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Abstract:  

 

Diabetes mellitus increases the risk of developing heart failure, and the co-existence of 

both diseases worsens cardiovascular outcomes, hospitalization and the progression of 

heart failure. Despite current advancements on therapeutic strategies to manage 

hyperglycemia, the likelihood of developing diabetes-induced heart failure is still 

significant, especially with the accelerating global prevalence of diabetes and an ageing 

population. This raises the likelihood of other contributing mechanisms beyond 

hyperglycemia in predisposing diabetic patients to cardiovascular disease risk. There has 

been considerable interest in understanding the alterations in cardiac structure and 

function in the diabetic patients, collectively termed as “diabetic cardiomyopathy”. 

However, the factors that contribute to the development of diabetic cardiomyopathies is 

not fully understood. This review summarizes the main characteristics of diabetic 

cardiomyopathies, and the basic mechanisms that contribute to its occurrence. This 

includes perturbations in insulin resistance, fuel preference, reactive oxygen species 

generation, inflammation, cell death pathways, neurohormonal mechanisms, advanced 

glycated end-products accumulation, lipotoxicity, glucotoxicity, and posttranslational 

modifications in the heart of the diabetic. This review also discusses the impact of 

antihyperglycemic therapies on the development of heart failure, as well as how current 

heart failure therapies influence glycemic control in diabetic patients. We also highlight 

the current knowledge gaps in understanding how diabetes induces heart failure.   
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Introduction: 

 

Cardiovascular disease (CVD) is the leading cause of death and complications in diabetic 

patients worldwide 1-6, the prevalence of which is increasing despite therapeutic and 

pharmacological advances 5, 7. Diabetes mellitus, a metabolic disorder characterized by 

hyperglycemia resulting from insulin deficiency (type 1) or resistance (type 2) 11 is a major 

independent risk factor in the development of heart failure8, 12, 13, and is becoming a global 

epidemic with increasing prevalence 14-17. There are 2 main types of diabetes mellitus: 

type 1 and type 2; gestational diabetes mellitus is also part of this category but is not a 

major focus of this review. Type 1 diabetes mellitus, also called insulin-dependent 

diabetes, is an autoimmune disease where pancreatic beta cells are destroyed, and 

therefore, the body is unable to produce insulin 18. Type 2 diabetes mellitus, also called 

non-insulin-dependent diabetes, is characterized by a deficit in the function of insulin 

produced by pancreatic beta cells; this is also referred to as insulin resistance. Type 2 

diabetes is the more common form of diabetes, and factors such as age, obesity, diet, 

and pre-existing hypertension affect its development and its risk of development. 

Therefore, due to either the elimination of insulin secretion or the reduction in insulin 

function, blood glucose levels are, as a result, elevated, leading to chronic hyperglycemia 

if left untreated. The Framingham Study was one of the first epidemiological studies to 

show an increased risk of heart failure in patients with diabetes mellitus 13, 19, 20, with other 

clinical trials supporting this conclusion (see 21, 22 for reviews).  The presence of both 

diabetes and heart failure in individuals leads to poor cardiovascular outcomes 5, 6, 23-26. 

Diabetic patients have higher mortality from coronary artery disease than non-diabetics 
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27 and show a worse prognosis 28, 29, which may be associated with increased 

atherosclerosis 27, and can lead to ischemic heart failure 30. Heart failure is the major 

adverse cardiovascular outcome in diabetic patients 20. Poor glycemic control is 

associated with increased risk of heart failure in individuals with type 2 diabetes 31, 

indicated by elevated hemoglobin AIC levels, an index of glycemic control 32. Therefore, it 

is critical to mediate and treat cardiovascular conditions in diabetic patients. The 

prevention and treatment of cardiovascular disease and heart failure remains a 

considerable challenge in the treatment and management of diabetes mellitus. 

  

Diabetic cardiomyopathy is a condition characterized by ventricular dysfunction and 

hypertrophy in diabetic patients independent of hypertension, ischemia, or coronary artery 

disease 33. The term originated from a Rubler et al. study that identified diabetic patients 

with congestive heart failure without the aforementioned risk factors or other causes. 

Noninvasive studies show impaired diastolic and systolic function 34-37, especially with the 

presence of hypertension. Multiple mechanisms contribute to the development of heart 

failure in diabetic individuals , including increased inflammation 38 and oxidative stress 39, 

40, changes in cardiac myocardial energy metabolism 41-43, cardiac lipotoxicity 44-47, 

impaired cardiomyocyte calcium handling, and apoptosis 48, 49. Diabetic cardiomyopathy 

may progress to either heart failure with preserved ejection fraction (HFpEF), where there 

is diastolic dysfunction 50, 51, or heart failure with reduced ejection fraction (HFrEF), where 

there is systolic dysfunction 8, 52, 53. Each phenotype can be distinguished by the various 

mechanisms involved in contributing to it. Hypertrophy 54-56, insulin resistance 57, and 

lipotoxicity 58, 59 have been shown to contribute to the development of HFpEF, while 
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oxidative stress 60, fibrosis 61, 62, and autoimmunity caused cardiomyocyte cell death 63 

are involved in contributing to HFrEF. Coronary deposition of advanced glycation end-

products is involved in both phenotypes 64.  Diastolic dysfunction, which is part of the 

diagnosis of HFpEF 50, 51, 65, can precede the heart to develop HFpEF alongside 

comorbidities of impaired coronary vasculature and endothelial function, and hypertrophy 

66, 67. Although diastolic dysfunction is mostly predominant in diabetic cardiomyopathy, 

systolic dysfunction may also occur in later stages of diabetic cardiomyopathy, which can 

contribute to the development of HFrEF 52, 53. Studies have demonstrated a metabolic link 

between the 2 heart failure phonotypes whereby abnormal mitochondrial function and 

oxidative stress can lead from a HFpEF phenotype into a HFrEF phenotype by mediating 

cardiac hypertrophy, inflammation, fibrosis, and further endothelial cell damage, which 

has adverse consequences on systolic function, and ultimately more severe 

manifestations of diabetes and heart failure 54, 68-77.  

  

The aim of this review is to highlight the changes that occur in diabetic cardiomyopathy, 

alongside the mechanisms involved its development and progression. The effect of 

antihyperglycemic drugs on heart failure risk in diabetic individuals, and heart failure 

drugs on glycemic control will also be discussed, as well as novel therapeutic approaches. 

 

Structural and functional characteristics of the failing heart in diabetics 
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The failing heart in the context of diabetes is characterized by multiple alterations 

including impairments in diastolic and subsequent systolic function 34-36, 50, cardiac 

hypertrophy and fibrosis 99 and impaired coronary microvascular perfusion 100.   

 

Diastolic and systolic dysfunction:  Heart failure in diabetes is characterized by cardiac 

dysfunction, with diastolic dysfunction as a hallmark of the failing myocardium in diabetics 

34, 101. Echocardiography and doppler imaging  assessments of diastolic dysfunction 102, 

have shown that left  ventricular (LV) dysfunction is manifested in type 2 diabetic patients 

through altered LV filling 103, abnormal LV relaxation 34, 104, 105, reduced LV end diastolic 

volume 106, and LV chamber stiffness 107. Studies in type 1 diabetics demonstrate 

abnormalities in LV diastolic filling 35, 108, 109, lower E to A ratios, prolonged isovolumetric 

relaxation times 35, and reduction in end-systolic volumes 36. Thus, there is no single 

parameter to indicate and quantify diastolic dysfunction . Moreover, Attali et al. showed 

in both type 1 and 2 diabetic patients that abnormalities in diastolic function, including 

increased isovolumetric relaxation time and impaired LV compliance, were not related to 

additional factors such as age, sex, duration of diabetes, or presence of other 

complications 110. Impaired diastolic function has also been shown in type 1 diabetic 

children 36, 111. Additionally, the presence of hypertension can aggravate diastolic 

dysfunction , as demonstrated through further and severe impairment of LV relaxation 

and abnormal LV filling 50. Speckle tracking echocardiography has emerged as a novel 

beneficial diagnostic method for early detection of LV dysfunction in diabetes, therefore 

being useful to detect LV abnormalities 112. This method has been shown to overcome 

some of the limitations of transthoracic doppler imaging 113 and can be an equally, if not 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab120/6203809 by The U

niversity of Alberta user on 02 April 2021



# CVR-2020-1965R1 

 7 

better, powerful approach to assessing myocardial velocities and strain 113-115. Studies 

have shown it’s usefulness through examining LV strain in hypertensive and type 2 

diabetic patients 116, and LV rotational mechanics in hypertensive type 2 mellitus diabetic 

patients 112. This echocardiography method has also been utilized in animal models of 

diabetes, namely assessing systolic strain and contractile function in db/db mice by Li et 

al. 117 and assessing cardiac dysfunction in rat models of type 1 and type 2 diabetes 

mellitus by Matyas et al. 118. 

 

Experimental evidence in animals complements these observations in human studies, 

showing a decrease in end-diastolic volume in alloxan diabetic dogs 119, a reduced E and 

A transmitral flow in db/db mice 120; and an increased isovolumetric relaxation time and 

increased LV end-diastolic pressure in streptozotocin induced non-insulin dependent rats 

compared to controls 121. Additionally, Otsuka Long-Evans Tokushima fatty rats show 

increased deceleration time 122.  

 

Systolic dysfunction is also present in diabetic cardiomyopathy, although in both human 

and animal studies it has been shown to take longer to develop and usually occurs after 

diastolic dysfunction 36, 120. In human studies, this manifests mainly as a reduction in 

ejection fraction 123, 124, along with increased LV end-systolic volume 123 and reduced 

fractional shortening 125. The Strong Heart Study showed systolic dysfunction to occur, 

as evidenced by lower LV fractional shortening and decreased stress corrected midwall 

shortening in diabetic patients 126. Animal studies are consistent with this, demonstrating 

impaired systolic function through lower peak-developed pressures 121, +dP/dt, peak 
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emptying rates 127, peak filling rates, fractional shortening 128, and systolic blood pressure 

in streptozotocin induced diabetic rats.  

 

Impaired diastolic function is either associated with normal systolic function 50, 104, 105, 129, 

130 or can precede systolic dysfunction 36. In support of this, Raev et al. showed diastolic 

damage and abnormalities to be more prevalent than systolic damage and abnormalities 

in type 1 diabetic patients, while systolic dysfunction occurred much later in the 

progression of diabetes 36. However, Fang et al. believe the use of less sensitive 

techniques to measure systolic dysfunction accounts for the reason behind studies 

demonstrating diastolic dysfunction with normal systolic function .  

 

Cardiac hypertrophy:  Diabetic cardiomyopathy is often associated with left ventricular 

hypertrophy 99. The Strong Heart Study showed an independent association between 

diabetes and cardiac hypertrophy 126. Increased myocardial wall thickness can be seen 

in type 1 and 2 diabetes, alongside ventricular dysfunction 105, 126, 131. Additionally, 

myocardial hypertrophy is linked to adverse cardiovascular outcomes, including being a 

predictor of cardiovascular death 132, 133. The Framingham study demonstrated that 

increased LV mass is associated with increased risk of cardiovascular outcomes of 

mobility and mortality 133. Moreover, Solomon et al. observed a slightly greater wall 

thickness in diabetic patients alongside decreased ventricle size, which they believe may 

be associated with higher filling pressures and diastolic dysfunction 134. These findings 

have been confirmed in animal studies showing an increase in LV mass alongside 

impaired LV relaxation and increased chamber stiffness 121. The observed LV hypertrophy 
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in diabetics may precede the onset of systolic dysfunction , and can additionally be used 

as a diagnostic indicator in the development of heart failure in diabetics 135. 

 

Cardiac fibrosis:  Myocardial fibrosis and collagen accumulation can manifest as a major 

structural alteration in the setting of diabetes 136, 137, which can lead to myocardial damage 

and heart failure 138-141. Multiple human studies demonstrate the presence of fibrosis in 

the left ventricle, alongside collagen accumulation in the interstitial and perivascular 

region of diabetic patients 99, 136, 142. This cardiac fibrosis is associated with cardiac 

dysfunction 55, 140, and may lead to worsened cardiac outcomes including developing 

congestive heart failure 55, 139, 143.  

 

Increased cardiac fibrosis in diabetes is supported by animal studies, where multiple 

mechanisms may be responsible for the cardiac fibrosis observed in diabetes. Otsuka 

Long-Evans Tokushima Fatty rats, a model of type 2 diabetes, show increased 

myocardial collagen content that is associated with impaired diastolic function through 

prolonged deceleration times and decreased early filling wave peak velocities 122. 

Streptozotocin-induced diabetic rats have increased collagen and interstitial fibrosis due 

to oxidative stress, alongside decreased cardiac contractility 144, 145. Additionally, 

streptozotocin-induced diabetic mice show a time dependent increase in LV collagen 

content, alongside impaired diastolic and systolic function 138. This is suggested to be due 

to reduced matrix metalloproteinase 2 (MMP2) levels. Spiro et al. also showed an 

increase in type IV collagen in the myocardium of diabetic rats 146. The increase in cardiac 

collagen in diabetes may be due to increased transforming growth factor–B1 (TGF-B1) 
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receptor II expression 71, 122, 147. Another factor that can mediate this collagen 

accumulation and fibrosis development in diabetes is the myocardial accumulation of 

advanced glycosylation end products (AGEs) 148, 149 which will be discussed in more detail 

in a subsequent section of this review.  

 

Impaired coronary microvascular perfusion:  Abnormalities in coronary artery function 

and circulation are highly prevalent in diabetes 150, which may predispose the diabetic 

myocardium to cardiac damage and disease, including ischemia due to impaired blood 

circulation and flow 150, 151. Coronary flow reserve (CFR) is reduced in both type 1 and 2 

diabetic patients 100, 152, along with a reduction in coronary vasodilation 153 due to reduced 

nitric oxide (NO) production 154, 155. Marciano et al. showed that type 2 diabetic patients 

without coronary artery disease have impaired coronary microvascular function, 

demonstrated by a lower CPT-CF ratio (cold pressure test to coronary flow), compared 

to non-diabetic individuals 156. Additionally, Bagi et al. showed enhanced superoxide 

production and decreased NO production, leading to reduced coronary dilation in 

coronary arterioles isolated from db/db mice 157. Hyperglycemia may be a cause for this, 

as shown by an association between CFR and HBA1c levels 158. Additionally, Durante et 

al. showed lower coronary flows in diabetic BB rats in response to stimulation by 

noradrenaline, calcium, or tachycardia 159. Coronary microvascular perfusion may be 

further impaired by the presence of hypertension-induced vascular lesions 160. A reduction 

in coronary capillary density in the diabetic myocardium has also been observed, due to 

lower angiogenesis as a result of decreased vascular endothelial growth factor (VEGF) 

expression 161-163.  VEGF and VEGF receptor mRNA and protein expression were shown 
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to be significantly decreased in diabetic and insulin-resistant non-diabetic rats 161, 162, and 

was accompanied by decreased myocardial perfusion and LV dysfunction 162. Together, 

this suggests that structural abnormalities occur alongside functional abnormalities in the 

coronary microvasculature in diabetes. However, it is not clear which precedes the other, 

as some studies suggest structural changes in coronary arterial vasculature may be 

involved in causing further cardiac dysfunction 164 and also concurrently progress as 

diabetic cardiomyopathy progresses 162, 165. Additionally, Giordano et al. showed that 

VEGF is a critical determinant of cardiac function as a VEGF knockout mouse model 

resulted in contractile dysfunction 166. Therefore, further studies need to be done to fully 

elucidate the interplay in sequence of events between abnormalities in coronary capillary 

density and cardiac function. 

