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To my friend Marcel F. Neuts for his pioneering  
contributions to stochastic models



i

Preface

Stochastic systems are involved in many practical areas, such as applied 
probability, queueing theory, reliability, risk management, insurance and finance, 
computer networks, manufacturing systems, transportation systems, supply chain 
management, service operations management, genomic engineering and biological 
sciences. When analyzing a stochastic system, block-structured stochastic models 
are found to be a useful and effective mathematical tool. In the study of the block- 
structured stochastic models, this book provides a unified, constructive and 
algorithmic framework on two important directions: performance analysis and 
system decision. Different from those books given in the literature, the framework 
of this book is systematically organized by means of the UL- and LU-types of 
RG-factorizations, which are completely developed in this book and have been 
extensively discussed by the author. The RG-factorizations can be applied to provide 
effective solutions for the block-structured Markov chains, and are shown to be 
also useful for optimal design and dynamical decision making of many practical 
systems, such as computer networks, transportation systems and manufacturing 
systems. Besides, this book uses the RG-factorizations to deal with some recent 
interesting topics, for example, tailed analysis, continuous-state Markov chains, 
quasi-stationary distributions, Markov reward processes, Markov decision processes, 
sensitivity analysis, evolutionary game and stochastic game. Note that all these 
different problems can be dealt with by a unified computational method through 
the RG-factorizations. Specifically, this book pays attention to optimization, control, 
decision making and game of the block-structured stochastic models, although 
available results on these directions are still few up to now. 

The block-structured stochastic models began with studying the matrix-geometric 
stationary probability of a Quasi-Birth-And-Death (QBD) process which was 
first proposed to analyze two-dimensional queues or computer systems, e.g., see 
Evans (1967) and Wallace (1969). The initial attention was directed toward per- 
formance computation. Neuts (1978) extended the results of the QBD processes 
to Markov chains of 1GI M  type for the first time. Based on the phase type (PH) 
distribution given in Neuts (1975), Neuts (1981) opened an interesting and crucial 
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door in numerical analysis of stochastic models, which has become increasingly 
important for dealing with large-scale and complex stochastic systems due to 
advent more powerful computational ability under fast development of computer 
technology and communication networks. For a complete understanding of stochastic 
models, it is necessary to review two key advances. Firstly, Neuts (1981) considered 
Markov chains of 1GI M  type whose stationary probability vectors are the matrix- 
geometric form, called matrix-geometric solution. For the matrix-geometric solution, 
the matrix R, the minimal nonnegative solution to the nonlinear matrix equation 

0
,k

k
k

R R A  plays an important role. He indicated that numerical computation 

of Markov chains of 1GI M  type can be transformed to that of the matrix R, and 
then an infinite-dimensional computation for the stationary probability vector is 
transformed to another finite-dimensional computation for the censored Markov 
chain to level 0. Readers may refer to Neuts (1981), Latouche and Ramaswami 
(1999), Bini, Latouche and Meini (2005) and others therein. Secondly, as a 
companion research for Markov chains of 1GI M  type, Neuts (1989) provided a 
detailed discussion for Markov chains of 1M G  type whose stationary probability 
vector has a complicated form, called matrix-iterative solution. Although the two 
types of Markov chains have different block structure, the matrix-iterative solution 
has many properties similar to those in the matrix-geometric solution, for example, 
the matrix-iterative solution is determined by the minimal nonnegative solution 

G to another key nonlinear matrix equation 
0

.k
k

k
G A G

These results given in Neuts’ two books (1981, 1989) are simple, perfect and 
computable. However, Markov chains of GI/M/1 type and Markov chains of M/G/1
type are two important examples in the study of block-structured stochastic models, 
while analysis of many practical stochastic systems needs to use more general 
block-structured Markov chains, e.g., see retrial queues given in Artalejo and 
Gómez-Corral (2008) and other stochastic models given in Chapters 1 and 7 of this 
book. Under the situation, these practical examples motivate us in this book to 
develop a more general algorithmic framework for studying the block-structured 
stochastic models, including generalization of the matrix-geometric solution and 
the matrix-iterative solution from the level independence to the level dependence. 
It is worthwhile to note that such a generalization is not easy and simple, it needs 
and requires application of new mathematical methods. During the two decades, 
the censoring technique is indicated to be a key method for dealing with more 
general block-structured Markov chains. Grassmann and Heyman (1990) first 
used the censoring technique to find some basic relationships between the matrix- 
geometric solution and the matrix-iterative solution from a more general model: 
Markov chains of GI/G/1 type. Furthermore, Heyman (1995) applied the censoring 
technique to provide an LU-decomposition for any ergodic stochastic matrix of 
infinite size, Li (1997) gave the LU-decomposition for Markov chains of GI/M/1 
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type and also for Markov chains of M/G/1 type, and Zhao (2000) obtained the 
UL-type RG-factorization for Markov chains of GI/M/1 type. From these works, 
it may be clear that finding such matrix decomposition for general Markov chains 
is a promissing direction for numerical solution of block-structred stochastic models. 
Along similar lines, we have systematically developed the UL- and LU-types of 
RG-factorizations for any irreducible Markov chains in the past ten years, e.g., 
see Li and Cao (2004), Li and Zhao (2002, 2004) and Li and Liu (2004). This 
book summarizes many important results and basic relations for block-structured 
Markov chains by means of the RG-factorizations. The RG-factorizations are derived 
for any irreducible Markov chains in terms of the Wiener-Hopf equations, while 
some useful iterative relations among the R-, U- and G-measures are organized in 
the Wiener-Hopf equations. Specifically, the iterative relations are sufficiently 
helpful for dealing with performance computation and system decision. On the 
other hand, this book also provides new probabilistic interpretations for those results 
obtained by Neuts’ method. We may say that the RG-factorizations begin a new 
era in the study of block-structured stochastic models with an algebraic and 
probabilistic combination.  

The main contribution of this book is to construct a unified computational 
framework to study stochastic models both from stationary solution and from 
transient solution. When a practical system is described as a block-structured 
Markov chain, performance computation and system decision can always be 
organized as a system of linear equations: 0xA  or xA b  where 0b . This 
book provides two different computational methods to deal with the system of linear 
equations. At the same time, it is seen from the computational process that the 
middle diagonal matrix of the RG-factorizations plays an important role based on 
the state classification of Markov chains.  

Method In this method the matrix A can be shown to have a UL-type 
RG-factorization

0 1 2( ) diag ( , , , ...) ( ),U LA I R I G

where the size of the matrix 0  is always small and finite in level 0. This book 
summarizes two important conclusions:  

(1) If the block-structured Markov chain is positive recurrent, then the matrix 
0  is singular and all the other matrices k  for k 1 are invertible. In this case, 

the UL-type RG-factorization can be used to solve the system of linear equations: 
xA 0 given in Section 2.4, and then such a solution can be used to obtain 
stationary performance analysis.  

(2) If the block-structured Markov chain is transient, then the matrix k  is 
invertible for k 0. In this case, the UL-type RG-factorization is used to solve the 
system of linear equations: xA b with 

1 1 1 1 1
0 1 2( ) diag ( , , , ...) ( ) ,L Ux b I G I R

which leads to transient performance analysis. 



iv

Method In this method the matrix A can be shown to have an LU-type 
RG-factorization

0 1 2( ) diag ( , , , ...) ( ),L UA I R I G

where the matrix k  is invertible for k 0. Therefore, the LU-type RG-factorization 
can be used to deal with the system of linear equations: xA b with 

1 1 1 1 1
0 1 2( ) diag ( , , , ...) ( ) ,U Lx b I G I R

which further leads to transient performance analysis of a stochastic model.  
This book has grown out of my research and lecture notes on the matrix-analytic 

methods since 1997. Although I have made an effort to introduce explanations and 
definitions for mathematical tools, crucial concepts and basic conclusions in this 
book, it is still necessary for readers to have a better mathematical background, 
including probability, statistics, Markov chains, Markov renewal processes, Markov 
decision processes, queueing theory, game theory, matrix analysis and numerical 
computation. Readers are assumed to be familiar with the basic materials or parts 
of them.  

The organization of this book is strictly logical and more complete from 
performance computation to system decision. This book contains eleven chapters 
whose structured relationship is shown in Fig. 0.1. Chapters 1 and 7 introduce 
motivating examples from different research areas, such as queueing theory, 
computer networks and manufacturing systems. The examples are first described 
as the block-structured Markov chains, then they will help readers to understand 
the basic structure of practical stochastic models. Chapters 2, 3, 5, 6 and 9 sys- 
tematically develop the construction of the RG-factorizations for Markov chains, 
Markov renewal processes and -discounted transition matrices. Chapters 4, 8, 
10 and 11 apply the RG-factorizations to deal with some current interesting topics 
including tailed analysis, Markov chains on a continuous state space, transient 
solution, Markov reward processes, sensitivity analysis and game theory, respectively. 
Finally, we also provide two useful appendices which may be basically helpful for 
readers to understand the contents of this book. Every chapter consists of a brief 
summary, a main body and a discussion with “Notes in the Literature”. At the 
same time, every chapter also contains a number of problems whose purpose is to 
help readers understand the corresponding concepts, results and conclusions. 

It is hoped that this book will be useful for the first-year graduate students or 
advanced undergraduates, as well as researchers and engineers who are interested 
in, for example, applied probability, queueing theory, reliability, risk management, 
insurance and finance, communication networks, manufacturing systems, trans- 
portation systems, supply chain management, service operations management, 
performance evaluation, system decision, and game theory with applications. We 
suggest a full semester course with two or three hours per week. Shorter courses 
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can be also based on part of the chapters, for instance, engineering students or 
researchers may only study Chapters 1, 2, 6, 8, 10 and 11.  

Figure 0.1 Organization of this book
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Abstract In this chapter, we provide an introduction to Markov chains, 
practical examples for block-structured Markov chains, QBD processes, UL- 
and LU-types of RG-factorizations for QBD processes, the phase type (PH) 
distribution, the Markovian arrival process (MAP) and the matrix-exponential 
distribution. We list some necessary definitions and useful results, which are 
basic and crucial preliminaries in the study of stochastic models. 

Keywords stochastic model, block-structured Markov chain, QBD process, 
RG-factorization, phase type distribution, Markovian arrival process, matrix- 
exponential distribution. 

In this chapter, we provide some basic and useful preliminaries in the study of 
stochastic models. This contains a simple introduction to Markov chains with 
discrete state space, motivating practical examples for how to construct block- 
structured Markov chains, applying the censoring technique to deal with a QBD 
process with either finitely-many levels or infinitely-many levels, the UL- and 
LU-types of RG-factorizations for the QBD process, the PH distribution, the 
Markovian arrival process and the matrix-exponential distribution. These contents 
are organized in seven sections. Here, we mainly list the main definitions and 
results without proofs. Readers may refer to Neuts [92,94] and others for the 
proofs, if necessary. 

1.1 Stochastic Systems 

In this section, we show that Markov chain is a useful mathematical tool in the 
study of stochastic systems. We provide some useful discussions for Markov chains 
with discrete state space that are described as different types of block-structured 
Markov chains. These are useful for understanding the sequence of this book. 



Constructive Computation in Stochastic Models with Applications 

2

Modern science and technology has created our beautiful life and suitable working 
space. We use various natural or man-made systems on a daily basis. Important 
examples of such systems include manufacturing systems, communication networks 
and transportation systems. From the ordinary observations, we can easily find that 
random factors usually exist in these different systems. Thus, it is not only necessary 
but also important for studying the real systems under stochastic conditions. To do 
this, we now provide a simple introduction to stochastic processes, and specifically, 
Markov chains. 

Let X(t), which is either scalar or vector, be the state of a stochastic system at 
time t. Then {X(t):t 0} in general is a stochastic process. The stochastic process 
is a family of random variables X(t) for t T, where T is a non-null set. If T [0,
+ ] or [0,a] with a>0, then the stochastic process called continuous-time; if T
{0, 1, 2, ...}, then the stochastic process is discrete-time. In this case, we write 
the Markov chain {X(t)} or {Xt}. On the other hand, the stochastic process is 
distinguished by its state which is denoted as a real number. The range of possible
state values for the random variables X(t) for t T is called the state space .   
If [0, + ] or [0,b] with b>0, then the stochastic process is said to have a 
continuous state space; if {0, 1, 2, ...} or {0, 1, 2, ..., M} with M>0, then the 
stochastic process is called to have a discrete state space. In general, a stochastic 
process always has a complicated behavior that is difficult to be analyzed in detail. 
From practical applications, we only need to consider a subset of stochastic processes 
analyzed above. 

1.1.1 The Markov Property 

A discrete-time stochastic process has the Markov property if 

P{Xn+1 | Xn, Xn–1, ..., X0} P{Xn+1 | Xn}.  

Similarly, a continuous-time stochastic process has the Markov property if 

P{X(t+u) | X(s), 0 s u} P{X(t+u) | X(u)}.

Based on the Markov property, we consider an important type of stochastic 
processes: Markov chains on discrete state space, which are either discrete-time 
or continuous-time. 

1.1.2 A Discrete-Time Markov Chain with Discrete State Space 

Let {Xn} be a discrete-time Markov chain with discrete state space, that is, T {0, 
1, 2, ...} and {0, 1, 2, ...}. The probability of Xn+1 being in state j given that 
Xn is in state i is called the one-step transition probability and is denoted by 
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, 1
, 1{ | }.n n

i j n nP P X j X i

If all the one-step transition probabilities are independent of time n 0, then the 
Markov chain is said to be homogeneous; otherwise it is said to be non- 
homogeneous. 

In this book, we mainly analyze the homogeneous Markov chains for simplicity 
of description. In this case, let Pi,j

, 1
,
n n

i jP  for all i,j . We write 

P

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

.

P P P

P P P

P P P

Let

( )
, 0{ | }n

i j nP P X j X i

and ( ) ( )
, , 0

.n n
i j i j

P P  Then it is easy to check that P(n) Pn for each n 2.

State j is said to be accessible from state i if ( )
, 0n

i jP  for some integer n 1, 
denoted as i j. Two states i and j are called communication if each one is 
accessible to the other, writen as i j. It is clear that the communication is an 
equivalence relation: 

(D1) reflexivity i i;
(D2) symmetry if i j, then j i;
(D3) transitivity if i j and j k, then i k.
We can now partition the state space  into some equivalent classes Ck for 

k 1, 2, ..., K. Then 1
K
k kC , where Ci Cj  for i j, and  is an empty 

set. In each equivalent class, all the states can communicate with each other. 
If the state space  has only one equivalent class, then the Markov chain is 

said to be irreducible; otherwise it is called to be reducible. 
Now, we define the period of state i, written as d(i), to be the greatest common 

divison (g.c.d) of all integers n 1 for which ( )
, 0n

i iP . Specifically, if ( )
, 0n

i iP
for all n 1, then d(i) 0. In an equivalent class C , it is easy to prove that 
d(i) d(j) for all i, j C. Furthermore, for an irreducible Markov chain, we 
always have d(i) d( j) for all i, j .

If d(i) 1, then state i is said to be aperiodic; otherwise it is periodic. For an 
irreducible Markov chain, it is said to be aperiodic if there exists a state which is 
aperiodic; while it has period d if there exists a state which is of period d.

                                                       
 From this section, notation for vector or matrix will not use the bold form. 
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In what follows we provide state classification of Markov chains. We write 

( )
, 0{ , for all 1,2,..., 1 | }.n

i i n vf P X i X i v n X i

Clearly, (1)
, ,i i i if P  and for n 1,

( ) ( ) ( )
, , ,

0
.

n
n k n k

i i i i i i
k

P f P

Let

( )
, ,

0
.n

i i i i
n

f f

Then we say that a state i is recurrent if fi,i 1; otherwise it is transient. 
The following proposition provides a necessary and sufficient condition under 

which a state i is recurrent. The proof is standard and is omitted here. 

Proposition 1.1 A state i is recurrent if and only if ( )
,

1

n
i i

n
P ; while a 

state i is transient if and only if ( )
,

1
.n

i i
n

P

It is easy to see that in an equivalent class C , if a state i C is recurrent, 
then each state j C is also recurrent. Furthermore, for an irreducible Markov 
chain, it is clear that if a state i is recurrent, then each state j is also 
recurrent. Such a discussion is also valid for the transient case. 

We can further classify the recurrent class of states into two subsets: positive 
recurrence and null recurrence. To do that, we write 

( )
,

0
.n

i i i
n

m nf

We say that a state i is positive recurrent if mi<+ ; otherwise it is null recurrent. 
In an equivalent class C , it is easy to prove that if a state i C is positive 

recurrent, then each state j C is also positive recurrent. Furthermore, for an 
irreducible Markov chain, it is easy to see that if a state i is positive recurrent, 
then each state j is also positive recurrent. Such a discussion is also valid for 
the null recurrent case. 

For an irreducible Markov chain, we now consider the limiting 

( )
,lim n

i i in
P

with normalization condition 1i
i C

 or 1.i
i

We state the basic limit theorem for Markov chains as follows. 
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Theorem 1.1 For an irreducible, aperiodic and positive recurrent Markov 
chain, there must exist the unique limiting distribution vector ( 0, 1, 2, ...) 
with i 1/mi for all i . At the same time,

( )
,lim n

i j jn
P

is independent of i .
If the Markov chain is either null recurrent or transient, then 

( 0, 1, 2, ...) 0.  

If the Markov chain with period d is irreducible and positive recurrent, then 

( )
,lim ( ),nd

i j jn
P d

which is independent of the initial state i .
For an irreducible, aperiodic and positive recurrent Markov chain, it is clear that 

( )lim lim ,n n

n n
P P e

where e is a column vector of ones with switable size. Thus 

1lim limn n

n n
e P P P P e

which obviously leads to P  and e 1. That is, the limiting distribution 
vector  of the Markov chain P is the unique positive solution to the system of 
equations P  and e 1.

For an irreducible finite-state Markov chain P, it is either positive recurrent or 
transient. When P is positive recurrent, the matrix I P e  is invertible and is 
called the fundamental matrix of the Markov chain; when P is transient, the 
matrix I P is invertible. 

For an irreducible finite-state Markov chain P, the limit 

0

1lim
1

N
n

N n
P

N

must exist and is called the Cesaro limit. We denote the Cesaro limit by P*.
Specifically, P* e  if P is aperiodic and positive recurrent. For the Cesaro limit, 
it is easy to check that 

PP* P*P P*P* P*

and

Pn P* [P P*]n, n 1.  



Constructive Computation in Stochastic Models with Applications 

6

1.1.3 A Continuous-Time Markov Chain with Discrete Space 

We denote by {X(t)} a continuous-time Markov chain with T [0, + ) and 
{0, 1, 2, ...}. We write 

, ( ) { ( ) | ( ) }i jP t P X t u j X u i

which is independent of u 0. The Markov property asserts that Pi, j(t) satisfies  
(C1) Pi, j(t) 0 for all i, j ,
(C2) , ( ) 1i j

j
P t  for all i ,

(C3) , , ,( ) ( ) ( )i j i k k j
k

P s t P s P t  for all s, t 0 (Chapman-Kolmogorov relation), 

and

(C4) ,
0

1, ,
lim ( )

0, .i j
t

i j
P t

i j
Let

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

( ) ( ) ( )
( ) ( ) ( )

( ) .
( ) ( ) ( )

P t P t P t
P t P t P t

P t
P t P t P t

From (C1) to (C4), it is easy to check that 

0
lim ( ) ( ).
h

P t h P t

Therefore, P(t) is also a matrix of continuous functions for t 0. Actually, P(t) is 
a matrix of differentiable functions for t 0 in which the limits 

,

0

1 ( )
lim ,i i

i
h

P h
q i

h

and

,
,

0

( )
lim , and ,i i

i j
h

P h
q i j i j

h

exist, where 0 qi<+  for i , and 0 qi, j<+  for i j and i, j .
Note that 

, ,
{ }

1 ( ) ( ),i i i j
j i

P h P h

which leads to that for i ,
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,
{ }

.i i j
j i

q q

At the same time, the rates qi and qi, j furnish an infinitesimal description as follows: 
For h>0 sufficiently small, i j and i, j ,

,{ ( ) | ( ) } ( ),i jP X t h j X t i q h o h

and for i ,

{ ( ) | ( ) } 1 ( ).iP X t h i X t i q h o h

In contrast to the infinitesimal description, the sojourn description is given as 
follows. If the Markov chain is in state i, then it sojourns there for a duration that 
is exponentially distributed with parameter qi, and can jump to the next state j with 
probability qi, j /qi for j i.

We write 

0 0,1 0,2 0,3

1,0 1 1,2 1,3

2,0 2,1 2 2,3

3,0 3,1 3,2 3

.

q q q q

q q q q

Q q q q q

q q q q

which is called the infinitesimal generator of the continuous-time Markov chain. 
Clearly

0

( )lim .
h

P h I Q
h

Note that 

( ) ( ) ( ) ( )( ) ( ) ,P t h P t P h I P h IP t P t
h h h

we obtain 

 ( ) ( ) ( ) ,P t QP t P t Q

where

0

d ( ) ( )( ) ( ) lim .
d h

P t h P tP t P t
t h

Therefore

 ( ) exp{ }P t Qt
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by means of the initial condition P(0) I. The continuous-time Markov chain 
may also be called the Markov chain Q.

During a similar analysis of the discrete-time Markov chains, we can introduce 
some basic concepts for the continuous-time case, such as, the irreducible and 
reducible, and the aperiodic and periodic. At the same time, we can also give the 
state classification: transience, null recurrence and positive recurrence. 

If the continuous-time Markov chain is irreducible, aperiodic and positive 
recurrent, then the limits ,lim ( )i jt

P t  exist and is independent of the initial state 

i , denoted as j. Let ( 0, 1, 2, ...). Then 

lim ( ) lim exp{ }
t t

P t Qt e

and clearly, the limiting distribution vector is the unique positive solution to the 
system of equations Q 0 and e 1.

1.1.4 A Continuous-Time Birth Death Process 

As a useful example, we now discuss a special continuous-time Markov chain: A 
continuous-time birth death process whose infinitesimal generator is given by 

0 0

1 1 1 1

2 2 2 2

3 3 3 3

( )
,( )

( )
Q

where i >0 for i 0 and j >0 for j 1.
If the birth death process Q is irreducible, aperiodic and positive recurrent, 

then the limiting distribution is given by 

0

, 0,j
j

k
k

j

where

1 0 1 1
0 1

1 2

...1, , 1.
...

k k
k k

k k

k

If 0 0, 0j  and 0j  for j 1, then it is clear that the birth death process 
is transient with absorbing state 0. We denote by gm the probability of absorption 
into state 0 from the initial state m for m 1. Then we have 
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0

, 1,
i

i m
m

i
i

g m

where

1 2
0 1

1 2

...1, , 1.

...
k k

k k
k k

k

1.1.5 Block-Structured Markov Chains 

A practical stochastic system always indicates special block structure of its 
corresponding Markov chain. This motivates us to develop constructively numerical 
computation of stochastic models on the line of Neuts [92, 94]. In what follows 
we summarize the useful block structure of Markov chains applied to real stochastic 
systems recently. 

In the study of stochastic models, Neuts opened a key door for developing 
numerical theory of stochastic models. It is necessary for us to review the two 
books by Neuts in 1981 and 1989, respectively. In the first book, Neuts [92] studied 
a level-independent QBD process whose transition matrix is given by 

1 0

2 1 0

2 1 0

2 1 0

.

B B
B A A

P A A A
A A A

 (1.1) 

By using the QBD process, Chapter 3 of Neuts [92] analyzed the M/PH/1, PH/M/c
and PH/PH/1 queues; Chapter 5 studied buffer models including tandem queues 
and a multiprogramming model; and Chapter 6 discussed queues in random 
environment such as a queue with repairable server, a finitesource priority queue, 
and a queue with paired customers. As an important generalization, Chapter 1 of 
Neuts [92] systemically analyzed a level-independent Markov chain of GI/M/1 
type whose transition matrix is given by 

1 0

2 1 0

3 2 1 0

4 3 2 1 0

.

B B
B A A

P B A A A
B A A A A

 (1.2) 
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Chapter 4 of Neuts [92] discussed the GI/PH/1, GI/PH/c, D/PH/1 and SM/PH/1 
queues.

In the second book, Neuts [94] analyzed a level-independent Markov chain of 
M/G/1 type whose transition matrix is given by 

1 2 3 4

0 1 2 3

0 1 2

0 1

.

B B B B
B A A A

P A A A
A A

 (1.3) 

Applying the Markov chains of M/G/1 type, Neuts [94] studied the M/SM/1 queue 
and its variants in Chapter 4, the BMAP/G/1 queue in Chapter 5, and several practical 
systems such as a data communication model, a poor man’s satellite, and a series 
queue with two servers in Chapter 6. 

Up to now, there have been many applied problems that are described as more 
general block-structured Markov chains. In what follows we list some basic 
examples from the block-structured Markov chains. 

(1) A level-dependent QBD process whose transition matrix is given by 

(0) (0)
1 0
(1) (1) (1)
2 1 0

(2) (2) (2)
2 1 0

(3) (3) (3)
2 1 0

.

A A
A A A

P A A A
A A A

 (1.4) 

(2) A Markov chain of GI/G/1 type whose transition matrix is given by 

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

.

D D D D
D A A A

P D A A A
D A A A

 (1.5) 

(3) A level-dependent Markov chain of GI/M/1 type whose transition matrix is 
given by 

0,0 0,1

1,0 1,1 1,2

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3 3,4

.

A A
A A A

P A A A A
A A A A A

 (1.6) 
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(4) A level-dependent Markov chain of M/G/1 type whose transition matrix is 
given by 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,1 2,2 2,3

3,2 3,3

.

A A A A
A A A A

P A A A
A A

 (1.7) 

(5) A general block-structured Markov chain with infinitely-many levels whose 
transition matrix is given by 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

.

P P P P
P P P P

P P P P P
P P P P

 (1.8) 

(6) A general block-structured Markov chain with finitely-many levels whose 
transition matrix is given by 

0,0 0,1 0,2 0,

1,0 1,1 1,2 1,

2,0 2,1 2,2 2,

,0 ,1 ,2 ,

.

M

M

M

M M M M M

P P P P
P P P P
P P P PP

P P P P

 (1.9) 

Specifically, a Markov chain of M/G/1 type with finitely-many levels whose 
transition matrix is given by 

0,0 0,1 0, 1 0,

1,0 1,1 1, 1 1,

2,1 2, 1 2,

, 1 ,

;

M M

M M

M M

M M M M

A A A A
A A A A

A A AP

A A

 (1.10) 

a Markov chain of GI/M/1 type with finitely-many levels whose transition matrix 
is given by 
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0,0 0,1

1,0 1,1 1,2

2,0 2,1 2,2 2,3

,1 ,2 ,3 ,4 ,

;

M M M M M M

A A
A A A
A A A AP

A A A A A

 (1.11) 

a QBD process with finitely-many levels whose transition matrix is given by 

(0) (0)
1 0
(1) (1) (1)
2 1 0

(2) (2) (2)
2 1 0

( 1) ( 1) ( 1)
2 1 0

( ) ( )
2 1

;

M M M

M M

A A
A A A

A A A
P

A A A
A A

 (1.12) 

a special QBD process with finitely-many levels whose transition matrix is given by 

(0) (0)
1 0
(1)
2

( 1)
0

( ) ( )
2 1

;

M

M M

A A
A B C

A B C
A B C

P

A B C
A B A

A A

 (1.13) 

This book will provide a unified algorithmic framework for dealing with the Markov 
chains given in Eq. (1.1) to Eq. (1.13). 

1.2 Motivating Practical Examples 

In this section, we choose some simple practical systems under exponential-type 
assumptions to indicate how to organize the block-structured Markov chains 
given in Eq. (1.1) to Eq. (1.13). At the same time, more general examples will be 
arranged in Chapter 7 and in Problems of each chapter. Note that similar examples 
are considerable in the literature for studying queueing systems, communication 
networks, manufacturing systems and transportation systems etc. 
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1.2.1 A Queue with Server Vacations 

Queues with server vacations are of an important type of stochastic models, 
which have been extensively applied to communication networks, manufacturing 
systems and transportation systems. The first example analyzes a single-sever 
vacation model. We consider a single-server queue with server vacations, where 
the arrival process is a Poisson process with arrival rate 0 , the service and 
vacation times are i.i.d. with exponential distributions ( ) 1 e xF x  and ( )V y
1 e y , respectively. We assume that the server can take at most N consecutive 
vacations. After the N consecutive vacations, the server has to enter an idle 
period, even though there is no customer in the waiting room. All the random 
variables defined above are assumed to be mutually independent. 

For this system, we denote the number of customers in the system and the state 
of server at time t, by Q(t) and Z(t) respectively. For example, Q(t) 0, 1, 2, ..., and 

,0, if the server is idle,
, , if the server is busy with  customers in the system,( )

if the server has been at the th consecutive vacation, , , and there are  customers in the system.

I
W m mZ t

nV m n m

It is clear from Fig. 1.1 that the Markov chain {(Q(t), Z(t)), t 0} is a QBD 
process Q given in Eq. (1.1) whose block-entries are given by 

Figure 1.1 Relation of state transitions 
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1 2

( )
( )

, ,

( )
( )

B B

0 0 2diag( , , ,..., , ), diag( ,0,0,...,0,0),B A A

1

( )
( )

( )
.

( )
( )

A

1.2.2 A Queue with Repairable Servers 

The second example considers a simple repairable queueing system. We consider 
a queueing system with N identical servers and a repairman. The arrival process 
is a Poisson process with arrival rate 0 , the service times are i.i.d. and are 
exponentially distributed with service rate , and the life and repair times of 
each server are exponentially distributed with parameters  and , respectively. 
We assume that the service discipline is FCFS and the repair discipline is as good 
as new after repaired. All the random variables defined above are assumed to be 
mutually independent. 

Let Q(t) and Z(t) be the number of customers in the system and the number of 
the available servers at time t, respectively. Then the Markov chain {(Q(t), Z(t)),  
t 0} is a QBD process Q given in Eq. (1.12) whose block-entries are given by 

0 0

1 1 1

2 2 2
1

1 1 1

,

N N N

N N

B

B

T
2 2 0(0,0,0,...,0, ), (0,0,0,...,0, ) ,NB B

where
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0

0 2

1 0 2

, 0 ,
diag(min{ , } ), 0 , ,

, , 1 ,
, diag (0, , 2 , ..., ),

,

i

i

i i i

I i N
i j i j N

I i N
A I A N

A A A

( )
2 (2 )

.

( 1) [( 1) ]N N
N N

1.2.3 A Call Center 

The third example discusses a call center which is modeled by means of retrial 
queues. We consider a call center which is described as a retrial queue with impatient 
customers. This system is structured in Fig. 1.2, which indicates that this system 
contains two areas: a service and waiting area, and an orbit. In this system, there  

Figure 1.2 Queueing model for a call center 
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are s parallel identical servers, the sizes of the waiting room and the orbit are 
K s  and r, respectively. The arrival process is a Poisson process with arrival 
rate , the service times are i.i.d. and are exponentially distributed with service 
rate , the retrial time and the patient waiting time are exponential with 
parameters 1  and , respectively. The service discipline is FCFS. Once the 
waiting time of a customer exceeds the patient waiting time, it immediately 
leaves this system. If an arrival customer can not enter the service and waiting 
area, then he has to go to the orbit for a retrial purpose with probability , or he 
will immediately leave this system with probability 1 . Once an arrival customer 
cannot enter the orbit, he immediately leave this system. All the random variables 
defined above are assumed to be mutually independent. 

