Quentin Stern

Quentin Stern
Claude Bernard University Lyon 1 | UCBL

Master of Science
PhD student at CRMN, Lyon, France Marie Skłodowska-Curie fellow

About

33
Publications
2,244
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
235
Citations
Citations since 2017
31 Research Items
220 Citations
2017201820192020202120222023020406080
2017201820192020202120222023020406080
2017201820192020202120222023020406080
2017201820192020202120222023020406080

Publications

Publications (33)
Article
Full-text available
Zero- to ultralow-field nuclear magnetic resonance is a modality of magnetic resonance experiment which does not require strong superconducting magnets. Contrary to conventional high-field nuclear magnetic resonance, it has the advantage of allowing high-resolution detection of nuclear magnetism through metal as well as within heterogeneous media....
Preprint
Full-text available
NMR based analysis of metabolite mixture provides crucial information on biological systems but mostly rely on 1D 1H experiments for maximizing sensitivity. However, strong peak overlap of 1H spectra often is a limitation for the analysis of inherently complex biological mixtures. Dissolution Dynamic Nuclear Polarization (d-DNP) improves NMR sensit...
Preprint
Full-text available
Dynamic nuclear polarization (DNP) is capable of boosting signals in nuclear magnetic resonance by orders of magnitude by creating out-of-equilibrium nuclear spin polarization. The diffusion of nuclear spin polarization in the vicinity of paramagnetic dopants is a crucial step for DNP and remains yet not well understood. In this Letter, we show tha...
Preprint
Full-text available
Zero- to ultralow-field nuclear magnetic resonance is a modality of magnetic resonance experiment which does not require strong superconducting magnets. Contrary to conventional high-field nuclear magnetic resonance, it has the advantage of allowing high resolution detection of nuclear magnetism through metal as well as within heterogeneous media....
Article
Full-text available
Typical magnetic resonance experiments are routinely limited by weak signal responses. In some cases, the low intrinsic sensitivity can be alleviated by the implementation of hyperpolarization technologies. Dissolution-dynamic nuclear polarization offers a means of hyperpolarizing small molecules. Hyperpolarized water is employed in several dynamic...
Article
Full-text available
The low sensitivity of conventional nuclear magnetic resonance experiments can be overcome, in suitable cases, by employing hyperpolarization methodologies. One such technique, dissolution-dynamic nuclear polarization, provides a robust means of strongly polarizing a variety of small molecules. A drawback of the dissolution-dynamic nuclear polariza...
Preprint
Full-text available
Zero- to ultralow-field nuclear magnetic resonance is a modality of magnetic resonance experiment which does not require strong superconducting magnets. Contrary to conventional high-field nuclear magnetic resonance, it has the advantage of allowing high resolution detection of nuclear magnetism through metal as well as within heterogeneous media....
Article
A strategy of dipolar order mediated nuclear spin polarization transfer has recently been combined with dissolution-dynamic nuclear polarization (dDNP) and improved by employing optimized shaped radiofrequency pulses and suitable molecular modifications. In the context of dDNP experiments, this offers a promising means of transferring polarization...
Article
Full-text available
Dissolution-dynamic nuclear polarization can be boosted by employing multiple-contact cross-polarization techniques to transfer polarization from ¹H to ¹³C spins. The method is efficient and significantly reduces polarization build-up times, however, it involves high-power radiofrequency pulses in a superfluid helium environment which limit its imp...
Article
Full-text available
Dissolution dynamic nuclear polarization (dDNP) has become a hyperpolarization method of choice for enhancing nuclear magnetic resonance (NMR) signals. Nuclear spins are polarized in solid frozen samples (in a so-called polarizer) that are subsequently dissolved and transferred to an NMR spectrometer for high sensitivity detection. One of the criti...
Article
Full-text available
Dissolution dynamic nuclear polarization is used to prepare nuclear spin polarizations approaching unity. At present, 1H polarization quantification in the solid state remains fastidious due to the requirement of measuring thermal equilibrium signals. Line shape polarimetry of solid-state nuclear magnetic resonance spectra is used to determine seve...