 

Additionally, impaired coronary flow reserve and vasodilation may be an early marker of 

atherosclerosis, which can lead to progressive deterioration of the myocardium 151 and 

an increase in the risk of cardiovascular disease 152 and ischemia 153. Impaired 

vasodilation in diabetes 155, which may also be due to NO production inhibition due to 

hyperglycemia 167 through the generation of oxygen-derived free radicals 168, can also 

lead to arterial atherosclerosis . Therefore, this abnormal coronary flow may greatly 

increase the risk and likelihood of myocardial ischemia 153, 159, 169.  

 

Underlying mechanisms contributing to the development of diabetic 

cardiomyopathy 
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Insulin resistance:  Insulin resistance is one of the early contributing factors to the 

development of diabetic cardiomyopathy170. The decreased efficacy of insulin to lower 

blood glucose levels occurs as a result of hyperinsulinemia-mediated excessive insulin 

receptor signaling or downregulation of insulin receptor signaling.  This insulin resistance 

contributes to a number of adverse changes in the heart that include alterations in cardiac 

energy metabolism, increased inflammation and hypertrophy, lipotoxicity, glucotoxicity, 

alterations in mitochondrial function and ROS production, accumulation of advanced 

glycation products and O-GlcNAcylation, alterations in cardiac cardiomyocyte Ca2+_ 

handling, systemic hyperglycemia and hyperlipidaemia171, and neurohormonal changes 

(all of which are discussed below).  

 

It is important to note that cardiac insulin resistance precedes the development of cardiac 

dysfunction and heart failure. A study in mice with heart failure developed diastolic 

dysfunction at 2 weeks and systolic dysfunction at 3 weeks. Notably, the decline in 

function was preceded by significant cardiac insulin resistance which was determined via 

serial and direct measurements of insulin-stimulated glucose metabolism in isolated 

working hearts 43. These findings are supported by epidemiological studies that also found 

that insulin resistance is a predictor, rather than a biomarker, of heart failure. In a study 

of 1187 elderly men that did not have congestive heart failure, the epidemiological study 

between 1990 and 1995 found that insulin resistance significantly increased the risk and 

predicted congestive heart failure 172. Another study in 431 50-year-old men with a 20-

year follow-up, patients that developed heart failure at age 70 presented increased 
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plasma proinsulin at age 50, signifying that insulin resistance preceded cardiac 

dysfunction 173. 

 

Insulin signaling begins with insulin binding to the insulin receptor, resulting in activation 

of the insulin receptor substrate-1/2,  PI3K/PKB (Akt) activation, GLUT4 translocation to 

the cell membrane, stimulation of mitochondrial glucose oxidation, and inhibition of fatty 

acid oxidation 174. Cardiac muscle biopsies from type 2 diabetic patients have depressed 

PI3K/PKB signaling and decreased GLUT4 expression175. In addition to decreased 

translocation of GLUT4, impaired PI3K engagement and stimulation of Akt also occur, 

due to increased phosphorylation of the serine residue on IRS-1/2176. 

 

Activation of forkhead box-containing proteins regulates insulin signaling, leading to 

insulin resistance. FoxO proteins are elevated in mice with high-fat diet-induced diabetes, 

which downregulates IRS1, consequently leading to decreased Akt signaling, insulin 

resistance and the development of diabetic cardiomyopathy177. Also important in the 

regulation of insulin signaling, and is perturbed in diabetic cardiomyopathy, is the E3 

ubiquitin ligase – mitsugumin 53 178.  In support of this, cardiac-specific overexpression 

of mitsugumin 53 in mice results in severe diabetic cardiomyopathy and insulin 

resistance, due to degradation of the insulin receptor and IRS-1. Mitsugumin 53 

overexpression is involved in transcriptionally upregulating PPARα, contributing to lipid 

accumulation179.  This accumulation of lipid intermediates (diacylglycerol and ceramides) 

contributes to the development of insulin resistance180,181.  Conversely, decreasing 
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myocardial levels of ceramide and diacylglycerol is accompanied by improvements in 

insulin sensitivity and myocardial glucose utilization182. 

 

Altered cardiac energy metabolism:  The heart has a very high energy demand despite 

having very low ATP stores (ATP levels effectively turnover in the heart every 5-10 

seconds)183. The heart has the ability to continually generate large amounts of ATP from 

various energy substrates, including fatty acids, glucose, lactate, ketone bodies and 

amino acids, regardless of workload, nutritional status, and hormonal status 183, 184. 

However, this metabolic flexibility is impaired in many forms of heart disease, including 

diabetic cardiomyopathy183.  Insulin resistance results in an increase in myocardial fatty 

acid oxidation rates in diabetic cardiomyopathy and impaired glucose oxidation rates 

(Figure 1) 185-187.  This increases myocardial oxygen consumption, decreases cardiac 

efficiency and strongly correlates with impaired cardiac contraction and diastolic function 

41, 42, 84, 188, 189. 

 

Multiple mechanisms contribute to the increased reliance of the heart on fatty acid use 

during diabetes. The first such mechanism is increased supply of fatty acids to the heart. 

The lack of insulin suppressive action on adipose tissue results in the release of fatty 

acids from adipocyte to the circulation, leading to elevation of blood plasma free fatty acid 

levels. Fatty acid delivery and uptake to the heart is also increased in diabetes, due to an 

increase in cardiac myocyte lipoprotein lipase activity and increases in sarcolemmal 

CD36 protein expression, respectively 190, 191. The increased uptake of fatty acids across 

the sarcolemma is facilitated by at least three proteins, namely, CD36, FA transport 
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protein (FATP), and FA binding protein plasma membrane (FABPpm) 192. In STZ-induced 

type 1 diabetic rats and type 2 db/db mice an upregulation of CD36 and FABPpm protein 

expression occurs 193, 194.  While CD36 alone accounts for more than half of the total fatty 

acid taken up by cardiomyocytes 195, both its expression and membrane localizations are 

increased in diabetes193, 195.  

 

Activation of transcription regulators such as peroxisome proliferator-activated receptors 

(PPARs) can promote expression of genes that facilities fatty acid uptake, storage and 

oxidation in the heart 196-198.  Myocardial PPARα expression is increased in type 2 

diabetes, and mice lacking PPARα are protected from the development of diabetic 

cardiomyopathy 41, 199. In contrast, a recent study found no differences in the risk of 

cardiac dysfunction between wildtype and PPARα deficient mice subjected to a low dose 

of streptozotocin (STZ) 200. The discrepancy in the findings could be due to the different 

methodology followed for inducing Type 1 diabetes (1 single injection of high STZ dose 

vs. 5 daily injections of lower dose) and/or the different time points of cardiac function 

assessment (6 weeks vs 9-12 weeks post-STZ administration). Interestingly, it has been 

shown that PPARα/γ alterations may contribute to cardiac dysfunction independent of 

changes in fatty acid oxidation or lipid storage in non-diabetic animals 201, 202.  

 

One effect of increased PPARα in diabetes is an increase in mitochondrial carnitine 

palmitoyltransferase I (CPT-1) expression, a key enzyme involved in mitochondrial uptake 

and oxidation of fatty acids 203.  In addition, perturbations in CPT-1 regulation also occur 

in diabetes. CPT-1 is inhibited by malonyl CoA produced from acetyl CoA by acetyl CoA 
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carboxylase (ACC) 204. Activation of AMP-activated protein kinase (AMPK) in diabetes 

inhibits ACC activity . Decreased ACC activity with parallel increases in malonyl-CoA 

decarboxylase activity 205 decreases malonyl CoA levels, resulting in decreased inhibition 

of CPT1 and accelerated fatty acid oxidation rates Figure 1) 206-208 .  Post-translational 

modification of fatty acid oxidative enzymes also occurs in diabetes, resulting in an 

increase in fatty acid oxidation 209.  Increased acetylation of major fatty acid metabolic 

enzymes due to decreased SIRT3 also leads to up-regulation of fatty acid oxidation and 

impaired glucose metabolism in the heart 210-212. In addition to increases in myocardial 

fatty acid oxidation, an increase in myocardial triacylglycerol content is seen in diabetics 

213. Increased myocardial uptake of fatty acids leads to the increased accumulation of 

lipids and their intermediate metabolites, such as long and short fatty acyl-CoAs, 

diacylglycerol 196, 214. However, studies on the turnover of endogenous fatty acid in hearts 

from diabetic animals have generated variable results. We have shown an increased 

myocardial lipolysis rate in diabetic hearts irrespective of exogenous fatty acid 

concentration while endogenous synthesis rate remains unaffected 213. This is further 

supported by a 13C-NMR isotopic enrichment study in diabetic rat hearts 215. In contrast, 

others reported reduced or unchanged lipolysis and increased synthesis in the hearts of 

diabetics in the presence of high levels of exogenous free fatty acids 216, 217. On the other 

hand, decreased levels of myocardial phospholipids is seen in diabetes together with 

impaired synthesis 218. While the precise contribution of altered phospholipid metabolism 

is less clear in diabetes, various studies have suggested the etiologic role of phospholipid 

(membrane lipid) metabolic dysregulation in lipotoxic cardiomyopathy and other forms of 

myocardial dysfunction 219, 220. 
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In contrast to the increased myocardial uptake and oxidation of fatty acids seen in 

diabetes, myocardial glucose transport, glycolysis and glucose oxidation are decreased 

in diabetes 221-224. Total myocardial GLUT4 and GLUT1 expression are decreased in 

diabetes 225. Decreased myocardial glycogen content along with a reduced myocardial 

glycogen synthesis rate and impaired glycogen synthase enzyme activity is also reported 

in hearts of diabetics 226-228. Insulin deficiency or resistance compromises the glucose 

transport and utilization in the heart. Also, the presence of excess fatty acid derivatives, 

such as fatty acyl CoA, diacylglycerol, and ceramide, leads to the inhibition of insulin 

signaling in the heart 229, 230. In addition to decreased glucose transport, inhibition of 

cardiac phosphofructokinase (PFK-1), the rate limiting enzyme in glycolysis, is seen in 

diabetes 231, 232.  PFK-1 is inhibited allosterically by high levels of citrate, high ATP levels, 

and increases in NADH, that are derived from increased fatty acid oxidation. Glucose 

oxidation is also decreased, due in part to increases in fatty acid oxidation, which inhibits 

the rate limiting enzyme of glucose oxidation - pyruvate dehydrogenase (PDH) 187, 221, 233. 

PPAR-α activation also suppresses glucose uptake and utilization by increasing the 

expression of pyruvate dehydrogenase kinase 4 (PDK-4), which inhibits PDH 47, 234.  

 

Similar trends of fatty acid and glucose metabolic shifts have been also observed in type 

1 and 2 diabetic patients 59, 235-238. In 31P and 1H magnetic resonance spectroscopy 

studies, a significant reduction in myocardial glucose utilization accompanied by reduced 

myocardial energetics (phosphocreatine to ATP ratio (PCr/ATP) and increased 

myocardial fatty acid metabolism and triacylglycerol content is seen in type 2 diabetic 
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patients 236, 237. The increased rates of myocardial fatty acid oxidation persist even after 

insulin treatment in human type 2 diabetic patients 235. The levels of circulating free fatty 

acids is also negatively correlated with altered PCr/ATP ratios in patients with diabetes 

239. Earlier studies recognized myocardial PCr/ATP ratios as a predictor of cardiovascular 

mortality in patients with dilated cardiomyopathy 240. Likewise, increased myocardial fatty 

acid utilization with a concomitant decrease in glucose utilization is seen in type 1 diabetic 

patients 59, 238. 

 

Since fatty acids and glucose are the two important fuels for the heart, their balanced use 

is critical for maintaining normal contractile function.  As a result, the decreased 

“metabolic flexibility” and increased reliance of the heart on fatty acid as source of energy 

is associated with impaired myocardial function in diabetes 222, 241-244. Enhanced fatty acid 

oxidation increases myocardial O2 consumption and decreases cardiac efficiency 245. 

Enhanced fatty acid oxidation also alters the mitochondrial NADH to NAD+ ratio and acetyl 

CoA levels which can further modify several intracellular signaling processes210.  Although 

evidence suggests a detrimental effect of increased fatty acid oxidation on heart function 

in diabetes, there are still opposing views on the role of glucose and fatty acid alterations 

and pathologic significance in non-diabetic heart failure.  Relatively few studies have 

combined diabetes and heart failure to study the impact of energy metabolism in the 

hearts during diabetes. By combining high fat feeding with pressure overload hypertrophy 

in mice we observed a marked decrease in insulin-stimulated glucose oxidation that was 

associated with both diastolic and systolic dysfunction 246, 247.  Furthermore, nutritional 
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strategies that increase insulin-stimulated glucose oxidation are accompanied by a 

decreased severity of heart failure 246, 247. 

 

The contribution of alterations in the use of other fuels such as ketone bodies and 

branched chain amino acids (BCAAs) is increasingly being recognized in heart failure 

pathogenesis 248-250. While ketone oxidation is increased in HFrEF and may be an 

adaptive process to maintain energy production 250, 251, in diabetes myocardial ketone 

oxidation is impaired, and may result in a decrease in metabolic flexibility and a decrease 

in energy production in the heart 252, 253.  A decrease in BCAA oxidation in insulin resistant 

hearts also contributes to an impaired insulin signaling and a decrease in insulin-

stimulated glucose oxidation 254-256. 

 

Cardiac lipotoxicity and glucotoxicity: Under normal circumstances, the uptake and 

oxidation of fatty acids are finely regulated resulting in only little myocardial lipid storage. 