Let Q(t) and Z(t) be the number of customers in the service and waiting area, 
and the number of customers in the orbit at time t, respectively. Then the Markov 
chain {(Q(t), Z(t)), t 0} is a QBD process with finitely-many levels whose 
infinitesimal generator is given by 

0

1 1

2 2

1 1

,

K K

K K

A C
B A C

B A CQ

B A C
B A

where for 0 i K 1,

,0 ,1 ,2 ,diag( , , , ..., )i i i i i rA a a a a

with for 0 j r,

1
,

1

( ), 0 ,
[ ( ) ], 1 1;i j

j i i sa j s i s s i K

,0

1 ,1

2 ,2

1 , 1

,

,

K

K

K
k

r K r

r K r

f
d f

d f
A

d f
d f

with for 0 j r,

1
,

1

[ (1 ) ( ) ], 0 1,
[(1 ) ( ) ], ,K j

j s K s j rf r s i s j r
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and for 1 j r,

1(1 ) ;

,
j

i i

d j
B b I

with for 0 i K,

, 0 ,
( ) , 1 ;j

i i s
b

s i s s i K

and

1

1

1

.2C

r

1.2.4 A Two-Loop Closed Production System 

The fourth example considers a simple closed loop production line, and constructs 
a block-structured infinitesimal generator. In Fig. 1.3, the rectangles and circles 
represent the machines and buffers in a production line, respectively. There are 
always plenty of raw materials which can be sent to machine M1. Note that each 
operation on the three machines must be performed with the support of some 
carts. Operations on machines M1 and M3 need carts A and B, respectively; while 
operations on machine M2 need carts A and B simultaneously. The manufacturing 
processes on the three machines are given as follows. For the first machine, the 
raw material is first loaded into an empty cart A which comes from buffer Ba, then 
the cart A with the raw material is sent to machine M1. After processing on M1, the 
cart A carries the products to buffer B1 for the further operation on machine M2. If 
the arriving cart A finds that machine M2 is available and there is also an empty 
cart B in buffer Bb, then the carts A and B enter machine M2 together for product 
processing. Once the operation on machine M2 is finished, all the products are 
loaded to cart B from cart A. At the same time, the cart A returns to buffer Ba
while cart B brings the products to buffer B2. Once machine M3 is available, the 
cart B enters machine M3 for the final processing. After all these processes, these 
products must leave this system from machine M3, and the empty cart B returns 
to buffer Bb. The three machines are all reliable and always produce no bad parts. 
Machine M1 is starved if buffer Ba is empty, Machine M2 is starved if either 
buffer B1 is empty or buffer Bb is empty, Machine M3 is starved if B2 is empty. 
We assume that the service times of machine Mi are i.i.d. and are exponentially 
distributed with parameter i for i 1, 2, 3; the total numbers of carts A and carts 
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B are m and n, respectively. All the random variables defined above are assumed 
to be mutually independent. 

Figure 1.3 A two-loop closed production system 

Let s(t) be the state of machine M2 at time t: If the machine is working, s(t) 1, 
otherwise s(t) 0. Let N1(t) and N3(t) denote the total number of carts A in both 
buffer Ba and machine M1 at time t, and the total number of carts B in both buffer 
B2 and machine M3 at time t, respectively. It is seen that this system is described 
as a continuous-time Markov chain {X(t), t 0}, where X(t) (s(t), N1(t), N3(t)).
Note that the total number of carts A is m, the number of carts A in buffer B1 is 
m N1(t) s(t). Similarly, the total number of carts B is n, the numbers of carts B 
in buffer Bb is n N3(t) s(t). When s(t) 0, machine M2 is idle due to the condition 
that either buffer B1 or buffer Bb is empty. The state space of the Markov chain 
{X(t), t 0} is expressed by 

{(0, , )} {(0, , ) : 0 1} {(0, , ) : 0 1}
{(1, , ) : 0 1,0 1}.
m n i n i m m j j n

i j i m j n

It is easy to check that the infinitesimal generator of the Markov chain {X(t),    
t 0} is given by 

1 2 3 1

1

2

2

1

,

m m

m

m

A B E
C D D D D D
F M N
F T P N

Q

F T P N
F T P N

K T P

 (1.14) 

where
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1

3 1 3

3 1 3

3 1 3 ( 1) ( 1)

( )
,( )

( )
n n

A

1

1

1

1 ( 1) ( 1)

, ,

0 0 0n m n n

B E

3

1 1 3

1 1 3

1 1 3

( )
,( )

( )
m m

C

Dj is a matrix of size m n with the (j, n)th element being 3  and all the other 
elements being 0 for 1 j m, Fi is a matrix of size n m with the (n, i 1)th
element being 2  and all the other elements being 0 for 1 i m 1, 1 ,n nT I

2 2

2

2

2 ( 1)

0 0
0 0, ,

0 0 n nn n

K N

2

3 2 3

3 2 3

3 2 3

( )
( )

( )
n n

M

and

1 2

3 1 2 3

3 1 2 3

3 1 2 3

( )
( )

.( )

( )
n n

P

For simplification of description, the infinitesimal generator given in Eq. (1.14) 
can be further rewritten as 



Constructive Computation in Stochastic Models with Applications 

20

(0) (0) (0) (0) (0) (0) (0)
0 1 2 3 4 1
(1) (1) (1)
1 0 1

(2) (2) (2) (2)
2 1 0 1

(3) (3) (3) (3)
3 1 0 1

(4) (4) (4) (4)
4 1 0 1

( 1) ( 1) ( 1) ( 1)
( 1) 1 0 1

( ) ( ) ( )
1 0

m m

m m m m
m

m m m
m

A A A A A A A
A A A
A A A A
A A A A

Q
A A A A

A A A A

A A A

,

where

(0) (0) (0)
0

0, for 1 1, ,0 j m
j m

EA BA A j m AD DC
( ) ( )(0, ) for 1 1, ( , 0),i m
i i mA F i m A K

(1) ( )
0 0, for 2 ,iA M A P i m

( ) ( )
1 1for 1 1, for 2 .i jA N i m A T i m

1.2.5 An E-mail Queueing System Under Attacks 

The fifth example provides a queueing model to describe an email queueing 
system with three types of attacks, as shown in Fig. 1.4, by means of an irreducible 
continuous-time QBD process with finitely-many levels. 

Figure 1.4 Three types of attacks on an email account 

The ordinary emails in each email account form a basic queue that is expressed 
by the email information units. The email arrival is a Poisson process with rate ,
and each email information unit is dealt by the user through a time length that 
has an exponential distribution with mean 1/ .  These email information units 



1 Stochastic Models 

21

are processed by the user according to FCFS. Assume that each email account has 
a capacity of at most N email information units. 

The attack of cracking password is abstracted as an input to the second queue. 
By cracking the password of the email account, the attacker can get some useful 
and valuable email information for either his personal interests, business or other 
purposes. The events that occur for the succesful acquisition of the password are 
treated as attacking processes or a customer arrival process that is a Poisson 
process with rate .c  Such a customer remains in the email account with a time 
period xc that is exponential with mean 1/ .c  Since the attackers are only 
interested in some useful and valuable email information units, we assume that 
this kind of email attacks can grab the email information with a probability Pc(xc)
when they remain in the email account. 

The attack of sending malicious emails attached with Trojan virus is also modeled 
as an input process in the third queue. The Trojan Horse is planted if the email 
user clicks the attachment. Based on this, such attackers can enter the email system 
for reading the email account’s private and valuable information. The malicious 
emails are regarded as a customer arrival process that is a Poisson process with 
rate .m  Some attached Trojan virus is defended by the fairwall or it is ignored 
by the email user. Let Pin denote the probability that the malicious attachment is 
clicked by the email user, which means that the attacker gets an access into the 
email account. This type of attacks remains in the email system for a time length 
xm which is exponential with mean 1/ .m  Let Pm(xm) be the probability that the 
attacker is able to obtain the email information. 

The fourth input process is the attack of email bombs. The successfully deployed 
email bombs are treated as the customers whose arrivals are a Poisson process 
with rate .b  Once an email bomb arrives, the email account is crashed for a time 
period whose length has an exponential distribution with mean 1/ .b

It is worth noting that the attacks of cracking password and sending malicious 
emails will not change the ordinary email queue. However, the attacks of email 
bombs can change the behavior of the ordinary email queue. 

Let n(t), s(t) and r(t) denote the number of email information units, the state of 
the email account and the types of attacks in the email system at time t, respectively, 
where 0 n(t) N, N is the maximum number of email information units, s(t)
{I, W, F} and r(t) {C, M, CM}. We provide a simple interpretation for the 
elements I, W, F, C, M and CM. Firstly, I, W and F stand for Idle, Working and 
Fail of the email account, respectively. Secondly, C, M and CM describe the 
attacks of cracking password, the attacks of malicious email, and the co-existing 
of the attacks of cracking password and malicious emails, respectively. Obviously, 
{(n(t), s(t), r(t)):t 0} is a QBD process whose state space  is given by 

0

,
N

k
k

L

where
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( ) ( ) ( )
0 {(0, ), (0 , ), (0 , ), (0 , ), (0, )},C M CML I I I I F

and for 1 i N,
( ) ( ) ( ){( , ), ( , ), ( , ), ( , ), ( , )}.C M CM

iL i W i W i W i W i F

Based on the state space 0 ,N
k kL  it is easy to see that the QBD process has 

the following infinitesimal generator 

(0) (0)
1 0
(1) (1) (1)
2 1 0

( 1) ( 1) ( 1)
2 1 0

( ) ( )
2 1

,
N N N

N N

A A
A A A

Q
A A A

A A

 (1.15) 

where

( )
1

( ) 0
( ) 0

0 ( )
0 ( )

0 0 0

c m c m b

c m c m b
i

m c m c b

m c m c b

b b

A

with
 ,b

for 1 i N 1, and 

(0)
1

( ) 0
( ) 0

0 ( )
0 ( )

0 0 0

c m c m b

c m c m b

m c m c b

m c m c b

b b

A

with
 ;b

( )
1

( ) 0
( ) 0

0 ( )
0 ( )

0 0 0

c m c m b

c m c m b
N

m c m c b

m c m c b

b b

A

with



1 Stochastic Models 

23

( )
2

( )
0

,

diag ( , , , , 0), 1 ,

diag ( , , , , 0), 0 1.

b
j

k

A j N
A k N

1.3 The QBD Processes 

Based on the above motivating examples, this section analyzes a continuous-time 
QBD process with either finitely-many levels or infinitely-many levels. We construct 
the UL-and LU-types of RG-factorizations for the QBD process; while the 
RG-factorizations for any irreducible Markov chains will be systemically developed 
in Chapters 2, 3, 5, 6 and 9 of this book. In addition, we iteratively define the R-
and G-measures, both of which are a direct generalization of the matrices R and 
G given in Neuts [92, 94], respectively. 

We considers an irreducible continuous-time QBD process with infinitely- 
many levels whose infinitesimal generator is given by 

(0) (0)
1 0
(1) (1) (1)
2 1 0

(2) (2) (2)
2 1 0

;

A A
A A AQ

A A A
 (1.16) 

and an irreducible continuous-time QBD process with finitely-many levels whose 
infinitesimal generator is given by 

(0) (0)
1 0
(1) (1) (1)
2 1 0

( ) ( ) ( )
2 1 0

( 1) ( 1)
2 1

.
N N N

N N

A A
A A A

Q
A A A

A A

 (1.17) 

1.3.1 Heuristic Expressions 

We first consider an irreducible continuous-time level-independent QBD process 
with infinitely-many levels given in Eq. (1.16) with ( )

0 0
iA A  and ( )

1 1
iA A  for  

i 1, and ( )
2 2

jA A  for j 2. Note that the repeated row has the non-zero blocks 
A2, A1 and A0, it is easy to conjecture that the stationary probability vector, 
( 0, 1, 2, ...), of the QBD process Q has the following matrix-geometric form: 

1
1 , 1,k

k R k
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where the matrix R is the minimal nonnegative solution to the matrix equation 

0

,k
k

k
R R A  and 0 and 1 need to satisfy the following three conditions: 

(0) (1)
0 1 1 2

(0)
0 0 1 1 2

0,

( ) 0

A A

A A RA

and
1

0 1( ) 1.e I R e

This was described as Theorem 3.1 in Chapter 3 of Neuts [92]. It is easy to see 

that 
0

1k
k

e  if and only if the spectral radious: sp(R)<1. Thus, the spectral 

analysis of the rate matrix R is a key in the study of the level-independent QBD 
processes.

Then, we analyze an irreducible continuous-time level-independent QBD process 
with finitely-many levels given in Eq. (1.17) with ( )

0 0
iA A  for 1 i N 1, ( )

1 1
jA A

for 1 j N, and ( )
2 2

kA A  for 2 k N. Note that this QBD process has the top and 
bottom boundaries. We take a common matrix as follows: 

2 1 0

2 1 0

2 1 0

.
A A A

A A A
A A A

Q

When seeing the matrix Q  from top to bottom, the rate matrix R is the minimal 
nonnegative solution to the matrix equation 

2
0 1 2 0;A RA R A

and from bottom to top, the rate matrix R  is the minimal nonnegative solution to 
the matrix equation 

2
0 1 2 0.R A RA A

Note that the repeated row has only non-zero blocks A2, A1, A0. It is easy to 
conjecture that the stationary probability vector, ( 0, 1, ..., N, N +1), of the 
QBD process Q has the following matrix-geometric form: 

1
1 , 1 .k N k

k NR R k N

In this case, we may check that 0, 1, N and N +1 need to satisfy the following 
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five conditions: 
(0) (1) 1 (1)

0 1 1 2 2

(0) 2
0 0 1 1 2 1 2

1 ( ) ( ) ( 1)
1 0 0 1 1

2 ( 1)
1 0 1 1 0 1 2

0,

( ) ( ) 0,

0,

( ) ( ) 0

N
N

N
N

N N N N
N N

N N
N N

A A R A
A A RA R RA A

R A A A
R A RA A RA A

and
1 1

0 1 1
0 0

1.
N N

k k
N N

k k
e e R e R e

Note that the three matrices (0) (0) (1)
0 1 2, andA A A  and the three matrices ( ) ( 1)

0 1,N NA A
and ( 1)

2
NA  are the top boundary blocks and the bottom boundary blocks, respectively. 

1.3.2 The LU-Type RG-Factorization 

We first construct the LU-type RG-factorization  for the QBD process with 
finitely-many levels. For the irreducible QBD process with N 2 levels given in 
Eq. (1.17), we write the U-measure as 

(0)
0 1U A

and
( ) ( ) 1 ( 1)
1 2 1 0( ) , 1 1.k k k

k kU A A U A k N

It is easy to check that kU  is the infinitesimal generator of a Markov chain with 
mk states for 0 1.k N  Also, the Markov chain kU  is transient, and thus the 
matrix kU  is invertible for 0 ;k N  while the Markov chain 1NU  is positive 
recurrent (resp. transient) if and only if the Markov chain Q is positive recurrent 
(resp. transient). 

Based on the U-measure { },kU  we can define the LU-type R- and G-measures 
respectively as 

( ) 1
2 1( ), 1 1,k

k kR A U k N

and
1 ( )

0( ) , 0 .k
k kG U A k N

Note that the matrix sequence { ,1 }kR k N  is the unique nonnegative 
                                                       

 From this section, notation for the LU-type measures will use U , R  and G.
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solution to the system of matrix equations 

( 1) ( ) ( 1)
1 0 1 1 2 0, 1 ,k k k

k k kR R A R A A k N

with the boundary condition 

(1) 1
1 2 0( ).R A U

Hence

( 1) ( 1) ( ) 1
1 2 0 1[ ] , 1 .k k k

k kR A R A A k N

The matrix sequence { ,1 }kG k N  is the unique nonnegative solution to the 
system of matrix equations 

( ) ( ) ( )
0 1 2 1 0, 1 ,k k k

k k kA A G A G G k N

with the boundary condition 

1 (0)
0 0 0( ) .G U A

Thus

( ) ( ) 1 ( )
1 2 1 0[ ] , 1 .k k k

k kG A A G A k N

For the QBD process with finitely-many levels given in Eq. (1.17), we can 
easily obtain the LU-type RG-factorization as follows: 

( ) ( ),L D UQ I R U I G  (1.18) 

where

1

1

0 1 1

0

2

0
0

,
0

0

diag ( , , ..., , ),

0
0

.
0

0

L

N

N

D N N

U

N

R
R

R
R

U U U U U

G
G

G
G

We now extend the LU-type RG-factorization Eq. (1.18) to that for the 
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irreducible QBD process with infinitely-many levels given in Eq. (1.16). Clearly, 
this extension is easy to achieve by assuming only letting .N  Note that the 
matrix kU  is invertible for all k 0.

For the QBD process with infinitely-many levels given in Eq. (1.16), the 
LU-type RG-factorization is given by 

( ) ( ),L D UQ I R U I G  (1.19) 

where

1

2

3

0 1 2 3

0

1

2

0
0

,0
0

diag ( , , , , ...),

0
0

.0
0

L

D

U

R
R R

R

U U U U U

G
G

G G

1.3.3 The UL-Type RG-Factorization 

For the irreducible QBD process with N 2 levels given in Eq. (1.17), we write 
the U-measure as 

( 1)
1 1

N
NU A

and
( ) ( ) ( 1)
1 0 1 2 , 0 .k k k

k kU A A U A k N

It is easy to check that kU  is the infinitesimal generator of a Markov chain with 
mk states for 0 k N 1. Also, the Markov chain kU  is transient, and thus the 
matrix kU  is invertible for 1 k N 1; while the Markov chain U0 is positive 
recurrent (resp. transient) if and only if the Markov chain Q is positive recurrent 
(resp. transient). 

Based on the U-measure { },kU  we can respectively define the UL-type R- and 
G-measures as 

( ) 1
0 1( ), 0 ,k

k kR A U k N



Constructive Computation in Stochastic Models with Applications 

28

and
1 ( )

2( ) , 1 1.k
k kG U A k N

Note that the matrix sequence { , 0 1}kR k N  is the unique nonnegative 
solution to the system of matrix equations 

( ) ( 1) ( 2)
0 1 1 2 0, 0 1,k k k

k k kA R A R R A k N

with the boundary condition 
( ) 1
0 1( ).N

N NR A U

Hence
( ) ( 1) ( 2) 1
0 1 1 2[ ] , 0 1.k k k

k kR A A R A k N

Similarly, the matrix sequence { ,1 }kG k N  is the unique nonnegative solution 
to the system of matrix equations 

( ) ( ) ( )
0 1 1 2 0, 1 ,k k k

k k kA G G A G A k N

with the boundary condition 
1 ( 1)

1 1 2( ) .N
N NG U A

Thus
( ) ( ) 1 ( )
0 1 1 2[ ] , 1 .k k k

k kG A G A A k N

For the QBD process with finitely-many levels given in Eq. (1.17), the UL-type 
RG-factorization is given by 

 ( ) ( ),U D LQ I R U I G  (1.20) 

where

0

1

0 1 1

1

1

0
0

,
0

0

diag ( , , ..., , ),

0
0

.
0

0

U

N

D N N

L

N

N

R
R

R
R

U U U U U

G
G

G
G
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Finally, we simply describe the UL-type RG-factorization for the QBD process 
with infinitely-many levels given in Eq. (1.16). 

Let the matrix sequences {Rk} and {Gk} be the minimal nonnegative solutions 
to the systems of matrix equations 

( ) ( 1) ( 2)
0 1 1 2 0, 0,l l l

l l lA R A R R A l

and
( ) ( ) ( )
0 1 1 2 0, 1,k k k

k k kA G G A G A k

respectively, Thus, we obtain 

( ) ( ) ( ) ( )
1 2 1 0 1, 0.k k k k

k k kU A R A A A G k

It is easy to check that Uk is the infinitesimal generator of a Markov chain with 
mk states for 0 k N 1. Also, the Markov chain Uk is transient, and thus the 
matrix Uk is invertible for k 1; while the Markov chain U0 is positive recurrent 
(resp. transient) if and only if the Markov chain Q is recurrent (resp. transient). 

For the QBD process with infinitely-many levels given in Eq. (1.16), the UL-type 
RG-factorization is given by 

 ( ) ( ),U D LQ I R U I G  (1.21) 

where

0

1

2

0 1 2

1

2

3

0
0

,0
0

diag ( , , , ...),

0
0

0 .
0

U

D

L

R
R

R R

U U U U

G
G G

G

1.3.4 Linear QBD-Equations 

Based on the UL- and LU-types of RG-factorizations, we provide a constructive 
approach to solve a linear QBD-equation 

 or ,XQ b QX b  (1.22) 
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where Q is the infinitesimal generator of an irreducible continuous-time level- 
dependent QBD process with either finitely-many levels or infinitely-many levels. 
When b 0, the Eq. (1.22) is homogeneous, otherwise it is nonhomogeneous. 
Note that we will provide a more general discussion for such systems of infinite- 
dimensional linear equation in Chapter 9. 

1.3.4.1 The Homogeneous Linear QBD-Equations 

For the homogeneous linear QBD-equations, a well-known example is the equation 
Q 0, where the QBD process Q is positive recurrent and  is its stationary 

probability vector. 
For convenience of description, we denote by ( )LU

k  and ( )UL
k  the stationary 

probability vector obtained by means of the LU- and UL-type of RG-factorizations,
respectively. 

Case Infinitely-many levels 
In this case, we apply the UL-type of RG-factorization to derive the stationary 

probability vector of a QBD process with infinitely-many levels. Let the matrix 
sequence {Rl, l 0} be the minimal nonnegative solution to the system of matrix 
equations

( ) ( 1) ( 2)
0 1 1 2 0, 0.l l l

l l lA R A R R A l

Using the RG-factorization Eq. (1.21), we have 

0 ,v  (1.23) 

0 1 1, 1,k kvR R R k  (1.24) 

where is a normalization constant, and v is the stationary probability vector of 
the censored chain (0) (1)

0 1 0 2U A R A  to level 0. 
Case Finitely-many levels 
In this case, we use the LU- and UL-types of RG-factorizations to derive the 

stationary probability vector of a QBD process with finitely-many levels, which 
leads to the following three expressions. 

Expression 1.1 Using the LU-type RG-factorization Eq. (1.18), we get 

( )
1 1 1, 0 ,LU

k N N N kv R R R k N  (1.25) 

and

( )
1 1,LU

N Nv  (1.26) 

where  is a normalization constant and vN +1 is the stationary probability vector 
of the censored chain ( 1) ( )

1 1 1 0
N N

N NU A R A  to level N 1.
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Expression 1.2 According to the UL-type of RG-factorization Eq. (1.20), we 
have

( )
0 0
UL v  (1.27) 

and
( )

0 0 1 1, 1 1,UL
k kv R R R k N  (1.28) 

where  is a normalization constant and v0 is the stationary probability vector of 
the censored chain (0) (1)

0 1 0 2U A R A  to level 0. 
Expression 1.3 By means of a property of linear combination for the solutions 

of a system of linear equations, it follows from Eq. (1.25) to Eq. (1.28) that the 
stationary probability vector ( 0, 1, ..., N, N +1) is given by 

0 1 1 1 0 ,N N Nu R R R u  (1.29) 

1 1 1 0 0 1 1, 1 ,k N N N k ku R R R u R R R k N  (1.30) 

1 1 0 0 1 ,N N Nu u R R R  (1.31) 

where the row vectors uN +1 and u0 are uniquely determined by the equations 
(uN +1, u0)QE 0 and 

1 11

1 0
0 11 0

1,
k kN N

N j j
k kj N j

u I R e u I R e

where

(1) (0) ( 1) ( )
1 2 2 1 1 1 1 0

(0) (1) ( ) ( 1)
1 0 2 0 1 1 0 1

[ ]
.

[ ]

N N
E N N N

N N
N N

R R R A R A A R A
Q

A R A R R R A R A

Note that QE is the infinitesimal generator of the censored Markov chain of Q to 
the set E {Level 0, Level N 1}.

1.3.4.2 The Nonhomogeneous Linear QBD-Equations 

As an illustrating example, we now use LU-type of RG-factorization to solve a 
nonhomogeneous linear QBD-equation: XQ b or QX b. The maximal non- 
positive inverse 1

maxQ  of the matrix Q has probabilistic meaning, hence the 
performance measures of a stochastic system can be expressed in terms of the 
blocks of 1

maxQ . Therefore, it is necessary to express each block of 1
maxQ  in order 

to give the solution 1
maxX bQ  or 1

maxX Q b. We set 1
max , , 0( )m n m nQ q  partitioned 

according to the levels. 
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Based on the LU-type R-measure { , 1}kR k  and G-measure { , 0}kG k , we 
write 

( )
1 2 1, ,l

k l l l l kX R R R R l k  (1.32) 

and

( )
1 2 1, 1,l

k l l l l kY G G G G k l (1.33)

The following Theorem provides expressions for each block in the maximal 
non-positive inverse 1

maxQ  by means of the LU-type RG-factorization Q
( ) ( )L D UI R U I G . In this case, we have 

1 1 1 1
max ( ) ( )U D LQ I G U I R

Theorem 1.2 (1) For the irreducible QBD process with infinitely-many levels 
given in Eq. (1.16),

1 1( ) ( ) ( )

1

1 1( ) ( )
,

1

1 1( ) ( ) ( )
( )

1

, if 0 1,

, if ,

, if 1.

m m i m
m m n i i m i m n

i

m i m
m n m i i m i

i

m m i m
n m n i i m i n m

i n m

U X Y U X n m

q U Y U X n m

Y U Y U X n m

(2) If the irreducible QBD process with finitely-many levels given in Eq. (1.17)
is transient, then

1
1 ( ) ( ) 1 ( )

1
1

1 ( ) 1 ( )

1
1

( ) 1 ( ) 1 ( )
, ( )

1

1 ( 1)
1 1

if 0 ,, 0 1,

, if 0 , ,

, if 0 ,

1 1,
, if

N m
m m i m

m m n i i m i m n
i

N m
m i m

m i i m i
i

N m
m m i m

m n n m n i i m i n m
i n m

N
N N n

m NU X Y U X n m

U Y U X m N n m

q Y U Y U X m N

m n N
U X m

1
1

1,
0 ,

, if 1.N

N
n N

U m n N

Theorem 1.2 indicates that if an irreducible QBD process has infinitely-many 
levels, then the existence of the maximal non-positive inverse is irrespective of 
whether the QBD process is recurrent or transient. 
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When the QBD process is transient, we can use the UL-type RG-factorization 
( ) ( )U D LQ I R U I G  to provide expression for the maximal non-positive 

inverse as follows: 

1 1 1 1
max ( ) ( )L D UQ I G U I R

whose detail is similar to those in Theorem 1.2. Note that Appendix A.3 provides 
expressions for the inverse of a general block-structured matrix. 

1.4 Phase-Type Distributions 

In this section, we provide an intuitive understanding for constructing a univariate 
PH distribution, and also list some basic properties of the PH distribution. 
Furthermore, we study a multivariate PH distribution, and give some important 
properties.

1.4.1 The Exponential Distribution 

The exponential distribution is extensively used to deal with various stochastic 
models. The key to these applications is that the exponential distribution has the 
memoryless property. 

Let X be a random variable with the exponential distribution function 
F(x) 1 exp { x} for 0< < . The probability density function of F(x) is 
given by f (x)  exp { x}. It is easy to check that for all t, s 0,

 { | } { },P X t s X s P X t

which is called the memoryless property of the exponential random variable X.
The memoryless property can effectively simplify various conditional probabilities 
involved in a stochastic model so that mathematical analysis for the stochastic 
model can be simplified sufficiently. 

It is crucial to find a more general distribution which retains the memoryless 
property. As a minor generalization of the exponential distribution, we let X be a 
random variable with distribution function G(x) 1  exp { x} for 0< 1
and 0< < . The probability density function of G(x) is given by g(x)

exp { }.x  It is easy to check that the random variable Y also has the 
memoryless property. However, there does not exist any other distribution with the 
memoryless property except for the two distributions. Therefore, it is necessary 
to find a class of new distributions which can retain some similar properties to 
the memoryless property of the exponential distribution. 
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1.4.2 The Erlang Distribution 

Based on the exponential distribution, A.K. Erlang use the stage method to 
construct the so-called Erlang distribution of order n, denoted as [ , ].E n  Let Xi

be a random variable with distribution function ( ) 1 exp { }F x x  for 1 i n.

We assume that X1, X2, ..., Xn are i.i.d.. Thus the random variable 
1

n

n k
k

Z X  is 

Erlang of order n with distribution function 

1

0

( )( ) { } 1 exp{ }
!

kn

n n
k

xF x P Z x x
k

and the probability density function 

1( )( ) exp{ } .
( 1)!

n

n
xf x x

n

For the Erlang distribution of order n, Fig. 1.5(a) expresses the random variable 

1
.

n

n k
k

Z X Based on this, it is clear that the Erlang distribution of order n can be 

understood as ( ) 1 e ,Tx
nF x e  where (1,0,0,...,0), T is the infinitesimal 

generator of an n-state Markov chain, given by 

0

0
0

, .
0

T T  (1.34) 

Figure 1.5 The stage method 

As a minor generalization of the Erlang distribution, we assume that these 
exponential random variables X1, X2, ..., Xn are independent but differently 
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distributional with parameters 1 2, , , .n  In this situation, a generalized Erlang 
distribution is expressed by ( ) 1 e ,Tx

nF x e  where (1,0,0, ,0),

1 1

2 2
0

1 1

0
0

, .
0n n

n n

T T  (1.35) 

A further generalization of the Erlang distribution, which is seen from Fig. 1.5(b), 
can be given by (1,0,0,...,0)  and 

1 1 1 1 1

2 2 2 2 2
0

1 1 1 1 1

(1 )
(1 )

, .
(1 )n n n n n

n n

p p
p p

T T
p p

 (1.36) 

1.4.3 The PH Distribution 

The above three examples given in Eq. (1.34) to Eq. (1.36) indicate that a 
distribution can be expressed by means of a Markov chain T with an initial 
probability vector .  Hence, this motivates us to propose a PH distribution under 
a unified framework ( , ).T  The PH distribution is characterized by an absorbing 
Markov chain with finite states, which is measured by the time that the underlying 
Markov chain spends in all the transient states until the first absorption. The phase 
number of the PH distribution is equal to the number of transient states in the 
Markov chain T, and a row vector  is the initial probability vector of the Markov 
chain T.

We consider a continuous-time Markov chain with state space {1,2,..., , 1}m m
whose infinitesimal generator is given by 

1

0
(1,..., ) 1

(1,..., )
0 0m

m m

T T
Q m  (1.37) 

where 0 0T  and 0 0.Te T  It is clear that state m 1 is an absorbing state 
and all the others are transient. Let 1( , )m  be the initial probability vector of 
the Markov chain, where 1 1.me  For the Markov chain given in Eq. (1.37), 
the distribution F(x) of the time X until absorption into the absorbing state m 1 is 
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called a PH distribution with representation ( , ).T  If 0T T  is the infinitesimal 
generator of an irreducible Markov chain, then this representation ( , )T  is 
called an irreducible representation. In this case, it follows from Lemma 2.2.2 in 
Chapter 2 of Neuts [92] that 

 ( ) 1 exp{ } .F x Tx e  (1.38) 

Obviously, 1(0) 1 .mF e  If 0,  then F(x) 1 for all x 0; if 0 1,e
then 1 1(0) ; if 0, then (0) 0.m mF F

In general, if a stochastic model can be analyzed when the relevant distributions 
are exponential, then the stochastic model with corresponding PH distributions 
may also admit an algorithmic solution. Table 1.1 provides some useful relations 
between the exponential distribution and the PH distribution. Note that LST 
denotes the Laplace-Stieltjes transform of *( ), ( )F x f s

0
exp{ }d ( ).sx F x

Table 1.1 A comparison for the exponential and PH distributions 

Class of distributions Exponential Distribution PH Distribution 

Distribution function ( ) 1 exp{ }F x x ( ) 1 exp{ }F x Tx e

Distribution parameters , , ,T m

Density function ( ) exp{ }f x x 0( ) exp{ }f x Tx T

Moments 1( 1) !i i
i i  ( 1) !i i

i i T e

LST * 1( ) 1 ( )f s s * 1 0
1( ) ( )mf s sI T T

In what follows, we provide four useful properties for the PH distribution, 
while the proofs may refer to Chapter 2 of Neuts [92]. 

Property 1.1 For a PH distribution with representation ( , ),T  the states 1, 
2, ..., m are transient if and only if the matrix T is invertible, and 1 0.T

Property 1.2 For a PH distribution with irreducible representation ( , ),T
exp { } 0Tx  and exp 0{ } 0Tx T  for each x 0. At the same time, 1( ) 0sI T
and 1 0( ) 0 for 0.sI T T s

Property 1.3 For two PH distributions with irreducible representations ( , )T
and ( , ),S  the matrix T S is invertible. 