Article
This review article intends to provide insightful advice for dissolution-dynamic nuclear polarization in the form of a practical handbook. The goal is to aid research groups to effectively perform such experiments in their own laboratories. Previous review articles on this subject have covered a large number of useful topics including instrumentati...
Article
Full-text available
Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) has enabled promising applications in spectroscopy and imaging, but remains poorly widespread due to experimental complexity. Broad democratization of dDNP could be realized by remote preparation and distribution of hyperpolarized samples from dedicated facilities. Here we show th...
Article
Full-text available
We have recently demonstrated the use of contactless radiofrequency pulse sequences under dissolution-dynamic nuclear polarization conditions as an attractive way of transferring polarization from sensitive 1H spins to insensitive 13C spins with low peak radiofrequency pulse powers and energies via a reservoir of dipolar order. However, many factor...
Preprint
p>Dissolution-dynamic nuclear polarization can be boosted by employing multiplecontact cross-polarization techniques to transfer polarization from 1H to 13C spins. The method is efficient and significantly reduces polarization build-up times, however, it involves high-power radiofrequency pulses in a superfluid helium environment which limit its im...
Article
Full-text available
Dynamic nuclear polarization (DNP) is a widely used tool for overcoming the low intrinsic sensitivity of nuclear magnetic resonance spectroscopy and imaging. Its practical applicability is typically bounded, however, by the so-called "spin diffusion barrier," which relates to the poor efficiency of polarization transfer from highly polarized nuclei...
Preprint
Full-text available
Dissolution-dynamic nuclear polarization is emerging as a promising means to prepare proton polarizations approaching unity. At present, 1H polarization quantification remains fastidious due to the requirement of measuring thermal equilibrium signals. Lineshape polarimetry of solid-state nuclear magnetic resonance spectra is used to determine a num...
Preprint
Full-text available
Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) has brought highly sensitive magnetic resonance to reality and has triggered the development of a plethora of promising applications in spectroscopy and imaging. Unfortunately, some severe limitations still restrain its widespread use, amongst which the experimental complexity, th...
Article
Metabolomics plays a pivotal role in systems biology, and NMR is a central tool with high precision and exceptional resolution of chemical information. Most NMR metabolomic studies are based on 1H 1D spectroscopy, severely limited by peak overlap. 13C NMR benefits from a larger signal dispersion but is barely used in metabolomics due to ca. 6000-fo...
Preprint
Full-text available
Magnetic resonance imaging and spectroscopy often suffer from a low intrinsic sensitivity, which can in some cases be circumvented by the use of hyperpolarization techniques. Dissolution-dynamic nuclear polarization offers a way of hyperpolarizing 13C spins in small molecules, enhancing their sensitivity by up to 4 orders of magnitude. This is usua...
Article
Full-text available
Magnetic resonance imaging and spectroscopy often suffer from a low intrinsic sensitivity, which can in some cases be circumvented by the use of hyperpolarization techniques. Dissolution-dynamic nuclear polarization offers a way of hyperpolarizing 13C spins in small molecules, enhancing their sensitivity by up to 4 orders of magnitude. This is usua...
Article
Full-text available
Dynamic nuclear polarization at 1.2K and 6.7T allows one to achieve spin temperatures on the order of a few millikelvin, so that the high-temperature approximation (ΔE<kT) is violated for the nuclear Zeeman interaction ΔE=γB0h/(2π) of most isotopes. Provided that, after rapid dissolution and transfer to an NMR or MRI system, the hyperpolarized mole...
Article
The affinity between a chosen target protein and small molecules is a key aspect of drug discovery. Screening by popular NMR methods such as Water-LOGSY suffers from low sensitivity and from false positives caused by aggregated or denatured proteins. This work demonstrates that the sensitivity of Water-LOGSY can be greatly boosted by injecting hype...

Network

Cited By