However, in diabetes a persistent elevation in circulating free fatty acids supplies the heart 

with excess fatty acids and promote accumulation of lipids in the cardiomyocytes (cardiac 

lipotoxicity) (Figure 2) 257, 258. The causative role of excess lipid accumulation in diabetic 

cardiomyopathy has been demonstrated using genetic or pharmacological approaches 

that modify uptake or oxidation of fatty acids. For instance, mice with cardiac specific 

overexpression of PPAR-α exhibit increased uptake and utilization fatty acid and typical 

features of diabetic cardiomyopathy, including ventricular hypertrophy and systolic 

dysfunction47. Recently, an increased activity of lipoprotein lipase (LPL) as shown in 

epicardial adipose tissue from type 2 diabetic patients 259. Interestingly, elevated activity 
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of LPL was associated with increased epicardial adipose tissue volume, suggesting 

increased fatty acids uptake. Of interest, deletion of CD36 or cardiac LpL rescues mice 

from a lipotoxic-induced cardiomyopathy caused by PPARα overexpression 260, 261.  

 

In contrast, overexpression of CD36, FATP1, or acyl CoA synthetase results in 

lipotoxocity 262, 263. This lipotoxicity correlates with diastolic dysfunction and other 

pathophysiological findings related to diabetic cardiomyopathy 264, 265.  Despite their 

contributing role in inducing cardiac lipotoxicity in diabetes, PPARα agonists (fibrates) are 

still in  use clinically to treat hypertriglyceridemia 266. In theory, lipotoxicity could arise 

either due to increased uptake or decreased oxidation.  However, studies on 

pharmacological inhibition of FA oxidation or genetic manipulation of fatty acid oxidation 

enzymes revealed that decreased fatty acid oxidation does not actually lead to lipid 

accumulation 267. It has been hypothesized that the reduction in oxidative function may 

inhibit the uptake of fatty acid by feedback mechanism268.  

 

In addition to fatty acid overload, cardiac lipotoxicity is also dependent on the type of fatty 

acids or lipids accumulated 268. Ceramide is one fatty acid derivative strongly associated 

with cardiac lipotoxicity. Inhibition of ceramide synthesis, either by deletion of serine 

palmitoyltransferase or pharmacologically by myriocin, results in significant metabolic and 

structural changes to the heart. Decreasing cardiac ceramide levels decreases heart 

weight, pyruvate dehydrogenase kinase 4 (PDK4) expression, fatty acid oxidation rates 

and left ventricular diameter, while improving glucose oxidation 269, 270.  Diacylglycerol 

(DAG) is another lipid derivative associated with cardiac lipotoxicity. Increased levels of 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab120/6203809 by The U

niversity of Alberta user on 02 April 2021



# CVR-2020-1965R1 

 21 

DAG in in the heart is associated with biochemical changes and macrovascular 

remodeling,  indicating its possible  role in the development of diabetic complications 271. 

Increased levels of both ceramide and DAG can also activate and facilitate the 

translocation of protein kinase C (PKC) to the cell membrane 271, 272. Activation of PKC by 

excess lipids impairs β-adrenergic signaling in the heart by phosphorylating its receptor 

273, 274. Phosphorylation of the β-adrenergic receptor leads to its desensitization, resulting 

in reduced myocardial contractility in response to catecholamines 275. Increased PKC 

activity and its translocation to the cell membrane can also attenuate insulin signaling. 

Previous studies have shown that PKC can phosphorylate insulin receptor substrate 1 at 

its serine residue and blocks insulin stimulated tyrosine phosphorylation and downstream 

Akt signaling 276, 277. 

 

On the other hand, although triacylglycerol is the most abundant lipid that accumulates in 

the heart, studies suggest that its accumulation is not associated with toxic effects in the 

heart 278, 279. Overall, these data demonstrate that excess fatty acid storage and utilization 

in the heart are detrimental to heart function, although the mechanistic link between lipid 

accumulation and cardiomyopathy development are not clearly defined.  

 

In contrast to lipotoxicity, less is known about glucotoxicity. Although myocardial glucose 

transporters are down regulated in diabetes, the heart can be still exposed to excess 

glucose. The increased extracellular glucose concentration results in the build-up of a 

glucose gradient for its transporter across the sarcolemma by mass action 280.  As 

myocardial glucose oxidation is inhibited in diabetes 187, 221, 281, the increased glucose flux 
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can lead to the accumulation of glycolysis intermediates and products. This imbalance 

can drive the diversion of glycolytic intermediates into pathological pathways in diabetes 

including protein kinase C stimulation, the hexosamine pathway, the polyol pathway, and 

the formation of advanced glycation end products 280, 282. Increased glucose uptake in 

GLUT4 transgenic mice also contributes to mitochondrial dysfunction via O-

GlcNAcylation of the transcription factor ST1 and many electron transport chain subunits 

283. 

 

Impaired mitochondrial function: The impact of heart failure and diabetes on 

mitochondrial bioenergetics has long been established. Perturbations in mitochondrial 

oxidative metabolism and mitochondrial ROS generation occur in both heart failure and 

diabetes 83, 284-286. The reduction in cardiac function and efficiency along with impaired 

cardiac mitochondrial bioenergetics in obesity and diabetes is due to, at least in part, the 

excessive reliance on fatty acid oxidation and increased uncoupling protein content in 

these hearts, that contribute to reactive oxygen species (ROS) production 246, 287.  Many 

studies have proposed that ROS overload is a major culprit of diabetic cardiomyopathy 

288-291. Mitochondria are a major source of ROS production, and increased fatty acid 

oxidation can promote ROS production 83, 246, 287, 292-294. Excessive cardiac ROS 

production induces inflammation and activates many crucial mediators of pathological 

signaling cascades 295-302, such as protein kinase C（PKC), apoptosis signal-regulating 

kinase-1（Ask1), p38 mitogen activated protein kinase (p38-MAPK), NH2-terminal Jun 

kinases (JNK), and JAK-STAT.  Activation of these signaling cascades can contribute to 
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the complications of diabetic cardiomyopathy 303, 304. Furthermore, a recent study 

demonstrated that enhanced activity of Krüppel-like factor-5 (KLF5) is linked to an 

increase in oxidative stress in diabetic cardiomyopathy 200. This occurs through an 

upregulation in the expression of NOX4 via direct binding to the NOX4 promoter 200. The 

accumulation of ROS, increased ceramide production and low mitochondrial abundance 

contributes to impaired cardiac function in the hearts of the diabetics 200.  

 

There have been many studies that have looked at the efficacy of antioxidants in 

managing diabetic cardiomyopathy 305-312. Antioxidants can mitigate ROS-mediated 

mitochondrial uncoupling, a characteristic of diabetic cardiomyopathy, in animal studies 

313, 314. Similarly, antioxidants are protective against mitochondrial ROS in the failing heart 

315-317. Additionally, preclinical trials specifically targeting mitochondrial ROS respiratory 

complexes have been positive 318-320, but further clinical trials are necessary to confirm 

the efficacy of mitochondrial ROS scavenger under the contexts of both general heart 

failure and diabetic cardiomyopathy. Additionally, the use of Nrf2 activator and NOX 

inhibitor have shown to be effective in animal models321, 322, and calorie restriction can 

lower ROS production and UCP expression in Type II diabetic Otsuka Long-Evans 

Tokushima Fatty (OLETF) rats 299, 323. Unfortunately, human clinical trials have failed to 

replicate these observations from animal models 324-327.  

 

Inflammation and hypertrophy: Diabetes leads to increases in intramyocardial 

inflammation, characterized by increases in cell adhesion molecules (ICAM-1, VCAM-1) 

and increased macrophage infiltration resulting in the release of inflammatory cytokines 
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(IL-1β, IL-6, IL-18, TGF-β1, TNF-α) 291. Plasma concentrations of the cytokine acute-

phase mediators, TNF-α and IL-6, are increased in the circulation in settings of impaired 

glucose tolerance, and thus, inflammation has been shown to be predictive for type 2 

diabetes 328-330. This is due to an excess level of glucose and free fatty acids stressing 

both pancreatic islet cells and adipocytes, resulting in the release of pro-inflammatory 

cytokines and chemokines into the circulation that promote inflammation in other tissues 

such as the heart 331.  Plasma TNF-α and IL-6 levels are increased and are associated 

with left ventricular diastolic dysfunction in patients with diabetes332.  

 

Systemic and local inflammation leads to fibrosis in the myocardium as well as 

hypertrophy and apoptosis at the level of the cardiomyocytes 333. An upregulation of 

inflammatory signaling results in macrophage infiltration, cardiomyocyte apoptosis, 

hypertrophy and a profibrotic response via extracellular matrix remodeling – all of which 

lead to impaired cardiac contractility and diabetic cardiomyopathy 334-336. Macrophage and 

lymphocyte infiltration into the cardiac cell are followed by secretion of pro-inflammatory 

cytokines (TNF-α, IL-6, IL-1β, TGFβ, interferon-γ), which leads to adverse cardiac 

remodeling. 

 

Due to systemic accumulation of advanced glycation end products, angiotensin II and 

lipotoxicity, an increase in toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 

1 (TNFR1) occurs in diabetes, leading to secretion of pro-inflammatory cytokines and 

subsequent cardiomyocyte death, hypertrophy, metabolic imbalances, contractile 

dysfunction, oxidative stress and mitochondrial dysfunction 336, 337. More specifically, high 
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mobility group protein B1 (HMGB1) mediates lipopolysaccharide binding to and activation 

of TLR4, resulting in downstream activation of nuclear factor-KB (NF-KB) and the NLRP3 

inflammasome 338. Activation of the pleiotropic transcription factor, NF-KB, results in the 

transcription of genes that are pro-inflammatory (MCP-1, COX-2, VCAM-1), pro-

hypertrophic (ANP, myosins) and pro-fibrosis (TGFβ, collagens, FN) 339, 340.  

 

Hypertrophy follows inflammation in the heart of diabetics, since cytokines can induce 

cardiomyocyte hypertrophy336, 341-343. The pro-inflammatory cytokine TNF-α can activate 

the JNK and AKT/NF-κB pathway to promote cardiomyocyte hypertrophy344. Activation of 

the NF-κB pathway can also result in cardiomyocyte growth 345. IL-1β, through IGF-1 

downstream release from cardiac fibroblasts promotes cardiomyocyte hypertrophy 346. 

Furthermore, IL-6 also contributes to cardiomyocyte hypertrophy through activation of the 

CaMKII and gp130 pathways which then activates the STAT3 pathway347. Lastly, TGF-β 

can activate the TAK1-MKK3/6-p38MAPK pathway and PKC-ATF2 to promote 

cardiomyocyte hypertrophy 348, 349.  

 

Myocardial inflammation can also lead to cardiomyocyte apoptosis which subsequently 

contributes to cardiac remodeling. TNF-α activates both extrinsic and intrinsic apoptotic 

pathways, as well as NF-κB, to promote cardiomyocyte death 350, 351. Additionally, through 

NO synthase activation or CHOP, IL-1β promotes apoptosis in cardiomyocytes352. The 

NLRP3 inflammasome also induces apoptosis via caspase-1 activation 353. The 

inflammasome produces active caspase 1, that when activated results in cleavage of pro-

interleukin-1β and pro-interleukin-18 and the production of active cytokines. In rats with 
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high-fat diet and streptozotocin-induced diabetic cardiomyopathy, silencing of the NLRP3 

inflammasome decreases the levels of IL-1β, and this observation is mirrored when 

silencing CMKLR1, a G-protein-coupled receptor for chemerin. Concurrent silencing of 

both NLRP3 and CMKLR1 potentiates the decrease in mature IL-1β, as well as the levels 

of pyroptosis, underlining the important role the NLRP3 inflammasome and 

chemerin/CMKLR1 axis plays in mediating inflammation and pyroptosis in the setting of 

diabetic cardiomyopathy 354. 

 

Myocardial inflammation not only results in the secretion of cytokines but also pro-fibrotic 

factors that activate fibroblasts and promotes cardiac fibrosis341. TGF-β, a major cardiac 

pro-fibrotic cytokine, activates fibroblasts which results in the production of extracellular 

matrix proteins, increases collagen production, and decreases extracellular matrix 

degradation 334. Furthermore, IL-6 can suppress mir-29 and promote cardiac fibroblast 

proliferation and collagen production355. TNF-α also similarly promotes cardiac fibrosis 

through WISP1 activation 356. 

 

Myocardial inflammation can also impair cardiac energy metabolism as IL-6 has been 

shown to impair myocardial glucose metabolism via SOCS3-dependent inhibition of IRS-

1 357. Furthermore, NF-κB activation by TNF-α can inhibit PGC-1α and consequently, 

increase glucose metabolism via downregulation of PDK4 358, 359. 

 

Inflammation can also result in endothelial and microvascular damage, resulting in 

myocardial ischemia and contributing to diastolic and systolic dysfunction in diabetic 
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cardiomyopathy 291, 341, 360. Furthermore, inflammation promotes ROS generation and 

downregulates SERCA2 (via IL-1β and IL-6), resulting in impaired Ca2+ handling and 

ultimately, diastolic dysfunction 361. Myocardial inflammation can also depress cardiac 

contractility as TNF-α, IL-6, IL-1β and IL-2 exert negative inotropic effects on the heart 

362. Interestingly, a study in Zucker diabetic fatty rats treated with a 2-adrenergic receptor 

agonist decreased pro-inflammatory and pro-fibrotic responses in the heart and kidneys 

363. -arrestin can bind to the 2-adrenergic receptor and promote internalization, 

subsequently promoting desensitization. While this may imply a negative role in the 

setting of diabetic cardiomyopathy, -arrestins have previously been reported to inhibit 

NF-B activity via IB. As such, inhibition of NF-B in the setting of diabetes via -

arrestin and modulation of inflammatory mediators via sympathetic nervous system 

regulation may offer an alternative therapeutic strategy for diabetic cardiomyopathy. 

Further studies that investigate the interplay between -arrestin and NF-B in the setting 

of diabetic cardiomyopathy are warranted. 

 

Hyperinsulinemia, via increased pancreatic production of insulin, follows insulin 

resistance in order to compensate for impaired cellular insulin actions. An excess of 

insulin can contribute to cardiomyocyte hypertrophy by acutely stimulating growth via the 

P13K/Akt-1 pathway . 

 

Cardiac stiffness: Impairments in insulin signaling due to insulin resistance result in 

decreased GLUT4 translocation to the membrane and impaired PI3K/Akt signaling which 
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results in decreased Ca2+-ATPase activity, consequently increasing intracellular Ca2+ 

levels contributing to cardiac stiffness and diastolic dysfunction176. 