Property 1.4 For a PH distribution with reducible representation ( , ),T  we 
may delete rows and columns of T corresponding to a subset of state space {1, 
2, ..., m} to obtain a smaller, irreducible representation 1 1( , ).T

As a companion distribution, we now consider a discrete-time PH distribution. 
Consider a discrete-time Markov chain with state space {1, 2, ..., m, m 1}
whose transition probability matrix is given by 
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0
(1,..., ) 1

1
(1,..., )

0 1

m m

m

T T
P m  (1.39) 

where 0 00 and .T Te T e  State m 1 is an absorbing state and all the others 
are transient. Let 1( , )m  be the initial probability vector of the Markov chain, 
where 1 1.me  For the Markov chain given in (1.39), the distribution {pk ,
k 0} of the number N of state transitions until absorption into the absorbing 
state m 1 is called a discrete-time PH distribution with representation ( , ).T  If 

0T T  is the transition probability matrix of an irreducible Markov chain, then 
this representation ( , )T  is called an irreducible representation. In this case, it 
follows from Chapter 2 of Neuts [92] that 

1
1 0

, 0,
, 1.

m
kk

k
p

T T k
 (1.40) 

If a stochastic model can be analyzed when the relevant distributions are geometric, 
then the stochastic model with corresponding discrete-time PH distributions may 
admit an algorithmic solution. Table 1.2 provides some useful relations between 
the geometric distribution and the discrete-time PH distribution. We write 

*

0

( ) .k
k

k
P z z p

Table 1.2 A comparison for the geometric and PH distributions 

Class of Distributions Geometric Distribution PH Distribution 

Distribution function 
1

1 , 0,
(1 ), 1.k k

k
p

t t k
1

1 0

, 0,
, 1.

m
k k

k
p

T T k

Distribution parameters , t , ,T m

Moments 1! (1 )i i
i i t t 1! ( )i i

i i T I T e

PGF * 1( ) 1 (1 ) (1 )P z z zt t * 1 0
1( ) ( )mP z a z I zt T

Now, we provide some closure properties of the PH distributions, the 
corresponding proofs may refer to Chapter 2 of Neuts [92]. For convenience of 
description, we introduce a notation: If the distribution of the random variable X
is of phase type of order m with irreducible representation ( , )T , we write as 
X~PH ( , ; ); or ( )T m F x ~PH ( , ; )T m  for the continuous-time case, while {pk}~
PH ( , ; )T m  for the discrete-time case. 

Property 1.5 Let XR and XA be the stationary residual life time and stationary 
age of the random variable X, respectively. If X~PH ( , ; ),T m  then XR, XA~
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PH ( , ; )T m , where  is the stationary probability vector of the Markov chain 
0 for 1.T T e

Property 1.6 If X~PH( , ; )T m  and Y~PH( , ; ) ,S n  then X+Y~PH( , ; ),L m n
where 1( , )ma  and 

0

.
0
T T

L
S

Property 1.7 If X~PH ( , ; )T m  and Y~PH( , ; ) ,S n  then min {X, Y}~PH 
( , ; ),T S m n  and max {X, Y}~PH ( , ; ),L mn m n  where 

1 1

0 0

( , , ),

0 0 .
0 0

n m

T S I S T I
L T

S

Property 1.8 Let 1 2( , , ..., )kp p p p  be a probability vector for pe 1, and 

Fj(x)~PH( , ; )j j jT m  for j 1, 2, ..., k. Then G(x)
1

( )
k

j j
j

p F x ~PH
1

( , ; )
k

j
j

L m ,

where 1 1 2 2( , , ..., )k kp p p  and 1 2diag ( , , ..., ).nL T T T
It is worthwhile to note that infinite mixtures of PH distributions are generally 

not of phase type. An important and useful exception is given in Properties 1.9 
and 1.10. Let * ( )nF x  be the nth-fold convolution of the function F(x), that is, 

0* 1*( ) 1, ( ) ( )F x F x F x  and * ( 1)*

0
( ) ( )d ( ) for 2.

xn nF x F x u F u n

Property 1.9 If {sk}~PH( , ; )S n  and F(x)~PH ( , ; ),T m  then the infinite 

mixture G(x) *

0
( )k

k
k

s F x ~PH ( , ; ),L mn  where 

1
1

0 1
1 1

( ) ,

(1 ) ( ) .
m

m m

I S

L T I T I S S

The height of the jump 1mn  at time 0 and the vector L0 are given by 

1 0
1 1 1 1

0 0 1 0
1

( ) ,

( ) .
mn n m m

m

I S S

L T I S S

Property 1.10 If {sk}~PH( , ; )S n  and {pv}~PH ( , ; ),T m  then for the infinite 

mixture *

0

{ } , { }k
k k v k

k
P s p P ~PH ( , ; ),L mn  where 
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1
1

0 1 0
1 1

( ) ,

(1 ) ( ) .
m

m m

I S

L T I T I S S

In many applications, we need to consider the following integral 

0

( )exp{ } d ( ), 0.
!

k

k
xa x F x k

k

The following Property 1.11 describes a closure property of the PH distribution 
for the sequence {ak}.

Property 1.11 If F(x)~PH ( , ; ),T m  then the sequence {ak}~PH ( , ; ),L m
where

1

1

( ) ,
( ) .

I T
L I T

The height of the jump 1mn  at time 0 and the vector L0 are given by 

1 0
1 1

0 1 0

( ) ,

( ) .
m m I T T

L I T T

For the two random variables N and X, we write an P{N n} for n 0 and 

 { | } (1 ) .j n jn
P X j N n p p

j

Then it is clear that 

0

0

{ } { } { | }

(1 ) .

n

j n j
n

n

P X j P N n P X j N n

n
a p p

j

The following Property 1.12 indicates that the random variable X is of phase type 
if the random variable N is of phase type. 

Property 1.12 If N~PH ( , ; ),T m  then X~PH ( , ; ),L m  where 

1

1

[ (1 ) ] ,
[ (1 ) ] .

p I p T
L pT I p T

The height of the jump 1mn  at time 0 and the vector L0 are given by 

1 0
1 1

0 1 0

(1 ) [ (1 ) ] ,

[ (1 ) ] .
m m p p I p T T

L I p T T
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In the rest of this section, we discuss a multivariate PH distribution which is 
always useful in modeling real situations that involve n nonnegative dependent 
random variables. Our analysis focuses on the following two cases: The bivariate 
PH distribution and the multivariate PH distribution. 

Definition 1.1 For a Markov chain with state space , a set  is said to 
be stochastically closed if once the Markov chain enters the set , it never leaves 
again.

For the stochastically closed sets of the Markov chain, we have following useful 
properties:

(1) If 1 and 2 are two nonempty stochastically closed sets of the state space ,
then 1 2 and 1 2 are all stochastically closed. 

(2) If  is a nonempty stochastically closed set of the state space , then the 
infinitesimal generator can be simplified as 

1,1 1,2

2,2

.
0

c

c T T
T

T

1.4.4 The Bivariate PH Distribution 

Consider a continuous-time and right-continuous Markov chain {X(t)} with state 
space {1, 2, ..., m, m 1} whose infinitesimal generator is given in (1.37). Let 

1 and 2 be two nonempty stochastically closed sets of the state space  such 
that 1 2 {m 1}. We define 

 inf{ : ( ) }k kY t X t

with a convention: inf  for the empty set .  Let 

1 2 1 1 2 2( , ) { , }.F x x P Y x Y x

Then (Y1, Y2) or F(x1, x2) is said to be of bivariate phase type. 
For the bivariate PH distribution, we have the following closed-form expression: 

2 1 2

1 2 1

( )
2 1 2 1

1 2 ( )
1 2 1 2

e e , 0 ,
( , )

e e , 0 ,

Tx T x x

Tx T x x

g g e x x
F x x

g g e x x

where diag( (1), (2), ..., ( ))k k k kg g g g m

1, ,
( )

0, .

c
k

k
k

i
g i

i

It is obvious that 2 1( , ) eTxF x x g g e  and 2 1(0, 0) .F g g e
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Now, we list some useful properties for the bivariate PH distribution as follows: 
Property 1.13 The probability density function of the bivariate PH distribution 

is given by 

2 1 2

1 2 1

( )
2 1 2 1

1 2 ( )
1 2 1 2

e [ , ]e , 0 ,
( , )

e [ , ]e , 0 ,

Tx T x x

Tx T x x

T g g e x x
f x x

T g g e x x

where the operator [A, B] AB BA.
Property 1.14 Let 1 2 1 1 2 2( , ) [exp{ ( )}].f s s E s Y s Y  Then 

1 1 1
1 2 1 2 2 1 1 1 2 2

1 2 1 2

( , ) [( ) ] {[ , ]( ) [ , ]( )
[ , ] [ , ]} .

f s s s s I T T g s I T Tg T g s I T Tg
Tg g T g T g e

Property 1.15

1 1 1 1
1 2 1 2 2 1[ ] ( ) .E Y Y T g T g T g T g e

1.4.5 The Multivariate PH Distribution 

Consider a continuous-time and right-continuous Markov chain {X(t)} with state 
space {1, 2, ..., m, m 1} whose infinitesimal generator is given in Eq. (1.37). 
Let 1, 2, ..., n be n nonempty stochastically closed sets of the state space 
such that 1 { 1}.n

i i m  We define 

 inf{ : ( ) }.k kY t X t

Let

1 2 1 1 2 2( , , ..., ) { , , ..., }.n n nF x x x P Y x Y x Y x

Then Y (Y1, Y2, ..., Yn) or F(x1, x2, ..., xn) is said to be of n-variate phase type. 
For the multivariate PH distribution, we call 1 2( , ; , , ..., )nT  its irreducible 
representation, or Y~PH 1 2( , ; , , ..., ).nT

For the nonnegative vector (x1, x2, ..., xn), we write 
1 2 ni i ix x x  Thus, 

for the multivariate PH distribution we can write the closed-form expression as 
follows: 

1 1

2

1 2( , , ..., ) exp{ } exp{ ( )} ,
n n k k kn i i i i i

k n

F x x x Tx g T x x g e

the probability density function is given by 
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1 1

1 2 1

3

1 2( , , ..., ) ( 1) exp{ }[ , ] exp{ ( )}[ , ]

exp{ ( )}

n n k k k

n
n i i i i i

k n

i i i

f x x x Tx T g T x x T g

T x x g e

and the joint mean is given by 

1
1 2 ( )

1

[ ] ( 1) ,
n

n
n i

i

E Y Y Y T g e

where  is the set of all permutations of {1, 2, ..., n}, and ( (1), (2), ..., (n)).
For the multivariate PH distribution, we now list its useful properties as 

follows: 
Property 1.16 If Y~PH 1 2( , ; , , ..., )nT  and Z~PH ( , ; , ,..., ),mS

then

( , )Y Z ~PH 1 2( , ; , , ..., , , , ..., ).n mT S

Property 1.17 If (Y1, Y2, ..., Yn)~PH 1 2( , ; , , ..., ),nT  then 

1 2 1 2
( , , ..., ) ~ PH( , ; , , ..., )

k ki i i i i iY Y Y T

for each subset 1 2{ , , ..., } {1, 2, ..., }.ki i i n

1.4.6 The Discrete-Time Multivariate PH Distribution 

Consider a discrete-time Markov chain {Xk} with state space {1, 2, ..., m,
m 1} whose transition probability matrix is given in Eq. (1.39). Let 1, 2, ..., n
be n nonempty stochastically closed sets of the state space such that 1

n
i i

{ 1}m . We define 

 inf{ : }.k k kN k X

Let

1 2 1 1 2 2( , , ..., ) { , , ..., }.n n np k k k P N k N k N k

Then 1 2 1 2( , , ..., ) or { ( , , ..., )}n nN N N N p k k k  is said to be of discrete-time 
multivariate phase type. For the discrete-time multivariate PH distribution, we 
call 1 2( , ; , , ..., )nT  its irreducible representation. 

When 
1 2

...
ni i ik k k  for the discrete-time multivariate PH distribution 

we can write the closed-form expression as follows: 

1 1 2

1 1

3

1 2( , , ..., ) [ , ] [ , ]i ii i ij jn

n i ij

k kk k k
n i k k

j n
p k k k T T g T T g T g e
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and

1
1 2 ( )

1

[ ] ( ) .
n

n i
i

E N N N I T g e

1.5 The Markovian Arrival Processes 

In this section, we provide several important types of point processes and list 
their useful properties. Specifically, we indicate how to construct a MAP in terms 
of a Markov chain with finite states. Finally, we study multivariate Markovian 
arrival processes. 

The analysis of this section contains twofold: Renewal processes and non-renewal 
processes. First, we provide a unified framework of Markov chains for analyzing 
two renewal counting processes: The Poisson process and the PH renewal process. 

1.5.1 The Poisson Process 

There is an arrival process with the kth arrival epoch k  for k 0, where 0 0.
Let 1n n nX  for n 1. Then Xn is the nth interarrival time. Obviously, 

1

k

k n
n

X  for k 0. We assume that the random variables Xn for n 1 are i.i.d.. 

Figure 1.6 shows a useful relation between the arrival epoch and the interarrival 
time. 

Figure 1.6 The arrival epoch and the interarrival time 

Let N(t) be the arrival number of the arrival process in the time interval (0;t].
In general, we denote by {N(t), t 0} the arrival process, which is also called a 
counting process. 

We provide a definition for the Poisson process as follows. 
Definition 1.2 A Poisson process with rate  is a counting process {N(t), t 0}

for which 
(1) N(0) 0;
(2) the process increments 1 0 2 1 1( ) ( ), ( ) ( ), ..., ( ) ( )n nN N N N N N  are 

mutually independent; and 
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(3) for any s 0, t>0,

( ){ ( ) ( ) } exp{ } , 0,
!

ktP N t s N s k t k
k

which is independent of the initial epoch s 0.
The following proposition provides an intuitive understanding of the Poisson 

process in terms of the exponential distribution. The proof is clear and is omitted 
here.

Proposition 1.2 The random variables Xn for n 1 are i.i.d. with exponential 
distribution function F(x) 1 exp { }t  if and only if the counting process {N(t),
t 0} is a Poisson process with rate .

Note that the exponential interarrival times Xn for n 1 are i.i.d., the Poisson 
process with rate may be regarded as a pure birth process whose infinitesimal 
generator is given by 

 .Q

We write 
 ( ; ) { ( ) }.P k t P N t k
Let

(0; ) (1; ) (2; ) (3; )
(0; ) (1; ) (2; )

( ) .(0; ) (1; )
(0; )

P t P t P t P t
P t P t P t

P t P t P t
P t

Then it is easy to check that 

( ) ( ) or ( ) ( ),P t P t Q P t QP t

with the initial condition (0) .P I  A simple computation can yield ( ) exp{ },P t Qt
which yields 

( )( ; ) exp{ } , 0.
!

ktP k t t k
k

1.5.2 The PH Renewal Process 

An only different assumption from that for the Poisson process analyzed above is 
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that the distribution function F(x) is taken as a PH distribution of order m with 
irreducible representation ( , ).T  In this case, we need to introduce a matrix 
sequence {P(k; t)} with respect to the m phases. Let , 1 ,( ; ) ( ( ; )) ,j j j j mP k t P k t
where , ( ; )j jP k t  is a conditional probability that the Markov chain 0T T  is in 
the phase j  at time t and that k renewals occur in [0, t), given that the Markov 
chain starts in the phase j at time 0. 

The matrix sequence {P(k; t)} satisfies the forward Chapman-Kolmogorov 
differential equations 

 (0; ) (0; ) ,P t P t T  (1.41) 

0( ; ) ( ; ) ( 1; ) , 1,P k t P k t T P k t T k  (1.42) 

with the initial condition P(k; 0) 0,k I  for k 0; or the backward Chapman- 
Kolmogorov differential equations 

 (0; ) (0; ),P t TP t  (1.43) 

0( ; ) ( ; ) ( 1; ), 1.P k t TP k t T P k t k  (1.44) 

Let *

0
( ; ) ( ; ).k

k
P z t z P k t  Then * ( ;0) ,P z I  and it follows from Eq. (1.41) and 

Eq. (1.42), or Eq. (1.43) and Eq. (1.44) that 

* 0( ; ) exp{( ) }.P z t T zT t  (1.45) 

Next, we consider the factorial moment matrices 

!( ) ( ; ), 0.
( )!n

k n

kV t P k t n
k n

It follows from Eq. (1.41) and Eq. (1.42) that 

0
0 0( ) ( )( ),V t V t T T  (1.46) 

0 0
1( ) ( )( ) ( ) , 1;n n nV t V t T T nV t T n  (1.47) 

or from Eq. (1.43) and Eq. (1.44) that 

0
0 0( ) ( ) ( ),V t T T V t  (1.48) 

0 0
1( ) ( ) ( ) ( ), 1;n n nV t T T V t T nV t n  (1.49) 

with the initial conditions V0(0) I and Vn(0) 0 for n 1.
Now, we use a Markov chain to understand Eq. (1.41) to Eq. (1.44), and Eq. (1.46) 

to Eq. (1.49). 
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Let

0

0

0

T T
T T

Q
T T

 (1.50) 

and

(0; ) (1; ) (2; ) (3; )
(0; ) (1; ) (2; )

( ) .(0; ) (1; )
(0; )

P t P t P t P t
P t P t P t

P t P t P t
P t

It is clear that ( ) ( ) or ( ) ( )P t P t Q P t QP t  with the initial condition (0) ,P I
which can lead to Eq. (1.41) to Eq. (1.44). 

Let

0 0

0 0

0 0

T T nT
T T nT

Q
T T nT

and

0 1 2 3

0 1 2

0 1

0

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) .( ) ( )
( )

V t V t V t V t
V t V t V t

V t V t V t
V t

Obviously, ( ) ( ) or ( ) ( )V t V t Q V t QV t  with the initial condition (0) ,V I
which can yield Eq. (1.46) to Eq. (1.49). 

It is necessary to provide some computations for the matrix sequence {Vn(t)}. 
Referring to Sec. 5.1 of Neuts [94], we have 

(1)

0
0 ( ) exp{( ) }.V t T T t

(2) Let  be the stationary probability vector of the Markov chain 0 ,T T
0.T  Then 1( ) .V t e t
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(3)
0 1

1( ) 1 exp{( ) } .V t e t T T t T e

For the PH renewal process, we take the renewal density function as 

*

0

( ) ( ),k

k
u t f t

where *( )kf t  is the kth-fold convolution of the probability density function f(t)

of the PH distribution F(t). It is worthwhile to note that E[N(t)]
0

1 ( )d .
t
u x x

The following proposition expresses the renewal density function, while the 
proof is easy and is omitted here. 

Proposition 1.3 For a PH renewal process with PH irreducible representation 
( , ),T  then the renewal density function is given by

0 0( ) exp{( ) } .u t T T t T

In the PH renewal process, we define the excess life (t) and the age (t) at 
time t, respectively, both of which are expressed in Fig. 1.7. The following 
proposition provides expressions for the distribution function of (t), while the 
associated discussion for (t) is similar. 

Figure 1.7 The excess life and the age at time t

Proposition 1.4 For a PH renewal process with PH irreducible representation 
( , ),T  the excess life (t) at time t is of phase type with irreducible representation 
( ( ), ),t T  where 0( ) exp{( ) }.t T T t

Let

0
( ; )d ( ), 0,kA P k t H t k

and

0
( ; )[1 ( )]d , 0.kA P k t H t t k

The following proposition provides a PH description for the two matrix sequences 
{Ak} and { },kA  respectively. 

Proposition 1.5 Suppose H(t) is a PH distribution with irreducible 
representation ( , ).S
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(1) { , 0}kA e k  is a discrete-time PH distribution with irreducible representation 
( , )L  of order mn, where 

1 0

1 0

1 0
1

0 1 0

( )( ) ( ),
( ) ( ),

( )( ) ( ),

( ) ( ).
mn

T S T I
L T S T I

T S e S

L T S e S

(2) { , 0}kA e k  is a discrete-time PH distribution with irreducible representation 
( , )L  of order mn, 

1 0

1 0

1 0
1

0 1 0

( )( ) ( ),
( ) ( ),

( )( ) ( ),

( ) ( ),
mn

T S T I
L T S T I

T S e S

L T S e S

where  is the stationary probability vector of the Markov chain 0 .T T

1.5.3 The Markovian Modulated Poisson Process 

We consider an arrival process {(N(t), J(t)):t 0} which extends the Poisson 
process to a multiple Poisson process depending on m environment states. This 
arrival process is written as MMPP and is depicted in Fig. 1.8, which gives an 
obviously physical interpretation. 

Figure 1.8 The state transitions in an MMPP 
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From Fig. 1.8, it is seen that the random environment {J(t):t 0} is a Markov 
chain with m environment states whose infinitesimal generator is given by 

, 1 ,( ) .i j i j mc  When J(t) i, the counting process {N(t):t 0} is a Poisson 
process with rate i  for 1 i m. To express such an arrival process in terms of a 
Markov chain, we write 

1 2diag( , , ..., )mC

and

1 2diag( , , ..., ).mD

Using the matrix pair (C, D), the MMPP can be described as a block-structured 
pure birth process with environment block C and a birth rate block D. This 
corresponding infinitesimal generator is similar to that of the PH renewal process 
with environment block C T and birth rate block D 0 ,T see Eq. (1.50). 

1.5.4 The Markovian Modulated PH Process 

We extend the MMPP to a more general arrival process: Markovian modulated 
PH process (MMPHP). An only difference from the MMPP is that when J(t) i,
the counting process {N(t):t 0} is a discrete-time PH renewal process with PH 
irreducible representation ( , )i iT  of order ni for 1 i m. In this case, the matrix 
pair (C, D) is respectively given by 

1,1 1 1,2 2 1,3 3 1,

2,1 1 2,2 2 2,3 3 2,

3,1 1 3,2 2 3,3 3 3,

,1 1 ,2 2 ,3 3 ,

m m

m m

m m

m m m m m m

c I T c e c e c e
c e c I T c e c e
c e c e c I T c eC

c e c e c e c I T

and

0 0 0 0
1 1 2 2 3 3diag( , , , , ).m mD T T T T

1.5.5 The Markovian Arrival Processes 

Observing the PH renewal process, the MMPP and the MMPHP, it is easy to see 
that each of them corresponds to a matrix pair (C, D), which then is used to 
express a block-structured pure birth process whose infinitesimal generator is 
given by 
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.

C D
C DQ

C D  (1.51) 

We now consider the MAP, which may have an intuitive interpretation such that 
the elements of the matrices C and D are more general. The matrix C has 
negative diagonal elements and nonnegative off-diagonal elements; the matrix D
is non-zero and nonnegative; and the matrix C D is the infinitesimal generator 
of an irreducible Markov chain with m states. 

We provide a physical interpretation that the MAP can be obtained from a 
generalization of the MMPP. When the Markov environment process J(t) i, not 
only does the corresponding Poisson process depend on the present state i, but it 
is also related to jumping to the next state j. Thus, the arrival rate of the MAP 
should be given by ,i j  for 1 i, j m, e.g.. See Fig. 1.9 for a clear illustration. 

Figure 1.9 The state transitions in a MAP 

Under the situation, we obviously have 

1, 2, ,
1 1 1

diag , , ,
m m m

j j m j
j j j

C

and
1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

.

m

m

m m m m

D
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Let  be the stationary probability vector of the Markov chain C D. The 
stationary arrival rate of the MAP is given by .De  We write P(k; t)

, 1 ,( ( ; )) ,j j j j mP k t  where , ( ; )j jP k t  is a conditional probability that the Markov 
chain C D is in the phase j at time t and that k renewals occur in [0, t), given 
that the Markov chain starts in the phase j at time 0. The matrix sequence {P(k; t)}
satisfies the forward Chapman-Kolmogorov differential equations 

(0; ) (0; ) ,
( ; ) ( ; ) ( 1; ) , 1,

P t P t C
P k t P k t C P k t D k

with the initial condition 0,( ;0) for 0;kP k I k  or the backward Chapman- 
Kolmogorov differential equations 

(0; ) (0; ),
( ; ) ( ; ) ( 1; ), 1.

P t CP t
P k t CP k t DP k t k

Let *

0

( ; ) ( ; ).k

k
P z t z P k t Then it is easy to see that 

* ( ; ) exp{( ) }.P z t C zD t

Note that the MAP is not a renewal process, it is necessary to discuss for the 
inter-dependent structure of the MAP. To do end, we assume that an arrival occurs 
at time 0. Let k  be the kth arrival epoch of the MAP for k 0, where 0 0.
Let 1.n n nX  Then Xn is the nth interarrival time of the MAP for n 1. In 
general, these random variables Xn for n 1 are not independent but they are 
identically distributed with marginal densities given by 

 ( ) exp{ } .f t Ct De

Define the matrix W(t) with the (i, j)th element Wi, j(t) which is a conditional 
probability density for an interarrival time [0,t), terminating at phase j and beginning 
from phase i. It is easy to check that W(t) exp {Ct}D. The transition probability 
matrix of the MAP evolves the phase of the environment stochastic process {J(t);
t 0} from one arrival epoch to the next one is given by 

1

0 0
( )d exp{ } d .W W t t Ct D t C D

It is clear that .W  The joint probability density function of the two random 
variables Xl and Xl+ k is given by 

1
, ( , ) exp{ } exp{ } .k

k lf x y Ct DW Ct De

Therefore, we obtain 
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1 1
,0 0

[ ] ( , )d d .k
l l k k lE X X xyf x y x y C W C e

Note that 

1 2 1 1[ ] [ ] ( ) ,k
l l kE X E X C e C e W C e

the correlation between the two random variables Xl and Xl+ k is given by 

1 1

1 1

( ) .
(2 )

k

k
C I e W C e
C I e C e

The joint probability density of the k random variables X1, X2, ..., Xk is given by 

1 2 1 2( , , , ) exp{ } exp{ } exp{ } .k kf x x x Cx D Cx D Cx De

The MAPs have an important closure property of superposition, which is similar 
to that of the Poisson processes. We describe this closure property of the MAPs 
in the following proposition, while the proof is omitted here. 

Proposition 1.6 If {(Ni(t), Ji(t)), t 0} is a MAP with matrix descriptor (Ci,

Di) of size mi for 1 i K, then 
1 1

( ), ( ) , 0
K K

i i
i i

N t J t t  is also a MAP with 

matrix descriptor 1 2 1 2( , )K KC C C D D D  of size 
1

.
K

i
i

m

1.5.6 The Batch Markovian Arrival Process 

We extend the MAP to a batch Markovian arrival process (BMAP) with matrix 
descriptor (C, D1, D2, D3, ...), where each element of the matrix Dk denotes the 
arrival rate of batch size k. Thus, the corresponding block-structured batch pure 
birth process has the following infinitesimal generator: 

1 2 3

1 2

1

.

C D D D
C D D

Q
C D

For the BMAP, let P(k; t) , 1 ,( ( ; )) ,j j j j mP k t  where , ( ; )j jP k t  is a conditional 

probability that the Markov chain
1

k
k

C D is in the phase j at time t and that 

k renewals occur in [0, t), given that the Markov chain started in the phase j at 
time 0. 
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The matrix sequence {P(k; t)} satisfies the forward Chapman-Kolmogorov 
differential equations 

1

1

(0; ) (0; ) ,

( ; ) ( ; ) ( ; ) , 1,
k

i
i

P t P t C

P k t P k t C P k i t D k

with the initial condition P(k; 0) 0, for 0;k I k  or the backward Chapman- 
Kolmogorov differential equations 

1

1

(0; ) (0; ),

( ; ) ( ; ) ( ; ), 1.
k

i
i

P t CP t

P k t CP k t D P k i t k

Let *

0

( ; ) ( ; ).k

k
P z t z P k t  Then it is easy to see that 

*

1
( ; ) exp .k

k
k

P z t C z D t

The BMAPs also have the closure property for superposition, which is described 
in the following proposition, while the proof is omitted here. 

Proposition 1.7 If {(Ni(t), Ji(t)), t 0} is a BMAP with matrix descriptor 
( ) ( ) ( )

1 2( , , , ...)i i iC D D  of size mi for i 1, 2, then {(N1(t) N2(t), J1(t) J2(t)), t 0} is 
also a BMAP with matrix descriptor (1) (2) (1) (2) (1) (2)

1 1 2 2( , , , ...)C C D D D D  of 
size m1 m2.

1.5.7 The Multivariate Markovian Arrival Process 

Now, we consider a K-dimensional Markovian arrival processes (MMAP[K]) and 
a K-dimensional batch Markovian arrival process (MBMAP[K]). An MMAP[K] 
{ ( ), ( ) : 0}t J t t  is constructed by K different classes of arrivals (for example, 
customers, products and orders), where 

1 2( ) ( ( ), ( ), ..., ( )),Kt N t N t N t

Ni(t) and J(t) denote the number of the ith class of arrivals in the time interval 
[0, t) for 1 i K, and the phase of the Markov environment at time t, respectively. 
In general, an MMAP[K] can be described as an irreducible matrix descriptor 
(C, D(1), D(2), ..., D(K)) of size m, where C has negative diagonal elements and 
nonnegative off-diagonal elements; the matrix D(i) 0 is the rate matrix of the ith 

class of arrivals for 1 i K; and the matrix ( )

1

K
i

i
C D  is the infinitesimal 
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generator of an irreducible Markov chain with m states. 

Let  be the stationary probability vector of the Markov chain ( )

1
.

K
i

i
C D

The stationary arrival rate of the ith class of arrivals is given by ( )i
i D e  and 

the total stationary arrival rate of the MMAP[K] is given by 
1

.
K

i
i

 Under the 

stable conditions, the probability that an arbitrary arrival is of the ith class is given 
by / for 1 .i i K

We write 

, 1 2 1 1 2 2

1 2

( , , ..., ; ) { ( ) , ( ) , ..., ( ) ;

( ) | (0) 0, (0) 0, ..., (0) 0, (0) }
j j K K K

K

P n n n t P N t n N t n N t n
J t j N N N J j

and

1 2 , 1 2 1 ,( , , ..., ; ) ( ( , , ..., ; )) .K j j K j j mP n n n t P n n n t

The matrix sequence 1 2{ ( , , ..., ; )}KP n n n t  satisfies the forward Chapman- 
Kolmogorov differential equations 

 (0, 0, ..., 0; ) (0, 0, ..., 0; )P t P t C

and for ni 1 and 1 i K,

1 2 1 2

( )
1 1 1

1

( , , ..., ; ) ( , , ..., ; )

( , ..., , 1, , ..., ; ) ,

K K
K

i
i i i K

i

P n n n t P n n n t C

P n n n n n t D

with the initial condition 

1 2
1 2

, 0
( , , , ; 0)

0, otherwise;
K

K

I n n n
P n n n

or the backward Chapman-Kolmogorov differential equations 

 (0, 0, ..., 0; ) (0, 0, ..., 0; )P t CP t

and for ni 1 and 1 i K,

1 2 1 2

( )
1 1 1

1

( , , ..., ; ) ( , , ..., ; )

( , ..., , 1, , ..., ; ).

K K
K

i
i i i K

i

P n n n t CP n n n t

D P n n n n n t

Let
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1 2

1 2

*
1 2 1 2 1 2

0 0 0
( , , , ; ) ( , , , ; ).K

K

n n n
K K K

n n n
P z z z t z z z P n n n t

Then

* ( )
1 2

1
( , , , ; ) exp .

K
i

K i
i

P z z z t C z D t

In what follows we provide some useful properties for the MMAP[K]: 
(1) The arrival process of the ith class is an ordinary MAP with irreducible 

matrix descriptor ( ) ( ), .j i

j i
C D D

(2) The arrivals process of classes i1 to iL is an MMAP[L] with irreducible 

matrix descriptor 1 2

1

( ) ( ) ( )( )

to

, , , , .L

L

i i ij

j i i
C D D D D

(3) The superposition of the two MMAP[K] and MMAP[L] is still an MMAP[M], 
where the number M depends on the practical system.  

1.5.8 The Multivariate Batch Markovian Arrival Process 

An MBMAP[K] {( ( ), ( )) : 0}N t J t t  is constructed by K different classes of 
arrivals with stochastic batch size, where 1 2( ) ( ( ), ( ), ..., ( )),KN t N t N t N t ( )iN t
and ( )J t  denote the number of the ith class of arrivals in the time interval [0, t)
for 1 i K, and the phase of the Markovian enviornment at time t, respectively. 

