA) is to mitigate the domain shift between the source and target domains. Prior DA works show that pretext tasks could be used to mitigate this domain shift by learning domain invariant representations. However, in practice, we find that most existing pretext tasks are ineffective against othe...
The vulnerability of Deep Neural Networks to Adversarial Attacks has fuelled research towards building robust models. While most Adversarial Training algorithms aim at defending attacks constrained within low magnitude Lp norm bounds, real-world adversaries are not limited by such constraints. In this work, we aim to achieve adversarial robustness...
Universal Domain Adaptation (UniDA) deals with the problem of knowledge transfer between two datasets with domain-shift as well as category-shift. The goal is to categorize unlabeled target samples, either into one of the "known" categories or into a single "unknown" category. A major problem in UniDA is negative transfer, i.e. misalignment of "kno...
Adversarial training of Deep Neural Networks is known to be significantly more data-hungry when compared to standard training. Furthermore, complex data augmentations such as AutoAugment, which have led to substantial gains in standard training of image classifiers, have not been successful with Adversarial Training. We first explain this contrasti...
Self-supervision has emerged as a propitious method for visual representation learning after the recent paradigm shift from handcrafted pretext tasks to instance-similarity based approaches. Most state-of-the-art methods enforce similarity between various augmentations of a given image, while some methods additionally use contrastive approaches to...
Dense crowd counting is a challenging task that demands millions of head annotations for training models. Though existing self-supervised approaches could learn good representations, they require some labeled data to map these features to the end task of density estimation. We mitigate this issue with the proposed paradigm of complete self-supervis...
The vulnerability of Deep Neural Networks to Adversarial Attacks has fuelled research towards building robust models. While most Adversarial Training algorithms aim at defending attacks constrained within low magnitude Lp norm bounds, real-world adversaries are not limited by such constraints. In this work, we aim to achieve adversarial robustness...
Self-supervision has emerged as a propitious method for visual representation learning after the recent paradigm shift from handcrafted pretext tasks to instance-similarity based approaches. Most state-of-the-art methods enforce similarity between various augmentations of a given image, while some methods additionally use contrastive approaches to...
Deep Neural Networks are known to be brittle to even minor distribution shifts compared to the training distribution. While one line of work has demonstrated that Simplicity Bias (SB) of DNNs - bias towards learning only the simplest features - is a key reason for this brittleness, another recent line of work has surprisingly found that diverse/ co...
Progress in GANs has enabled the generation of high-resolution photorealistic images of astonishing quality. StyleGANs allow for compelling attribute modification on such images via mathematical operations on the latent style vectors in the W/W+ space that effectively modulate the rich hierarchical representations of the generator. Such operations...
Deep long-tailed learning aims to train useful deep networks on practical, real-world imbalanced distributions, wherein most labels of the tail classes are associated with a few samples. There has been a large body of work to train discriminative models for visual recognition on long-tailed distribution. In contrast, we aim to train conditional Gen...
We present a biologically inspired recurrent neural network (RNN) that efficiently detects changes in natural images. The model features sparse, topographic connectivity (st-RNN), closely modeled on the circuit architecture of a "midbrain attention network." We deployed the st-RNN in a challenging change blindness task, in which changes must be det...
Deep long-tailed learning aims to train useful deep networks on practical, real-world imbalanced distributions, wherein most labels of the tail classes are associated with a few samples. There has been a large body of work to train discriminative models for visual recognition on long-tailed distribution. In contrast, we aim to train conditional Gen...
Progress in GANs has enabled the generation of high-resolution photorealistic images of astonishing quality. StyleGANs allow for compelling attribute modification on such images via mathematical operations on the latent style vectors in the W/W+ space that effectively modulate the rich hierarchical representations of the generator. Such operations...
The prime challenge in unsupervised domain adaptation (DA) is to mitigate the domain shift between the source and target domains. Prior DA works show that pretext tasks could be used to mitigate this domain shift by learning domain invariant representations. However, in practice, we find that most existing pretext tasks are ineffective against othe...
Unconstrained Image generation with high realism is now possible using recent Generative Adversarial Networks (GANs). However, it is quite challenging to generate images with a given set of attributes. Recent methods use style-based GAN models to perform image editing by leveraging the semantic hierarchy present in the layers of the generator. We p...