 

PI3K/Akt can activate endothelial NO synthase (eNOS), which results in an increase in 

NO that subsequently increases coronary vasodilation176. However, insulin resistance 

decreases activation of eNOS and consequently decreases NO levels 86. Decreased NO 

results in impaired coronary microcirculation, due to impairments in coronary vascular 

smooth muscle cell relaxation 364, 365. Therefore, insulin resistance alongside 

hyperinsulinemia can contribute to cardiac stiffness and diastolic dysfunction. 

 

Advanced glycation end products:  Diabetes-induced chronic hyperglycemia 

significantly increases the formation of advanced glycation end products (AGE) in the 

heart366. Protein glycation occurs after prolonged exposure to high concentrations of 

glucose, where amino groups of proteins bond non-enzymatically to glucose 367.  A 

correlation exists between formation of glycosylated tissue proteins in the heart and the 

period of hyperglycemia 368. Compared to non-diabetics pathologies, hearts from diabetic 

patients also show a higher abundance of AGE formation in the myocardium 369. A high 

abundance of AGEs also occurs in small intramyocardial arteries of the hearts of diabetic 

patients 370. This suggests that diabetes can exaggerate AGE formation and increase the 

susceptibility of myocardial vasculature to glycation 366. Formation of collagen cross-

linking is a major determinant in the development of diabetic cardiomyopathy. Of 

relevance, an association between AGEs formation and decreased cardiac collagen 

solubility, and increased collagen III gene and protein expression, is seen in diabetes 371, 
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372. AGE-induced increases in cross-linked collagen may lead to myocardium and arterial 

wall stiffness and eventually atherosclerotic plaque formation 373. Moreover, AGEs are 

also linked with other pathological pathways in diabetic cardiomyopathy, including 

oxidative stress 374, 375 and impaired Na⁺/K⁺-ATPase activity 376.  Chronic hyperglycemia 

increases both formation of AGE and expression of AGE receptors (RAGE), which in turn 

induces oxidative stress by activating transcription factor NFk-β 377. A strong association 

has been observed between increased RAGE elicited by diabetes and LV contractile 

dysfunction typical of diabetes cardiomyopathy, which is rescued by RAGE gene 

knockdown or blocking 378, 379.  

 

Hexosamine biosynthesis pathway O-GlcNAcylation (O-GlcNAc):  O-GlcNAc is a 

posttranslational modification that is responsible for regulating the activity of proteins 380. 

This process is initiated when N‐acetylglucosamine (GlcNAc) is attached to a serine or a 

threonine residue of a peptide via an O-linkage (O-GlcNAc). The substrate for O-GlcNAc 

is uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), which is synthesized via the 

hexosamine biosynthetic pathway (HBP). It has been estimated that 5% of intracellular 

glucose contributes to the HBP381, although this has been debated as to whether it is an 

accurate estimation for cardiomyocytes 382, 383. Nevertheless, O-GlcNAc levels are closely 

related to glucose availability 380. Glucose, after entering the cell is converted to fructose-

6-phosphate (F6P) by hexokinase and isomerase. F6P is further processed to uridine 

diphosphate-N-acetylglucosamine (UDP-GlcNAc) by 4 enzymatic reactions. UDP-

GlcNAc is the substrate for O-GlcNAc transferase (OGT), which is responsible for 
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catalyzing O-GlcNAc to targeted proteins. Similar to other posttranslational modifications, 

O-GlcNAc is a highly dynamic and reversible process, with the removal of O-GlcNAc from 

targeted proteins being accomplished by O-GlcNAcases 384.  

 

O-GlcNAc has been proposed to occur in the nucleus, cytoplasm, and mitochondria380, 

as opposed to other types of glycosylation which can take place in the extracellular 

matrix385. Chronic activation of the HBP is often associated with diabetic 

cardiomyopathy386, as evidenced by increases in both gene expression and protein levels 

of GFAT in the myocardium of diabetic patients 387, 388.  Genetic modulation of OGA to a 

truncated, less effective form can exacerbate O-GlcNAc, inducing a higher chance of 

developing diabetes 389, 390. Vascular dysfunction is a common feature of diabetes, and 

such dysfunction can be attributed to excess O-GlcNAc of proteins, such as transcription 

factor Sp1 and eNOS 391, 392. Both protein levels and activity of OGT are elevated in rat 

aortic smooth muscle cells subjected to hyperglycemia. Additionally, excessive O-GlcNAc 

can lead to improper Ca2+ handling 393. One specific target of O-GlcNAc is 

phospholamban, a protein regulating the function of SERCA2. Impairment of the function 

of phospholamban prevents the normal Ca2+ pumping after excitation from SERCA2, 

leading to improper contraction of heart muscle. The level of O-GlcNAc on cardiac 

proteins is carefully regulated by changes in OGT and OGA activity 394, 395. O-GlcNAc 

may also affect complexes I, III, IV involved in mitochondrial respiration 394, 396.  O-GlcNAc 

may also impact ketone body metabolism by downregulating β-hydroxybutyrate 

dehydrogenase mRNA levels as well as succinyl-CoA:3-oxoacid CoA transferase protein 
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levels 253. Of interest, ketone oxidation is decreased in the myocardium of diabetic mice 

281.  

 

 

An increasing body of evidence suggests an increase in O-GlcNAcylation levels in 

diabetic cardiomyopathy. Cardiac β1-adrenoceptors (β1AR) can be modified by O-

GlcNAcylation, and its signaling transduction negatively correlates with its O-

GlcNAcylation level in adult rat cardiomyocytes 404. While circulating levels of N-terminal 

proteolytic fragment of histone deacetylase 4 (HDAC4) have been shown to be elevated 

in patients with diabetes, O-GlcNAcylation of HDAC4 is cardioprotective in a mouse 

model of diabetes 405. This cardioprotection is associated with a reduction in pathological 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling 405. O-GlcNAcylation also 

plays a role in regulating autophagy by modifying the synaptosomal associated protein 

29 (SNAP29) 406. Increased O-GlcNAcylation of SNAP29 inhibits autophagic flux and 

causes further deterioration of cardiac diastolic dysfunction in STZ-induced diabetic rats 

406. Furthermore, O-GlcNAcylation can modulate ionic homeostasis by targeting the 

activity of a number of ion channels. For example, acute hyperglycemia can enhance K+ 

channel recovery via CaMKIIδ-S280 O-GlcNAcylation 407. Hyperglycemia also increases 

O-GlcNAcylation of Nav1.5, which lead to the abnormal expression and distribution of 

Nav1.5, loss of function of the sodium channel, and prolongation of the PR/QT interval in 

the hearts of diabetics 408. In patients with T2D, increased O-GlcNAcylation is linked to 

the dynamic of glucose-induced impairment of endothelial nitric oxide synthase activation 

in endothelial cells that could contribute to vascular dysfunction in T2D 409. 
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Cardiac cell death pathways:  Three main pathways are involved in cell death, 

apoptosis, necrosis, and autophagy 87. A controlled rate of apoptosis and autophagy is 

necessary for removing unwanted cells 291. However, in diabetes, cardiac cell death 

occurs at an accelerated rate410-412. This is due to both a hyperactivated cellular death 

pathway and an impaired cellular defense mechanism 413. Cardiac apoptosis is elevated 

in diabetes 291, 305, 414, 415, which is important since an apoptotic rate as low as 0.023% is 

sufficient to induce lethal cardiomyopathy 415. There are two main pathways of apoptosis: 

intrinsic or extrinsic . Intrinsic pathways can be initiated by various kinds of mitochondrial 

insult 87, 416, 417. After formation of a mitochondrial permeability transition pore (mPTP), 

cytochrome C leaks into the cytoplasm and assemble with Apaf-1, ATP, and procaspase-

9, forming apoptosome418, 419. The final product activates the effector caspase: caspase-

3, which will go on to cleave target proteins420, 421. Additionally, p53 is able to sense 

damage of DNA strands and upregulate the transcription of two essential proteins: Bax 

and Fas422. Bax is a pro-apoptotic protein that resides on the mitochondrial membrane423, 

whereas Fas contributes to the extrinsic cellular death pathway. Fas will act on death 

receptors located on cellular membrane424. Soluble extracellular protein, such as tumor 

necrosis factor-α (TNF-α) could also bind to death receptors425. Ligand binding initiates 

the assembly of multiprotein complex termed the death-inducing signaling complex 

(DISC), which recruits procaspase-8426. Such movement results in procaspase-8 

activation 427, 428. Caspase-8 cleaves Bid, leading to the formation of the active form, 

truncated-Bid (T-Bid) 429, that is pro-apoptotic by assisting the leak of cytochrome C into 

the cytoplasm. There is still debate regarding the relative contribution of apoptosis versus 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab120/6203809 by The U

niversity of Alberta user on 02 April 2021



# CVR-2020-1965R1 

 33 

necrosis to cardiomyocyte cell death in dilated cardiomyopathy 430. It has been reported 

that necrotic cardiomyocytes are more dominant compared to apoptotic cells in dilated 

cardiomyopathy and severe aortic stenosis 431, 432. In line with this, irreversible opening of 

the mitochondrial permeability transition pore (mPTP) also induces cell necrosis by ATP 

depletion, although it potentially triggers apoptosis via outer membrane rupture and 

cytochrome c release into the cytosol. Whether cardiomyocyte cell death by ischemia-

induced mPTP opening has a significant contribution to cardiomyocyte loss and 

subsequent interstitial fibrosis in diabetic hearts warrants further investigation. 

 

The cellular death pathways described above are altered in diabetic cardiomyopathy 

(Figure 3) . Direct exposure of high levels of glucose in myoblast H9c2 cells induces 

significant apoptotic cell death. The observations of hyperglycemia increases caspase 3 

activation and cytochrome C release in cardiac cells are consistent with previous findings 

where high levels of glucose elevated the expression of Bax and its translocation from 

cytosol to mitochondria-enriched heavy membrane fraction in vascular endothelial 

cells433. On the other hand, the use of caspase-3 specific inhibitor, Ac-DEVD-cmk, can 

suppress hyperglycemia induced apoptosis433, 434. Additionally, up-regulation of p53 in 

myocytes, due to hyperglycemia, occur at very early stages in the development of diabetic 

cardiomyopathy435, whereas attenuation of p53 transcriptional activity by IGF-1 prevents 

myocardial apoptosis in diabetic mice436. Besides high glucose, exposure to high levels 

of palmitate can also increase mitochondrial cytochrome C release, caspase-3 activation, 

followed by apoptotic cell death437. The formation of ROS and reactive nitrogen species 

(RNS) in the heart is another critical mediator of diabetes-induced myocardial cell death 
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438. Both ROS and RNS may be involved in many aspects of the cell death pathway, such 

as activation of caspase 3, the PKC pathway, release of cytochrome C and death receptor 

activation 434, 439, 440. The antioxidant, metallothionein (MT), can ameliorate this 

hyperglycemia-induced myocardial cell death 40.  

 

Unlike apoptosis, the role of autophagy in diabetic heart is still controversial. With some 

evidence suggesting that the induction of autophagy may convey protective effects 441, 

other studies proposed that excessive autophagy may accelerate the process to heart 

failure 442. Autophagy is believed to be impaired in diabetic heart. One major regulator of 

autophagy is insulin and impaired insulin signaling stimulates myocardial autophagy442, 

443. Given that many different animal models have not shown the blunted myocardial 

autophagy in diabetes 444-446, it is surprising that there has not been any approved 

treatment that targets autophagy specifically. However, some available medicines, such 

as metformin, rapamycin and resveratrol 447-449, have been found to promote autophagy 

indirectly, in addition to their main mechanism of action. Recently, Mst1 (macrophage 

stimulating 1) was found to be responsible for dictating the cardiomyocyte toward either 

apoptosis or autophagy in diabetes 450. 

 

 

Study suggested that mitochondria-dependent, calcium overload-induced necrosis might 

contribute to the progression of heart failure 453. Although necrosis has been suggested 

to be a passive and unregulated form of cell death, targeting the pathways of necrosis 

has potential for treating cardio-cerebrovascular injury 454. Regulated necrosis can be 
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classified into many categories, including but not limited to pyroptosis and ferroptosis. 

Both forms have been proposed to correlate with diabetic cardiomyopathy development. 

Pyroptosis is characterized by formation of plasma membrane pores and extracellular 

release of inflammatory cytokines . High glucose promoted cardiomyocytes pyroptosis by 

increasing ROS production455. Elevated level of pyroptosis also induces cell death via the 

miR-214-3p/caspase-1/TGF-β1 pathway in diabetic mice 456. Among the many protective 

actions exerted by metformin, inhibition of pyroptosis by suppressing the mTOR pathway 

via AMPK activation, may decrease pyroptosis-induced cell death in diabetic 

cardiomyopathy457. Therefore, therapies targeting pyroptosis may be an effective 

approach. On the other hand, ferroptosis is a newly discovered form of cell death, which 

can be initiated by either iron overload or oxidative stress 458. Of interest, hydrogen sulfide 

is an endogenous gaseous signaling molecule that is capable of inhibiting ferroptosis. 

One recent study proposed that treatment with the ferroptosis inhibitor ferrostatin-1 can 

prevent hyperglycemia-induced ferroptosis 459.  

 

 

 

Alterations in cardiac Ca2+ handling: One of the early perturbations in Ca2+ 

homeostasis in diabetic cardiomyopathy that precedes LV dysfunction is a slow decay of 

the Ca2+ transient 460-463. Possible mechanisms that contribute to the occurrence of these 

disarrangements in Ca2+ handling include perturbations in the activity of SERCA2a 465, 

466, as well as malfunctions in Ca2+ handling proteins due to posttranslational 

modifications, namely AGEs 467, O-GlcNacylation 468 and carbonylation 305, 469. Impaired 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab120/6203809 by The U

niversity of Alberta user on 02 April 2021



# CVR-2020-1965R1 

 36 

Ca2+ handling between the sarcoplasmic reticulum and the mitochondria and alterations 

in Ca2+ influx and efflux to/from the cytosol and extracellular tissue and reduced activity 

of phospholamban and ryanodine receptors also contribute to the Ca2+ mishandling in 

diabetic cardiomyopathies 461, 470-472. Ca2+ reuptake via SERCA2a is impaired in hearts 

from diabetic rats 473-475 and ob/ob mice 476, 477. Interestingly, overexpression of SERCA2a 

improves Ca2+ handling in animal models of diabetic cardiomyopathy 478. A recent study 

also demonstrated that insulin resistance impairs SERCA2a activity and cardiac function 

via inhibiting protein kinase B/striated muscle preferentially expressed protein kinase 

(SPEG) signaling 479. It has also been shown that oxidative stress in the hearts of 

diabetics could contribution to the development of diabetic cardiomyopathy via impairing 

SERCA2a activity 480, and that enhancing SERCA2a activity is associated with improve 

cardiac function in the hearts of diabetics 479-481. 