Let K  be a set of non-zero K-tuples of nonnegative integers. A generic 
element of K  is denoted as 1 2( , , ..., ).Kn n n n  An MBMAP[K] can be 
described as an irreducible matrix descriptor ( , , )K

nC D n  of size m, where 
C has negative diagonal elements and nonnegative off-diagonal elements; the 
matrix 0nD  is the rate matrix of arrivals of batch size n for ;Kn  and the 
matrix 

K
n

n

C D  is the infinitesimal generator of an irreducible Markov chain 

with m states. 
We write 

( )

0, K
k

k
n

n n

C C D

and
( )

,

.
K

k

k
r n

n r n

D D



Constructive Computation in Stochastic Models with Applications 

56

Then the arrival process of the k th class is a BMAP with irreducible matrix 
descriptor ( ) ( ) ( )

1 2( , , , ...).k k kC D D  Let  be the stationary probability vector of the 
Markov chain .

K
n

n

C D  The stationary arrival rate of the kth class of arrivals is 

given by ( )

1

.k
k r

r
rD e  Let 

1 2 ,

.
K

K

r n
n n n r

n

D D

Then the counting process {( ( ) , ( ))}N t e J t  is a BMAP with irreducible matrix 
descriptor (C, D1, D2, ...) and the stationary arrival rate of the BMAP is given by 

1

.
K

i
i

 Under the stable conditions, the probability that an arbitrary arrival is 

of the kth class is given by /k  for 1 k K.
We write 

, ( ; ) { ( ) ; ( ) | (0) , (0) }j jP t P N t J t j N J j0n n

and

, 1 ,( ; ) ( ( ; )) ,j j j j mP t P tn n

where 1 2( , , ..., )Kn n nn
The matrix sequence {P(n; t)} satisfies the forward Chapman-Kolmogorov 
differential equations 

 ( ; ) ( ; )P t P t C0 0

and for ,Kn

,

( ; ) ( ; ) ( ; ) ;
K

hP t P t C P t D
h n h

n n n h

or the backward Chapman-Kolmogorov differential equations 

 ( ; ) ( ; )P t CP t0 0

and for ,Kn

,

( ; ) ( ; ) ( ; ).
K

hP t CP t D P t
h n h

n n n h

Let 1 2
1 2 1 2( , , , ), Kn n n

K Kz z z z z z z zn and * ( ; ) ( ; ).
K

P z t z p tn

n

n

Then
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* ( ; ) exp .
K

P z t C z D tn
n

n

For the stationary version of the MBMAP[K], we list the useful results as follows: 
(1) Backward looking: The probability that the last arrival before an arbitrary 

time t has the batch size n is given by 1( )D C en  for .Kn
(2) Forward looking: The probability that the last arrival after an arbitrary time 

t has the batch size n is given by 1( )C D en  for .Kn
(3) At the arrival: The probability that an arbitrary arrival has the batch size n

is given by /D en  for .Kn
We now extend the above probabilities to that of r consecutive arrivals with 

batch sizes n1, n2, ..., nr, respectively. We list the useful results as follows: 
(1) Backward looking: The probability that the last arrival before an arbitrary 

time t has the batch sizes n1, n2, ..., nr is given by 

1 2

1 1 1( ) ( ) ( ) .
r

D C D C D C en n n

(2) Forward looking: The probability that the last arrival after an arbitrary time 
t has the batch sizes n1, n2, ..., nr is given by 

1 2

1 1 1( ) ( ) ( ) .
r

C D C D C D en n n

(3) At the arrival: The probability that an arbitrary arrival has the batch sizes 
n1, n2, ..., nr is given by 

1 2
/ .

r
D D D en n n

1.6 Matrix-Exponential Distribution 

In this section, we discuss a useful distribution: Matrix-exponential distribution, 
which is a formal generalization of the PH distribution. We analyze some useful 
properties of this distribution and its renewal process. 

Now, we extend the PH distribution with probability density function 

0ˆ ˆˆ( ) exp{ }f x Tx T

to a more general distribution: Matrix-exponential distribution with probability 
density function 

 ( ) exp{ } .b x Tx s

Thus, a matrix-exponential distribution can be determined by a triple ( , , )T s  of 
size m, denoted as MED ( , , ).T s  The matrix-exponential distribution satisfies 
two basic conditions: 0s  and 1 1.T s  Specifically, if  is a probability 
vector, T is an infinitesimal generator of the Markov chain with an absorbing 



Constructive Computation in Stochastic Models with Applications 

58

state and ,s Te  then the MED ( , , )T s  is a PH distribution. 
It is easy to check that the MED ( , , )T s  has the probability distribution function 

1( ) 1 exp{ } ,B x Tx T s

the Laplace transform 
1( ) ( ) ,b s sI T s

which is rational, and the nth moment 
1 ( 1)( 1) ! .n n

n n T s

Proposition 1.8 The following statements are equivalent: 
(1) b(x) exp{ } ,Tx s
(2) ( )b s  is rational, and 

(3) b(x)
0

exp{ }.
n

j
j j

j
c x x

The following theorem provides a useful relation between the matrix-exponential 
distribution and the probability distribution with rational Laplace transform. 

Theorem 1.3 The Laplace transform of a matrix-exponential distribution 
can be written as 

1
1 2

1
1 1

( )
n

n
n n

n n

b b s b sb s
s a s a s a

for some n 1 and some constants a1, a2, ..., an, b1, b2, ..., bn. At the same time, the 
matrix-exponential distribution has the matrix descriptor ( , , )T s  of size n, where 

1 2

1 2 3 1

( , , ..., ),
1

1
1

1

n

n n n n

b b b

T

a a a a a

and
T(0, 0, 0, 0, 0,1) .s

Let the random variable X be matrix-exponential with matrix descriptor 
( , , ),T s  and 

 ( ) { | }.yF x P X x y X y
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Then Fy(x) is also matrix-exponential with matrix descriptor ( , , ),y T s  where 

1

exp{ } .
exp{ }y

Ty
Ty T s

If A is an invertible matrix of size m, then 

1 1

1 1

MED ( , , ) ~ MED ( , , )
~ MED ( , , ).

T s A A TA A s
A ATA As

 (1.52) 

For an arbitrary MED ( , , )R r  of size m, it is necessary to give a closed PH 
representation 0( , , ).T T  To do this, it follows from Eq. (1.52) that MED 

1 1( , , ) ~ ( , , ).R r A A RA A r  Let 1,A T A RA  and 0 1 .T Te A r
Therefore, 1 1 ,A RAe A r  which leads to 1 .Ae R r  To determine the matrix 

,( ),i jA a we write 1
1 2( , , ..., ) .mr r r R r  Using 1 ,Ae R r  we may take a 

special matrix A as follows: 
(1) If 0,ir  then we take 

,

, ,
0, .
i

i j

r i j
a

i j

(2) If 0,ir  then we take 

,

1, ,
1, 1,

0, otherwise.
i j

i j
a i j

It is easy to check that the matrix A is invertible and 1 .Ae R r
Now, we study the minimal representation of the matrix-exponential distribution. 

Let
2span{ , , , ..., },

span{ : 0,1, 2, ...},
span{exp{ } : 0};

p
p

n

e

R s Ts T s T s

R T s n
R Tx s x

and
2span{ , , , ..., },

span{ : 0,1, 2, ...},
span{ exp{ }: 0}.

p
p

n

e

L T T T

L T n
L Tx x

It is easy to check that p eR R R  and .p eL L L
Let ( , , )T s  and ( , , )T s  be two representations of a matrix-exponential 

distribution. If dim ( ) ,pR p  then .  On the other hand, let ( , , )T s  and 
( , , )T t  be two representations of a matrix-exponential distribution. If dim 
( ) ,pL p  then .s t
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The following theorem provides a necessary and sufficient condition under 
which the representation ( , , )T s  of a matrix-exponential distribution is minimal. 

Theorem 1.4 A representation ( , , )T s  of a matrix-exponential distribution 
of size m is minimal if and only if dim ( ) dim ( ) .m mR L m

For a representation ( , , )T s  of a matrix-exponential distribution, we can 
often construct its minimal representation. The steps for finding the minimal 
representation are given in the following theorem. 

Theorem 1.5 Suppose ( , , )T s  of size m is a matrix representation of a 
matrix-exponential distribution. 

(1) Let dim ( ) .mp R m  We denote by x1, x2, ..., xp a basis for the linear space 
Rm, and define an m p matrix A (x1, x2, ..., xp) and the change of basis 
transformation B of size p m such that Bxi ei for 1 i p, where e1, e2, ..., ep
denote the Euclidian basis vectors. Then ( , , )A BTA Bs  is a p-dimensional 
representation of the matrix-exponential distribution. 

(2) Let dim ( ) .mq L m  We denote by y1, y2, ..., yp a basis for the linear 
space Lm, and define a p m matrix T T T T

1 2( , , ..., )pC y y y  and the change of basis 
transformation D of size p m such that xiD ei for 1 i p, where e1, e2, ..., ep

denote the Euclidian basis vectors. Then ( , , )D CTD Cs  is a p-dimensional 
representation of the matrix-exponential distribution. 

Now, we consider a renewal process where the interarrival distribution B(x) is 
matrix-exponential with matrix representation ( , , ).T s

Let the renewal density function be u(x) *

0

( ).n

n
b x  Then 

 ( ) exp{( ) } .u x T s x s

Furthermore, we consider a delayed renewal process with b0(x) exp{ }Tx s
and b(x) exp{ } .Tx s  Then the renewal density function is given by 

0 ( ) exp{( ) } .u x T s x s

Let (t) be the excess life time at time t. Then (t) is matrix-exponential with 
matrix representation ( , , ),t T s  where exp{( ) };t T s t  or another matrix 
representation ( , , ),tT r  where exp{( ) } .tr T s t s  Furthermore, for a delayed 
renewal process with b0(x) exp{ }Tx s  and ( ) exp{ } , ( )b x Tx s t  is also matrix- 
exponential with matrix representation ( , , ),t T s  where exp{( ) }.t T s t

1.7 Notes in the Literature 

For Markov chains, we may refer to Kemeny and Snell [64], Kemeny, Snell and 
Knapp [65], Anderson [7], Meyn and Tweedie [84], Karlin and Taylor [61, 62], 
Kijima [66], Taylor and Karlin [121]. The QBD process is an important example 
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in Markov chains, and provides a useful mathematical tool for studying stochastic 
models such as queueing systems, manufacturing systems, communication networks 
and transportation systems. Readers may refer to Chapter 3 of Neuts [92], Hajek [40], 
Gaver, Jacobs and Latouche [39], Latouche and Ramaswami [69], Neuts [96], 
Naoumov [86, 87], Bright and Taylor [29, 30], Ramaswami [110], Ramaswami 
and Taylor [111, 112], Meini [83], Kijima and Makimoto [68], Latouche and 
Ramaswami [70], He, Meini and Rhee [43], Li and Cao [73] and references 
therein. Specifically, some stochastic models have motivated the need for studying 
a level-dependent QBD process. Important examples include the retrial queues, 
see, for example, Artalejo [9], Anisimov and Artalejo [8], Breuer, Dudin and 
Klimenok [28] and Artalejo and Gómez-Corral [10]. 

The PH distribution plays an important role in numerical computation of 
stochastic models. Since the introduction of the PH distribution by Neuts [89], 
research on the PH distribution has been greatly motivated by many practical 
applications. Chapter 2 in Neuts [92] provided a detailed analysis for the PH 
distribution with many useful properties. Subsequent papers have been published 
on this theme from some different points of view. The properties of the PH 
distribution are studied by, such as, Assafe and Levikson [17], Neuts [93], Assaf 
and Langberg [15], Aldous and Shepp [2], Sengupta [118, 119], Bean and 
Nielsen [18], Hipp [51]. For the structured representation, readers may refer to 
Commault and Chemla [33, 34], Mocana and Commault [85], Commault and 
Mocanu [35, 36], He and Zhang [45 47]. For the phase structure and the 
minimal irreducible representation of the PH distribution, readers may refer to 
O’Cinnerde [102 106], Maier [80, 81], Maier and O’Cinnerde [82]. Specifically, 
O’Cinnerde [107] provided an overview on this direction. For the PH approximation, 
readers may refer to Altiok [5, 4], Bobbio and Telek [24], Bobbio, Horváth and 
Telek [22, 23], Bobbio, Horváth, Scarpa and Telek [21], Horváth and Telek [52], 
He, Wu and Li [50], Li, Lin and Li [78]. The statistical analysis of PH distributions 
has been given by some researchers, such as, Johnson [55 58], Bobbio and 
Cumani [20], Olsson [108], Rydén [117], Asmussen [12], Faddy [38]. The PH 
distribution has been extended to several useful classes as follows. Shanthikumar 
[120], Ahn and Ramaswami [1] analyzed a bilateral PH distribution, and Li, 
Wang and Zhou [73] studied a symmetric PH distributions. For the multivariate 
PH distribution, readers may refer to Assaf, Langberg, Savits and Shaked [16], 
Kulkarni [67], Li [72], Cai and Li [31], Asimit and Jones [11]. 

When the interarrival time is of phase type, Neuts [90] studied a PH-renewal 
process. Neuts and Latouche [98] discussed the superposition of two PH-renewal 
processes. Kao and Smith [59, 60] analyzed excess-, current-, and total-life 
distributions of phase-type renewal processes. Neuts [91] extended the PH renewal 
process to a versatile Markovian point process, which is called batch Markovian 
arrival process, e.g., see Neuts [94]. Lucantoni [79] provided a simple representation 
for the BMAP. Narayana and Neuts [88] considered the first two moment matrices 
of the counts for the MAP. Neuts [95] analyzed the burstiness of the MAP. For the 
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MAP and BMAP, readers may refer to some crucial works such as Liu and Neuts 
[77], Neuts, Liu and Narayana [99], Neuts [97], Johnson and Narayana [54], 
Nishimura and Sato [101], Johnson, Liu and Narayana [53], Breuer [27], Andersen, 
Neuts and Nielsen [6], Kawanishi [63], Nielsen, Nilsson, Thygesen and Beyer [100], 
Rydén [113 115]. The MAP describes bursty traffic in modern communication 
networks. Readers may refer to Chapter 5 in Neuts [94], Ramaswami [109], 
Lucantoni [79], Neuts [96], Alfa [3], Latouche and Ramaswami [70], Lee and 
Jeon [71], Chakravarthy [32], Li and Zhao [76, 75]. To describe multivariate and 
inter-dependent arrival processes, He and Neuts [44] provided a Markovian 
arrival process with marked transitions (MMAP[K]). Readers may refer to 
applications of the MMAP[K] such as He [42, 43]. 

Asmussen and Bladt [13] discussed matrix-exponential distributions. Asmussen 
and Perry [14] provided an operational calculus for matrix-exponential distributions. 
Readers may refer to Bladt [19], Fackrell [37], van de Liefvoort and Heindl [122], 
He and Zhang [47 49].

In this chapter, we refer to more references such as Kemeny and Snell [64], 
Kemeny, Snell and Knapp [65], Anderson [7], [92, 94], Li and Cao [73], Lucantoni 
[79], Assaf, Langberg, Savits and Shaked [16], He and Neuts [44] and Asmussen 
and Bladt [13]. 

Problems

1.1 Consider an M/M/c queue with server multiple vacations. In the following 
two different cases, please write the infinitesimal generators of the corresponding 
systems. 

(1) The vacation process of the c servers is Synchronous Start and Synchronous 
End.

(2) The vacation process of the c servers is Independent Start and Independent 
End.
1.2 Consider a two-node closed queueing network depicted in Fig. 1.10 There 
are N customers in the system, the service times of servers 1 and 2 are i.d.d. and  

Figure 1.10 A closed queueing network with server vacations 
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are exponentially distributed with service rates 1 and 2, respectively. If there is 
no customer in server 1 or 2, then the server enters a vacation state with multiple 
vacation discipline. The vacation times of servers 1 and 2 are exponentially 
distributed with vacation rates 1  and 2 , respectively. Please write the infinitesimal 
generators of the queueing system.
1.3 Consider an M/M/c queue with c repairable servers and N repairmen for   
2 N c. The parameters and relative assumptions are introduced in Section 1.2 
for “A queue with repairable servers”. Please write the infinitesimal generators of 
the queueing system. 
1.4 In Problem 1.3, if the c repairable servers may be different with parameters 

,i i and i  for 1 i c, please write the infinitesimal generators of the 
corresponding systems. 
1.5 Consider a bound call center with two classes A and B of customers and 
three different groups of agents, as depicted in Fig. 1.11. The A- and B-classes of 
customers arrive at the system according to Poisson processes with arrival rates 

1  and 2 ,  respectively. The sizes of the A- and B-queues are M and N,
respectively. If the A- or B-queue is fully loaded, the arriving customer has to be 
lost immediately. Once the waiting time of a customer exceeds the patient waiting 
time, then the arriving customer has to be lost immediately. The patient waiting 
times of the A- and B-customers are exponentially distributed with rates 1  and 

2 , respectively. The service times of A-specialist, B-specialist and Generalist are 
all i.i.d. and are exponentially distributed with service rates 1 2,  and 0 ,
respectively. Please write the infinitesimal generators of the queueing system. 

Figure 1.11 A call center with two classes of customers 

1.6 In Fig. 1.12, the arrival of repaired locomotives is a Poisson process with 
arrival rate . Once the locomotive enters the repair shop, it is immediately 
disconnected into m different types of parts or it has to wait for a disconnected 
room on a queueing line. The sub-warehouse size of the ith type of parts, including 

the failed or repaired ones, is allocated to be Ni, thus 
1

m

i
i

N N  is the size of the  
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repair shop. The repair time of each ith type of part is exponentially distributed with 
repair rate i . We assume that the parts are as good as new after repair. When the 
disconnected process of the arriving locomotive is completed, each corresponding 
part is taken from its sub-warehouse, if it exists, and is installed in the suitable 
position of the locomotive. After being installed, the locomotive leaves the repair 
shop immediately. We assume that all the other time, except for the repair times, are 
so short that they can be ignored as zero. Please write the infinitesimal generators 
of the corresponding system. 

Figure 1.12 A locomotive repair system 

1.7 If a continuous-time QBD process Q with either infinitelymany levels or 
finitely mang levels is transient, please use the UL-type RG-factorization to compute 
the inverse of the infinitesimal generator Q.
1.8 Prove that (1) 1 2 2 1,g g g g  and (2) 1

1 2 1 2( ) .T g g T g g
1.9 Let 1  and 2  be two nonempty stochastically closed sets of the state 
space  such that 1 2 { 1}.m  We write 0 1 2 1 1 2,c c cE E  and 

2 1 2 .cE
(1) Prove that 

0 1 2

0

1

2

0,0 0,1 0,2

1,1

2,2

.

E E E

E
E
E

T T T
T T

T

(2) Using the above block structure, please compute 1 2 1 2( , ), ( , ),F x x f x x
1 2( , )f s s  and 1 2[ ].E Y Y
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1.10 For an M/PH/1/c queue, prove that its departure point process is a MAP 
and write the associated matrix descriptor (C, D). Provide some numerical 
examples to indicate effects of the service density, / ,  on the behavior of 
the MAP. 
1.11 For a PH/PH/1 queue, use a finite-state MAP to provide an approximate 
algorithm for computing the mean and variance of its departure point process. 
Provide some numerical examples to indicate the effects of the service density, 

/ ,  on the behavior of the departure point process. 
1.12 Provide concrete examples for applying the multivariate MAP to describe 
some multivariate dependent arrival processes in practical areas. 
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Abstract In this chapter, the censoring technique is applied to be able to 
deal with any irreducible block-structured Markov chain, which is either 
discrete-time or continuous-time. The R-, U- and G-measures are iteratively 
defined from two different censored directions: UL-type and LU-type. An 
important censoring invariance for the R- and G-measures is obtained. Using 
the censoring invariance, the Wiener-Hopf equations are derived, and then the 
UL- and UL-types of RG-factorizations are given. The stationary probability 
vector is given an R-measure expression; while the transient probability can 
be computed by means of the R-, U- and G-measures. Finally, the A- and 
B-measures are proposed in order to discuss the state classification of the 
block-structured Markov chain. 

Keywords stochastic model, block-structured Markov chain, the censoring 
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soring invariance, Wiener-Hopf equation, RG-factorization, state classification, 
stationary probability vector, transient probability, the first passage time. 

In this chapter, the censoring technique is applied to be able to deal with any 
irreducible block-structured Markov chain with either finitely-many levels or 
infinitely-many levels, which is either discrete-time or continuous-time. Three 
probabilistic measures: R-, U-and G-measures, are defined from two different 
censored directions: UL-type and LU-type, and an important censoring invariance 
for the R-and G-measures is obtained. Based on the censoring invariance, the 
Wiener-Hopf equations are derived, and the UL-and UL-types of RG-factorizations
for the transition matrix are given. Furthermore, the A- and B-measures are proposed 
in order to discuss the state classification of the block-structured Markov chain. 
This chapter systemically develops the decomposition theory: the RG-factorizations, 
for any irreducible Markov chains. Based on the RG-factorizations, effective 
algorithms can be designed under a unified, constructive computational framework 
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in order to deal with performance computation and system decision for practical 
stochastic models in many applied areas. 

This chapter is organized as follows. Section 2.1 applies the censoring technique 
to deal with any irreducible discrete-time block-structured Markov chain. Some 
important properties of the censored Markov chain are given. For the discrete-time 
block-structured Markov chain, Sections 2.2 and 2.3 derive the UL-and LU-types 
of RG-factorizations, respectively. Section 2.4 provides an R-measure expression 
for the stationary probability vector of any positive recurrent block-structured 
Markov chain. Note that the R-measure expression is more effective than that in 
the literature. Specifically, those crucial formulae given in Neuts [26, 27] are 
simply re-derived by means of the R-measure expression. Section 2.5 defines A-
and B-measures for any irreducible block-structured Markov chain, and constructs 
expressions for the A- and B-measures by means of the R-, U- and G-measures, 
respectively. Based on the A- and B-measures, necessary and sufficient conditions 
for the state classification of the block-structured Markov chain are obtained. 
Section 2.6 discusses the block-structured Markov chains with finitely-many levels. 
Section 2.7 gives the UL-and LU-types of RG-factorizations for any irreducible 
continuous-time block-structured Markov chain, and some useful results are 
summarized simply. Finally, Section 2.8 summarizes the references related to the 
results of this chapter. 

2.1 The Censoring Chains 

In this section, the censoring technique is applied to be able to deal with any 
irreducible discrete-time block-structured Markov chain. Also, some important 
properties for the censored Markov chains are given. 

We consider an irreducible discrete-time block-structured Markov chain {Xn,
n 0} on the state space {( , ) : 0,1 }kk j k j m  whose transition probability 
matrix is given by 

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

,

P P P
P P P

P
P P P

 (2.1) 

where Pi, j is a matrix of size mi mj whose ( , )r r th entry is given by 

, , 1( ) { ( , ) | ( , )}.i j r r n nP P X j r X i r

In this chapter, we always assume that the Markov chain P is irreducible and 
stochastic (or substochastic). Note that the stochastics and substochastics are denoted 
as Pe e  and ,Pe e  respectively, where e is a column vector of ones with 
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suitable size. Under the block structure, the state space  is partitioned as 
0i iL  with {( ,1), ( ,2), ..., ( , )}.i iL i i i m  For state (i, k), i is called the level 

variable and k the phase variable. We also write 0
k

k i iL L  for the set of all 
the states in the levels up to k, and kL  for the complement of ( 1) .kL

Now, we define a censored chain for an irreducible Markov chain whose 
transition probability matrix consists of scalar entries. We then treat a block- 
structured Markov chain as a special case. 

Definition 2.1 Suppose that {Xn, n 0} is an irreducible Markov chain on the 
state space {0,1, 2, ...}.  Let E be a non-empty subset of . If the successive 
visits of Xn to the subset E take place at the nk th step of state transition. We write 

k

E
k nX X  for k 1. Then the sequence { , 1}E

kX k  is called the censored chain 
with censoring set E. 

For convenience of description, we write [ ]nP  for the censored transition 
probability matrix PE if the censored set ,nE L  in particular, [ ]P P  and 

[0] [ 0].P P  Similarly, [ ]nP  is the censored transition probability matrix with the 
censored set ,nE L  specifically, [ 0] .P P

Let .cE E  According to the subsets E and ,cE  the transition probability 
matrix P is partitioned as 

.

c

c

E E
E
E

T UP V W
 (2.2) 

Lemma 2.1 If P is irreducible and V 0, then each element of 
0

n

n
W W is 

finite.
Proof If P is irreducible, then W is strictly substochastic due to V 0. The 

Markov chain W may be regarded as having absorbing state set E so that the 
expected number of visits to each state in cE  is finite. Hence 

0

n

n
W W ,

where W  is the minimal nonnegative inverse of I W, denoted as 1
min( ) .I W

This completes the proof. 
The matrix W  is referred to as the fundamental matrix of W. Similarly, if 

0,U  then 
0

,n

n
T T  and specifically, 1( )T I T  when the order of the 

matrix T is finite. 
In the following, we show that the censored chain { , 1}E

kX k  is also a Markov 
chain, and derive its transition probability matrix. 
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Theorem 2.1 The censored chain { , 1}E
kX k  is a Markov chain whose 

transition probability matrix is given by

.EP T UWV  (2.3) 

Proof It follows from the Markov property of P that the (i, j)th entry of the 
transition probability matrix of the censored chain { , 1}E

kX k  is given by 

, 1 1 0{ | } { | }.E E E E E
i j n nP P X j X i P X j X i

Thus, the censored chain { , 1}E
kX k  is obviously a Markov chain. 

In what follows we explicitly express EP  in terms of the original transition 
probability matrix. To do this, we consider the following two possible cases: 

Case 1 1.n  In this case, 1 1, , Ei j E X X  and 

1 0 ,{ | } .E E
i jP X j X i T  (2.4) 

Case 1n k  for 2.k  In this case, 1, , E
ki j E X X  and 

1 0
2

0 ,

{ | } { ,
for 1,2,..., 1| } ( ) .

E E
k l

k
i j

P X j X i P X j X E
l k X i UW V (2.5)

It follows from Eq. (2.4) and Eq. (2.5) that 

2
1 0 ,

2 ,

, ,

|

( ) .

E E k
i j

k i j

i j i j

P X j X i T UW V

T UWV

This completes the proof. 
Remark 2.1 The censored chain { , 1}

cE
kX k  is a Markov chain whose 

transition probability matrix is given by 

.
cEP W VTU

Note that the two censored Markov chains { , 1}E
kX k  and { , 1}

cE
kX k  have 

different utilities, which can lead to two different types of RG-factorizations later. 
Based on the above discussion on the censored chains, a probabilistic 

interpretation for each component of the matrix EP  is listed as follows. 
(1) ,i jW  is the expected number of visits to state cj E  before entering E,

given that the Markov chain starts in state .ci E
(2) ,( )i jUW  is the expected number of visits to state cj E  before returning 

to E, given that the Markov chain starts in state .i E
(3) ,( )i jWV  is the probability that upon entering E the first state visited is ,j E

given that the Markov chain starts in state .ci E
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(4) ,( )i jUWV  is the probability that upon returning to E the first state visited is 
,j E given that the Markov chain starts in state .i E

Define the z-transformation for the censored Markov chain as 

* *
,( ) ( ) ( ) ( ) , , ,E E

i jP z P z i j E

where

*
, 0

0
( ) ( ) { | }.E k E E

i j k
k

P z z P X j X i

The following corollary provides a useful result for studying the censored 
Markov chain, the proof of which is obvious from Eq. (2.4) and Eq. (2.5). 

Corollary 2.1

* 2( ) ( ) ,EP z zT z U zW V

where 

0
.n n

n
zW z W

Based on Definition 2.1, we can summarize the following five useful properties 
for the censored Markov chains. These properties can be easily proved by means 
of the sample path analysis for the censored Markov chains. 

Property 2.1 For 1 2 1
1 2 , ( ) .E E EE E P P

Property 2.2 P is irreducible if and only if EP  is irreducible for every subset 
E of .

Property 2.3 P is recurrent if and only if EP  is recurrent for every subset 
E .

Property 2.4 P is transient if and only if EP  is transient for every subset 
E .

Property 2.5 Suppose P is irreducible. 
(1) P is recurrent if and only if EP  is recurrent for some subsets E .

Specifically, if P is recurrent, then [ ]nP  is positive recurrent for each n 0.
(2) P is transient if and only if EP  is transient for some subsets E . Specifically, 

if P is transient, then [ ]nP  contains at least an absorbing state for each n 0.

2.2 The UL-type RG-Factorization

In this section, three UL-type probabilistic measures: the R-, U- and G-measures, 
are defined by means of the censored chain, an important censoring invariance for 
the R- and G-measures is given, and a UL-type RG-factorization for the transition 
probability matrix is derived.  
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We first define the R- and G-measures for the Markov chain P given in Eq. (2.1). 
Note that the R- and G-measures are crucial for studying block-structured Markov 
chains.

For 0 i< j, Ri, j(k) is an mi mj matrix whose ( , )r r th entry , ,( ( ))i j r rR k  is the 

probability that starting in state (i, r), the Markov chain makes its kth transition 
for a visit into state ( , )j r  without visiting any states in ( 1)jL  during intermediate 

steps; or 

, , ( 1)

0

( ( )) { ( , ),
for 1,2, ..., 1| ( , )}.

i j r r k l jR k P X j r X L
l k X i r

Write , ,
1

( ).i j i j
k

R R k  Then the ( , )r r th entry of ,i jR  is the expected number of 

visits to state ( , )j r  before hitting any states in ( 1)jL , given that the Markov 

chain starts in state (i, r).
For 0 j< i, Gi, j (k) is an mi mj matrix whose ( , )r r th entry , ,( ( ))i j r rG k  is the 

probability that starting in state (i, r), the Markov chain makes its kth transition 
for a visit into state ( , )j r  without visiting any states in ( 1)iL  during intermediate 
steps; or 

, , ( 1)

0

( ( )) { ( , ),
for 1,2, ..., 1| ( , )},

i j r r k l iG k P X j r X L
l k X i r

let us consider , ,
1

( ).i j i j
k

G G k Then the ( , )r r th entry of Gi, j is the probability 

of hitting state ( , )j r  when the Markov chain enters ( 1)iL  for the first time, given 

that the Markov chain starts in state (i, r).
The two matrix sequences {Ri, j} and {Gi, j} are called the R- and G-measures 

of the Markov chain P, respectively. We show that the R- and G-measures can be 
expressed in terms of the transition probability matrix. To see this, partition   
the transition probability matrix P according to the three subsets ( 1) ,n nL L  and 

( 1)nL  as 

0 1

0 0 2

1 2 1

.
T U U

P V T U
V V T

 (2.6) 

Let

0 2

2 1

T U
W

V T
 (2.7) 
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and

11 12

21 22

( ) ( )
, 0.

( ) ( )
n D n D n

W n
D n D n

Partition
0

n

n
W W  accordingly as 

11 12

21 22

.
H H

W
H H

 (2.8) 

We write 

0, 1, 2, 1,( , , , ..., ) ,T T T T T
n n n n n nR R R R R  (2.9) 

where the superscript T stands for the transpose of a matrix, and 

,0 ,1 ,2 , 1( , , , ..., ).n n n n n nG G G G G  (2.10) 

For convenience, for a matrix 0 1 2( , , , ...)B B B B  or 0 1 2( , , , ...) ,T T T TB B B B  let 
( ) iB  denote the ith block-entry Bi of the matrix B and ,( ) i

r rB  the ( , )r r th entry 
in the ith block-entry of B.