We present a motion segmentation guided convolutional neural network (CNN) approach for high dynamic range (HDR) image deghosting. First, we segment the moving regions in the input sequence using a CNN. Then, we merge static and moving regions separately with different fusion networks and combine fused features to generate the final ghost-free HDR...
We attempt to train deep neural networks for classification without using any labeled data. Existing unsupervised methods, though mine useful clusters or features, require some annotated samples to facilitate the final task-specific predictions. This defeats the true purpose of unsupervised learning and hence we envisage a paradigm of `true' self-s...
Open compound domain adaptation (OCDA) has emerged as a practical adaptation setting which considers a single labeled source domain against a compound of multi-modal unlabeled target data in order to generalize better on novel unseen domains. We hypothesize that an improved disentanglement of domain-related and task-related factors of dense interme...
Conventional domain adaptation (DA) techniques aim to improve domain transferability by learning domain-invariant representations; while concurrently preserving the task-discriminability knowledge gathered from the labeled source data. However, the requirement of simultaneous access to labeled source and unlabeled target renders them unsuitable for...
Domain adversarial training has been ubiquitous for achieving invariant representations and is used widely for various domain adaptation tasks. In recent times, methods converging to smooth optima have shown improved generalization for supervised learning tasks like classification. In this work, we analyze the effect of smoothness enhancing formula...
Machine learning models deployed as a service (MLaaS) are susceptible to model stealing attacks, where an adversary attempts to steal the model within a restricted access framework. While existing attacks demonstrate near-perfect clone-model performance using softmax predictions of the classification network, most of the APIs allow access to only t...
In this work, we introduce LEAD, an approach to discover landmarks from an unannotated collection of category-specific images. Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image, which are further used to learn landmarks in a semi-supervised manner. While there have b...
Articulation-centric 2D/3D pose supervision forms the core training objective in most existing 3D human pose estimation techniques. Except for synthetic source environments, acquiring such rich supervision for each real target domain at deployment is highly inconvenient. However, we realize that standard foreground silhouette estimation techniques...
The advances in monocular 3D human pose estimation are dominated by supervised techniques that require large-scale 2D/3D pose annotations. Such methods often behave erratically in the absence of any provision to discard unfamiliar out-of-distribution data. To this end, we cast the 3D human pose learning as an unsupervised domain adaptation problem....
Recent algorithms for image manipulation detection almost exclusively use deep network models. These approaches require either dense pixelwise groundtruth masks, camera ids, or image metadata to train the networks. On one hand, constructing a training set to represent the countless tampering possibilities is impractical. On the other hand, social m...
Open compound domain adaptation (OCDA) has emerged as a practical adaptation setting which considers a single labeled source domain against a compound of multi-modal unlabeled target data in order to generalize better on novel unseen domains. We hypothesize that an improved disentanglement of domain-related and task-related factors of dense interme...
We propose a novel recurrent network-based HDR deghosting method for fusing arbitrary length dynamic sequences. The proposed method uses convolutional and recurrent architectures to generate visually pleasing, ghosting-free HDR images. We introduce a new recurrent cell architecture, namely Self-Gated Memory (SGM) cell, that outperforms the standard...
Unsupervised domain adaptation (DA) methods have focused on achieving maximal performance through aligning features from source and target domains without using labeled data in the target domain. Whereas, in the real-world scenario's it might be feasible to get labels for a small proportion of target data. In these scenarios, it is important to sel...
We propose a novel recurrent network-based HDR deghosting method for fusing arbitrary length dynamic sequences. The proposed method uses convolutional and recurrent architectures to generate visually pleasing, ghosting-free HDR images. We introduce a new recurrent cell architecture, namely Self-Gated Memory (SGM) cell, that outperforms the standard...
Unsupervised domain adaptation (DA) has gained substantial interest in semantic segmentation. However, almost all prior arts assume concurrent access to both labeled source and unlabeled target, making them unsuitable for scenarios demanding source-free adaptation. In this work, we enable source-free DA by partitioning the task into two: a) source-...