 

Diabetes is also accompanied by alterations in contractile proteins that are associated 

with the changes in contractile function in the diabetic heart 136, 482, 483. The decrease in 

contractile function in the diabetic heart is also positively liked to the decrease in cardiac 

ATPase activity 472, 484, 485. Along with the disturbances in cardiac ATPase proteins, it has 

also been shown that there are disturbances in isomyosin distribution and shifts from V1 

to V3 in the diabetic heart 486-488. There are also decreases in Ca2+ sensitivity along with 

troponin T-band shift in the diabetic heart 489, 490. 

 

Neurohormonal mechanisms: The role of the renin-angiotensin-aldosterone system 

and endothelin-1 system in the pathophysiology of both heart failure and diabetes has 
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long been recognized 491-493. Diabetes is accompanied by an upregulation of the renin-

angiotensin-aldosterone pathway that causes an increase in afterload, an important 

contributor to cardiac remodeling in diabetic cardiomyopathy . Consistent with this, a 

number of animal studies have shown that inhibiting activity of the renin-angiotensin-

aldosterone system limits the progression of diabetic cardiomyopathy 492, 494, 495. As a 

result, angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor 

antagonists are recommended to treat heart failure in diabetic and non-diabetic patients 

496. Moreover, diabetes is also associated with alterations in systemic autonomic function 

and perturbations in cardiac rhythm 497, 498. Despite the detrimental effect of these 

irregularities in the neurohormonal system, there are no therapeutic approaches presently 

used to target this system in the setting of diabetic cardiomyopathy.   

 

Changes in cardiac gene regulation: In diabetic cardiomyopathy there is differential 

expression of several genes involved in inflammation, fibrosis, insulin signaling, cell death 

and metabolism (Figure 4) 499, 500. The advancements in microarray technology facilitates 

extensive gene expression profiling to uncover genetic mechanisms of diabetic 

cardiomyopathy and its therapeutic implication. Genes that are often dysregulated in 

diabetic cardiomyopathy are discussed in the respective section and are summarized in 

Figure 4.  

 

Studies both in type 1 and type 2 diabetes have shown abnormal cytosolic Ca2+ 

homeostasis and decreased SERCA2a expression in cardiomyocytes along with 

diminished contractile function 501. This is important in the development of diabetic 
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cardiomyopathy, as SERCA2a gene transfer or overexpression can reduce diabetes-

related contractile dysfunction, hypertrophy, and can differentially modulate the 

expression of genes involved in insulin signaling, glucose metabolism and cardiac 

remodeling 502. Genes involved in inflammation and immune response are also affected 

by diabetic cardiomyopathy.  For instance, IL6 and STAT3 genes are upregulated in 

patients with diabetic cardiomyopathy. On the other hand, downregulation of SOCS3 

(Suppressor of cytokine signaling 3) is observed in diabetic cardiomyopathy patients 

compared to healthy controls 503.  

 

Mitofusin 1 and 2 (Mfn1 and Mfn2) are mitochondrial dynamics proteins that controls 

fusion of the mitochondrial outer membrane 504. In db/db diabetic mice hearts, Mfn2 is 

down-regulated and contributes to an imbalance in mitochondrial dynamics. On the other 

hand, Mfn2 overexpression relieves diabetic cardiomyopathy by promoting mitochondrial 

fusion 505.  

 

Activation of PPAR-α expression, a transcription regulator, also occurs in diabetic 

cardiomyopathy 47, 506. Importantly, over expression of PPAR-α activates genes involved 

in cardiac fatty acid utilization, while suppressing genes in glucose metabolic pathways. 

This suggests that dysregulation of PPAR-α expression contributes to the metabolic 

derangements observed in diabetic cardiomyopathy 47. Increased mitochondrial 

biogenesis has also been implicated in diabetic cardiomyopathy, and PPARα-dependent 

activation  of PGC-1α  may be a key driver of mitochondrial biogenic response in diabetic 

cardiomyopathy 506. An increase in PGC-1α gene expression occurs in hearts of db/db 
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mice 41. In addition, the up-regulation of  PPARα-dependent PGC-1α is associated with 

increased expression of proteins of the mitochondrial electron transport chain and 

oxidative phosphorylation such as nuclear receptors  families NRF-1 and NRF-2  and 

mtDNA transcription and replication (mtTFA) 506. 

 

Recently, changes in the levels of non-coding RNAs have been recognized as important 

mediators of altered gene expression. The largest portion of the genome consists of non-

coding RNAs. Although they are not directly transcribed to protein products, these RNAs 

regulate the transcription and post-transcriptional processing of many proteins. These 

regulatory RNAs consist of microRNAs (miRNA), long non-coding RNAs (lncRNA) and 

circular RNAs (circRNAs) 507. Over 4,500 lncRNA genes, and 2,000 microRNA genes has 

been identified in human genome alone 508. Although the function of the majority of non-

coding RNAs are still unknown, mounting evidence suggests that these molecules play a 

significant role in a number of diseases processes and many of them are dysregulated in 

diabetic cardiomyopathy 499, 500, 509, 510. Thus, their differential expression and role in 

diabetic cardiomyopathy pathogenesis is being actively investigated, partly because they 

may be potential biomarkers and therapeutic tools to treat diabetic cardiomyopathies. 

 

LncRNAs are noncoding RNAs longer than 200 nucleotides in length. In addition to 

regulating other RNA functions, lncRNAs play an important role in epigenetic regulation 

by interacting with histone modifiers or chromatin remodelers or DNA 511. These lncRNAs 

also forms nucleic acid-protein complexes thereby regulating the activity or localization of 

these proteins or serves as a precursor for other miRNAs and circRNAs 512. Differential 
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expression of lncRNAs has been reported in diabetic cardiomyopathy and their abnormal 

expression has a role in promoting or inhibiting the development of diabetes. In diabetic 

cardiomyopathy there are significant alterations of a large number of lncRNAs that control 

apoptosis 513-515, fibrosis 516 and inflammation 513, 517. Detailed data on lncRNA changes 

and their function are summarized in Table 1.  

 

Alterations in many microRNAs (miRNAs) are also linked to changes in gene expression 

patterns in diabetic cardiomyopathy. MiRNAs are short non-coding RNAs that regulate 

gene expression by binding to the 3’ untranslated region of target messenger RNAs 

(mRNAs) 426. Upon binding, miRNAs repress gene expression by destabilizing or 

degrading the target mRNAs. To date, over 2650 mature miRNAs have been identified in 

humans that are implicated in various diseases 427. The role of various miRNAs in 

mediating diabetic cardiomyopathies have been studied broadly and is summarized in 

Table 1. Of importance, these studies have suggested  the contribution of specific 

miRNAs to hypertrophic 518-522, fibrotic 523-525, apoptotic 526-529, inflammatory and oxidative 

stress 525, 530-532 changes in diabetic cardiomyopathy. 

 

Circular RNAs (circRNAs) are produced during the processing of pre‐mRNA 508. They are 

involved in the regulation of pre‐mRNA splicing and RNA polymerase II 533, 534 . Analysis 

of the circRNA expression profiles in diabetic cardiomyopathy has shown differential 

regulation of several circRNAs in tissues from db/db mice hearts 535. Upregulation of these 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab120/6203809 by The U

niversity of Alberta user on 02 April 2021



# CVR-2020-1965R1 

 41 

circRNAs has also been shown in association with myocardial fibrosis 536-538 and 

pyroptosis 539. 

 

Epigenetics mediated dysregulation of gene expression also contributes to the 

development of diabetic cardiomyopathies. Modification of histone proteins by lysine 

acetylation is a major epigenetic mechanism that regulates expression of many genes. 

For instance, increased acetylation of cardiac histone H3 leads to increased mRNA 

expression of multiple cardiomyopathy-related genes, together with cardiomyocyte 

hypertrophy, in diabetic mice 540.  Increased acetylation of histone H3 and H4 in diabetes 

also leads to  the recruitment of inflammatory genes promoters,  including TNF- and 

COX-2 541. Augmented histone acetylation at promoter regions of natriuretic peptide 

genes is also associated with increased expressions of ANP and BNP in the heart of 

diabetics 542.  Diabetes specific alterations in DNA methylation is also associated with 

altered in the phenotype of the heart in diabetes 543. This suggests that diabetes-

associated epigenetic modification may be an independent risk factor for diabetic 

cardiomyopathy. 

 

The effect of antihyperglycemic drugs on diabetic cardiomyopathy severity 

 

Although anti-hyperglycemic drugs significantly improve glycemic control in diabetic 

patients, use of these therapies does not necessarily equate to a reduced risk of 

developing heart failure 544, 545. This highlights that lowering blood glucose alone is not 

sufficient to prevent diabetic cardiomyopathy development 545. However, a number of anti-
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hyperglycemic drugs can alter the course of cardiovascular complications in the diabetic 

(Table 2). The impacts of these therapies on glucose and fatty acid oxidation are also 

summarized in Figure 5. 

 

Metformin:  Metformin is a first-line therapy in the majority of type 2 diabetic patients. In 

addition to its primary role in lowering blood glucose, beneficial effects of metformin have 

been shown on stimulating insulin action, decreasing inflammation 546, and improving 

myocardial energy metabolism 547, 548. However, its effect on heart failure development 

remains uncertain. Some studies indicated that metformin is contraindicated in diabetic 

patients with heart failure due to lactic acidosis 549. A recent systematic review of 9 RCTs 

studies that examined metformin on heart failure related outcomes in patients with or 

without diabetes suggest  some beneficial effects of metformin, but the overall evidence 

were not strong enough to  make a solid conclusion about metformin decreasing heart 

failure  severity 550. Other studies have suggested that metformin therapy does not 

decrease the risk of heart failure development 551, 552. 

 

Sulfonylureas: Sulfonylureas, especially older generation ones, increase the risk of 

adverse events in type 2 diabetic patients and are associated with a greater prevalence 

of hypoglycemia 553, 554. A meta-analysis of 115 selected trials showed that sulfonylureas 

are associated with increased mortality,  although major adverse cardiovascular events 

(MACE) did not appear to be affected 555. Another meta-analysis investigating the 

association of metformin and sulfonylureas on both all-cause and cardiovascular mortality 

in type 2 diabetic patients, showed that combination therapy resulted in an increase in 
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relative risk for cardiovascular hospitalization, as well as fatal and nonfatal events556. 

Similarly, a retrospective cohort analysis investigating the addition of insulin or a 

sulfonylurea in diabetic patients suggests that sulfonylureas increase the risk of non-fatal 

cardiovascular outcomes and all-cause mortality 557. This was also seen in a metformin 

and sulfonylurea combination therapy study of type 2 diabetic patients, in which patients 

newly treated with sulfonylureas possessed a higher risk for adverse cardiovascular 

events 558.  Recently, a meta-regression analysis of 18 studies on the risk of 

cardiovascular events associated with sulfonylureas found that there was an increased 

risk of cardiovascular mortality and events with sulfonylurea treatment 559. In a network 

meta-analysis, 167,327 patients were studied to evaluate the risk of cardiovascular 

events with different sulfonylureas. Gliclazide and glimepiride were shown to have a lower 

risk of both cardiovascular-related mortality and all-cause mortality versus glibenclamide 

560. Therefore, differences in the risk of mortality exist within the class of sulfonylureas. 

This is further reinforced by a cohort study of patients with type 2 diabetes on 

monotherapy with sulfonylureas, where glyburide and glimepiride did not increase the risk 

of adverse cardiovascular events versus glicazide, glipizide and tolbutamide561.  

 

Thiazolidinediones (TZDs):  TZDs are known to cause fluid retention and as such, can 

increase the risk of congestive heart failure 562. In the Pioglitazone Clinical Trial In 

Macrovascular Events (PROACTIVE) study, patients with type 2 diabetes and a history 

of macrovascular disease were randomized to receive pioglitazone or placebo563. 

Pioglitazone increased heart failure hospitalization, although this was associated with less 

cardiac ischemic events 563.  The Diabetes Reduction Assessment With Ramipril and 
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Rosiglitazone Medication (DREAM) study, consisting of patients with impaired fasting 

glucose/glucose tolerance and no known cardiovascular disease, found that while 

rosiglitazone reduced diabetes and the development of renal disease, it increased new-

onset heart failure 564. In the Rosiglitazone Evaluated for Cardiac Outcomes and 

Regulation of glycemia in Diabetes (RECORD) trial, a multi-centre open-label study with 

type 2 diabetic patients, rosiglitazone increased the risk of heart failure or hospitalization 

by over 2-fold 565. As such, rosiglitazone increases the risk of heart failure and alongside 

other TZDs, contain serious warnings regarding the increase in fluid retention and risk of 

congestive heart failure 562. 

 

Glitazars: A dual PPARα and γ agonist designed to concurrently treat hyperlipidemia and 

hyperglycemia, glitazars combine the beneficial effects of agonizing both peroxisome 

proliferator-activated receptors. However, glitazars present a paradox and while 

addressing diabetic concerns with hyperlipidemia and hyperlycemia, they have been 

shown to worsen congestive heart failure in diabetic patients 566, 567. Specifically, 

muraglitazar increases major adverse cardiovascular events, congestive heart failure and 

death in a review of several clinical trials that included 3725 patients 568. Another glitazar, 

aleglitazar, while presenting effective anti-diabetic effects, also increases the risk of heart 

failure 569. As such, concurrent agonism of PPARα and γ results in cardiac dysfunction, 

which may be due to inhibition of PGC1 and mitochondrial biogenesis 570. 