Lemma 2.2 For n 1,

0 11 1 21nR U H U H  (2.11) 

and

11 0 12 1.nG H V H V  (2.12) 

Proof We only prove Eq. (2.11), while Eq. (2.12) can be proved similarly. 
For 0 i n 1, we consider two possible cases for , ,( ( ))i n r rR k  as follows: 
Case k 1. In this case, 

, , 1 0 0 ,( ( )) { ( , ) | ( , )} ( ) .i
i n r r r rR k P X n r X i r U  (2.13) 

Case k 2. In this case, 

, , ( 1)

0

0 11 1 21 ,

( ( )) { ( , ),

for 1, 2, ..., 1| ( , )}

( ( 1) ( 1)) .

i n r r k l j

i
r r

R k P X n r X L
l k X i r

U D k U D k (2.14)

Noting that D11(0) I and D21(0) 0, it follows from Eq. (2.13) and Eq. (2.14) that 
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, , , ,
1

0 , 0 11 1 21 ,
2

0 11 1 21
0 ,

0 11 1 21 ,

( ) ( ( ))

( ) ( ( 1) ( 1))

( ( ) ( ))

( ) .

i n r r i n r r
k

i i
r r r r

k
i

k r r

i
r r

R R k

U U D k U D k

U D k U D k

U H U H

This completes the proof. 
For the Markov chain P, let Wn be the southeast corner of P from level n, i.e., 

Wn , ,
0

( ) . Let ,k
ni j i j n n

k
P W W  and 

( , )k
nW  and 

( , )l
nW  be the kth block-row and the 

l th block-column of ,nW  respectively. 
The following corollary easily follows from Lemma 2.2. Such expressions are 

crucial in our study later. 
Corollary 2.2 For 0 i< j,

( ,1)

, , , 1 , 2( , , , ...) ji j i j i j i jR P P P W , (2.15) 

and for 0 j < i,

(1, ) T T T T
, , 1, 2,( , , , ...) .ii j i j i j i jG W P P P  (2.16) 

From either Lemma 2.2 or Corollary 2.2, it is clear that the R- and G-measures 
depend on the entries of the fundamental matrix W  given in Eq. (2.8). In this 
case, it is necessary to provide expression for the fundamental matrix .W  The 
result in this lemma can be viewed as a generalized version of the expression for 
the minimal nonnegative inverse of a block-structured matrix of infinite size, while 
the proof is easy and is omitted here. For the matrix W given in Eq. (2.7), the 
following lemma expresses the four block-entries of the fundamental matrix .W

Lemma 2.3 For the block structure given in Eq. (2.8), we have

1
1,1 0 2 1 2

1
1,2 0 2 1 2 2 1

1
2,1 1 2 0 2 1 2

1
2,2 1 1 2 0 2 1 2 2 1

( ) ,

( ) ,

( ) ,

( ) .

H I T U TV

H I T U TV U T

H TV I T U TV

H T TV I T U TV U T

Symmetrically, 
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1
1,1 0 0 2 1 2 0 2 2 0

1
1,2 0 2 1 2 0 2

1
2,1 1 2 0 2 2 0

1
2,2 1 2 0 2

( ) ,

( ) ,

( ) ,

( ) .

H T T U I T V T U V T

H T U I T V T U

H I T V T U V T

H I T V T U

The following theorem provides expressions for andn nR G .
Theorem 2.2 For n 1,

0 1 1 2 0 2 1 2
0 0

( ) ( )
l

k l k
n

l k

l
R U U TV T U TV

k

and

0 0 1 1 2 0 2 1 1
0 0

( ) ( ).
l

k l k
n

l k

l
G T U U TV V U TV

k

Proof It follows from Lemmas 2.2 and 2.3 that 

1
0 1 1 2 0 2 1 2( )( )nR U U TV I T U TV

and

1
0 2 1 2 0 2 1 1( ) ( ).nG I T U TV V U TV

The inverse transform for the above two equations immediately leads to the desired 
result.

The following theorem provides an important property: Censoring invariance
for the R- and G-measures. We denote by [ ]

,
n

i jR  and [ ]
,

n
i jG  the R- and G-measures 

of the censored Markov chain [ ] ,nP  respectively. 
Theorem 2.3 (1) For [ ]

, ,0 , .n
i j i ji j n R R

(2) For [ ]
, ,0 , .n

i j i jj i n G G
Proof We only prove (1), while (2) can be proved similarly. 
First, we assume that j n  and P is partitioned according to the three subsets 
, andn n nL L L  as in Eq. (2.6). It follows from Theorem 2.1 that 

1[ ] 0
1 1 2

0 0 2

1 1 1 0 1 1 2

0 2 1 1 0 2 1 2

( , )

.

n UT U
P T V V

V T U

T U TV U U TV

V U TV T U TV
(2.17)
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Using the definition of the R-measure, simple calculations from [ ]nP  lead to 

[ ] 1
0 1 1 2 0 2 1 2

0 1 1 2 0 2 1 2
0

0 1 1 2 0 2 1 2
0 0

( )( )

( ) [ ]

( ) ( ) .

n
n

l

l

l
k l k

l k

R U U TV I T U TV

U U TV T U TV

l
U U TV T U TV

k
(2.18)

Therefore, [ ]n
n nR R  according to Theorem 2.2. 

If  j<n, we need to construct a useful relation among matrices [ ], nP P  and 
[ ].jP  We first censor the matrix P in the set [ ]

, ,, j
j i j i jL R R  based on the fact 

just proved. Then, we censor the matrix [ ]nP  in the set .nL  According to 
Property 1, the censored matrix [ ]jP  can be obtained by the censored matrix 

[ ]nP , thus [ ] [ ]
, ,

n j
i j i jR R  based on the fact just proved. Therefore, [ ]

, ,
n

i j i jR R  for 
j<n. This completes the proof. 

It is worthwhile to note that the censoring invariance is a key to organizing the 
Wiener-Hopf equations for any irreducible Markov chain, and also leads to 
construct the RG-factorizations.

Let
( ) ( ) ( )
0,0 0,1 0,
( ) ( ) ( )

[ ] 1,0 1,1 1,

( ) ( ) ( )
,0 ,1 ,

, 0,

n n n
n

n n n
n n

n n n
n n n n

P n  (2.19) 

be block-partitioned according to levels. 
The following lemma provides useful equations among the block entries of the 

censored Markov chains, which can essentially lead to the Wiener-Hopf equations 
for the Markov chain. 

Lemma 2.4 For n 0, 0 i, j n,

( ) ( ) ( ) ( )
, , , , ,

1 0
[ ] .n k k l k

i j i j i k k k k j
k n l

P

Proof Consider the censored matrix [ ]nP  based on [ ( 1)].nP  It follows from 
Theorem 2.1 that 

( 1) ( 1) ( 1) ( 1)
0,0 0,1 0, 0, 1
( 1) ( 1) ( 1) ( 1)

[ ] ( 1) ( 1) ( 1)1,0 1,1 1, 1, 1
1, 1 1,0 1,1

( 1) ( 1) ( 1) ( 1)
,0 ,1 , , 1

, , ..

n n n n
n n

n n n n
ln n n nn n

n n n n

n n n n
n n n n n n

P ( 1)
1,

0
., .n

n n
l
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Therefore, using Theorem 2.1 we obtain 

( ) ( 1) ( 1) ( 1) ( 1)
, , ,( 1) 1, 1 1,

0

( 2) ( 2) ( 2) ( 2)
, ,( 2) 2, 2 2,

0

( 1) ( 1) ( 1)
,( 1) 1, 1 1,

0

( ) ( )
, , ,

1

ln n n n n
i j i j i n n n n j

l

ln n n n
i j i n n n n j

l

ln n n
i n n n n j

l

k k
i j i k k k

k n
P ( )

,
0

,
l k

k j
l

where ( )
, , .i j i jP  This completes the proof. 

The following lemma provides expressions for the R- and G-measures. 
Lemma 2.5 (1) For 0 i< j,

( ) ( )
, , ,

0

.
lj j

i j i j j j
l

R

(2) For 0 j< i,

( ) ( )
, , ,

0

.
li i

i j i i i j
l

G

Proof Applying Corollary 2.2 to the censored chain [ ]jP  gives that 

[ ] ( ) ( )
, , ,

0

, 0 ,
lj j j

i j i j j j
l

R i j

and

[ ] ( ) ( )
, , ,

0

, 0 .
lj i i

i j i i i j
l

G j i

The rest of the proof follows from the censoring invariance for the R- and 
G-measures proved in Theorem 2.3. 

We define the U-measure as 

( )
, , 0.n

n n n n

The following theorem provides an equivalent form to the equations in Lemma 
2.4, and is called the Wiener-Hopf equations for any irreducible Markov chain in 
terms of the R- and G-measures. 

Theorem 2.4 (1) For 0 i< j,

, , , ,
1

( ) ( ) .i j j i j i k k k j
k j

R I P R I G
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(2) For 0 j< i,

, , , ,
1

( ) ( ) .i i j i j i k k k j
k i

I G P R I G

(3) For n 0,

, , ,
1

( ) .n n n n k k k n
k n

P R I G

Proof We only prove (1), while (2) and (3) can be proved similarly. 
It follows from Lemma 2.5 that 

( )
, ,( ) j

i j j i jR I

and
( )

, ,( ) .i
i i j i jI G

Using Lemma 2.4 and the censoring invariance in Theorem 2.3 leads to 

( ) ( ) ( ) ( )
, , , , ,

1 0

[ ]
, , ,

1

, , ,
1

( )

( ) .

lj k k k
i j i j i k k k k j

k j l

k k
i j i k k k j

k j

i j i k k k j
k j

P

P R I G

P R I G

This completes the proof. 
Based on the Wiener-Hopf equations given in Theorem 2.4, a UL-type 

RG-factorization for the transition probability matrix P is obtained in the following 
theorem. The UL-type RG-factorization always holds for any irreducible Markov 
chain, and it is very useful for computing the stationary probability vector which 
can help to analyze stationary performance measures of a practical stochastic system. 

Theorem 2.5 For the Markov chain P given in Eq. (2.1), 

 ( ) ( ) ( ),U D LI P I R I I G  (2.20) 

where 

0,1 0,2 0,3

1,2 1,3

2,3

0 1 2 3

0 ...
0 ...

,0 ...
0 ...

diag ( , , , , ...)

U

D

R R R
R R

R R
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and

1,0

2,0 2,1

3,0 3,1 3,2

0
0

0 .
0

L

G
G GG
G G G

Proof We only prove Eq. (2.20) for the entries in the first block-row and first 
block-column. The rest can be proved similarly. 

The entry (0, 0) on the right-hand side is 

0 0, ,0
1

( ) ,k k k
k

I R I G

which is equal to 0,0I P  according to (3) of Theorem 2.4. 
The entry (0, l) with l 1 on the right-hand side is 

0, 0, ,
1

( ) ( ) ,l l k k k l
k l

R I R I G

which is equal to 0,lP  according to (1) of Theorem 2.4. 
Finally, to see that the entry (l, 0) with l 1 on the right-hand side is equal to the 

corresponding entry on the left-hand side, it follows from (2) of Theorem 2.4 that 

,0 , ,0 ,0
1

( ) ( ) .l l l k k k l
k l

I G R I G P

This completes the proof. 
Now, we consider some important examples for simplifying the UL-type 

RG-factorization, which is necessary in the study of practical systems, and also 
provides some new understanding for the Neuts’ results, e.g., see [26, 27]. 

2.2.1 Level-Dependent Markov Chains of M/G/1 Type 

For the Markov chain P of M/G/1 type given in Eq. (1.7), we write 

, , 1 , 2

1, 1, 1 1, 2

2, 1 2, 2

...

...
, 1.

...

k k k k k k

k k k k k k
k

k k k k

A A A
A A A

W k
A A
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We denote by 
TT T( ) ( )

1,1 2,1, , ...
k k

W W  the first block-column of the matrix 

0
[ ] .l

k k
l

W W  It follows from Eq. (2.17) and Eq. (2.19) that for 0 i n and   

0 j n 1,

,

( )
,

( 1)
,1, , 1,

1

, 1,
0, 2,

, 0 .

i j

n
i j

n
li n i n l n n

l

A i j
i j

A A W A i n

Therefore,

( )
1,1, ,

0

, 0 ,
j

li j i j l
l

R A W i j  (2.21) 

( )def
1,1, 1 , 1, 1,

k

k k k k kG G W A k  (2.22) 

, 0 for 0 2, andi jG j i

, , 1 1
1

... , 0.k k k k k i k i k i k
i

A A G G G k  (2.23) 

The following lemma provides expressions for the first block-column in the 

fundamental matrix kW  in terms of 
( )
1,1

k
W  and the G-measure { }.kG

Lemma 2.6 For k 1 and j 2,

( ) ( )
,1 1,11 2 1...
k k
j k j k j kW G G G W  (2.24) 

and

( ) ( )
1,1 1,1( ) ( ) .

k k

k kI W W I I  (2.25) 

Proof Eq. (2.25) is clear from Lemma 2.3 and the expression 0 2 1 2.k T U TV
Thus we only need to prove Eq. (2.24). 

Let

0 2

2 1

,k

T U
W

V T

where
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0 , 1 1

2 , 1 , 2 , 3

T
2 , 1

, ,
( , , , ...),

( , 0, 0, 0, ...) .

k k k

k k k k k k

T
k k

T A T W
U A A A

V A

It follows from Lemma 2.3 that 

( )( ) 1 ( )
1 1,12,1 1 2 0 2 1 2 1 2 1,1 2( ) .

kk k
kH TV I T U TV TV H W V W

Note that 
( 1)
1,1 1,
( 1)

12,1 1,1 2 ( 1)( 1) 2,1 1,
3,1 1,

,

k

k k
k

kk kk kk k k
k k

W A
GW AW V

H A
W A

and

( )1( )
1,12,1 ( 1)

2,1 1,

,
kkk

k
k k

G
H W

H A

we obtain 
( ) ( )
2,1 1,11

( ) ( 1) ( ) ( 1) ( ) ( )
3,1 2,1 1,1 1,1 1,1 1,11, 2 1, 2 1

,

,

k k

k
k k k k k k

k k k k k k k

W G W

W W A W G W A W G G W

by induction, we have 

( ) ( 1) ( ) ( )
,1 1,1 1,1 1,11, 1 2 1... .
k k k k
j j k k k j k j kW W A W G G G W

This completes the proof. 
The following theorem provides a useful expression or interpretation for the R-

and G-measures. 
Theorem 2.6 (1) For 0 i < j,

1
, , , 1 1

1
... ( ) .i j i j i j l l j l j j j

l
R A A G G G I  (2.26) 

(2) The matrix sequence {Gi} is the minimal nonnegative solution to the system 
of matrix equations

, 1 , 1
0

... , 1.i i i i i l i l i l i
l

G A A G G G i  (2.27) 
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Proof (1) Using Lemma 2.6, we obtain 

( )
,1, ,

1

( )
1,1, , 1 2 1

1

1
, , 1 1

1

( ) .

j
li j i j l

l

k

i i l i j l j l j l k
l

i j i j l l j l j j j
l

R A W

A A G G G W

A A G G G I

(2) Since 
( )
1,1 , 1,

k

k k kG W A  we obtain that , 1 , 1( ) ork k k k k k kI G A G A
.k kG  Note that 

, , 1 1
1

,k k k k k i k i k i k
i

A A G G G

it is easy to obtain the desired result given in Eq. (2.26). This completes the proof. 

2.2.2 Level-Independent Markov Chains of M/G/1 Type 

For the Markov chain P of M/G/1 type given in Eq. (1.3), let the matrix G be the 

minimal nonnegative solution to the matrix equation 
0

.k
k

k
G A G  Then the 

G-measure is given by 

1, 1,
, 2,k

G k
G

G k

where
1

1 0( ) ;G I B

the U-measure 

2
0 1 1

2

k
k

k
B B G G

and for k 1

1

1

;k
k k

k
A G

and the R-measure 

1 1
0,

1

( ) , 1,k
j k

k j
R B G I j
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and for i 1

1 1
,

1

( ) , 1.k
i j k

k j
R A G I j

2.2.3 Level-Dependent Markov Chains of GI/M/1 Type 

Using an analysis similar to the Markov chain of M/G/1 type, we can deal with a 
Markov chain of GI/M/1 type given in Eq. (1.6). We provide a simple introduction 
to the R-, U- and G-measures. To show this, we write 

, , 1

1, 1, 1 1, 2

2, 2, 1 2, 2

, 1.

k k k k

k k k k k k
k

k k k k k k

A A
A A A

W k
A A A

We denote by 
( ) ( )
1,1 1,2, , ...

k k
W W  the first block-row of the matrix 

0
[ ] .l

k k
l

W W

Hence we have 
( 1)def
1,1, 1 , 1 , 0,

k

k k k k kR R A W k

, 0 for 2,i jR j i
( )
1,, ,

1
, 0 ,

i
li j i l j

l
G W A j i

and

, 1 1 ,
1

, 0.k k k k k k i k i k
i

A R R R A k

It is clear that for k 1 and j 2,

( ) ( )
1, 1,1 1 2.

k k
j k k k jW W R R R

Therefore, the matrix sequence {Rk} is the minimal nonnegative solution to the 
system of matrix equations 

, 1 1 1 , 1
1

1
, , 1 1 ,

1

, 0,

( ) .

k k k k k k i k i k
i

i j i i j i i i l i l j
l

R A R R R A k

G I A R R R A
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2.2.4 Level-Independent Markov Chains of GI/M/1 Type 

For the Markov chain P of M/G/1 type given in Eq. (1.2), let the matrix R be the 

minimal nonnegative solution to the matrix equation 
0

.k
k

k
R R A  Then the 

R-measure is given by 

1, 1,
, 2,k

R k
R

R k

where
1

1 0 ( ) ;R B I

the U-measure 

2
0 1 1

2

k
k

k
B R R B

and for k 1

1

1
;k

k k
k

R A

and the G-measure 

1 1
0,

1

( ) , 1,k
j k

k j
G I R B j

and for i 1

1 1
,

1

( ) , 1.k
i j k

k j
G I R A j

2.2.5 The QBD Processes 

For the QBD process, the matrix sequences {Rk} and {Gk} are the minimal 
nonnegative solutions to the systems of matrix equations 

( ) ( 1) ( 2)
1 1 1 1 , 0,k k k

k k k k k k kR A R A R R A k

and
( ) ( ) ( )

1 1 1 , 1,k k k
k k k k k k kG A A G A G G k
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respectively. The RG-factorization Eq. (2.20) can be simplified as 

0

1

2

0
0

0
0

U

R
R

R R  (2.28) 

and

1

2

3

0
0

0
0

L

G
G G

G
 (2.29) 

2.3 The LU-Type RG-Factorization

In this section, three LU-type probabilistic measures: the R-, U- and G-measures, 
are defined in another censored direction, and an LU-type RG-factorization for 
the transition probability matrix is derived. Note that the method used in this 
section is similar to that in Section 2.2. 

For the block-structured Markov chain P given in Eq. (2.1), we use the same 
partition given in Eq. (2.2). Let 

[ ] 1( ) .nP W V I T U

The block-entry expression of the matrix [ ]nP  is written as 

( ) ( ) ( )
, , 1 , 2

( ) ( ) ( )
1, 1, 1 1, 2[ ]

( ) ( ) ( )
2, 2, 1 2, 2

.

n n n
n n n n n n

n n n
n n n n n nn
n n n

n n n n n n

P

Lemma 2.7 For i, j n 1, we have

1( 1) ( ) ( ) ( )
, , , , ,

0
.

n
n k k k

i j i j i k k k k j
k

P I

Proof Since
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( ) ( ) ( )
1, 1 1, 2 1, 3

( ) ( ) ( )
[ ( 1)] 2, 1 2, 2 2, 3

( ) ( ) ( )
3, 1 3, 2 3, 3

( )
1,

( )
12, ( ) ( )

, , 1 ,( )
3,

,

n n n
n n n n n n
n n n

n n n n n n n
n n n

n n n n n n

n
n n

n
n n n n

n n n n nn
n n

P

I ( ) ( )
2 , 3, , ... ,n n

n n n

we obtain 
1( 1) ( ) ( ) ( ) ( )

, , , , ,

1 1( 1) ( 1) ( 1) ( 1) ( ) ( ) ( )
, , 1 1, 1 1, , , ,

1(0) ( ) ( ) ( )
, , , ,

0
.

n n n n n
i j i j i n n n n j

n n n n n n n
i j i n n n n j i n n n n j

n
k k k

i j i k k k k j
k

I

I I

I

Note that (0)
, ,i j i jP  for all i, j 0. This completes the proof. 

We define the U-measure as 
( )
, , 0,n

n n n n  (2.30) 

the R-measure as 
1( ) ( )

, , , , 0 ,j j
i j i j j jR I j i

and the G-measure as 
1( ) ( )

, , , , 0 .i i
i j i i i jG I i j

It is obvious that 
( ) 1

, , ( ) , 0 ,j
i j i j jR I j i  (2.31) 

and
1 ( )

, ,( ) , 0 .i
i j i i jG I i j  (2.32) 

The following theorem provides the important Wiener-Hopf equations for the 
R-, U- and G-measures. 

Theorem 2.7 The LU-type R-, U- and G-measures defined above satisfy the 
following Wiener-Hopf equations,
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1

, , , ,
0

( ) ( ) , 0 ,
j

i j j i j i k k k j
k

R I P R I G j i  (2.33) 

1

, , , ,
0

( ) ( ) , 0 ,
i

i i j i j i k k k j
k

I G P R I G i j  (2.34) 

and

1

, , ,
0

( ) , 0.
n

n n n n k k k n
k

P R I G n  (2.35) 

Proof We only prove Eq. (2.33), while Eq. (2.34) and Eq. (2.35) can be proved 
similarly. 

It follows from Eq. (2.31) that 

( )
, ,( ) .j

i j j i jR I  (2.36) 

By Lemma 2.7, we have 

1 1( ) ( ) ( ) ( )
, , , , ,

0

.
j

j k k k
i j i j i k k k k j

k
P I  (2.37) 

From Eq. (2.31), Eq. (2.32) and Eq. (2.37) we obtain 

1
( )
, , , ,

0
( ) ,

j
j

i j i j i k k k j
k

P R I G

which, together with Eq. (2.36), leads to the stated result. 
By the Wiener-Hopf equations Eq. (2.33), Eq. (2.34) and Eq. (2.35), the following 

theorem constructs an LU-type RG-factorization, which is different from the 
UL-type RG-factorization given in Theorem 2.5. 

Theorem 2.8 For the Markov chain P defined in Eq. (2.1), 

( ) ( ) ( ),L D UI P I R I I G  (2.38) 

where 

1,0

2,0 2,1

3,0 3,1 3,2

0 1 2 3

0
0

,0
0

diag ( , , , , ...)

L

D

R
R R R

R R R
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and

0,1 0,2 0,3

1,2 1,3

2,3

0
0

.0
0

U

G G G
G G

G G

Proof We prove Eq. (2.38) for the block-entries of the first two block-rows. 
The rest can be proved similarly. 

For the first block-row, the entry (0, 0) is 

(0)
0 0,0 0,0 ,I I I P

and the entry (0, l) for l 1 is 

1(0) (0) (0)
0 0, 0,0 0,0 0,

(0)
0, 0,

( ) l l

l l

I G I I

P

by means of Eq. (2.32). For the second block-row, the entry (1, 0) is 

1(0) (0) (0)
1,0 0 1,0 0,0 0,0

(0)
1,0 1,0

( )R I I I

P

by Eq. (2.31). By Lemma 2.7, the entry Eq. (1, 1) is 

1 1(0) (0) (0) (0) (0)
1,0 0 0,1 1 1,0 0,0 0,0 0,0 0,1

(1)
1,1

1(0) (0) (0) (1)
1,0 0,0 0,1 1,1

1,1

( )

,

R I G I I I I

I

I I

I P

and the entry (1, k) for k 2 is 

1 1(0) (0) (0) (0) (0)
1,0 0 0, 1 1, 1,0 0,0 0,0 0,0 0,

1(1) (1) (1)
1,1 1,1 1,

1(0) (0) (0) (1)
1,0 0,0 0, 1,

1,

( ) ( )

.

k k k

k

k k

k

R I G I G I I I

I I

I

P

This completes the proof. 
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The LU-type RG-factorization, given in Theorem 2.5, can be applied to solve 
the inhomogeneous systems of infinite-dimensional linear equations: ( )x I P b
or ( )I P x b  where 0.b  The LU-type RG-factorization, given in Theorem 
2.8, is useful in the study of transient solutions, such as, the first passage times 
and the sojourn times. 

In what follows we analyze some important examples for illustrating applications 
of the LU-type RG-factorization.

2.3.1 Level-Dependent Markov Chains of M/G/1 Type 

For the Markov chain P of M/G/1 type given in Eq. (1.7), the following corollary 
provides an expression for the matrix LR .

Corollary 2.3 For the Markov chain P of M/G/1 type given in Eq. (1.7), 

1,0

2,1

3,2

0
0

.0
0

L

R
R R

R

Proof Note that 

[ ] 1

, , 1 , 2

, 11, 1, 1 1, 2 1

2, 1 2, 2

, , 1 , 2

1, 1, 1 1, 2

2, 1 2, 2

( )

( )

***
,

n

n n n n n n

n nn n n n n n

n n n n

n n n n n n

n n n n n n

n n n n

P W V I T U
A A A

AA A A
I T U

A A

A A A
A A A

A A

where * denotes a non-zero block-entry, we obtain that ( )
, 0n

i j  for all 2,n j i
which lead to 

1( ) ( )
, , , 0, 0 2,j j

i j i j j jR I j i

and
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1,0

2,1

3,2

0
0

0 .
0

L

R
RR

R

This completes the proof. 

2.3.2 Level-Dependent Markov Chains of GI/M/1 Type 

For the Markov chain P of GI/M/1 type given in Eq. (1.6), the G-measure can be 
simplified as 

, 0, 0 2.i jG i j

Thus, we have 

0,1

1,2

2,3

0
0

.0
0

U

G
G

G G

2.3.3 The QBD Processes 

We consider a discrete-time QBD process whose transition probability matrix is 
given in Eq. (1.4). The LU-type RG-factorization is given by 

( ) ( ) ( ),L D UI P I R I I G  (2.39) 

where

0 1 2 3

1

2

3

diag ( , , , , ...),
0

0
0

0

D

L

R
R R

R

and
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0

1

2

0
0

.0
0

U

G
G

G G

2.4 The Stationary Probability Vector 

In this section, we apply the RG-factorizations to provide an R-measure expression 
for the stationary probability vector of any positive-recurrent discrete-time Markov 
chain with block structure. 

We always assume that the block-structured Markov chain P given in Eq. (2.1) 
is irreducible and positive recurrent, thus there must exist the stationary probability 
vector 0 1 2( , , , ...).  Obviously, ( ) 0I P  and 1.e  Based on Theorem 
2.5, we have 

 ( ) ( ) ( ) ( ).U D LI P I R I I G

We write 0 1 2( , , , ...)x x x x  and 

 ( ).Ux I R

Then

 ( ) ( ) 0,D Lx I I G

which leads to 

0 0 ,0
1

,
1

( ) ( ) 0,

( ) ( ) 0, for 1.

k k k
k

i i k k k i
k i

x I x I G

x I x I G i
 (2.40) 

Note that 0  is the transition probability matrix of the censored chain [0].P  Since 
P is positive recurrent, [0]P  is also positive recurrent. Hence there exists the 
stationary probability vector 0x such that 0 0( ) 0x I  and 0 1.x e  It is easy 
to check that 0( , 0, 0, ...)x  is a non-zero nonnegative solution to the systems of 
Eq. (2.40), where  is a constant. 

Solving the simplified system of linear equations 0( ) ( , 0, 0, ...),UI R x
we obtain 1

0( , 0, 0, ...) ( ) .Ux I R  Therefore, we can obtain the following 
theorem. 

Theorem 2.9 For the discrete-time block-structured Markov chain given in 
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Eq. (2.1), the stationary probability vector is given by

0 0

1

,
0

,

, 1,
k

k i i k
i

x

R k

where x0 is the stationary probability vector of the censored Markov chain 0  to 

level 0 and the scalar  is determined by 
0

1k
k

e  uniquely. 

Remark 2.2 Although the matrix LI G  must be invertible, the equation 
( ) 0 or ( ) 0L Ly I G I G y  may have a non-zero nonnegative solution. This is 

different from the system of linear equations with finite dimensions. This is the 
reason why we need to take a special non-zero nonnegative solution to Eq. (2.40).
As an illustration, we consider 

1

0
0

.0
0

L

G
G G

G

When G is irreducible and stochastic, it is easy to see that 1( , , , ...)gG g g  is a 
non-zero nonnegative solution to the equation ( ) 0,Ly I G  where g gG  and 
ge 1.

When a level-dependent Markov chain of GI/M/1 type is irreducible and 
positive recurrent, the stationary probability vector is given by 

0 0

1 1,

,
, 1,k k k k

x
R k

or

0 0

0 1,
1

,

, 1.
k

k i i
i

x

R k

where x0 is the stationary probability vector of the censored Markov chain 0  to 

level 0 and the scalar  is determined by 
0

1k
k

e  uniquely. 

For a level-independent Markov chain of GI/M/1 type, it is easy to check that 
1, for 2,k kR R k  thus we have 
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0 0

1
0 0,1

,

, 1,k
k

x

R R k

where x0 is the stationary probability vector of the censored Markov chain 0  to 

level 0 and the scalar  is determined by 
0

1k
k

e  uniquely. This is the same as 

the matrix-geometric solution in Neuts [26]. 

2.5 A- and B-measures

In this section, we define A- and B-measures for discrete-time block-structured 
Markov chains, and also construct their expressions by means of the R- and 
G-measures, respectively. Based on the A- and B-measures, we provide conditions 
for the state classification of the Markov chains. 

We now define the A- and B-measures as follows: 
Definition 2.2 (1) For i, j 0 with ,i j  we define Ai, j as a matrix of size  

mi mj whose (r, s)th entry is the expected number of visits to state ( j, s) before 
hitting any state in level i, given that the process starts in state (i, r). That is

, ( , )i jA r s E [number of visits to state ( j, s) before hitting 0| ( , )].iL x i r

(2) For i, j 0 with ,i j  we define Bi,j as a matrix of size mi mj whose (r, s)th 
entry is the probability of visiting state ( j, s) for the first time before hitting any 
state in level j, given that the process starts in state (i, r). That is 

, ( , )i jB r s P {hitting state ( j, s) upon entering Lj for the first time 0| ( , )}.x i r

Furthermore, the matrices Ai, i and Bi, i for i 0 are explained as follows: 
(3) The (r, s)th entry of Ai, i is the expected number of returning to state (i, s)

before hitting any state in level i, given that the process starts in state (i, r).
(4) The (r, s)th entry of Bi,i is the probability of returning to state (i, s) for the first 

time before hitting any state in level i, given that the process starts in state (i, r).
We first derive expressions for A0, j and Bi,0 for i, j 0. To do this, we write 

0,0 .P UP
V W

 (2.41) 

Then
[0]

0,0 ,P P UWV  (2.42) 

where 1
min

0

( ) .n

k
W W I W
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It is clear from the definitions for the A- and B-measures that 

0,1 0,2 0,3( , , , ...) ,A A A UW  (2.43) 

and
T T T T
1,0 2,0 3,0( , , , ...) .B B B WV  (2.44) 

Note that 

0
,k

k
W W I WW I WW  (2.45) 

it follows from Eq. (2.43) that 

0,1 0,2 0,3 0,1 0,2 0,3( , , , ...) ( , , , ...) ,A A A U A A A W  (2.46) 

which leads to the block-entry form 

0, 0, 0, ,
1

, 1;j j k k j
k

A P A P j  (2.47) 

and from Eq. (2.44) that 

T T T T T T T T
1,0 2,0 3,0 1,0 2,0 3,0( , , , ...) ( , , , ...) ,B B B V W B B B  (2.48) 

which leads to the block-entry form 

,0 ,0 , ,0
1

, 1.i i i k k
k

B P P B i

Remark 2.3 Now, we provide comparisons between A-measure and R-measure, 
and between B-measure and G-measure. 