Generative Adversarial Networks (GANs) have swiftly evolved to imitate increasingly complex image distributions. However, majority of the developments focus on performance of GANs on balanced datasets. We find that the existing GANs and their training regimes which work well on balanced datasets fail to be effective in case of imbalanced (i.e. long...
Deep neural representations of 3D shapes as implicit functions have been shown to produce high fidelity models surpassing the resolution-memory trade-off faced by the explicit representations using meshes and point clouds. However, most such approaches focus on representing closed shapes. Unsigned distance function (UDF) based approaches have been...
Multi-Source Domain Adaptation (MSDA) deals with the transfer of task knowledge from multiple labeled source domains to an unlabeled target domain, under a domain-shift. Existing methods aim to minimize this domain-shift using auxiliary distribution alignment objectives. In this work, we present a different perspective to MSDA wherein deep models a...
Natural fibers give strength to polymer composite for making very low cost materials and are very good market now a days. Therefore the researcher’s main attention is to apply appropriate technology by utilizing these natural fibers as efficient and economically in order to produce very good quality fiber reinforced polymer composites for different...
In the current trend applications the conductive composite polymers are obtained by filling up the polymer matrixes along with different Carbon blacks were also investigated. out of many One of the carbon black is the particulate filler and is the best example which is widely used as reinforce filler in all the polymer industry. The most available...
Advances in the development of adversarial attacks have been fundamental to the progress of adversarial defense research. Efficient and effective attacks are crucial for reliable evaluation of defenses, and also for developing robust models. Adversarial attacks are often generated by maximizing standard losses such as the cross-entropy loss or maxi...
We introduce a practical Domain Adaptation (DA) paradigm called Class-Incremental Domain Adaptation (CIDA). Existing DA methods tackle domain-shift but are unsuitable for learning novel target-domain classes. Meanwhile, class-incremental (CI) methods enable learning of new classes in absence of source training data, but fail under a domain-shift wi...
We present a deployment friendly, fast bottom-up framework for multi-person 3D human pose estimation. We adopt a novel neural representation of multi-person 3D pose which unifies the position of person instances with their corresponding 3D pose representation. This is realized by learning a generative pose embedding which not only ensures plausible...
Recent crowd counting approaches have achieved excellent performance. However, they are essentially based on fully supervised paradigm and require large number of annotated samples. Obtaining annotations is an expensive and labour-intensive process. In this work, we focus on reducing the annotation efforts by learning to count in the crowd from lim...
We present a self-supervised human mesh recovery framework to infer human pose and shape from monocular images in the absence of any paired supervision. Recent advances have shifted the interest towards directly regressing parameters of a parametric human model by supervising them on large-scale datasets with 2D landmark annotations. This limits th...
Dense crowd counting is a challenging task that demands millions of head annotations for training models. Though existing self-supervised approaches could learn good representations, they require some labeled data to map these features to the end task of density estimation. We mitigate this issue with the proposed paradigm of complete self-supervis...
We present a deployment friendly, fast bottom-up framework for multi-person 3D human pose estimation. We adopt a novel neural representation of multi-person 3D pose which unifies the position of person instances with their corresponding 3D pose representation. This is realized by learning a generative pose embedding which not only ensures plausible...
We present a self-supervised human mesh recovery framework to infer human pose and shape from monocular images in the absence of any paired supervision. Recent advances have shifted the interest towards directly regressing parameters of a parametric human model by supervising them on large-scale datasets with 2D landmark annotations. This limits th...
We introduce a practical Domain Adaptation (DA) paradigm called Class-Incremental Domain Adaptation (CIDA). Existing DA methods tackle domain-shift but are unsuitable for learning novel target-domain classes. Meanwhile, class-incremental (CI) methods enable learning of new classes in absence of source training data but fail under a domain-shift wit...
In the emerging commercial space industry there is a drastic increase in access to low cost satellite imagery. The price for satellite images depends on the sensor quality and revisit rate. This work proposes to bridge the gap between image quality and the price by improving the image quality via super-resolution (SR). Recently, a number of deep SR...
In this paper, we propose a data-free method of extracting Impressions of each class from the classifier's memory. The Deep Learning regime empowers classifiers to extract distinct patterns (or features) of a given class from training data, which is the basis on which they generalize to unseen data. Before deploying these models on critical applica...