 

GLP-1 receptor agonists: GLP-1 agonists improve glycemic control in diabetics by 

mimicking GLP-1 action 571-573. These include Exenatide, a partial structural analogue of 
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GLP-1, , with other GLP-1 analogues including liraglutide, lixisenatide 574, and 

semaglutide 575.  Some of these GLP-1 analogues have efficacy in mediating heart failure 

risk in diabetics, as shown by results of multiple phase III/IV large scale double-blind 

randomized clinical trials. The Exenatide Study of Cardiovascular Event Lowering 

(EXSCEL) Trial showed that exenatide in type 2 patients with cardiovascular risk did not 

increase their overall risk and that the incidence of major adverse cardiovascular events 

was not worsened 576. The Evaluation of Cardiovascular Outcomes in Patients with Type 

2 Diabetes after Acute Coronary Syndrome during Treatment with Lixisenatide (EXLXA) 

Trial showed similar results, where lixisenatide treatment showed no effect on major 

adverse cardiovascular events (MACE) in type 2 diabetic patients who had a recent acute 

coronary event 577. In contrast, the Liraglutide Effect and Action in Diabetes (LEADER) 

trial showed a lower risk of MACE, including the rate of the first occurrence of death from 

cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke in type 2 diabetic 

patients with high cardiovascular risk 578. Additionally, the Trial to Evaluate Cardiovascular 

and Other Long-Term Outcomes with Semaglutide in Subjects with Type 2 Diabetes 

(SUSTAIN-6) showed a significantly lower rate of cardiovascular death, nonfatal 

myocardial infarction, or nonfatal stroke in type 2 diabetic patients with high 

cardiovascular risk 578. However, the results of the Functional Impact of GLP-1 for Heart 

Failure Treatment (FIGHT) Trial showed no improved post-hospitalization clinical stability 

with liraglutide in recently hospitalized patients with established heart failure and reduced 

ejection fraction 579. Examination of the effect of  liraglutide on ventricular function in stable 

chronic heart failure patients with and without diabetes also showed that liraglutide did 

not improve LVEF or systolic function, and was associated with an increase in heart rate 
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and more serious cardiac adverse events 580. Combined, this calls into question the 

benefits of liraglutide use in preventing diabetic cardiomyopathies.   

 

DPP4 inhibitors:  Incretins-based therapy has emerged as a novel treatment approach 

for diabetes management, with the inhibition of dipeptidyl peptidase 4 (DPP4) being used 

to prevent the cleavage and inactivation of GLP-1 581. DPP-4 inhibitors increase insulin 

secretion from pancreatic B-cells, thereby improving insulin tolerance and glucose control 

582-584. Current DPP4 inhibitors include vildagliptin, sitagliptin, and saxagliptin  and are 

similar in their efficacy in lowering HBA1C levels 585 and improving glucose tolerance in 

diabetes 586-589.  Despite the efficacy of DPP4 inhibitors in improving glycemic control, the 

efficacy of DPP4 inhibitors in improving heart failure outcomes in diabetics remains 

unclear. The Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with 

Diabetes Mellitus (SAVOR)-Thrombosis in Myocardial Infarction (TIMI) 53 trial (SAVOR-

TIMI53) showed a significant increase in the rate of hospitalization for heart failure in type 

2 diabetic patients treated with saxagliptin 590. However, the Examination of 

Cardiovascular Outcomes with Alogliptin versus Standard of Care (EXAMINE) trial 

showed non-inferiority of alogliptin to placebo on major cardiovascular events in diabetic 

patients with recent acute coronary syndrome 591, 592. Moreover, the Trial Evaluating 

Cardiovascular Outcomes with Sitagliptin (TECOS) showed that sitagliptin neither 

improved or decreased rates of cardiovascular events such as death, myocardial 

infarction, stroke, or hospitalization for heart failure in type 2 diabetics with pre-existing 

cardiovascular disease 593, 594. Other studies support the results of EXAMINE and TECOS 

trials 595-598. although results from meta-analyses demonstrate conflicting evidence for the 
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effect of DPP4 inhibitors on mediating cardiovascular disease 599-601. Animals studies 

have also shown conflicting results on the efficacy of DPP4 inhibitors on cardiovascular 

disease. Sitagliptin treatment decreased LV passive stiffness and improved global LV 

performance in an obese type 2 diabetic mice 602. However, long term treatment of 

vildagliptin showed no cardioprotective effects on cardiac function, remodeling, or infarct 

size in Sprague-Dawley rats subjected to myocardial infarction induced by coronary 

ligation 603. Combined, these studies suggest minimal beneficial effects of DPP4 inhibitors 

in reducing the risk of heart failure in diabetics, and support that certain DPP4 inhibitors 

may be safe in patients. However, the cardiovascular safety and efficacy of DPP4 

inhibitors needs to be further elucidated.  

 

SGLT2 inhibitors: Sodium glucose co-transporter 2 inhibitors (SGLT2i) prevent glucose 

reabsorption in the proximal tubules of the kidney, therefore increasing its secretion into 

the urine and improving glycemic control 604-606. Three SGLT2i approved for clinical use 

include empagliflozin, dapagliflozin, and canagliflozin.  Recently, large-scale clinical trials 

have shown cardioprotective benefits independent of its antihyperglycemic effect in both 

type 2 diabetic and non-diabetic patients 607-612. The results of the Empaglifozin 

Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG 

OUTCOMES) showed a lower occurrence of death from cardiovascular causes, nonfatal 

myocardial infarction, or nonfatal stroke, and a reduction in overall mortality and heart 

failure hospitalization in empagliflozin treated type 2 diabetics patients with cardiovascular 

risk compared to placebo 607. The Canagliflozin Cardiovascular Assessment Study 

(CANVAS) and Dapagliflozin effect on Cardiovascular Events-Thrombolysis in 
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Myocardial Infarction 58 (DECLARE-TIMI58) trials supported the results of the EMPA-

REG OUTCOMES study.  The CANVAS trial showed a lower risk of cardiovascular events 

in type 2 diabetic patients with an elevated risk of cardiovascular disease 612, while the 

DECLARE-TIMI58 trial showed a reduction in cardiovascular death and heart failure 

hospitalization in type 2 diabetic patients with or at high risk of cardiovascular disease, 

although it did not reduce the rate of MACE 611. Interestingly, the Dapagliflozin and 

Prevention of Adverse-Outcome in Heart Failure (DAPA-HF) trial showed a reduction of 

in the risk of mortality and heart failure reduction in patients with heart failure and reduced 

ejection fraction with or without type 2 diabetes 609. These results are supported by the 

Empagliflozin Outcome Trial in Patients with Chronic Heart Failure and a Reduced 

Ejection Fraction (EMPEROR-Reduced) trial 610. Combined, evidence from clinical trials 

show a safety and efficacy of SGLT2i as a therapeutic strategy to manage diabetes and 

associated cardiovascular disease, heart failure, and their risk.  

 

Studies in animal models have also demonstrated cardiovascular benefits supporting the 

results from the major clinical trials. Empagliflozin improves cardiac contractility, by 

fractional area change, and improves microvascular function in ob/ob-/- mice 613. 

Additionally, empagliflozin treatment attenuates cardiac fibrosis and improves 

hemodynamics in hypertensive rat heart failure  614. However, despite these beneficial 

cardiac outcomes, the exact mechanism of the cardioprotective effects of SGLT2i are 

unknown 615. Multiple mechanisms have been proposed including diuresis/natriuresis, 

improved cardiac energy metabolism 281, reduction of inflammation 616, and prevention of 

ischemia reperfusion injury 617 to name a few key mechanisms. Further studies are 
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needed to fully elucidate a mechanism to explain the observed cardioprotective effects of 

SGLT2i in the diabetic and nondiabetic failing heart. 

 

Insulin: While insulin is the first-line therapy to treat T1D, it is only used to manage T2D 

patients when oral hypoglycemic drugs and lifestyle do not establish glycemic control. It 

has been suggested that heart failure prevalence and cardiovascular mortality is 

increased in patient with T2D who receive insulin 618. Evaluation of the impact of insulin 

therapy on cardiovascular disease in diabetic patients has been the focus of a number of 

recent clinical trials. For example, the ORIGIN trial (Outcome Reduction With Initial 

Glargine Intervention) investigated glargine's impact compared to standard care in T2D 

patients with high cardiovascular risk. The trial data were neutral, and the rates of incident 

cardiovascular outcomes were similar in the insulin-glargine and standard-care 619. In 

addition, the DEVOTE trial (A Trial Comparing Cardiovascular Safety of Insulin Degludec 

Versus Insulin Glargine in Subjects With Type 2 Diabetes at High Risk of Cardiovascular 

Events) compared the cardiovascular safety of degludec, ultralong acting insulin, to 

insulin glargine in patients with T2D and high cardiovascular risk. The study showed that 

degludec was noninferior to glargine concerning the incidence of major cardiovascular 

events 620. While enhancing circulating insulin levels can restore cardiac insulin sensitivity 

in the failing heart, enhancing cardiac efficiency and reducing cardiovascular mortality, 

prospective studies that aim to access this possibility directly are currently lacking.  

 

The effect of heart failure drugs on glycemic control 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab120/6203809 by The U

niversity of Alberta user on 02 April 2021



# CVR-2020-1965R1 

 50 

Renin-Aldosterone-Angiotensin inhibitors: ACE inhibitors have been shown to 

improve insulin resistance and glucose intolerance via increases in GLUT4 translocation 

(Table 3) 621. Diabetic mice treated with the ACE inhibitor temocapril show decreases in 

plasma glucose and insulin levels, increases in skeletal muscle glucose uptake and 

increases in translocation of GLUT4 to the plasma membrane 621. In a single blind, cross-

over design study in type 2 diabetic patients that had arterial hypertension, the ACE 

inhibitor captopril increased insulin sensitivity and improved glycemic control 622. Captopril 

treatment of diabetic patients also  improves glucose control 623. However, while ACE 

inhibitor therapy improves glycemic control effects, a case-control study in diabetic 

patients found that ACE inhibitors are associated with an increase in hospitalization for 

severe hypoglycemia 624. 

 

Lipid-lowering agents:  Statins have a propensity to induce hyperglycemia and have 

been shown to cause glucose intolerance in both animals and humans. For instance, 

diabetic rats treated with atorvastatin or simvastatin exhibit hyperglycemia and glucose 

intolerance 625. In a meta-analysis of 9 trials of patients treated with statins, mean HbA1C 

was higher by 0.12%, indicative of a modestly increased risk for diabetes with statin 

treatment 626. In another meta-analysis that investigated the effect of statin therapy on 

HbA1C levels as well as fasting plasma glucose, statins increased HbA1C 
627. Specifically, 

pitavastatin improved glycemic control while atorvastatin worsened glycemic control 627. 

This diabetogenic effect was also recapitulated in a national health screening cohort of 

non-diabetic individuals taking statins, showing that greater adherence to the use of 
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statins, specifically atorvastatin, rosuvastatin, pitavastatin and simvastatin, results in 

increases in fasting glucose levels628. 

 

ß-blockers: β-adrenergic stimulation promotes insulin and glucagon release while α-

adrenergic stimulation inhibits insulin and glucagon secretion . Therefore β-adrenergic 

receptor antagonism inhibits insulin release and may worsen glycemic control especially 

during hypoglycemia. The selectivity of the ß-blocker yields distinct metabolic effects and 

certain ß-blockers can exacerbate hypoglycemic episodes by delaying glucose recover 

time 629, 630. A retrospective study that monitored glucose in patients receiving either 

carvedilol or a selective second-generation ß-blocker (metoprolol or atenolol) found that 

ß-blockers, specifically metoprolol or atenolol, increase the odds of hypoglycemia in these 

hospitalized patients 631. In hypertensive diabetic patients, treatment with propranolol or 

metoprolol results in mean blood sugar increases of 1.0-1.5 mM 629, 632. A randomized, 

double-blind parallel-group trial in patients with diabetes and hypertension showed that 

metoprolol increases mean HbA1C, but insulin sensitivity is improved with carvedilol 

treatment633. Third generation non-selective β-blockers (carvedilol) possess insulin-

sensitizing properties and improve glycemic control, while second generation β1-selective 

(metoprolol) antagonism worsens glycemic control 634. To underline the distinct benefits 

between β-blockers, non-vasodilating β-blockers (metoprolol, propranolol and atenolol) 

have been shown to worsen glycemic control while vasodilating β-blockers (carvedilol, 

labetalol, nebivolol) improve glucose profiles . 
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Aldosterone Antagonists: Enhanced activity of the aldosterone signaling has been 

implicated in the development of diabetes-induced heart failure via triggering fibrosis and 

insulin resistance. Treatment of dilated cardiomyopathy patients with the aldosterone 

antagonist spironolactone resulted in a reduced collagen accumulation in the heart and 

improved LV function 635. Likewise, antagonizing aldosterone can improve diastolic 

function and limit fibrosis in patients with hypertensive cardiomyopathy 636 and metabolic 

syndrome 637. Of interest is that eplerenone is shown to limit biomarkers of inflammation 

and insulin resistance in patients with HIV 638. Aldosterone antagonists have also shown 

promising effects by reducing apoptosis and improving diastolic function in murine models 

of diabetic cardiomyopathy 639-641. The impact of aldosterone antagonism on diastolic 

function, cardiac insulin resistance and inflammation in patient with diabetes-induced 

heart failure is yet to be determine. 

 

Concluding remarks 

 

The pathophysiology of diabetes can affect the heart through multiple mechanisms that 

cause structural, metabolic, and functional remodeling, leading to a well-acknowledged 

condition called diabetic cardiomyopathy.  Diabetes-induced perturbations in insulin 

resistance, fuel preference, reactive oxygen species generation, inflammation, cell death 

pathways, neurohormonal mechanisms, advanced glycated end-products accumulation, 

lipotoxicity, glucotoxicity and posttranslational modifications contribute to the 

development of diabetic cardiomyopathies.  Targeting these pathways is a potential 

therapeutic approach to lessening the likelihood of developing diabetic cardiomyopathies.  
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A number of antidiabetic therapies can also prevent diabetic cardiomyopathy and reverse 

cardiac dysfunction. These advancements will help achieve personalized treatment for 

diabetic patients by achieving glycemic control and managing comorbidities and limiting 

cardiovascular disease. Better clarity of the mechanisms involved in diabetic 

cardiomyopathy should lead to better therapeutics approaches to treat patients with 

diabetes and heart failure.   
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Figure legends  

  

Figure 1: Energy metabolic changes in a healthy setting versus diabetic  

cardiomyopathy. In the healthy heart, approximately 60% of the heart's energy comes  

from the oxidation of fatty acids, followed by approximately 5% by glycolysis and 25%  

from glucose oxidation, and 10% by ketone oxidation. However, in diabetic  

cardiomyopathy, due to systemic and local changes in energy substrate concentrations  

as well as insulin resistance, the metabolic protein machinery is perturbed and  

subsequently, the heart's overall energy metabolic profile is impaired. As such, diabetic  

cardiomyopathy results in an increase in fatty acid oxidation, decreased glucose  

metabolism and decreased ketone oxidation.  

  

Figure 2: The different stages of diabetic cardiomyopathy. HFpEF, heart failure with  

preserved ejection fraction; HFrEF heart failure with reduced ejection fraction; HF, heart  

failure; AGEs, advanced glycation end products.  