(1) It is easy to see from Eq. (2.43) and Corollary 2.2 that

( , )
10, 0,1 0,2 0,3( , , , ...)

k

kA P P P W

and
( ,1)

0, 0, 0, 1 0, 2( , , , ...) ;kk k k kR P P P W

similarly, 
( , ) T T T T
1,0 1,0 2,0 3,0( , , , ...)

k

kB W P P P

and
(1, ) T T T T

0, ,0 1,0 2,0( , , , ...) .kk k k kG W P P P
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(2) Since ( ) ( ) ,I W W W I W I it follows from Eq. (2.42) that

[0] T T T T
0,0 0,1 0,2 0,3 1,0 2,0 3,0( , , , ...) ( ) ( , , , ...)P P A A A I W B B B

and
[0] T T T T

0,0 0,1 0,2 0,3 1,0 2,0 3,0( , , , ...) ( ) ( , , , ...) ,P P R R R I G G G

where 1 2 3diag ( , , , ...).
Remark 2.4 For the truncated transition matrix W, we have the UL-type 

RG-factorization as follows:

( ) ( ) ( ).U D LI W I R I I G

Thus, we obtain 
1 1 1

0,1 0,2 0,3( , , , ...) ( ) ( ) ( )L D UA A A U I G I I R

and
T T T T 1 1 1
1,0 2,0 3,0( , , , ...) ( ) ( ) ( ) .L D UB B B I G I I R V

Let [ ]
0,

n
jA  and [ ]

,0
n

iB  be the A- and B-measures for the censored chain [ ]nP  to 
the censored set ,nL  respectively. The following lemma provides an important 
censoring invariance for the A- and B-measures. 

Lemma 2.8 For n 1 and 1 i, j n,

[ ]
0, 0,

n
j jA A  (2.49) 

and
[ ]
,0 ,0 .n

i iB B  (2.50) 

Proof We only prove Eq. (2.49), while the proof of Eq. (2.50) is similar. 
To prove Eq. (2.49), we write 

0 1 1

0

1

1

0,0 1 2

1 11 12

2 21 22

.

n n

n

n

L L L

L

L
L

P U U
P V W W

V W W

Then

[ ] 0,0 2 2 1 2 2122 22

1 12 2 11 12 212222

.n P U W V U U W WP
V W W V W W W W

 (2.51) 

It follows from Eq. (2.51) and Eq. (2.46) that 
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[ ] [ ] [ ] [ ]
0,1 0,2 0, 1 0, 1 2 2122

1

11 12 2122

, , ..., ,

.

n n n n
n nA A A A U U W W

I W W W W

Let
1

11 12

21 22

(1,1) (1,2)
.

(2,1) (2,2)

W WW W
W I

W WW W

Then we obtain 

11 12 2122(1,1)W I W W W W

and
1

21 11 12 2122 22(2,1) ( ) .W W W I W W W W

It follows from Eq. (2.46) that 

0,1 0,2 0, 1 0, 1 2

1

1 2 21 11 12 2122 22

(1,1)
( , , ..., , ) ( , )

(2,1)

.

n n

W
A A A A U U

W

U U W W I W W W W

Thus, we obtain that for n 1

[ ] [ ] [ ] [ ]
0,1 0,2 0, 1 0, 0,1 0,2 0, 1 0,, , ..., , ( , , ..., , ).n n n n

n n n nA A A A A A A A

This completes the proof. 
Let

1,2 1,3 1,4

2,3 2,4

3,4

0
0

0
0

U

R R R
R R

R R

and

2,1

3,1 3,2

4,1 4,2 4,3

0
0

.0
0

L

G
G G G

G G G
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Note that the R-measure ,{ ,1 }i jR i j  and G-measure ,{ ,1 }i jG j i  are given 
in Theorem 2.5. 

The following theorem constructs useful relationships between 0, jA  and the 
R-measure, and between ,0iB  and the G-measure. 

Theorem 2.10 (1) The matrix 0, jA  and the R-measure satisfy

0,1
1

0,
0, 0, ,

1

, if 1,

, if 2,
j

j
j k k j

k

R j
A

R A R j

or the matrix expression is 

0,1 0,2 0,3 0,1 0,2 0,3( , , , ...) ( ) ( , , , ...).UA A A I R R R R

(2) The matrix Bi,0 and the G-measure satisfy

1,0
1

,0
,0 , ,0

1

, if 1,

, if 2,
i

i
i i k k

k

G i
B

G G B i

or the matrix expression is 

T T T T T T T T
1,0 2,0 3,0 1,0 2,0 3,0( ) ( , , , ...) ( , , , ...) .LI G B B B G G G

Proof Let [ ]
,

n
i jP  be the (i, j)th block-entry of the censored chain to the censored 

set .nL  Then using Eq. (2.47) we obtain 

[ ] [ ] [ ] [ ]
0, 0, 0, ,

1
,

n
n n n n

n n k k n
k

A P A P

hence

1
[ ] [ ] [ ] [ ] [ ]
0, , 0, 0, ,

1
,

n
n n n n n

n n n n k k n
k

A I P P A P

which leads to 

11 1[ ] [ ] [ ] [ ] [ ] [ ]
0, 0, , 0, , ,

1

.
n

n n n n n n
n n n n k k n n n

k
A P I P A P I P

Note that the R-measure has the following expression 

1[ ] [ ] [ ]
, , , ,n n n

k n k n n nR P I P

we get 
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1
[ ] [ ] [ ] [ ]
0, 0, 0, ,

1
.

n
n n n n

n n k k n
k

A R A R

Applying the censoring invariance for the A- and R-measures, it is easy to see the 
desired result. This completes the proof. 

The following corollary provides expressions for the A- and R-measures in 
terms of the R- and G-measures, respectively. The proof is easy by using the 
iterative computations. 

Corollary 2.4 (1) For k 1,

1 1 1 1 2 2
1 2 1

0, 0, 0, , 0, , ,
1 1 1

0,1 1,2 2, 1 1, .

k k i i k i i i i k
i k i i k

k k k k

A R R R R R R

R R R R

(2) For k 1,

1 1 1 1 2 2
1 1 2

,0 ,0 , ,0 , , ,0
1 1 1 1

, 1 1, 2 2,1 1,0 .

k k k i i k i i i i
i k i i k

k k k k

B G G G G G G

G G G G

Now, we further provide expressions for the matrices Ai,0 and B0, j for i, j 1
interms of the LU-type R- and G- measures, respectively. To do this, we shall use 
the LU-type R- and G-measures. Note that 

[ 1] 1
0,0( ) .P W V I P U

Thus, we obtain 
T T T T 1
1,0 2,0 3,0 0,0( , , , ...) ( )A A A V I P

and
1

0,1 0,2 0,3 0,0( , , , ...) ( ) .B B B I P U

It is easy to see that 
1

,0 ,0 0,0( )i iA P I P

and
1

0, 0,0 0,( ) .j jB I P P

Using a probability argumentation, it is obvious from Theorem 2.10 that 

1,0
1

,0
,0 , ,0

1

, if 1,

, if 2,
i

i
i i k k

k

R i
A

R R A i
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and

0,

1
0,

0, 0, ,
1

, if 1,

, if 2.

j

j
j

j k k j
k

G j
B

G B G j

Therefore, for k 1 we obtain 

1 1 1 1 2 2
1 2 1

0, ,0 , ,0 , , ,0
1 1 1 1

, 1 1, 2 2,1 1,0

k k k i i k i i i i
i k i i k

k k k k

A R R R R R R

R R R R

and

1 1 1 1 2 2

1 1 2

0, 0, 0, , 0, , ,
1 1 1 1

0,1 1,2 2, 1 1, .

k k i i k i i i i k
i k i i k

k k k k

B G G G G G G

G G G G

In what follows we express the matrices Ai, j and Bi, j for i, j 1, and construct 
useful relations between A-measure and R-measure, and between B-measure and 
G-measure. 

Let P[i] be the matrix obtained by deleting the i th block-row and the ith 
block-column in the matrix P. Then it is easy to see that for i 1,

,0 , 1 , 1 ,0 , 1 , 1( , , , , ) ( , , , , ) [ ]i i i i i i i i i iA A A P P P P i

and for j 1,

T T T T T T T T
0, 1, 1, 0, 1, 1,( , , , , ) [ ] ( , , , , ) .j j j j j j j j j jB B B P i P P P

Let [ ]
,

n
i jA  and [ ]

,
n

i jB  for 1 i, j n be the A- and B-measures for the censored 
chain [ ]nP  to the censored set ,nL  respectively; and [ ]

,
n

i jA  and [ ]
,

n
i jB  for i, j n,

the A- and B-measures for the censored chain [ ]nP  to the censored set ,nL
respectively. 

The following corollary provides the censoring invariance for the A- and 
B-measures. The proof is easy and is omitted here. 

Corollary 2.5 (1) For n 1 and 1 i, j n with i j,

[ ]
, ,

n
i j i jA A

and
[ ]
, , .n

i j i jB B

(2) For n 1 and i, j n with i j
[ ]
, ,

n
i j i jA A
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and
[ ]
, , .n

i j i jB B

Using a probability analysis, we obtain the following corollary which indicates 
useful relations between A-measure and R-measure, and between B-measure and 
G-measure. 

Corollary 2.6 (1) If 1 i< j, then

, 1
1

,
, , ,

1

, if 1,

, if 2,

i i
j

i j
i j i k k j

k i

R j i
A

R A R j i

and

,

1
,

, , ,
1

, if 1,

, if 2.

i j

j
i j

i j i k k j
k

G j i
B

G B G j i

(2) If i > j 1, then

,

1
,

, , ,
1

, if 1,

, if 2,

i j

i
i j

i j i k k j
k

R j i
A

R R A j i

and

,

1
,

, , ,
1

, if 1,

, if 2.

i j

i
i j

i j i k k j
k

G j i
B

G G B j i

Now, we discuss the probability of the returning time and the expected returning 
number, which correspond to the matrices Bi, i and Ai, i for i 0, respectively. 

It is clear that 

, , , ,i i i i i k k i
k i

A P A P

and

, , , , ,

, , , , .

i i i k k i i k k i
k i k i

i k k i i k k i
k i k i

A R A A R

A R R A

Similarly, we have 
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, , , ,i i i i i k k i
k i

B P P B

and

, , , , ,

, , , , .

i i i k k j i k k i
k i k i

i k k i i k k i
k i k i

B B G G B

G B B G

Lemma 2.9 ,0iB e e for all i 1 if and only if 
1

,
0

i

i k
k

G e e  for all i 1.

Proof Suppose first that ,0iB e e  for all i 1. Note that 

1,0
1

,0
,0 , ,0

1

, if 1,

, if 2,
i

i
i i k k

k

G i
B

G G B i

it is clear that 
1

0

i

i k
k

G e e  for all i 1.

Suppose now that 
1

0

i

i k
k

G e e  for all i 1. Then 1,0 1,0 ,B e G e e

2,0 2,0 2,1 1,0 2,0 2,1( ) ,B e G e G B e G G e e

by induction, we can obtain that ,0iB e e  for all i 1. This completes the proof. 
Theorem 2.11 Suppose that the Markov chain P given in Eq. (2.1) is irreducible 

and stochastic. P is recurrent if and only if ,0iB e e  for all i 1.
Proof Suppose first that P is recurrent. Let ( , ),( , )i r j sf  be the probability that 

the Markov chain ever makes a transition into state ( j, s), given that the Markov 
chain starts in state (i, r). Then ( , ),( , ) 1i r j sf  for all i, j 0, 1 r mi and 1 s mj.
Note that 

( , ),(0, ) ,0 ,0 (0, ),(0, )( , ) ( , ) ,i r s i i w s
w s

f B r s B r w f

we obtain 
0

,0
1

( , ) 1,
m

i
k

B r k that is, ,0iB e e  for all 1.i

Suppose now that ,0iB e e  for all 1.i  Note that 

[0]
0,0 0, ,0

1
,k k

k
P P P B

we obtain that [0]
0,0 0, ,0 0,0 0,

1 1
.k k k

k k
P e P e P B e P e P e e Thus P[0] is stochastic. 
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Since P is irreducible, it is clear that P is recurrent. This completes the proof. 
Corollary 2.7 Suppose that the Markov chain P given in Eq. (2.1) is irreducible 

and stochastic. P is recurrent if and only if 
1

,
1

i

i k
k

G e e  for all i 1.

Corollary 2.8 Suppose that the Markov chain P given in Eq. (2.1) is irreducible 
and stochastic. P is recurrent if and only if B0,0 is stochastic. 

Proof Suppose P is recurrent. It follows from Theorem 2.11 that ,0iB e e
for all i 1. Note that 

0,0 0,0 0, ,0
1

,k k
k

B P P B

we obtain that 

0,0 0,0 0, ,0 0,
1 0

k k k
k k

B e P e P B e P e e

which indicates that B0,0 is stochastic. 
If B0,0 is stochastic. Suppose that P would be transient. Then there would exist 

at least i0 such that 
0 ,0 .iB e e  In this case, 

0,0 0,0 0, ,0 0,
1 0

.k k k
k k

B e P e P B e P e e

Hence B0,0 would be strictly substochastic. This leads to a contradiction. This 
completes the proof. 

For i, j 0 with i j, we define Mi, j as a matrix of size mi mj whose (r, s)th
entry is the expected number of transitions needed to enter level j for the first 
time by hitting state ( j, s), given that the process starts in state (i, r). For i, j 0
with i j, the (r, s)th entry of Mi,i is the expected number of transitions needed to 
return to level i by hitting state (i, s), given that the process starts in state (i, r).

Lemma 2.10 0,0 0,
1

.k
k

M e e A e

Proof Let the r th row of A0,n be A0,n(r). Then it is easy to see that 

0

0,0
1 1 1

0

0,
1

( , ) 1 [number of visite to ( , )

before hitting level 0 | (0, )]

1 ( ).

nm m

s n w

n
n

M r s E n w

X r

A r

This completes the proof. 
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Lemma 2.11 If the Markov chain P given in Eq. (2.1) is irreducible and 
stochastic, then P is positive recurrent if and only if the matrix M0,0 is finite.

We now provide some discussion on how to relate the matrices A0, j for j 1 to 
the stationary probability vector . Note that 

0,1 0,2 0,3 0,1 0,2 0,3( , , , ...) ( ) ( , , , ...)UA A A I R R R R

and

1 2 3 0 0,1 0,2 0,3( , , , ...) ( ) ( , , , ...)UI R x R R R

obtained by Theorem 2.9. Therefore, it is obvious that 

0 0, , 1.k kx A k

Theorem 2.12 If the Markov chain P given in Eq. (2.1) is irreducible and 

recurrent, then P is positive recurrent if and only if the vector 0 0,
1

k
k

e A e  is 

finite.
Proof Suppose first that P is positive recurrent. It is clear that the Markov 

chain P exists the stationary probability vector 0 1 2( , , , ...).  Note that 

0 0, for 1,k kx A k  where x0 is the stationary probability vector of the censored 

chain P[0] to level 0 and the constant  makes 
0

1,k
k

e  hence we have, 

0 0,
1 1 0

1.k k k
k k k

x A e e e

Since x0>0 and e>0, it is easy to see that 0 0,
1

n
k

e A e  is finite. 

Suppose now that the vector 0 0,
1

n
k

e A e  is finite. Since the Markov chain P

is irreducible and recurrent, the censored chain P[0] to level 0 is positive recurrent 
with the stationary probability vector x0. Let 0 0cx  and 0 0,k kcx A  for k 1. 
Then

0 0,
0 1

.k k
k k

e cx e A e

Taking 
1

0 0,
1

,k
k

c x e A e  it is clear that { }k  is the stationar probability 
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vector of P, which leads to that P is positive recurrent. This completes the proof. 

2.6 Markov Chains with Finitely-Many Levels 

In this section, we study block-structured Markov chains with finitely-many levels, 
and provide the RG-factorizations. Note that the results of this section should be 
regarded as a special case of the infinite-level case based on the condition that 

, 0 for 1or 1,i jP i M j M  thus we only give a simple discussion here. 
We consider an irreducible discrete-time block-structured Markov chain with 

finitely-many levels whose transition probability matrix is given by 

0,0 0,1 0,

1,0 1,1 1,

,0 ,1 ,

,

M

M

M M M M

P P P
P P P

P

P P P

 (2.52) 

where Pi,i is a matrix of size mi mi for all 0 i M, and the sizes of the other 
blocks are determined accordingly. 

2.6.1 The UL-Type RG-Factorization 

For 0 i, j k and 0 k M, it is clear from Section 2.2 that 

1[ ] [ ] [ ] [ ]
, , , , ,

1

.
M

k n n n
i j i j i n n n n j

n k
P P P I P P

Note that [ ] [ ] [0]
, , , ,and .M

i j i j i j i jP P P P
Let

[ ]
,

[ ] 1
, ,

, 0 ,

( ) , 0 ,

n
n n n

j
i j i j j

P n M

R P I i j M

and

1 [ ]
, ,( ) , 0 .i

i j i i jG I P j i M

Then the UL-type RG-factorization is given by 

 ( ) ( ) ( ),U D LI P I R I I G

where
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0,1 0,2 0,3 0, 1 0,

1,2 1,3 1, 1 1,

2,3 2, 1 2,

2, 1 2,

1,

0 1 2 3 1

0
0

0
,

0
0

0
diag ( , , , , ..., , )

M M

M M

M M

U

M M M M

M M

D M M

R R R R R
R R R R

R R R
R

R R
R

and

1,0

2,0 2,1

3,0 3,1 3,2

4,0 4,1 4,2 4,3

,0 ,1 ,2 ,3 , 1

0
0

0
0 .

0

0

L

M M M M M M

G
G G
G G GG
G G G G

G G G G G

2.6.2 The LU-Type RG-Factorization 

For k i, j M and 0 k M, it is clear from Section 2.3 that 

1[ 1] [ ] [ ] [ ]
, , , , ,

0
.

k
k n n n

i j i j i n n n n j
n

P P P I P P

Note that [ ] [ ] [ 0]
, , , ,and .M M

i j i j i j i jP P P P
Let

[ ]
,

[ ] 1
, ,

, 0 ,

( ) , 0 ,

n
n n n

j
i j i j j

P n M

R P I j i M

and

1 [ ]
, ,( ) , 0 .i

i j i i jG I P i j M

Then the UL-type RG-factorization is given by 

( ) ( ) ( ),L D UI P I R I I G
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where

1,0

2,0 2,1

3,0 3,1 3,2

4,0 4,1 4,2 4,3

,0 ,1 ,2 ,3 , 1

0 1 2 3 1

0
0

0
0

0

0

diag ( , , , , , , )

L

M M M M M M

D M M

R
R R

R R R R
R R R R

R R R R R

and

0,1 0,2 0,3 0, 1 0,

1,2 1,3 1, 1 1,

2,3 2, 1 2,

2, 1 2,

1,

0
0

0
.

0
0

0

M M

M M

M M

U

M M M M

M M

G G G G G
G G G G

G G G
G

G G
G

Now, we analyze an interesting Markov chain with finitely-many levels whose 
transition probability matrix is given by 

0,0 0,1 0,2 0,3 0,4 0, 1 0,

1,0 1,1 1,2

2,0 2,1 2,2 2,3

3,0 3,2 3,3 3,4

2,0 2, 3 2, 2 2, 1

1,0 1, 2 1, 1 1,

,0 , 1 ,

.

M M

M M M M M M M

M M M M M M M

M M M M M

P P P P P P P
P P P
P P P P
P P P P

P

P P P P
P P P P
P P P

Note the special block structure of this Markov chain, it is easy to see that 
using the UL-type censoring computation, we can derive a simpler expression for 
the UL-type RG-factorization. However, the LU-type RG-factorization can not be 
simplified more effectively. 

It is clear that 
[ ]

, , .M
M M M MP P

Then
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TT
,00,

T

1[ 1] [ ]
, 0 , 1 ,

T

T
1, , 1

0 0
( )

0 0

MM

M M
i j i j M M M

M M M M

PP

P P I P

P P

and for 0 k M 2,

T[ 1][ 1]
1,00, 1
T

1[ ] [ 1]
, 0 , 1, 1

T

T

00
( ) .

0 0
0 0

kk
kk

k k
i j i j k k k

PP

P P I P

Therefore, we can obtain the UL-type RG-factorization as follows: 

 ( ) ( ) ( ),U D LI P I R I I G

where

0,1 0,2 0,3 0, 1 0,

1,2

2,3

2, 1

1,

0 1 2 3 1

0
0

0
,

0
0

0
diag ( , , , , , , )

M M

U

M M

M M

D M M

R R R R R
R

R
R

R
R

and

1,0

2,0 2,1

3,0 3,2

4,0 4,3

,0 , 1

0
0

0
0 .

0

0

L

M M M

G
G G
G GG
G G

G G
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Consider another interesting Markov chain whose transition probability matrix 
is given by 

0,0 0,1 0,

1,0 1,1 1,2 1,

2,1 2,2 2,3 2,

1, 2 1, 1 1,

,1 ,2 , 2 , 1 ,

,

M

M

M

M M M M M M

M M M M M M M M

P P P
P P P P

P P P P
P

P P P
P P P P P

the LU-type RG-factorization can be simplified more effectively by using the 
Lu-type censoring computation. 

2.6.3 The Stationary Probability Vector 

If the block-structured Markov chain P with finitely-many levels given in Eq. (1.9) 
is irreducible and stochastic, then it must be positive recurrent. Let 0 1 2( , , ,

3 , ..., )M  be the stationary probability vector of the Markov chain. Then using 
the UL-type RG-factorization we obtain 

0 0

1

,
0

,

, 1 ,
k

k i i k
i

x

R k M
 (2.53) 

where x0 is the stationary probability vector of the censored Markov chain 0  to 

level 0 and the scalar  is determined by 
0

1
M

k
k

e  uniquely. 

In what follows we consider two special cases: Markov chains of GI/M/1 type 
and Markov chains of M/G/1 type, and derive the matrix-product solution for the 
two cases. 

(1) For a Markov chain of GI/M/1 type with finitely-many levels, using the 
UL-type RG-factorization, the stationary probability vector is given as the matrix- 
product solution 

0 0

0 1,
1

,

, 1 ,
k

k i i
i

x

R k M

where x0 is the stationary probability vector of the censored Markov chain 0  to 
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level 0 and the scalar  is determined by 
0

1
M

k
k

e  uniquely. 

(2) For a Markov chain of M/G/1 type with finitely-many levels, using the 
LU-type RG-factorization, the stationary probability vector is given as the matrix- 
product solution 

1,
1

,

, 1,

M M
k

k M i i
i M

x

R k

where xM is the stationary probability vector of the censored Markov chain M  to 

level M and the scalar  is determined by 
0

1
M

k
k

e  uniquely. 

2.7 Continuous-Time Markov Chains 

In this section, the censoring technique is similarly applied to deal with any 
irreducible continuous-time block-structured Markov chain. The UL-and LU-types 
RG-factorizations are derived by means of a similar approach to that in Sections 
of 2.2 and 2.3, respectively. Based on this, we also provide a simple analysis for 
the stationary probability vector. 

Consider an irreducible continuous-time block-structured Markov chain { , 0}tx t
whose infinitesimal generator is given by 

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,0 2,2

,

D D D
D D D

Q
D D D

 (2.54) 

where , , 0,k kD k  are mk mk matrices and the sizes of the other block-entries can 
be determined accordingly. The state space  of this Markov chain is partitioned 

as
0

,i
i

L  where {( , ); 1, 2, ..., }.i iL i j j m

For the continuous-time Markov chain Q, we first describe the censored Markov 
chain QE with the censored set E , which is different from that for the 
discrete-time case analyzed in Sections 2.2 and 2.3. 

If the successive visits of {Xt} to the subset E take place in the time intervals 
[t0, t1], [t2, t3], [t4, t5], ... . Note that t2k is the entering time of the Markov chain to 
the subset E, while t2k+1 is the leaving time of the Markov chain from the subset 
E for k 1. For n 1, we write 
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0 1
1

2 1 2 2 1 2 1 2
1

2 2 1 2 2 1
1

, for [ , ),

( ), for [ , ),

( ), for [ , ).

n

n i i n n
i

n

i i n n
i

t t t t

t t t t t t
t

t t t t t t

Let E
t tX X  for t 0. Then { }E

tX  is the censored Markov chain with 
censoring set E. To study the continuous-time censored Markov chains, we 
partition the matrix Q as 

T UQ V W

according to the sets E and Ec. Then the infinitesimal generators of the censored 
chains { }E

tX  and { }
cE

tX  are respectively given by 

1
min( )EQ T U W V

and

1( ) .
cEQ W V T U

Since the Markov chain defined by Eq. (2.54) is irreducible, the two truncated 
chains with infinitesimal generators T and W are all transient, and hence the 
matrices T and W are all invertible. Note that the inverse of the matrix T is 
ordinary while the invertibility of the matrix W is under an infinite-dimensional 
meaning. Although the matrix W of infinite size may have multiple inverses, we 
in general are interested in the maximal non-positive inverse 1

max of ,W W  i.e., 
1 1

max 0W W  for every non-positive inverse 1 .W of W  Of course, 0
1 1

min( ) ( )W W  for every inverse 1( ) of .W W
Here, we omit the detailed discussion for constructing the R-, U- and 

G-measures, including the censoring invariance; while we directly provide the 
following RG-factorizations for the irreducible continuous-time block-structured 
Markov chain. 

2.7.1 The UL-type RG-factorization 

Let

[ ] 1
min( ) .nQ T U W V  (2.55) 

The block-entry expression of the matrix [ ]nQ  is written as 
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( ) ( ) ( )
0,0 0,1 0,
( ) ( ) ( )

[ ] 1,0 1,1 1,

( ) ( ) ( )
,0 ,1 ,

n n n
n

n n n
n n

n n n
n n n n

f f f
f f fQ

f f f

Lemma 2.12 For i, j n 1, we have

1( 1) ( ) ( ) ( )
, , , , , .n k k k

i j i j i k k k k j
k n

f D f f f  (2.56) 

Proof Since

( ) ( ) ( )
0,0 0,1 0, 1
( ) ( ) ( )

[ ( 1)] 1,0 1,1 1, 1

( ) ( ) ( )
1,0 1,1 1, 1

( )
0,
( ) 1( ) ( ) ( ) ( )1,

, ,0 ,1 , 1

( )
1,

,

n n n
n

n n n
n n

n n n
n n n n

n
n
n

n n n nn
n n n n n n

n
n n

f f f
f f fQ

f f f

f
f f f f f

f

we obtain 

1( 1) ( ) ( ) ( ) ( )
, , , , ,

1 1( 1) ( 1) ( 1) ( 1) ( ) ( ) ( )
, , 1 1, 1 1, , , ,

1( ) ( ) ( ) ( )
, , , ,

1( ) ( )
, , ,

n n n n n
i j i j i n n n n j

n n n n n n n
i j i n n n n j i n n n n j

k k k
i j i k k k k j

k n

k k
i j i k k k k

f f f f f

f f f f f f f

f f f f

D f f f ( )
, ,k
j

k n

note that ( )
, ,i j i jf D  for all i, j 0. This completes the proof. 

We define the U-measure as 

( )
, ,n

n n nU f n  (2.57) 

the R-measure as 

1( ) ( )
, , , , 0 ,j j

i j i j j jR f f i j
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and the G-measure as 

1( ) ( )
, , , , 0 .i i

i j i i i jG f f j i

It is obvious that 

( ) 1
, , ( ) , 0 ,j

i j i j jR f U i j  (2.58) 

and

1 ( )
, ,( ) , 0 .i

i j i i jG U f j i  (2.59) 

The following theorem provides the Wiener-Hopf equations for the UL-type 
R-, U- and G-measures. 

Theorem 2.13 The R-, U- and G-measures defined above satisfy the following 
Wiener-Hopf equations:

, , , ,( ) ( ) , 0 ,i j j i j i k k k j
k j

R U D R U G i j  (2.60) 

, , , ,( ) ( ) , 0 ,i i j i j i k k k j
k i

U G D R U G j i  (2.61) 

and

, , ,( ) , 0.n n n n k k k n
k n

U D R U G n  (2.62) 

Proof We only prove Eq. (2.60), while Eq. (2.61) and Eq. (2.62) can be proved 
similarly. It follows from Eq. (2.58) that 

( )
, ,( ) .j

i j j i jR U f  (2.63) 

By Lemma 2.12, we have 

1( ) ( ) ( ) ( )
, , , , ,

1

, , ,
0

( ) ,

j k k k
i j i j i k k k k j

k j

j

i j i k k k j
k

f D f f f

D R U G (2.64)

which, together with Eq. (2.63), leads to the stated result. 
By the Wiener-Hopf equations Eq. (2.60), Eq. (2.61) and Eq. (2.62), we construct 

the UL-type RG-factorization in the following theorem. The proof is clear and is 
omitted here. 
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Theorem 2.14 The infinitesimal generator Q defined in Eq. (2.54) can be 
factorized as follows,

 ( ) ( ),U D UQ I R U I G

where 

0,1 0,2 0,3

1,2 1,3

2,3

0 1 2 3

0
0

,0
0

diag ( , , , , )

U

D

R R R
R R

R R

U U U U U

and

1,0

2,0 2,1

3,0 3,1 3,2

0
0

0 .
0

L

G
G GG
G G G

We consider an irreducible continuous-time block-structured Markov chain 
with finitely-many levels whose transition probability matrix is given by 

0,0 0,1 0,

1,0 1,1 1,

,0 ,1 ,

,

M

M

M M M M

D D D
D D D

Q

D D D

For 0 i, j k and 0 k M, it is clear from Section 2.4 that 

1[ ] [ ] [ ] [ ]
, , , , ,

1
.

M
k n n n

i j i j i n n n n j
n k

D D D D D

Note that [ ] [ 0] [0]
, , , ,and .M

i j i j i j i jD D D D
Let

[ ]
,

[ ] 1
, ,

, 0 ,

( ) , 0 ,

n
n n n

j
i j i j j

U D n M

R D U i j M

and
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1 [ ]
, ,( ) , 0 .i

i j i i jG U D j i M

Then the UL-type RG-factorization is given by 

 ( ) ( ),U D LQ I R U I G

where

0,1 0,2 0,3 0, 1 0,

1,2 1,3 1, 1 1,

2,3 2, 1 2,

2, 1 2,

1,

0 1 2 3 1

0
0

0
,

0
0

0
( , , , , , , )

M M

M M

M M

U

M M M M

M M

D M M

R R R R R
R R R R

R R R
R

R R
R

U U U U U U U

and

1,0

2,0 2,1

3,0 3,1 3,2

4,0 4,1 4,2 4,3

,0 ,1 ,2 ,3 , 1

0
0

0
0 .

0

0

L

M M M M M M

G
G G
G G GG
G G G G

G G G G G

2.7.2 The LU-Type RG-Factorization 

Let

[ ] 1( ) .nQ W V T U  (2.65) 

The block-entry expression of the matrix [ ]nQ  is written as 

( ) ( ) ( )
, , 1 , 2

( ) ( ) ( )
1, 1, 1 1, 2[ ]

( ) ( ) ( )
2, 2, 1 2, 2

.

n n n
n n n n n n
n n n

n n n n n nn
n n n

n n n n n n

h h h
h h h

Q
h h h
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Since

( ) ( ) ( )
1, 1 1, 2 1, 3

( ) ( ) ( )
[ ( 1)] 2, 1 2, 2 2, 3

( ) ( ) ( )
3, 1 3, 2 3, 3

( )
1,

( )
1( ) ( )2,

, , 1 ,( )
3,

n n n
n n n n n n
n n n

n n n n n n n
n n n

n n n n n n

n
n n
n

n nn n
n n n n n nn

n n

h h h
h h h

Q
h h h

h
h

h h h
h

( ) ( )
2 , 3 ,n n

n nh

we obtain 

1( 1) ( ) ( ) ( ) ( )
, , , , ,

1 1( 1) ( 1) ( 1) ( 1) ( ) ( ) ( )
, , 1 1, 1 1, , , ,

1(0) ( ) ( ) ( )
, , , ,

0
,

n n n n n
i j i j i n n n n j

n n n n n n n
i j i n n n n j i n n n n j

n
k k k

i j i k k k k j
k

h h h h h

h h h h h h h

h h h h

note that (0)
, ,i j i jh D  for all i, j 0. Therefore, for i, j n 1 we have 

1( 1) ( ) ( ) ( )
, , , , ,

0
.

n
n k k k

i j i j i k k k k j
k

h D h h h  (2.66) 

We define the U-measure as 

( )
, , 0,n

n n nU h n  (2.67) 

the R-measure as 

1( ) ( )
, , , , 0 ,j j

i j i j j jR h h j i

and the G-measure as 

1( ) ( )
, , , , 0 .i i

i j i i i jG h h i j

It is obvious that 

( ) 1
, , ( ) , 0 ,j

i j i j jR h U j i  (2.68) 

and
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1 ( )
, ,( ) , 0 .i

i j i i jG U h i j  (2.69) 

The following theorem provides the Wiener-Hopf equations for the LU-type 
R-, U-and G-measures. 