  

Figure 3: Mechanisms that contribute to diabetes-induced heart failure. While the  

exact pathophysiology of the diabetic-induced heart failure still not fully defined, there are  

a number of mechanisms that play important roles in its occurrence. This includes  

mitochondrial dysfunction, cardiac insulin resistance and impaired cardiac insulin  

signaling pathway, perturbed fuel use, low ATP levels, inflammation, advanced glycation  

end products, O-GlcNAcylation, cell death, neurohormonal mechanism, contractile  
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proteins dysfunction, oxidative stress, gene reprogramming, lipotoxicity, glucose toxicity 

and perturbed Ca2+ handling.  

 

Figure 4: Gene expression dysregulation in diabetic cardiomyopathy. CD36: cluster 

of differentiation 36; PPARα: Peroxisome proliferator-activated receptor; FABP: fatty-

acid-binding proteins; GLUT1: glucose transpoter 1; GLUT4: glucose transporter 4; PDK: 

pyruvate dehydrogenase kinase; MG53: mitsugumin 53; ANP: atrial natriuretic peptide; 

NF-kB: nuclear factor kappa B; TGF-β1: transforming growth factor beta 1; MMP2: matrix 

metalloproteinase-2; Mst1: macrophage Stimulating 1; SERCA2a: sarcoplasmic- 

endoplasmic reticulum Ca2+ ATPase 2a; MCP-1: monocyte chemoattractant protein-1; 

VCAM-1: vascular cell adhesion molecule 1; TNFα: tumor necrosis factor; SOCS3: 

suppressor of cytokine signaling-3; COL1A1: collagen type 1 alpha1. 

 

Figure 5. Summary figure of various antihyperglycemic drugs and their mode of 

action in the context of the heart. Fatty acid, glucose and ketone body metabolism are 

represented in this figure with the key modes of homeostasis regulation presented. 

SGLT2 inhibitors inhibit SGLT2 in the proximal tubules and thus, prevent renal glucose 

reabsorption, promote glycosuria, decreased insulin release, increased hepatic 

ketogenesis and increased circulating blood ketone levels. These increased circulating 

ketones can subsequently modulate cardiac ketone oxidation rates. Metformin’s mode of 

action is not well understood, although it does stimulate AMPK which inhibits ACC, 

decreases malonyl-CoA levels and increases fatty acid metabolism. DPP4 inhibitors 

prevent DPP4 from inactivating GLP-1, and thus increase GLP-1 levels to potentiate 
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insulin secretion from pancreatic beta cells. GLP-1 receptor agonists similarly increase 

GLP-1 levels to increase insulin secretion. Sulfonylureas bind to SUR1, and consequently 

the K-ATP channel closes, depolarizing the pancreatic islet cell and increasing 

intracellular calcium levels to promote secretion of insulin. Lastly, TZDs have widespread 

actions in the body but here we focus on its role in promoting glucose metabolism and 

improving insulin sensitivity via binding to PPARγ and promoting the transcription of 

genes involved in glucose uptake and metabolism. 
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Table 1: Alterations in miRNA, LncRNA, CircRNA and their role in diabetic cardiomyopathy 

 

Non-coding 

RNAs 

Subclasses  Status  Study setting   Altered proteins 

/RNAs 

Pathological 

Pathways involved  

Reference 

HOTAIR  lncRNA Downregulated  STZ induced diabetic mice, 

H9c2 cardiomyocytes  

SIRT1  Apoptosis & 

inflammation 

513 

MALAT1 ) lncRNA Upregulated  STZ- induced diabetic rats  - Apoptosis 642 

MIAT lncRNA Upregulated STZ induced diabetic rats, neonatal 

cardiomyocytes 

miR-22-3p  Apoptosis  514 

Crnde lncRNA Downregulated  STZ induced diabetic mice, mouse 

neonatal cardiac fibroblasts 

 Smad3 Fibrosis  643 

LncRNA H19 lncRNA Downregulated STZ-induced diabetic rats, 

neonatal cardiomyocytes 

 VDAC1 , miR-675, 

EZH2 & DIRAS3 

Autophagy& 

apoptosis  

515, 517 

Zfas1  lncRNA Upregulated   STZ-induced diabetic mice, H9c2 

cardiomyocytes 

 miR-9 , FN mRNA, 

Col1&4 

Fibrosis  516 

miR-1 miRNA Upregulated  STZ induced diabetic rats Junctin Oxidative stress 530 

miR-30c, miR-

181a 

miRNA Down regulated  Diabetic patients, diabetic rats, 

and H9c2 cardiomyocytes 

p53, p21, ANP Hypertrophy & 

apoptosis 

518 
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miRNA133a miRNA Downregulated  STZ-induced diabetic mice, 

neonatal rat cardiomyocytes 

ANP, BNP, MEF2A 

and MEF2C 

Hypertrophy  519 

miR-133a miRNA Downregulated STZ-induced diabetic mice TGF-β1, fibronectin 

(FN1) and COL4A1 

Fibrosis  523 

miR-150 miRNA Downregulated STZ induced diabetic rats, 

neonatal rat cardiomyocytes 

p300 Hypertrophy 520 

miR-373 miRNA Down regulated  Diabetic mice , neonatal rat 

cardiomyocytes  

MAPK signaling ( 

ERK1/2, JNK, and 

p38) 

Hypertrophy 521 

miRNA-1, 

miRNA-208a 

miRNA upregulated STZ-induced diabetic mice, 

diabetic patients  

pro-survival Pim-1 

& Caspase-3 

Apoptosis  526 

miR-451 miRNA Upregulated  type 2 diabetic mice, neonatal rat 

cardiac myocytes 

Calcium-binding 

protein 39 (Cab39) 

Hypertrophy and 

contractile 

522 

miR-195, miR-

34a  

miRNA Upregulated STZ induced diabetic mice BCL-2? 

 H9c2 cells 

Apoptosis 527, 644 

miR-144 miRNA Upregulated  STZ-induced diabetic mice Nuclear factor 

erythroid-2-related 

factor 2 (Nrf2) 

Oxidative stress 531 

miR-483-3p miRNA Upregulated  STZ-induced diabetic mice, H9c2 

cardiomyocyte 

 Insulin growth 

factor 1 (IGF1) 

Apoptosis  528 

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/advance-article/doi/10.1093/cvr/cvab120/6203809 by The U

niversity of Alberta user on 02 April 2021



# CVR-2020-1965R1 

 113 

miR30c  miRNA Down regulated  Type 2 db/db mice, H9c2 

cardiomyocytes  

BECN1  Autophagy  645 

miR-30d  miRNA Up regulated  STZ-induced diabetic rats, 

neonatal  rat cardiomyocytes 

Caspase-1, IL-1β 

and IL-18 

&  Foxo3a  

Pyroptosis  646 

miR-15a/b 
 

miRNA down-regulated Type 2 diabetic patients, type 2 

db/db mice  

HL-1 cardiomyocytes 

 (TGFβR1) and 

connective tissue 

growth factor 

(CTGF) 

Fibrosis  524 

miR-29 
 

miRNA dysregulated Zucker diabetic fatty (ZDF) rats, 

HL-1 cardiomyocytes 

Myeloid Cell 

Leukemia 1(MCL-1) 

Apoptosis 529 

miR-200b  miRNA  STZ-induced diabetic mice     

miR-200 miRNA Upregulated  db/db mice cyclooxygenase-2  Inflammation  532 

miR-141 
 

miRNA Upregulated  STZ-induced diabetes,HL-1 cells  mitochondrial 

phosphate carrier 

(Slc25a3) 

Mitochondrial ATP 

production.  

647 

miR-146a miRNA downregulated STZ-induced diabetes L6, TNFα, IL-1β, 

MCP-1, NF-κB, 

Col1α1, Col4α1 

Fibrosis & 

inflammation  

525 
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miR-301 miRNA Upregulated Type 2 db/db mice ,H9C2 cells  Voltage-gated 

potassium channel 

(Kv4.2)  

Action potential 648 

miR-193-5p miRNA Upregulated   Myocardial microvascular 

endothelial cells of  type 2 diabetic 

Goto-Kakizaki (GK) rats 

IGF2 Angiogenesis  649 

circRNA_010567 crcRNA Upregulated  db/db mice, cardiacfibroblasts TGF-β1 Fibrosis  537 

circHIPK3  circRNA Upregulated  STZ induced diabetic mice  Col1α1 and Col3α1 Fibrosis  538 

circ_0076631 circRNA Upregulated  Type 2 diabetic patients,  

AC16 cardiomyocyte  

Caspase 1 Pyroptosis 539 

IncRNA: long non-coding RNA; miRNA: micro-RNA; circRNA: circular-RNA; STZ: Streptozotocin; VDAC1; voltage-dependent anion channel 1;  

EZH2: enhancer of zeste homolog 2; FN: fibronectin; Col 1&4: collagen type 1& 4; ANP: atrial natriuretic peptide; B-type natriuretic peptide; MEF2A:  

myocyte enhancer factor 2A; TGF-β1: transforming growth factor-beta 1; MAPK: mitogen-activated protein kinase; ERK1: extracellular  

signal‑ regulated protein kinase 1; JNK: jun N-terminal kinase; BECN1: IL-1β: interleukin-1β; IL-1β: interleukin-18; GFβR1: transforming growth  

factor beta receptor I; CTGF: connective tissue growth factor; IL-6: interleukin-6; TNFα: tumor necrosis factor-alpha; MCP-1: monocyte  

chemoattractant protein-1; Col1α1:collagen type I alpha 1; Col4α1: collagen type IV alpha 1; IGF2: insulin-like growth factor 2; Col3α1: collagen type  

III alpha 1   
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Table 2: The effects of different classes of anti-diabetes drugs on the 

cardiovascular system and the development of diabetic cardiomyopathy 

 
Class of the therapy  Biological 

target of 
each drug 
class 

Study 
characteristics  

Main findings References  

Metformin Unknown 

Systematic review 
randomized clinical 
trials (RCTs)  

-Improved cardiovascular 
outcomes in early stage 
of diabetes  
-No beneficial effects 
after hospitalization or in 
those with overt CVD 

 550 

Post hoc analysis of 
SAVOR-TIMI 53 
Trial (Saxagliptin 
and Cardiovascular 
Outcomes in 
Patients With Type 
2 Diabetes Mellitus 

No effect on CVD end 
points in patients with 
prior heart failure and 
kidney disease 

 650 

Prospective cohort 
study 

Increased risk of CVD 
and death in patients 
with T2DM at the time of 
first AMI  
May be beneficial in 
Post-AMI  

 651 

Experimental DCM 
(both in vivo & in 
vitro) 

improved cardiac 
function and alleviation 
of apoptosis 

 652 

Systematic review 
and meta-
regression analysis 

Reduced mortality in 
patients with HFpEF 

 653 

Observational study  
Has no effect on the risk 
of HF-related 
exacerbation 

 551 

     

Sulfonylureas     

Sulfonylureas 

Stimulate 
insulin 
release from 
the pancreas  

Retrospective 
analysis of 20,450 
type 2 diabetic 
patients 

Increased risk of adverse 
cardiovascular events 
with sulfonylureas 

553 
 

Meta-analysis of 
115 randomized 
clinical trials 

Increased mortality and 
risk of stroke with 
sulfonylureas in type 2 
diabetics 

 555 

Meta-analysis of 9 
observational 
studies 

Combination therapy 
with sulfonylureas and 
metformin increased the 
relative risk of 

 556 
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cardiovascular mortality 
and hospitalization 

Retrospective 
cohort analysis of 
1787,341 diabetic 
patients 

Sulfonylureas increased 
the risk of non-fatal 
cardiovascular outcomes 
and all-cause mortality 

 557 

Retrospective 
cohort analysis of 
5,730 patients with 
type 2 diabetes 

Increased risk of adverse 
cardiovascular outcomes 
with sulfonylurea 
treatment or combination 
therapy of sulfonylurea + 
metformin 

 558 

Meta-regression 
analysis of 18 
studies  

Increased risk of 
cardiovascular mortality 
and events with 
sulfonylurea treatment 

 559 

Glicazide and 
glimepiride vs. 
glibenclamide  

Network meta-
analysis of 167, 
327 patients 

Gliclazide and 
glimepiride lowered the 
risk of cardiovascular-
related mortality and all-
cause mortality than 
glibenclamide. 

 560 

Non-specific, long-
acting sulfonylureas 
(glyburide, 
glimepiride) 

Retrospective 
cohort analysis of 
17,604 sulfonylurea 
initiators 

Does not increase 
myocardial infarction, 
ischemic stroke, 
cardiovascular deaths or 
all-cause mortality 

 561 

Short-acting 
sulfonylureas 
(glicazide, glipizide, 
tolbutamide) 

Increases myocardial 
infarction, ischemic 
stroke, cardiovascular 
deaths or all-cause 
mortality 

     

Thiazolidinediones     

Pioglitazone  

Bind avidly 
to 
peroxisome 
proliferator-
activated 
receptor 
gamma in 
adipocytes to 
promote 
adipogenesis 
and fatty 
acid uptake 

5238 type 2 
diabetic patients 
treated with either 
pioglitazone or 
placebo for 4 years 

Pioglitazone increases 
the percent of heart 
failure hospitalizations 
but associated with 
decreased cardiac 
ischemic events 

 563 

Rosiglitazone 

5,269 subjects with 
impaired glycemic 
control treated with 
ramipril, 
rosiglitazone or 
placebo 

Rosiglitazone increased 
new-onset heart failure 
despite decrease 
diabetes 

564 

4447 type 2 
diabetic patients on 
metformin or 
sulfonylurea 
monotherapy 
received either 

Rosiglitazone increased 
the risk of heart failure or 
hospitalization 

565 
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rosiglitazone or a 
combination of 
metformin and 
sulfonylurea 

    

Dipeptidyl-peptidase 
4 (DPP4) inhibitors 

    

Saxagliptin  

Block the 
action of 
Dipeptidyl-
peptidase 4 
(DPP4) on 
incretins 

Type 2 diabetic 
patients who had a 
history of, or were 
at risk for 
cardiovascular 
events received 
saxagliptin or 
placebo and 
followed individuals 
for 2 years  

Saxagliptin increased the 
rate of hospitalization for 
heart failure in type 2 
diabetic patients, with no 
effect on any other 
outcomes including rate 
of ischemic events, 
myocardial infarction, or 
death 

 
590 

Alogliptin 

Type 2 diabetic 
patients with a 
recent acute 
coronary syndrome 
(either an acute 
myocardial 
infarction or 
unstable angina 
requiring 
hospitalization 
within the previous 
15 to 90 days), 
received either 
alogliptin or 
placebo and were 
followed individuals 
for 40 months 
 

Alogliptin was non-
inferior to placebo on 
major adverse 
cardiovascular events 
(MACE - rates of death 
from cardiovascular 
causes, nonfatal 
myocardial infarction, 
and nonfatal stroke)  

591 
 

Sitagliptin 

Type 2 diabetic 
patients with pre-
existing 
cardiovascular 
disease received 
either Sitagliptin or 
placebo and were 
followed for 3 years  
 

Sitagliptin neither 
improved or decreased 
rates of cardiovascular 
events such as death, 
myocardial infarction, 
stroke, or hospitalization 
for heart failure  

593 
 

Sitagliptin 

Type 2 diabetes 
received either 
sitagliptin or 
conventional 
therapy and were 
followed for 2 years 
 

 
Sitagliptin did not have 
any additional effects on 
the progression of 
carotid IMT in 
participants with type 2 
diabetes; no significant 

 
595 
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differences between 
groups 
 

DDP-4 Inhibitors 

Identified patients 
from Taiwan's 
National Health 
Insurance 
Research who were 
diagnosed with type 
2 diabetes mellitus 
(T2DM) and had 
previous history of 
HF between 2009 
and 2013 who did 
and did not use 
DPP-4 inhibitors. 