Theorem 2.15 The R-, U- and G-measures defined above satisfy the following 
Wiener-Hopf equations,

1

, , , ,
0

( ) ( ) , 0 ,
j

i j j i j i k k k j
k

R U D R U G j i  (2.70) 

1

, , , ,
0

( ) ( ) , 0 ,
i

i i j i j i k k k j
k

U G D R U G i j  (2.71) 

and

1

, , ,
0

( ) , 0.
n

n n n n k k k n
k

U D R U G n  (2.72) 

Proof We only prove Eq. (2.70), while Eq. (2.71) and Eq. (2.72) can be proved 
similarly. It follows from Eq. (2.68) that 

( )
, ,( ) .j

i j j i jR U h  (2.73) 

We obtain 

1 1( ) ( ) ( ) ( )
, , , , ,

0

.
j

j k k k
i j i j i k k k k j

k
h D h h h  (2.74) 

From Eq. (2.68), Eq. (2.69) and Eq. (2.74) we obtain 

1
( )
, , , ,

0
( ) ,

j
j

i j i j i k k k j
k

h D R U G

which, together with Eq. (2.73), leads to the stated result. 
By the Wiener-Hopf equations Eq. (2.70), Eq. (2.71) and Eq. (2.72), the following 

theorem constructs the LU-type RG-factorization. The proof is obvious and is 
omitted here. 

Theorem 2.16 The infinitesimal generator Q defined in Eq. (2.54) can be 
factorized as follows, 

( ) ( ),L D UQ I R U I G  (2.75) 

where 



Constructive Computation in Stochastic Models with Applications 

122

1,0

2,0 2,1

3,0 3,1 3,2

0 1 2 3

0
0

0 ,
0

diag ( , , , , ...)

L

D

R
R RR
R R R

U U U U U

and

0,1 0,2 0,3

1,2 1,3

2,3

0
0

.0
0

U

G G G
G G

G G

We consider an irreducible continuous-time block-structured Markov chain 
with finitely-many levels whose transition probability matrix is given by 

0,0 0,1 0,

1,0 1,1 1,

,0 ,1 ,

.

M

M

M M M M

D D D
D D D

Q

D D D

For k i, j M and 0 k M, it is clear from Section 2.3 that 

1[ 1] [ ] [ ] [ ]
, , , , ,

0
.

k
k n n n

i j i j i n n n n j
n

D D D D D

Note that [ ] [ ]
, ,

M M
i j i jD D  and [ 0]

, , .i j i jD D
Let

[ ]
,

[ ] 1
, ,

, 0 ,

( ) , 0 ,

n
n n n

j
i j i j j

U D n M

R D U j i M

and

1 [ ]
, ,( ) , 0 .i

i j i i jG U D i j M

Then the UL-type RG-factorization is given by 

( ) ( ),L D UQ I R U I G
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where

1,0

2,0 2,1

3,0 3,1 3,2

4,0 4,1 4,2 4,3

,0 ,1 ,2 ,3 , 1

0 1 2 3 1

0
0

0
0 ,

0

0

( , , , , , , )

L

M M M M M M

D M M

R
R R
R R RR
R R R R

R R R R R

U U U U U U U

and

0,1 0,2 0,3 0, 1 0,

1,2 1,3 1, 1 1,

2,3 2, 1 2,

2, 1 2,

1,

0
0

0
.

0
0

0

M M

M M

M M

U

M M M M

M M

G G G G G
G G G G

G G G
G

G G
G

2.7.3 The Stationary Probability Vector 

Let 0 1 2( , , , ...)  be the stationary probability vector of the continuous-time 
Markov chain Q. Then 0Q  and 1.e  Thus we have 

 ( ) ( ).U D LQ I R U I G

We write 0 1 2( , , , ...)x x x x  and 

 ( ).Ux I R

Then

 ( ) 0.D LxU I G

Let 0( , 0, 0, ...)x  be a non-zero nonnegative solution to the equation 
( ) 0,D LxU I G  where x0 is the stationary probability vector of the censored 

Markov chain U0 to level 0. Then 0( ) ( , 0, 0, ...),UI R x  where  is a constant. 
Therefore, the stationary probability vector of the continuous-time block-structured 
Markov chain is given by 
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0 0

1

,
0

,

, 1,
k

k i i k
i

x

R k

where the scalar  is uniquely determined by 
0

1.k
k

e

For a Markov chain Q of GI/M/1 type, the stationary probability vector is given by 

0 0

0 1,
1

,

, 1,
k

k i i
i

x

R k

where x0 is the stationary probability vector of the censored Markov chain 0U  to 

level 0 and the scalar  is determined by 
0

1
M

k
k

e  uniquely. 

For a Markov chain Q of GI/M/1 type with finitely-many levels, using the 
UL-type RG-factorization, the stationary probability vector is given by 

0 0

0 1,
1

,

, 1 ,
k

k i i
i

x

R k M

where x0 is the stationary probability vector of the censored Markov chain 0U  to 

level 0 and the scalar  is determined by 
0

1
M

k
k

e  uniquely. 

For a Markov chain of M/G/1 type with finitely-many levels, the stationary 
probability vector of is given by 

1,
1

,

, 1,

M M
k

k M i i
i M

x

R k

where xM is the stationary probability vector of the censored Markov chain MU  to 

level M and the scalar  is determined by 
0

1
M

k
k

e  uniquely. 

2.8 Notes in the Literature 

The censored Markov chain, also called watched Markov chain, was first considered 
by Lévy [15 17]. Since then, the censored Markov chains have been very useful 
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in the study of Markov chains. Kemeny, Snell and Knapp [11] applied the censoring 
technique to show that each recurrent Markov chain has a positive regular measure 
unique to multiplication by a scalar. Freedman [4] used the censoring technique 
to approximate countable Markov chains for the limiting behavior and also for 
more general issues. 

The censoring technique has been successfully applied to block-structured 
Markov chains and Markov renewal processes. Examples include Grassmann and 
Heyman [5], Latouche [13], Heyman [8], Zhao and Liu [29], Zhao, Li and Braun 
[31, 32], Zhao, Li and Alfa [30], Latouche and Ramaswami [14], Zhao [28], 
Dudin and Klimenok [2], Li and Zhao [21 25], Li and Cao [18], Li and Liu [19], 
Klimenok and Dudin [12] and Dudin, Kim and Klimenok [3]. 

It is well known now how significant the matrices R and G are in the study of 
Markov chains of GI/M/1 type and Markov chains of M/G/1 type, respectively. 
Readers may refer to Neuts [26, 27], Latouche and Ramaswami [14] and Bini, 
Latouche and Meini [1] for more details. Grassmann and Heyman [5] first extended 
the two matrices R and G to the R- and G-measures {Rk} and {Gk} for Markov 
chains of GI/G/1 type in which ,k n k nR R  and ,k n n kG G  for 1 .k n  The 
A-measure was first introduced in Karlin and Taylor [9, 10]. After then, Zhao, Li 
and Braun [31, 32] and Zhao, Li and Alfa [30] provided a detailed analysis on the 
A- and B-measures. 

In the study of Markov chains and stochastic models, we always encounter some 
systems of linear equations which may be either finitely or infinitely dimensional. 
Gaussian elimination is very useful in solving the systems of linear equations. 
Grassmann and Heyman [5] provided a detailed interpretation on Gaussian 
elimination by means of the censored technique, and they used Gaussian elimination 
to derive the Wiener-Hopf equations, which is a key for analyzing Markov chains 
of GI/G/1 type. Li and Zhao [21, 23] and Li and Liu [19] indicated that the 
Wiener-Hopf equations can lead to the RG-factorizations for any irreducible 
Markov chain. As indicated in Li and Cao [18], the RG-factorizations can be applied 
in dealing with the matrix equations ( ) or ( )x I P b I P x b  for discrete-time 
Markov chains and xQ b  or Qx b  for continuous-time Markov chains. 
Therefore, the RG-factorizations have established a new theoretic and algorithmic 
framework in the study of Markov chains and stochastic models for solving systems 
of linear equations. An important applied example is Li and Zhao [20, 22] for 
discussing quasi-stationary distributions of Markov chains of GI/M/1 type and 
Markov chains of M/G/1 type, respectively; while more general examples will be 
discussed in Chapter 9 of this book. 

Grassmann [6] established a UL-type two-matrix factorization for the matrix 
I P, where P is an irreducible transition probability matrix of finite size. Grassmann 
and Heyman [7] gave the same factorization for an irreducible Markov chain of 
GI/G/1 type, while Heyman [8] extended the result to an irreducible and positive 
recurrent Markov chain with infinitely-many states. Based on the Wiener-Hopf 
equations for the transition probability matrix of GI/G/1 type, Zhao [28] obtained 



Constructive Computation in Stochastic Models with Applications 

126

a UL-type RG-factorization for the matrix I P for the first time. For a level- 
dependent QBD process, Li and Cao [18] first provided two types: UL- and 
LU-types of RG-factorizations. Li and Zhao [21, 23] generalized the UL-type 
RG-factorization to an irreducible block-structured Markov renewal process with 
infinitely-many states, which can immediately lead to the UL-type RG-factorization 
for any irreducible block-structured Markov chain. Li and Liu [19] constructed 
the LU-type RG-factorization for any irreducible block-structured Markov chain, 
which is parallel to but different from that of Li and Zhao [21]. It is worthwhile 
to note that the UL-type RG-factorization is very useful for computing the stationary 
probability vector and more generally, analyzing the stationary performance 
measures; while the LU-type RG-factorization is a key for calculating the transient 
performance measures such as the first passage time and the sojourn time, as 
illustrated in Chapters 6 to 11 of this book. 

In this chapter, we mainly refer to Zhao [28], Zhao, Li and Braun [31, 32], Li 
and Zhao [21, 23], Li and Cao [18] and Li and Liu [19]. At the same time, we 
also add some new results without publication for a more systemical organization 
of this chapter. 

Problems

2.1 Provide a unified definition for the censored Markov chains of an irreducible 
Markov chain which may be either discrete-time or continuous-time. 
2.2 For the Markov chain P and two state subsets E1 and E2 with E1 E2, prove 
that 2 1 1( ) .E E EP P
2.3 Let  be the state space of the Markov chain P. Prove that P is irreducible 
if and only if EP  is irreducible for each subset E .

2.4 Note that , ,
1

( )i j i j
k

R R k  and , ,
1

( )i j i j
k

G G k  given in Section 2.2, please 

explain the reason why the two matrices ,i jR  and ,i jG  have different probabilistic 

meaning. 
2.5 Prove the censoring invariant property: 

(1) [ ]
, , for 0 .n

i j i jR R i j n

(2) [ ]
, , for 1 .n

i j i jR R n j i

(3) [ ]
, , for 0 , .n

i j i jA A i j n

(4) [ ]
, , for , 1.n

i j i jA A i j n
2.6 For a Markov chain of M/G/1 type, prove that for k 1 and j 2,

( ) ( )

1 1,1 1,1 .
k k

k j k j kjW G G G W
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2.7 Let

1

2

3

0
0

0
0

C
C

A C

and

1

2

3

0
0

.0
0

C
B C

C

Please compute the inverses of the two matrices I A  and .I B
2.8 If an irreducible discrete-time Markov chain whose transition probability 
matrix is given by 

0,0 0,1

1,0 1,1 1,2

2,0 2,2 2,3

,

P P
P P P

P
P P P

please derive the UL- and LU-types of RG-factorizations of the matrix .I P
2.9 For an irreducible level-independent Markov chain of GI/M/1 type, derive 
the UL- and LU-types of RG-factorizations.
2.10 For an irreducible level-independent Markov chain of M/G/1 type, derive 
the UL- and LU-types of RG-factorizations.
2.11 If an irreducible discrete-time Markov chain whose transition probability 
matrix is given by 

0,0 0,1 0,2 0,3

1,0 1,1

2,0 2,2

3,0 3,3

,

P P P P
P P

P P P
P P

please derive the UL- and LU-types of RG-factorizations of the matrix .I P
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2.12 Let

1

2

3

0
0

0
0

C
A C

C

and Ci is nonzero matrix of size m for i 1. Please provide a nonzero solution to 
the matrix equation ( ) 0.x I A
2.13 For a PH/M/1 queue, apply the UL-type RG-factorization to compute the 
queue length distribution at time t>0 and the probability distribution of the busy 
period.
2.14 In Theorem 2.10, please compute 

1

0,1 0,2 0,3( , , , ) UR R R I R

2.15 Give some concrete examples and indicate useful difference between 0,
1

k
k

A

and ,0
1

.k
k

B

2.16 For a QBD process whose transition probability matrix is given by 

1 0

2 1 0

2 1 0

,

B B
B A A

P
A A A

compute Ai, i and Bi, i for i 0.
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Abstract In this chapter, we simplify the R-, U- and G-measures and the 
RG-factorizations for Markov chains of GI/G/1 type. Also, we derive a new 
RG-factorization for the repeated blocks and the four basic inequalities for 
the boundary blocks, which are useful in spectral analysis of Markov chains 
of GI/G/1 type. We analyze the dual Markov chain of any irreducible block- 
structured Markov chain, and specifically discuss the dual chain of a Markov 
chain of GI/G/1 type. Furthermore, we simplify the A- and B-measures for 
Markov chains of GI/G/1 type, and also express the A- and B-measures by 
means of the R- and G-measures, respectively. Based on the A- and B-measures, 
we provide spectral analysis for the R- and G-measures, and provide conditions 
for the state classification of Markov chains of GI/G/1 type. 

Keywords stochastic model, block-structured Markov chain, Markov chain 
of GI/G/1 type, RG-factorization, dual Markov chain, spectral analysis, state 
classification.

In this chapter, we simplify the R-, U- and G-measures and the RG-factorizations 
given in Chapter 2, for Markov chains of 1GI G  type. Two important examples: 
Markov chains of 1GI M  type and Markov chains of 1M G  type (e.g., see Neuts 
[13, 14]), are given a detailed analysis under the RG-factorization framework. 
Also, we derive a new RG-factorization for the repeated blocks and the four basic 
inequalities for the boundary blocks, which are useful in spectral analysis of 
Markov chains of 1GI G  type. We analyze the dual chain of a block-structured 
Markov chain, and provide a detailed discussion for the dual chain of a Markov 
chain of 1GI G  type. Furthermore, we simplify the A- and B-measures for Markov 
chains of 1GI G  type, and also express the A- and B-measures by means of the 
R- and G-measures, respectively. Based on the A- and B-measures, we provide 
spectral analysis for the R- and G-measures, and provide conditions for the state 
classification of Markov chains of 1GI G  type. 
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This chapter is organized as follows. Section 3.1 simplifies the UL- and LU-types 
of RG-factorizations, and derives a new RG-factorization for the repeated blocks 
and the four inequalities for the boundary blocks. Section 3.2 introduces the dual 
Markov chains, which are used to derive dual measures for the R- and G-measures. 
Section 3.3 simplifies expressions for the A- and B-measures by means of the R-
and G-measures. Section 3.4 gives spectral analysis for the R- and G-measures, 
which lead to conditions for the state classification. Section 3.5 studies the minimal 
positive solution to the matrix generating function equations det( ( )) 0I R z
and det( ( )) 0.I G z  On a similar line, Section 3.6 provides a simple introduction 
to continuous-time Markov chains of 1GI G  type, which are necessary for 
analyzing practical systems in many applied areas. Finally, Section 3.7 provides 
some notes for the references related to the results of this chapter.  

3.1 Markov Chains of GI/G/1 Type

This section considers Markov chains of 1GI G  type, simplifies the R- and 
G-measures and the RG-factorizations given in Chapter 2, and derives a new 
RG-factorization for the repeated blocks and the four inequalities for the boundary 
blocks.

Consider a Markov chain of 1GI G  type whose transition probability matrix 
is given by 

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

,

D D D D
D A A A

P D A A A
D A A A

 (3.1) 

where the sizes of the matrices 0D , iD , iD  for 1i  and jA  for j  are 
0 0m m , 0m m , 0m m  and m m , respectively. 
For the transition probability matrices, comparing Eq. (3.1) with Eq. (2.1), it is 

easy to see that 0 j jP D  for 0j , 0i iP D  for 1i  and i j j iP A  for 
, 1i j .

Let nW  be the southeast corner of P begainning from level n. It is clear that 
nW W  for all 1.n  Thus, we write ( ,1) ( ,1)

nW W and (1, ) (1, )
nW W  for all 1.n

Therefore,

( ,1)
0, 1 2

( 1)
, 1 2

( , , , ) , 1,

( , , , ) , 1 .
j j j j

i j j i j i j i

R D D D jW
R A A A i jW
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Obviously, the matrices ,i jR  for 1 i j  only depend on the difference j i .
We write ,i jR  as j iR  for all 1 .i j  Therefore, for 1k ,

( ,1)
1 2( , , , ) .k k k kR A A A W  (3.2) 

Similarly,  
T(1, ) T T T

,0 ( 1) ( 2)

T(1, ) T T T
( ) ( 1) ( 2)

, 1,, , ,

, 1 ., , ,

i i i i

i j i j i j i j

G iD D DW

G j iA A AW

The matrices ,i jG  for 1 j i  only depend on the difference .i j  We write 
,i jG  as i jG  for all 1 j i . Therefore, for 1k ,

T(1, ) T T T
( 1) ( 2) ., , ,k k k kG A A AW  (3.3) 

The following lemma is a consequence of the repeating blocks in the Markov 
chain of 1GI G  type. In fact, this corresponds to the censoring invariance given 
in Theorem 2.3. 

Lemma 3.1 For 1n , i , 1j , 2 , 3 , , n ,

[ ] [ ( 1)] [ ( 2)]
, 1 , 1 2 , 2 .n n n

n i n j n i n j n i n jP P P

Proof For 1n , 1 i , j n , it is easy to see that 

T[ ] T T
, 1 2 ( 1) ( 2)( , , ) ,, ,n

n i n j i j i i j jP A A A W A A  (3.4) 

which is independent of 1.n  Thus 

[ ] [ 1 ] [ ( 2)]
, 1 , 1 2 , 2 .n n n

n i n j n i n j n i n jP P P

This completes the proof. 
Based on the censoring invariance in Lemma 3.1, we define that for 1 ,i

j n ,
[ ]

0 , ,n
n nP  (3.5) 

[ ] ,n
i n i nP  (3.6) 

[ ] .n
j n n jP  (3.7) 

It is easy to see that the ( , )r s th entry of i  is the transition probability of the 
censored chain [ ]nP  from state ( , )n i r  to state ( , ),n s  while the ( , )r s th entry 
of j  is the transition probability of the censored chain [ ]nP  from state ( , )n r
to state ( , ).n j s
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The following theorem explicitly expresses the R- and G-measures in terms of 
the matrices i  for .i

Theorem 3.1 (1) For 1i ,

1
0( ) .i iR I  (3.8) 

(2) For 1j ,
1

0( ) .j jG I  (3.9) 

Proof We only prove Eq. (3.8), while Eq. (3.9) can be proved similarly. 
It follows from Lemmas 3.1 and 2.5 that 

[ ] [ ] [ ] [ ] 1
, , , 0

0
( ) .

ln n n n
i i n i n n i n n n i

l
R R R P P I

This completes the proof. 
Remark 3.1 Using Lemma 2.5, for the Markov chain of 1GI G  type we can 

provide expressions for the matrices 0, jR  and ,0iG  for , 1i j  as follows:

1( )
0, 0, 0( )j

j jR I

and
1 ( )

,0 0 ,0( ) .i
i iG I

Theorem 3.2 If the matrix k
k

A A is stochastic, then ,0lim 0.ii
G

Proof Since

1
i k

k i
D e A e e

and

 ,k
k

Ae A e e

where e is a column vector of ones with switable size, it is easy to see that 
lim 0.ii

D e  Note that 

T(1, ) T T T
,0 ( 1) ( 2)

(1, )
1

1

, , ,

,

i i i i

k
i k

k

G D D DW

DW
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We obtain 

(1, ) (1, )
,0 ( 1)1

1 1

lim lim lim 0k k
i i ki ki i ik k

G D DW W

by means of the dominated convergence theorem due to the fact that for all 
1k  and (1, )

( 1)1, k
i ki D e eW . This completes the proof. 

Remark 3.2 (1) In the matrix P given in Eq. (3.1), if k
k

A  is finite, then 

lim lim 0.k kk k
A A  By using a similar analysis to the proof for Theorem 3.2, it 

follows from Eq. (3.2) and Eq. (3.3) that lim lim 0.k kk k
R G

(2) In the matrix P given in Eq. (3.1),
0

k
k

D  is finite, so lim 0.kk
D  Thus we 

obtain 0,lim 0.kk
R

Let

0 0,
1 1

, ;k k
k k

R R R R

and

0 ,0
1 1

, .k k
k k

G G G G

The following theorem provides an important property for the entry structure 
of the four matrices 0 ,R ,R 0G  and G. Note that two important examples of this 
theorem were discussed in Lemma 1.2.4 of Neuts [13] for Markov chains of 

1GI M  type and in Lemma 2.3.6 of Neuts [14] for Markov chains of 1M G
type. 

Theorem 3.3 If the Markov chain P  is irreducible, then 
(1) each column vector of the matrix R  or 0R  is not zero, and 
(2) each row vector of the matrix G  or 0G  is not zero. 
Proof We only prove 0R , while R , G  and 0G  can be proved similarly. 
Suppose that the 0j th column of 0R  was zero. Since 0,1 00 R R , the 0j th 

column of 0,1R  would be zero too. Let [ 1]P  be the censored matrix of the Markov 
chain P given in Eq. (3.1) with censoring levels 0 and 1, partition [ 1]P  according 
to levels 0 and 1 as  

00 01[ 1]

10 11

.P

Then
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1[ 1]
0,1 01 11 ,( )R I  (3.10) 

and we define  
1[ 1]

1,0 10 00( ) ,R I  (3.11) 

noting that [ 1]
0,1 0,1R R  according to the censoring invariance, the 0j th column of 

[ 1]
0,1R  would be zero.  
Let 0 0((1, ); (1 ))N j j  be the number of state transitions for the censored Markov 

chain [ 1]P  to eventually return to state 0(1, )j  by going through level 0 in 
intermediate transitions, given that the chain starts in state 0(1, ).j  Then 

0 0{ ((1, ); (1, )) } 0P N j j , since [ 1]P  is irreducible.  
Let î  be the number of state transitions for the censored Markov chain [ 1]P  to 

travel from level 1 to level 0. Then 

0 0 0 0
ˆ((1, ); (1, )) lim { ((1, ); (1, )) 0 }.

M
P N j j P N j j i M

To evaluate 0 0
ˆ{ ((1, ); (1, )) , 0 }P N j j i M , we consider  

0 0 11((1, ) (1, ))
ˆ 0 10 0011(0 )

11 1
00101 10 0011 11

0

1 ( )( )

,( )( ) ( )

N j j
i M

M i

i

E z j I zI z

jI zI z I z

where 
0 0

0
1 zeros zeros

0, 0, ..., 0,1, 0, 0, ..., 0
j m j

j , 1
011( ) jI  is the 0j th column of 

1
11( )I  and ( )1  is an indicator function. It follows from Eq. (3.10) and Eq. (3.11) 

that 

0 0((1, ); (1, ))
ˆ0 0 (0 ) 1

1 [ 1] [ 1][ 1] [ 1]
00 1,0 0,10,1 1,011

0

ˆ{ ((1, ); (1, )) , 0 } 1

,( )

N j j
i M z

M i

i

P N j j i M E z

j R R jR RI

where [ 1]
0 1 0R j  is the 0j th column of [ 1]

0,1R . Since [ 1]
0,1 0 0R j , we would obtain 

0 0
ˆ{ ((1, ); (1, )) 0 } 0, for all 0,P N j j i M M

therefore,

0 0 0 0
ˆ((1, ); (1, )) lim { ((1, ); (1, )) 0 } 0

M
P N j j P N j j i M

This leads to a contradiction to the above result with 
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0 0{ ((1, ); (1, )) } 0.P N j j

This completes the proof. 
The following theorem provides Wiener-Hopf equations for Markov chains of 

1GI G  type. Note that the Wiener-Hopf equations for any irreducible Markov 
chain have been constructed in Theorem 2.4. 

Theorem 3.4 (1) For the repeated row and 1,i

0 0
1

( ) ( ) ,i i i k k
k

R I A R I G  (3.12) 

0 0
1

( ) ( )i i k i k
k

I G A R I G  (3.13) 

and

0 0 0
1

( ) .k k
k

A R I G  (3.14) 

(2) For the boundary blocks and 1,i

0, 0 0 0
1

( ) ( ) ,i i i k k
k

R I D R I G  (3.15) 

0 ,0 0 ,0
1

( ) ( )i i k i k
k

I G D R I G  (3.16) 

and

[0]
0 0 0, 0 ,0

1

( ) .k k
k

P D R I G  (3.17) 

Proof We only prove Eq. (3.12), while Eq. (3.13) to Eq. (3.17) can be proved 
similarly. 

When n is big enough, it follows from Theorem 3.1 that 
1 [ ]

0 0 0 ,( ) ( ) ( ) ,n
i i i n i nR I I I P

and
[ ] [ ( 1)] [ ( 1)] [ ( 1)]

, , 1 1,

[ ( 1)] [ ( 1)] [ ( 1)] [ ( 1)]
, 1 1, 1 1

[ ( 1)]
, 1 0 1

[ ( )]
0

1

0
1

( )

( )

( ) .

n n n n
n i n n i n i n n

n n n n
n i n i n n

n
n i n i

N
n N

n i n i k k
k

i i k k
k

P P R P

P R I P G

P R I G

P R I G

A R I G
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This completes the proof. 
For any irreducible Markov chain of 1GI G  type, the UL-type RG-factorization 

given in Eq. (3.1) can be simplified as 

 ( )( )( ),U D LI P I R I I G  (3.18) 

where

0 1 0 2 0 3

1 2

1

0
0

,0
0

U

R R R
R R

R R

0 0 0 0diag , , , ,D

and

1 0

2 0 1

3 0 2 1

0
0

.0
0

L

G
G G G

G G G

Let

* * *

1 1
( ) , ( ) ( ) .i i j

i i j
i i j

A z z A R z z R G z z G

For the Markov chain of 1GI G  type, the following theorem provides a new 
RG-factorization for the repeated row based on the z-transformation of the repeating 
blocks. Note that this RG-factorization is necessary in spectral analysis of Markov 
chains of 1GI G  type which will be organized in Sections 3.4 and 3.5 of this 
chapter. 

Theorem 3.5

* * *
0( ) [ ( )] ( ) [ ( )].I A z I R z I I G z  (3.19) 

Proof It follows from Eq. (3.12), Eq. (3.13) and Eq. (3.14) that 

* *
0 0 0

1 2 0
1

( )( ) ( ) ( )

( ) ,k k
k

k

R z I I G z

I I z R I z G



3 Markov Chains of GI/G/1 Type 

139

where

1 0
1 1

* *
0 0

1 1

( )

( )( )[ ( )] ( )

i k k
i k k

i k
k

i k
i k

k i

I z R I z G

R z I I G z z R I z G

and

( )
2 0

1 1

* *
0 0

1

( )

( )( )[ ( )] ( ) .

k j k
k j k

j k

j k
j k

k j k

I z R I z G

R z I I G z z R I z G

Since

* * *
1 2 0 0

1
( ) ( ) ( )( ) ( ),k k

k
k

I I z R I z G A z R z I G z

we get 
* * * * *

0 0 0 0( )( ) ( ) ( ) ( ) ( )( ) ( ),R z I I G z A z R z I G z

which is equivalent to Eq. (3.19). This completes the proof. 
From Theorem 3.5, we have an important relation as follows: 

0( )( )( ).I A I R I I G  (3.20) 

Now, we consider the boundary matrix sequence { , }kD k . However, 
such an RG-factorization given in Theorem 3.5 does not exist; but we can find a 
close and useful relationship for the boundary blocks. 

Let

* *

1 1

( ) ( ) ,i i
i i

i i
D z z D D z z D

and

* *
0 0 0 0

1 1
( ) , ( ) .i j

i j
i j

R z z R G z z G  (3.21) 

The following theorem provides upper or lower bounds for the R- and G-measures 
with respect to the boundary blocks. 

Theorem 3.6 For 0z ,

1* *
0 0( ) ( ) ( ) ,R z D z I  (3.22) 
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* * *
0 0( )( )[ ( )] ( ),R z I I G z D z  (3.23) 

1* *
0 0( ) ( ) ( )G z I D z  (3.24) 

and
* * *

0 0[ ( )]( ) ( ) ( )I R z I G z D z  (3.25) 

Proof We only prove Eq. (3.22) and Eq. (3.23), while Eq. (3.24) and Eq. (3.25) 
can be proved similarly. 

It follows from Eq. (3.15) that 

0, 0 0, 0
1

( ) ( ) ,i i i k k
k

R I D R I G  (3.26) 

and from Eq. (3.9) that 

1
0( ) .k kG I

It is obvious that 

0, 0 0,
1 1

( ) 0.i k k i k k
k k

R I G R

Hence it follows from Eq. (3.26) that 

0, 0( )i iR I D

and for 0z ,
* *
0 0( )( ) ( ).R z I D z  (3.27) 

Since the Markov chain is irreducible, the spectral radius of the matrix 0  is  

0( ) 1.sp

Hence, the matrix 0I  is invertible and 1
0 0

0
( ) ( ) 0.k

k
I  It follows 

from Eq. (3.27) that 
1* *

0 0( ) ( )( ) .R z D z I

Note that 

0, 0 0, 0
1 1 1 1

* *
0 0

( ) ( )

( )( ) ( ),

i i k k
i k k i k k

i k k i
z R I G z R I z G

R z I G z
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it follows from Eq. (3.26) that 

* * * *
0 0 0 0( )( ) ( ) ( )( ) ( ),R z I D z R z I G z

simple computations lead to 

* * *
0 0( )( )[ ( )] ( ).R z I I G z D z

This completes the proof. 
Applying Theorem 3.6, we have the following important inequalities 

1
0 0( ) ,R D I

0 0( )( ) ,R I I G D

1
0 0( )G I D

and

0 0( )( ) .I R I G D

Although the matrix sequence 0,{ }kR  has not such an RG-fatorization given in 
Theorem 3.5, we can provide an expression for the matrix 0 kR  for 1.k  The 
following lemma is useful for this purpose. 

Lemma 3.2 Let 1
0( )i iB I  for 1i  and 

1

2 1

3 2 1

.

I
B I
B B I
B B B I

Then

1
1

2 1

3 2 1

,

I
X I
X X I
X X X I

where

1 2

1 21
1,1

, 1.
i

i
j

l n n n
i n n n l

n j i

X B B B l
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Proof Since 1 ,I  we obtain 
1

1

0, for all 1.
k

k k i i k
i

B B X X k

Let *

1

( ) k
k

k
X z z X  and *

1

( ) k
k

k
B z z B . Then 

1 2
1 2

1* * * *

1

1 1
1,1

( ) ( ) ( ) ( )

.
i

i
j

i

i

l
n n n

l i n n n l
n j i

X z I B z B z B z

z B B B

Thus we have 

1 2

1 21
1,1

, 1.
i

i
j

l n n n
i n n n l

n j i

X B B B l

This completes the proof. 
The following theorem characterizes the expression for the matrix 0,kR  for 1.k
Theorem 3.7 For the Markov chain of 1GI G  type, for each 1k  we have

1 1
0, 0 0

1
( ) ( ) .k k k i i

i
R D I D I X  (3.28) 

Proof It follows from Eq. (3.15) and Eq. (3.9) that for all 1k ,

1 1
0 0 0 0

1

( ) ( ) ,k k i i k
i

R R I D I

or
TT

1

T
1 2

T
0,1 0,2 0,3 0,4 2 1 3

T
3 2 1 4

( , , , , ) ,

I F
B I F

R R R R B B I F
B B B I F

where 1
0( )k kF D I  for 1.k  Using Corollary 3.10 yields that for all 1,k

0
1

1 1
0 0

1
( ) ( ) .

k k k i i
i

k k i i
i

R F F X

D I D I X
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This completes the proof. 
Let ,R 0

,R  ,G 0
,G  ,A  ,A D  and D  denote the radii of con- 

vergence for * ( ),R z *
0 ( ),R z * ( ),G z *

0 ( ),G z * ( ),A z * ( ),A z * ( )D z  and * ( ),D z
respectively, where 

* *

1 1
( ) , ( ) .k k

k k
k k

A z z A A z z A

The following theorem provides an important relation among the radii of 
convergence. 