The risks of all-cause 
mortality, and mortality 
from the combination of 
MI and stroke, and 
ischemic stroke were 
lower for patients 
receiving DPP-4 
inhibitors than for those 
who did not receive this 
treatment. The risk of 
hospitalization for heart 
failure had no significant 
differences between 
groups. 

 
596 

DPP-4 inhibitors 

Analysis of heart 
failure patients with 
diabetes mellitus 
who were 
hospitalized due to 
their heart failure 
and discharged 
from Fukushima 
Medical University 
between 2009 and 
2013, and either did 
or did not take 
DPP4 inhibitors 
 

DPP-4 inhibitor use was 
associated with low 
cardiac and all-cause 
mortality in heart failure 
patients with diabetes 
mellitus hospitalized for 
heart failure  

597 

DPP-4 inhibitors 

A meta-analysis of 
randomized clinical 
trials to determine 
the effect of DPP4 
inhibitors on the 
incidence of MACE, 
cancer, and 
pancreatitis 
 

DPP-4 inhibitor use may 
be associated with a 
possible protection from 
cardiovascular events  

599 

DPP-4 inhibitors 

A systematic review 
of articles with the 
search terms DPP-
IV 
inhibitors and heart 
failure  in full 
papers and 
abstracts  published 
since October 2013  
 

DPP-4 inhibitor use may 
increase the risk of 
hospitalization for heart 
failure, should be used 
with caution especially in 
patients with a history of 
CVD and heart failure 
  

 
600 

DPP-4 inhibitors 

A meta-analysis of 
clinical trials 
assessing the 

effects of DPP‐4 
inhibitors in 

DPP‐4 inhibitors have a 
no significant effects on 

both all‐cause and 
cardiovascular mortality; 
there is a statistically 

601 
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participants with 
type 2 diabetes 
mellitus 
 

significant increase in 
heart failure 
hospitalizations with 

DPP‐4 inhibitors in 
comparison with placebo 
or other hypoglycemic 
agents 
 

Sitagliptin 

Male CD-1 mice 
received sitagliptin 
prior to 30 min 
myocardial 
ischemia and 4 h 
reperfusion 

Sitagliptin limited 
myocardial infarct size 
post myocardial ischemia 
and reperfusion  

654 

Sitagliptin 

db/db mice 
received either 
sitagliptin or vehicle 
for 8 weeks 
 

Sitagliptin decreased LV 
passive stiffness and 
improved global LV 
performance  

602 
 

Vildagliptin 

Sprague-Dawley 
rats pretreated with 
either vildagliptin or 
vehicle then 
subjected to 
coronary ligation to 
induce MI  

Vildagliptin showed no 
cardioprotective effects 
on cardiac function, 
remodeling, or infarct 
size  

603 

 

 

   

Glucagon-like 
peptide 1 (GLP-1) 
receptor agonists 

 

   

Exenatide 

Mimic the 
action of 
incretin on 
insulin 
release from 
the pancreas  

Patients with type 2 
diabetes, with or 
without previous 
cardiovascular 
disease received 
either exenatide or 
placebo and were 
followed for 3 years 
 

Exenatide showed no 
significant differences in 
the incidence of major 
adverse cardiovascular 
events 

576 

Lixisenatide 

Type 2 diabetes 
who had had a 
myocardial 
infarction or who 
had been 
hospitalized for 
unstable angina 
within the previous 
180 days received 
either lixisenatide or 
placebo and were 
followed for 2 years 
 

Lixisenatide treatment 
showed no significant 
effect on major adverse 
cardiovascular events 
(MACE) between type 2 
diabetic patients who 
had a recent acute 
coronary event 

577 
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Liraglutide 

Patients with type 2 
diabetes and high 
cardiovascular risk; 
individuals received 
either liraglutide or 
placebo and were 
followed up for 3 
years 
 
 

Liraglutide treatment 
demonstrated a lower 
risk of MACE, including 
the rate of the first 
occurrence of death from 
cardiovascular causes, 
nonfatal myocardial 
infarction, or nonfatal 
stroke  

578 

Semaglutide 

Type 2 diabetic 
patients received 
either semaglutide 
or placebo for 104 
weeks 
 

Semaglutide lowered the 
rate of cardiovascular 
death, nonfatal 
myocardial infarction, or 
nonfatal stroke  

 
575 

Liraglutide 

Patients with 
established heart 
failure and reduced 
LVEF who were 
recently 
hospitalized 
received either 
liraglutide or 
placebo and were 
followed for  
180 days 

Liraglutide showed no 
improved post-
hospitalization clinical 
stability with Liraglutide 
in recently hospitalized 
patients with established 
heart failure and reduced 
ejection fraction 

 
579 

Liraglutide 

Diabetic and 
nondiabetic 
patients with 
reduced left 
ventricular ejection 
fraction received 
either liraglutide or 
placebo for 24 
weeks 
 

Liraglutide did not 
improve LVEF or systolic 
function, and was 
associated with an 
increase in heart rate 
and more serious cardiac 
adverse events 

580 

 

Male Sprague-
Dawley rats 
received either 
exenatide analog 
AC3174 or vehicle 
two weeks post-MI 
for 11 weeks 

Exenatide analog, 
AC3174, improved 
cardiac function, 
morphology and survival 

655 

Exendin-4 

 
Male Sprague-
Dawley rats heart 
received either 
exendin-4 or GLP-
1(9-36) amide, the 
primary 
endogenous 
metabolite of GLP-
1, following 45 
minutes ischemia 

Exendin treatment 
administered at 
reperfusion reduced 
infarct size and improved 
mechanical performance 
in isolated Sprague 
Dawley rat hearts during 
ischemia-reperfusion 
 

656 
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prior to 120 minutes 
reperfusion 
 

Liraglutide 

Male C57BL/6 mice 
received liraglutide 
for 1 week prior to a 
permanent surgical 
ligation of the left 
anterior descending 
artery  

Liraglutide treatment 
decreased infarct size, 
and improved cardiac 
output 4 weeks post 
ischemia in mice 
 

657 

 

 

   

sodium-glucose 
transport protein 2 
(SGLT2) inhibitors 

 

   

Empagliflozin 

Inhibit 
sodium-
glucose 
transport 
protein 2 in 
the kidney 
and prevent 
the kidneys 
from 
reabsorbing 
glucose back 
into the 
blood 

Patients with type 2 
diabetes at high risk 
for cardiovascular 
events; individuals 
received either 
empagliflozin or 
placebo once daily 
and were followed 
up for around 3 
years  

Empagliflozin treatment 
showed a lower 
occurrence of death from 
cardiovascular causes, 
nonfatal myocardial 
infarction, or nonfatal 
stroke, and a reduction in 
overall mortality and 
heart failure 
hospitalization in type 2 
diabetics patients with 
cardiovascular risk 
compared to placebo 

607 

Canagliflozin 

Patients with type 2 
diabetes and an 
elevated risk of 
cardiovascular 
disease; individuals 
received either 
canagliflozin or 
vehicle and were 
followed for 188 
weeks  
 

Canagliflozin showed a 
lower risk of 
cardiovascular events  

612 

Dapagliflozin 

Patients with type 2 
diabetes who had 
or were at risk for 
atherosclerotic 
cardiovascular 
disease; individuals 
received ither 
dapagliflozin or 
placebo and were 
followed for 4 years  
 

Dapagliflozin showed a 
reduction in 
cardiovascular death and 
heart failure 
hospitalization  

611 

Dapagliflozin 
Patients with heart 
failure and reduced 
ejection fraction 

Dapagliflozin reduced 
the risk of mortality and 
heart failure reduction in 

609 
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with or without type 
2 diabetes; 
individuals received 
either dapagliflozin 
or placebo and 
were followed for 
around 18 months  

patients with heart failure 
and reduced ejection 
fraction with or without 
type 2 diabetes 

Empagliflozin 

 
Patients with class 
II, III, or IV heart 
failure and an 
ejection fraction of 
40% or less; 
individuals received 
empagliflozin or 
placebo and were 
followed for 16 
months  
 

Individuals receiving 
empagliflozin had a 
lower risk of 
cardiovascular death or 
hospitalization for heart 
failure than those 
receiving placebo, 
regardless of the 
presence or absence of 
diabetes 
 

610 

Empagliflozin 

 
ob/ob−/− mice 
received 
empagliflozin  
 for 10 weeks  

Empagliflozin improved 
cardiac contractility, by 
fractional area change, 
and improved 
microvascular function 
after 10 weeks of 
treatment compared to 
controls 

613 

Empagliflozin 

Spontaneous 
hypertensive rats 
(SHR) fed with high 
fat diet received 
empagliflozin for 12 
weeks  

Empagliflozin attenuated 
cardiac fibrosis and 
improved hemodynamics 
in in a hypertensive rat 
heart failure model 

614 

 

 

   

Insulin 

 

   

Insulin 

Enhances 
glucose 
uptake and 
oxidation  

12,537 people with 
cardiovascular risk 
factors plus 
impaired fasting 
glucose, impaired 
glucose tolerance, 
or type 2 diabetes 
to receive insulin or 
standard care 

Rates of incident 
cardiovascular outcomes 
were similar in the 
insulin-glargine and 
standard-care 

619 

7637 patients with 
type 2 diabetes to 
receive either 
insulin degludec or 
insulin glargine 

Degludec was 
noninferior to glargine 
concerning the incidence 
of major cardiovascular 
events 

620 

  1 
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Table 3: The effects of different classes of heart failure therapies on 

glycemic control and diabetic cardiomyopathy 

 
Class of the 
therapy  

Biological 
target of 
each drug 
class 

Study 
characteristics  

Main findings References  

Renin-Aldosterone-
Angiotensin System 
inhibitors 

    

Renin-Aldosterone-
Angiotensin System 
inhibitors 

Reduce 
sodium and 
water 
retention  

Case-control study 
of 6,649 diabetic 
patients using ACE 
inhibitors 

Increased the 
hospitalization for 
severe 
hypoglycemia 

624 

Temocapril Diabetic mice 
treated with 
temocapril for 14 
days 

Temocapril 
decreased 
improved glycemic 
control 

621 

Captopril 

Single blind, cross-
over study with 16 
type 2 diabetic 
patients treated with 
captopril or placebo 
for two 3-month 
treatment periods 

Captopril improved 
glycemic control 
and insulin 
sensitivity in 
postprandial 
conditions 

622 

130 diabetic patients 
treated with captopril 
for 4 months 

Captopril improved 
glucose control 

623 

     

Lipid-lowering 
agents 

    

Lipid-lowering 
agents 

Inhibitor of 
HMG-CoA 
reductase, 
the enzyme 
that catalyses 
the first step 
of cholesterol 
synthesis 

Meta-analysis of 9 
trials  

Statins increase 
HbA1C levels 

626 

Meta-analysis of 23 
trials  

Statins increase 
HbA1C levels 

627 

Pitavastatin Meta-analysis of 23 
trials 

Improved glycemic 
control 

627 

Atorvastatin Meta-analysis of 23 
trials 

Worsened glycemic 
control 

627 

Atorvastatin, 
rosuvastatin, 
pitavastatin and 
simvastatin 

National health 
screening cohort of 
379,865 non-
diabetic individuals 

Statins increase 
fasting glucose 
levels 

658 
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taking statins for 11 
years 

     

ß-receptor blockers     

Atenolol, metoprolol 

Reduce 
sympathetic 
output in the 
heart 

Retrospective study 
of patients receiving 
either carvedilol or a 
selective second-
generation beta-
blocker (metoprolol 
or atenolol) 

Metoprolol or 
atenolol increased 
hypoglycemia 

631 

Propranolol, 
metoprolol 

20 hypertensive 
diabetic patients 
receiving 
propranolol or 
metoprolol 

Propranolol or 
metoprolol 
increased mean 
blood sugar levels 

632 

Second generation 
ß1-selective-
blockers 
(Metoprolol) 

Randomized, 
double-blind 
parallel-group trial 
with 1235 diabetic 
patients treated with 
carvedilol or 
metoprolol 

Metoprolol 
increased HbA1C 

633 

Third generation 
non-selective ß-
blockers 
(Carvedilol) 

Randomized, 
double-blind 
parallel-group trial 
with 1235 diabetic 
patients treated with 
carvedilol or 
metoprolol 

Carvedilol improved 
insulin sensitivity  

633 

     

Aldosterone 
antagonists 

    

Spironolactone 

Reduce 
sodium and 
water 
retention 

25 dilated 
cardiomyopathy 
patients with a New 
York Heart 
Association 
functional class of I 
or II were examined 
before and after 
treatment with 
spironolactone for 
12 months 

Spironolactone 
reduced collagen 
accumulation in the 
heart and improved 
LV function 

635 

30 medically treated 
ambulatory 
hypertensive 
patients with 

Spironolactone 
improved diastolic 
function and limited 
fibrosis 

 636 
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diastolic dysfunction 
and without 
ischemia were 
randomized to 
spironolactone or 
placebo for 6 
months 

Eighty patients with 
metabolic syndrome 
treated with 
angiotensin II 
inhibition, were 
randomized to 
spironolactone or 
placebo for 6 
months 

Spironolactone 
improved diastolic 
function and limited 
fibrosis 

637 
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