Theorem 3.8 (1) R A  and G A .
(2)

0R D  and 
0G D .

Proof We only prove R A  and 
0R D ; while the other two can be 

proved similarly. 

We first provide .R A  Since 
1

k
k

A  and 
1

k
k

A  are substochastic, 0 A

1 A . At the same time, it is seen that 0 1G R . It follows 
from Eq. (3.19) that 

* * * * * * * * *
0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )A z R z G z R z G z R z G z R z G z

Since * ( )R z  is a power series and * ( )G z  is a Laurent series with only negative 
powers of ,z * ( )R z  is analytic in Rz  and * ( )G z  is analytic in .Gz
Noting that 

* * * * *
0 0 0 0( ) ( ) ( ) ( ) ( )A z R z I G z G z I G z

and

* * * * *
0 0 0 0( ) ( ) ( ) ( ) ( ) ,A z I R z R z G z I R z

it is clear that R A  and G A  by using 0 1A A  and 
0 1G R .

Now, we prove 
0R D .

Note that for 0z ,

* * 1
0 0( ) ( )( )R z D z I  (3.29) 

and

* * *
0 0( )( )[ ( )] ( ).R z I I G z D z
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Note that either 1D  or 1D , thus we need to discuss the following two 
possible cases: 

Case 1D . In this case, it is easy to see from Eq. (3.29) that 
0

1R D .
Noting that 0 (1)R  is finite, we have 

0
1R . Thus 

0
1R D .

Case 1D . In this case, it is easy to see from Corollary 3.10 that 
* ( )I G z  is invertible for any 1z  when P  is irreducible and positive recurrent. 

Since * ( )G z  is non-increasing for (1, )z , we can consider 0  to be small 
enough such that for all 1 ,z

* * * * *
0 0 0 0( )( )[ (1 )] ( )( )[ ( )] ( ),R z I I G R z I I G z D z

hence

* * * 1 1
0 0( ) ( )[ (1 )] ( )R z D z I G I

which, together with Eq. (3.29), illustrates that for 1 ,z

* 1 * * * 1 1
0 0 0( )( ) ( ) ( )[ (1 )] ( ) ,D z I R z D z I G I  (3.30) 

which indicates that 
0

1R D .
This completes the proof. 
In the rest of this section, we discuss the LU-type R-measure ,{ ,0 }i jR j i

and G-measure { ,0 }i jG i j , and provide expressions for the LU-type R- and 
G-measures. 

For the Markov chain of 1GI G  type, it is easy to see that the sizes of the 
matrices ,0iR  for 1i  and 0 jG  for 1j  are 0m m  and 0m m , respectively; 
while the sizes of all the matrices ,i jR  for 1 j i  and ,i jG  for 1 i j  are 

.m m  Let 

*
,

1
( ) , 0,i

j i j
i j

R z z R j

and

,
1

( ) , 0.j
i i j

j i
G z z G i

The following theorem and corollary provide expressions for *
, ( )jR z  for 0j

and *
, ( )iG z  for 0.i  The proof is clear and is omitted here.  

Theorem 3.9 (1)

* *
,0 0( )( ) ( )R z I D z

and for 1,j
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1
* *
, ,

0

( )( ) ( ) ( )( ) .
j

j
j j k k k j

k
R z I z A z R z I G

(2)
* *

0 0,( ) ( ) ( )I G z D z

and for 1,i
1

* * *
,

0

( ) ( ) ( ) ( ) ( ).
i

i
i i i k k k

k
I G z z A z R I G z

For 0 ,l k  we write 

1 1 1 1 2 2

1 1 2

, , , , , , ,
1 1 1 1

, 1 1, 2 1,

l k l k l i i k l i i i i k
i k i i k

l l l l k k

S G G G G G G

G G G

and

1 1 1 1 2 2
1 2 1

, , , , , ,
1 1 1 1

, 1 1, 2 1, .

k l k l k i i l k i i i i l
i k i i k

k k k k l l

T R R R R R R

R R R

Corollary 3.1 For 1,k

1
* * * *
, 0, ,

1

( )( ) ( ) ( ) ( )
k

k l
k k k l k

l
R z I z A z D z S A z z S

and
1

* * * *
, ,0 ,

1

( ) ( ) ( ) ( ) ( ).
k

k l
k k k k l

l
I G z z A z T D z z T A z

3.2 Dual Markov Chains

In this section, we define a dual Markov chain for any irreducible Markov chain, 
and provide a useful relationship for the R- and G-measures between the dual 
Markov chain and the original Markov chain. For the Markov chain of 1GI G  type, 
we further analyze the R- and G-measures, and obtain useful properties based on 
the dual chain. 

Definition 3.1 For a Markov chain P, if there exists a positive left super- 
regular vector 0 1 2( , , , ...)  such that P, we write

1 Tdiag ( ) diag( ),P P
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where diag ( ) diag 0 1 2( , , , ...) , then we call P  a dual Markov chain of the 
Markov chain P. 

It is clear that if ,( )i jP P  is a dual chain of the Markov chain ,( )i jP P , then 

1 T
, diag ( ) diag ( ).i j i ji j PP

In general, the dual chain P  can be probabilistically interpreted in terms of the 
time reversibility of the original chain P, e.g., see Kemeny, Snell and Knapp [5]. 

Let ,{ }i jR  and ,{ }i jG , ,{ }i jR  and ,{ }i jG  be the UL-type R- and G-measures 
for the Markov chain P and the dual chain P , respectively. It is easy to check 
from Corollary 2.2 that 

1 T
,, diag ( ) diag ( )i j i ji j GR

and
1 T

,, diag ( ) diag ( ).i j i ji j RG

At the same time, we have 

1 Tdiag ( ) diag ( ).n n nn

On the other hand, for the LU-type R-, U- and G-measures we have 

1 T
,

ˆ diag ( ) diag ( ),i j i j i jR G

1 T
,

ˆ diag ( ) diag ( )i j i j i jG R

and
1 Tdiag ( ) diag ( ).n n nn

Let [0]P  be a matrix obtained from the matrix P by deleting the first row and 
the first column. The following proposition provides a relationship of the positive 
left super-regular vectors between P and [0]P . The proof is clear and is omitted 
here.

Proposition 3.1 If 0 1 2( , , , ...)  is a positive left super-regular vector 
of P, then 1 2 3( , , , ...)  is also a positive left super-regular vector of [0]P .

Applying the dual chain, the following theorem gives an important property 
for the R-measure based on ,i jG e e  and ,i jG e e .

Theorem 3.10 If 0 1 2( , , , ...)  is a positive left super-regular vector of 
P, then 

(1) ,i i j jR  for 0 i j , and 
(2) ,i i j jR  for 0 .j i
Proof We only provide (1), while (2) can be proved similarly. 
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According to the definition of the G-measure, it is easy to see that ,j i e eG .
Applying 1 T

, diag ( ) diag ( )j i j ij i RG , we obtain 

1 T
,diag ( ) diag( ) ,j i j i j iR e e eG

Thus, ,i i j jR  for 0 j i . This completes the proof. 
In what follows we study the dual chain for the the Markov chain P of 1GI G

type. 
Let

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

[0] .

A A A A
A A A A

P A A A A
A A A A

The following lemma provides a relation of the positive left super-regular 
vectors between P and A. The proof is clear and is omitted here. 

Lemma 3.3 If  is a positive left super-regular vector of the Markov chain 

k
k

A A , then ( , , , ...)  is also a positive left super-regular vector of the 

Markov chain P[0]. 
Remark 3.3 If the Markov chain A with finite states is irreducible and 

stochastic, then the Markov chain A is positive recurrent, and  is its stationary 
probability vector. 

By using Lemma 3.3, it is easy to see that 

1 Tdiag ( ) diag ( )kk GR

and

1 Tdiag ( ) diag ( ).kk RG

Definition 3.2 For the Markov chain P of 1GI G  type, we write 

0

[0]
D U

P
V P

and

0
[0] ,

[0]

D U
P

V P
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where 

T1[0] diag ( , , , ...) diag ( , , , ...)[0]P P

Then we call [0]P  the dual generating chain of P. 
Theorem 3.11 If  is a positive left super-regular vector of the Markov 

chain A, then R .

Proof In the dual generating chain 0P ,
1

k
k

G G  is stochastic or substochastic, 

that is, Ge e . Since 1 Tdiag ( ) diag ( )G R , we obtain 

1 Tdiag ( ) diag( ) ,e Ge R e

which leads to 

T T T Tdiag( ) diag( ) ,e R e R

clearly, .R  This completes the proof. 

3.3 The A- and B-Measures

In this section, we simplify the A- and B-measures, given in Section 2.5, for 
Markov chains of 1GI G  type, and construct new expressions for the A- and 
B-measures by means of the R- and G-measures. Based on the A- and B-measures, 
we provide conditions for the state classification of Markov chains of 1GI G  type. 

For the Markov chain of 1GI G  type, we write 

1 2 3

1 2

1

0
0

0
0

U

R R R
R R

RR

and

1

2 1

3 2 1

0
0

.0
0

L

G
G G G

G G G
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From (1) in Theorem 2.10, we have 

0,1
1

0,
0, 0,

1

, if 1,

, if 2,
j

j
j k k j

k

R j
A

R A R j
 (3.31) 

or the matrix expression 

0,1 0,2 0,3 0,1 0,2 0,3( , , , ...) ( , , , ...).UA A A I R R R R

Using (2) in Theorem 2.10, the matrix ,0iB  and the G-measure satisfy 

1,0
1

,0
,0 ,0

1

, if 1,

, if 2,
i

i
i i k k

k

G i
B

G G B i
 (3.32) 

or the matrix expression 

T TT T T T T T
1,0 2,0 3,0 1,0 2,0 3,0 ., , , ... , , , ...LI G B B B G G G

If 1 ,i j  then using Corollary 2.6, we have 

1
1

,
,

1

, if 1,

, if 2,
j

i j
j i i k j k

k i

R j i
A

R A R j i
 (3.33) 

and if 1 ,j i  then 

1
1

,
,

1

, if 1,

, if 2.
i

i j
i j i k k j

k

G j i
B

G G B j i
 (3.34) 

At the same time, it is clear that 
1

, ,0 0, , ,
1 1

i

i i i i i k i k k i k i
k k i

A A R A R R A

and
1

, ,0 0, , ,
1 1

.
i

i i i i i k k i i k k i
k k i

B G B G B B G

Let

*
0 0,

1
( ) j

j
j

z z A
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and

*
,

1
( ) ;j

i i j
j i

z z A

*
0 ,0

1
( ) i

i
i

z z B

and

*
,

1
( ) .i

j i j
i j

z z B

Then it respectively follows from Eq. (3.31) to Eq. (3.34) that 

* * *
0 0( )[ ( )] ( ),z I R z R z

* * *( )[ ( )] ( ), 1,i z I R z R z i

* * *
0 0[ ( )] ( ) ( )I G z z G z

and
* * *[ ( )] ( ) ( ), 1.jI G z z G z j

Let

.
1

, 0i i j
j i

A i

and

,
1

, 0.j i j
i j

B j

Then

0 0( ) ,I R R

 ( ) , 1;i I R R i

0 0( )I G G

and

 ( ) , 1.jI G G j

We now provide conditions for the state classification of Markov chains of 
1GI G  type based on the A- and B-measures. For convenience of description, we 
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assume that the Markov chain P given in Eq. (3.1) and the matrix A are irreducible 
and stochastic, unless stated. 

Lemma 3.4 The Markov chain P is recurrent if and only if for all 1i

1

,0
1

.
i

i i k
k

G e G e e

Proof This proof may directly follow Lemma 2.9 and Theorem 2.11. 
It is seen from Theorem 3.2 that if the matrix A is stochastic, then ,0lim 0.ii

G

Therefore, we have the following corollary. 
Corollary 3.2 (1) The Markov chain P is recurrent if and only if G is stochastic. 
(2) The Markov chain P is transient if and only if and G is strictly substochastic. 
Theorem 3.12 If the Markov chain P is recurrent, then P is positive recurrent 

if and only if 0R  is finite and lim 0.k

k
R

Proof Suppose first that P is positive recurrent. It follows from Theorem 3.8 
that the matrix 0A  is finite. Note that 0 0( ) ,I R R  we obtain 0 0 ,R  which 
leads to the conclusion that 0R  is finite. Since  

0 0 0

2
0 0 0 0 0 0

2 2 3
0 0 0 0 0 0 0 0

1

0 0
0

0
0

N
k N

k
N

k

k

R R
R R R R R R R R

R R R R R R R R R R R R

R R R

R R

for all 1,N  hence we obtain 

 lim 0.k

k
R

Suppose now that 0R  is finite and lim 0.k

k
R  In this case, the matrix I R  is 

irreducible. Since 0 0( ) ,I R R  we obtain  

1
0 0 .( )R I R

Therefore, P is positive recurrent by means of Theorem 2.12. This completes the 
proof.
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Let

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

.

A A A A
A A A A

W A A A A
A A A A

For the Markov chain W, we introduce the A- and B-measures for the first 
block-row and the first block-column as follows: 0 0 IA B , 1, 1kk AA  and 

1,1kk BB  for 1.k
The following corollary provides two simple and useful relations between the 

A- and R-measures and the B- and G-measures, respectively. The proof is easy by 
using Eq. (3.33) and Eq. (3.34). 

Corollary 3.3 
1

0

k

k ik i
i

RA A  (3.35) 

and
1

0

.
k

k ik i
i

GB B  (3.36) 

Let

*

0

( ) k
k

k
z zA A

and

*

0

( ) .k
k

k
z zB B

Then it follows from Eq. (3.35) that 
* *( )[ ( )]z I R z IA  (3.37) 

and from Eq. (3.36) that 
**[ ( )] ( ) .I G z z IB  (3.38) 

Now, we provide a useful relation between n  and the A- and B-measures. 
This relation leads to a new expression for the R- and G-measures. 

Corollary 3.4 (1) For 0,n

0
n n i i

i
A B
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and

0

.n n ii
i

AA

(2) For 0,n

0
0

( )n n i i
i

R I A B

and

0
0

( ) .n n ii
i

I G AA

Proof It follows from Eq. (3.5) and Eq. (3.4) that 

T[ ] T T T
0 0 1 2 3 1 2 3( , , , ...) , , , ... ,n

n nW A A A A W A A A

where 1
min( )W I W . Using Eq. (2.44) we obtain 

T TT T T T T T
1 2 3 2,1 3,1 4,1

TT T T
1 2 3

, , , ... , , , ...

, , , ... ,

W A A A B B B

B B B

thus it is easy to see that 

0
0

.i i
i

A B

On the other hand, note that 

1 2 3 1,2 1,3 1,4

1 2 3

( , , , ...) ( , , , ...)
( , , , ...),

A A A W A A A

A A A

thus we obatin 

0
0

.ii
i

AA

Similarly, we can easily prove the other equations by means of 0( )n nR I
and 0( ) n nI G  for 1n . This completes the proof. 

The following lemma expresses the fundamental matrix ,( )i jW W  by means 
of the R-, U- and G-measures, where ,i jW  is a matrix of size m m .

Lemma 3.5 (1)

1
01,1 ( ) .IW
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(2) For 2i or 2,j
1

,
1

, 1

,
1

, if ,

if .

i

i k k j
k

i j j

j ki k
k

G i jW
W

R i jW

Proof (1) is clear. We only need to prove the first part of (2) with ;i j  while 
the other part for i j  can be proved similarly. 

The RG-factorization of the matrix I W  is given by 

 ( )( )( ),U D LI W I R I I G

which leads to 
11( ) ( ) .( )L UDI G W I RI  (3.39) 

Hence we obtain 

1
0

1 1
0

2 1 , 1
0

3 2 1

( ) * *
( ) *( ) ,

( )
i j

I I
G I

IG G I W
IG G G I

(3.40)

where * denotes the corresponding block-entry of the matrix 11( ) .( ) UD I RI
It follows from Eq. (3.40) that 

1
01,1

1

,
1

( ) ,

0, 1.
i

i ki j k j
k

IW

G i jW W

Simple matrix computation can easily lead to the desired results. 
A useful relation between the fundamental matrix and the A- and B-measures 

is given in the following theorem. 
Theorem 3.13 

1 1, 1, 1 1,1i ji j i j B AW W W
or

1

1,1
0

, 1

1,1
0

, if 1 ,

, if 1 .

i

k k j i
k

i j j

k i j k
k

i jB AW
W

j iB AW
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Proof Let

0 .
A U

W
V W

Then

1

0

1
0

* *

( )*

* *
.

( )*

W
W WV UWI A UWV

W WV I UW
(3.41)

Note that 
1

01,1 ( ) ,IW

TT T T
2 31 , , , ...WV B B B

and

1 2 3( , , , ...),UW A A A

it follows from Eq. (3.41) that 

1 1, 1, 1 1,1 .i ji j i j B AW W W

Some matrix computations can lead to the desired result. 
Corollary 3.5 (1)

1,1,1
1

i
i

BWW

(2)

1, 1,1
1

.j
j

AW W

Proof The proof only needs to use the two relations as follows: 

1,1 1,1ii WBW

and

11, 1,1 .jj AW W

This completes the proof. 



Constructive Computation in Stochastic Models with Applications 

156

The following theorem provides a useful relation between 0,{ }kR  and { }.kD
Theorem 3.14 If the Markov chain P is irreducible and stochastic, then the 

condition that 
1

k
k

kD  is finite implies that 0R  is finite. 

Proof Since 1,1W  is finite and nonnegative, there is always a constant 0b
such that 1,1 .e beW  Therefore, 

1 1 1 1
1

i i
i k i

e e B e beW W W

due to .Be e  Note that 

0 0, ,1
1 1

,1
1

1 1 1

1
,

k i i
k k i k

i i
k i k i k

i

i i
k i k i k

i
i

R e R e D eW

D eW

b D e b D e

b iD e

it is easy to see that the condition that 
1

k
k

kD  is finite implies that 0R  is finite. 

In general, the two matrices R and G are always finite for any irreducible 
Markov chain. However, the matrices *(1) AA  and *(1) BB  may be infinite 
for some irreducible Markov chain. In this case, we need sufficient conditions 
under which A  or B  is finite. Therefore, if A  is finite, then 

( ) ;A I R I  (3.42) 

if B  is finite, then 

( ) .I G B I  (3.43) 

The following lemma provides conditions under which the matrix A  or B  is 
finite.

Lemma 3.6 Suppose that the Markov chain P of 1GI G  type is irreducible 

and stochastic, and the matrix 
1

k
k

kD  is finite. 

(1) P is positive recurrent if and only if A ,
(2) P is transient if and only if B , and 
(3) P is null recurrent if and only if A  and B .
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Proof We only prove (1), while (2) and (3) can be proved similarly. 
Suppose first that P is positive recurrent. It follows from Theorem 3.12 that 

lim 0,k

k
R  and 1

0

.( ) k

k
RI R  Thus, from Eq. (3.37) we obtain 

1 1* *

1 1
lim ( ) lim .( )[ ( )]
z z

A z I RI R zA

Suppose now that .A  It follows from Eq. (3.42) that 

0

,k

k
R A

which leads to 

 lim 0,k

k
R

therefore, P is positive recurrent by means of Theorem 3.12. This completes the 
proof.

The following theorem provides a necessary and sufficient condition for the 
state classification of Markov chains of 1GI G  type. 

Theorem 3.15 Suppose that the Markov chain P of 1GI G  type is irreducible 

and stochastic, and the matrix 
1

k
k

kD  is finite. 

(1) P is positive recurrent if and only if for each 1i ,
1

i j
j

W  is finite, 

(2) P is transient if and only if for each 1j ,
1

i j
i

W  is finite, and  

(3) P is null recurrent if and only if there exists an 1i  such that 
1

i j
j

W  is 

infinite, and there exists a 1j  such that 
1

i j
i

W  is infinite. 

Proof We only prove (1), while (2) and (3) can be proved similarly. 
Using Theorem 3.13, we obtain 

1 1

, 1,1 1,1
1 0 1 0

,
i i

k k j i ki j
j k j k

AB A BW W W

we obtain that for each 1i ,
1

i j
j

W  is finite if and only if .A  Since 

( ) ,A I R I P is positive recurrent if and only if .A  Hence it is easy to 
see the desired result. 
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The following theorem provides a sufficient condition under which the Markov 
chain P of 1GI G  type is positive recurrent. 

Theorem 3.16 Suppose that P is irreducible and stochastic, and the matrix 

1
k

k
kD  is finite. If the matrix A is strictly substochastic, then P is positive recurrent. 

Proof It is easy to check that if the matrix A is strictly substochastic, then the 

matrix 1( )I W  is finite, and for each 1i ,
1

i j
j

W  is finite. The desired result 

follows from Theorems 3.15 and 3.14. This completes the proof. 
The following corollary provides some important relations among the A- and 

B-measures and the R- and G-measures. 
Corollary 3.6 For the Markov chain W, 
(1) A  if and only if ,R
(2) B  if and only if ,Ge e  and  
(3) A  and B  if and only if R  and .Ge e
Proof We only prove (1), while (2) and (3) can be proved similarly.  
We construct a Markov chain of 1GI G  type whose transition probability matrix 

is given by 

0 ,
D D

P
D W

where 

1 2 3( , , , ...)D D D D

with 
1

k
k

kD , and 

TT T T
1 2 3 ., , , ...D D D D

Since
1

k
k

kD , it is clear from Lemma 3.6 that Markov chain P is positive 

recurrent if and only if A , and if and only if lim 0,k

k
R  which leads to 

.R  This completes the proof. 

3.4 Spectral Analysis

In this section, we provide spectral analysis for the R- and G-measures of Markov 
chains of 1GI G  type. Note that the spectral analysis is a standard technique 
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used in dealing with stochastic models, e.g., see Neuts [13, 14] for Markov chains 
of 1GI M  type and Markov chains of 1M G  type, respectively. 

Let H be a nonnegative matrix of size m, and i  the ith eigenvalue of H for 
1 i m. we write 

1 2( ) max{ , , ..., }.msp H

The following lemma first provides a spectral property for the matrices R and G.
Lemma 3.7 (1) Let A be irreducible and stochastic. Then ( ) 1sp R  and 
( ) 1.sp G
(2) Let A be irreducible and strictly substochastic. Then ( ) 1sp R  and ( ) 1.sp G
Proof We first prove (1). Let A be irreducible and stochastic. Then ( ) 1.sp A

It follows from Eq. (3.20) that 

0( )( )( )I A I R I I G

and

0det( ) det( )det( )det( ).I A I R I I G

Since

 ( ) 0, ( ) 0,I A I A e

it follows from ( ) 1sp A  that R  and ,Ge e  thus it is clear that ( ) 1sp R
and ( ) 1sp G .

We now prove (2). If A  is irreducible and strictly substochastic, then 
det( ) 0I A , and hence det( ) 0I R  and det( ) 0I G . Again, applying the 
condition that ( ) 1sp R  and ( ) 1sp G , it is easy to see that ( ) 1sp R  and 

( ) 1sp G .
This completes the proof. 
It is seen from (2) of Lemma 3.7 that if A is strictly substochastic, then 
( ) 1sp R  and ( ) 1sp G . Thus, in the rest of this section we always assume that 

A is irreducible and stochastic. Let  be the stationary probability vector of the 
Markov chain A.

The following theorem provides a necessary and sufficient condition on the 
state classification of the Markov chain P of 1GI G  type. 

Theorem 3.17 Suppose that P is irreducible and stochastic, and the matrix 

1
k

k
kD  is finite. 

(1) P is positive recurrent if and only if ( ) 1sp R . In this case, 1sp G .
(2) P is null recurrent if and only if ( ) 1sp R  and ( ) 1sp G .
(3) P is transient if and only if ( ) 1sp G . In this case, ( ) 1sp R .
Proof We only prove (1), while (2) and (3) can be proved similarly. 
If P is positive recurrent, then it is seen from Lemma 3.6 that .A  Since 
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( )A I R I , we obtain that 1

0
( )k

k
R AI R , which leads to ( ) 1sp R .

On the other hand, if P is positive recurrent, then B  by using Lemma 3.6.  
Suppose that ( ) 1sp G . Since ( )I G B I , we would obtain that B

1( )I G . This leads to a contradiction that B . Thus ( ) 1sp G .
If ( ) 1sp R , then the matrix I R  is invertible. Since ( )A I R I , we obatin 

that 1( )A I R . Hence P  is positive recurrent.  
This completes the proof. 
The following corollary provides conditions for the state classification of the 

Markov chain P of 1GI G  type. The proof follows Theorem 3.17 directly. 
Corollary 3.7 Suppose that P is irreducible and stochastic, and the matrix 

1
k

k
kD  is finite. 

(1) P is positive recurrent if and only if det( ) 0I R ,
(2) P is null recurrent if and only if det( ) 0I R  and det( ) 0I G , and  
(3) P is transient if and only if det( ) 0I G .
The following theorem provides important properties for the matrices R and G,

which are related to the state classification.  

Theorem 3.18 If P is irreducible and stochastic, and the matrix 
1

k
k

kD  is 

finite.
(1) P is positive recurrent if and only if .R  In this case, .Ge e
(2) P is null recurrent if and only if R  and .Ge e
(3) P is transient if and only if .Ge e  In this case, .R
Proof We only prove (1), while (2) and (3) can be proved similarly.  
It follows from Eq. (3.20) that the RG-factorization for the repeated row 

0( )( )( ).I A I R I I G

Since A is irreducible and stochastic, it is clear that A  and Ae e . Thus we 
obtain

0( )( )( ) 0I R I I G
and

0( )( )( ) 0.I R I I G e

Since P is positive recurrent if and only if ( ) 1sp R . In this case, ( ) 1sp G .
Thus it is clear that R  and Ge e . This completes the proof. 

Corollary 3.8 If P is irreducible and stochastic, and the matrix 
1

k
k

kD  is finite.

(1) P is positive recurrent if and only if the matrix 
0

k
k

I  is invertible. In 
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this case, the matrix 
0

k
k

I  is singular. 

(2) P is null recurrent if and only if the two matrices 
0

k
k

I  and 
0

k
k

I

are both singular. 

(3) P is transient if and only if the matrix 
0

k
k

I  is invertible. In this case, 

the matrix 
0

k
k

I  is singular. 

Proof In the proof, we only need to note that 

1
0

0
( )k

k
I R I I

and

1
0

0
( ) ,k

k
I G I I

thus the results are clear according to Theorem 3.18. This completes the proof. 
The following theorem provides conditions for the state classification of the 

Markov chain P of 1GI G  type. This is the same as Chapter X 3 4 in Asmussen 
[2] for a necessary and sufficient condition based on the mean drift. 

Theorem 3.19 Suppose that P is irreducible and stochastic, and the matrix 

1
k

k
kD  is finite. 

(1) P is positive recurrent if and only if 
1 1

,k k
k k

kA e kA e

(2) P is null recurrent if and only if 
1 1

,k k
k k

kA e kA e  and  

(3) P is transient if and only if 
1 1

.k k
k k

kA e kA e

Proof We only prove (1), while (2) and (3) can be proved similarly. 
Taking the derivative of the RG-factorization:

* * *
0( ) [ ( )]( )[ ( )]I A z I R z I I G z

at 1z , we obtain 

1 1 1
( ) ( ) ( ) .k k k k

k k k
k A A e k e Ge R k e  (3.44) 
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Since P is irreducible, the matrix 0I  is invertible. Note that 

1
0

1
( )k

k
R I

and

1
0

1
( ) ,k

k
G I

it follows from Theorem 3.3 that there is no zero column in 
1 1

thusk k
k k

k

and there is no zero row in 
1 1

thusk k
k k

k .

Suppose firstly that P is positive recurrent. It follows from Theorem 3.18 that 
R  and Ge e. It follows from Eq. (3.44) that 

1 1
( ) ( ) 0k k k

k k
k A A e R k e

or

1 1
.k k

k k
kA e kA e

Suppose now that 
1 1

k k
k k

kA e kA e . It is clear that 
1

( ) 0.k k
k

k A A e

Note that 
1

( ) 0k
k

k e Ge , it follows from Eq. (3.44) that ( )R

1
0,k

k
k e  which leads to R , hence P is positive recurrent, and 

.Ge e  This completes the proof. 
We denote by ( ),z  ( )r z  and ( )g z  the maximal eigenvalues of the matrices 

* ( ),A z * ( )R z  and * ( ),G z  respectively. 
Corollary 3.9 Suppose that P is irreducible and stochastic, and the matrices 

1
k

k
kD  and 

1
k

k
kA  are all finite. 

(1) P is positive recurrent if and only if (1) 0 . In this case, (1) 0g  and 

0(1) ( )( ) (1).I R I e g

(2) P is null recurrent if and only if (1) 0 .
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(3) P is transient if and only if (1) 0 . In this case, (1) 0r  and 

0(1) ( )( ) (1).I I G e r

Proof We only prove (1), while (2) and (3) can be proved similarly.  
For 0z , we denote by * ( )z , * ( )z  and *( )e z  the maximal eigenvalue of 

the matrix * ( )A z  and the associated left and right eigenvectors, respectively. It is 
clear that * (1)  and * (1)e e. It is clear that 

* * * *1 ( ) ( )[ ( )] ( )z z I A z e z

which leads to 

1 1
(1) .k k

k k
kA e kA e

Using Theorem 3.19, it is easy to see that 
1 1

,k k
k k

kA e kA e  that is, (1) 0.

It follows from Eq. (3.19) that 

* * * * *
01 ( ) ( )[ ( )]( )[ ( )] ( ).z z I R z I I G z e z  (3.45) 

Since * *
0( )[ ( )]( )z I R z I  is the left eigenvector of the matrix * ( )G z , we 

have
* * * * *

0 0( )[ ( )]( ) ( ) ( ) ( )[ ( )]( )z I R z I G z g z z I R z I

or
* * * * *

01 ( ) [1 ( )] ( )[ ( )]( ) ( ).z g z z I R z I e z  (3.46) 

When P is positive recurrent, taking the derivative of Eq. (3.46) and using ( ) 0I G e ,
we obtain 

0(1) (1) ( )( ) ,g I R I e

thus we get 
1

0(1) [ ( )( ) ] (1).g I R I e

Note that 0( )( ) 0I R I e  and (1) 0 , it is clear that (1) 0g . This 
completes the proof. 

The following theorem provides a useful relationship between the Markov 
chain P and its dual generating chain [0]P .

Theorem 3.20 If P is irreducible and stochastic, and the matrix 
1

k
k

kD  is finite. 

(1) P is positive recurrent if and only if [0]P  is transient,  
(2) P is null recurrent if and only if [0]P  is null recurrent, and  
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(3) P is transient if and only if [0]P  is positive recurrent. 
Proof We only prove (1), while (2) and (3) can be proved similarly.  
If A is irreducible and stochastic, it is clear that  is the stationary probability 

vector of 1 Tdiag ( ) diag( )A A . Note that P and [0]P  have the same block-entries 

in both the first block-row and the first block-column, and the matrix 
1

k
k

kD  is 

finite, thus we only need to check the mean drift condition as follows: 

T1

1 1

TT T

1

1

diag ( ) ( ) diag( )

( )

( ) ,

k kk k
k k

k k
k

k k
k

k e k A A eA A

e k A A

k A A e

which leads to the conclusion that P is positive recurrent if and only if [0]P  is 
transient. This completes the proof. 

The following theorem characterizes the zeros of the two equations det(I
* ( )) 0R z  and *det( ( )) 0I G z .
Lemma 3.8 (1) All the zeros of the equation *det( ( )) 0I R z  lie in the 

region | | 1z .
(2) All the zeros of the equation *det( ( )) 0I G z  lie in the region | | 1z .
Proof We only prove (1), while (2) can be proved similarly.  
We denote by 0z  a zero of the equation *det( ( )) 0I R z  and assume 0 1z .

There exists a non-zero column vector T
1 2( , , ..., )mx x x x such that *

0( )x R z x .
Let T

1 2( , , ... , )mx x x x . Then *
0( )x R z x R x , which leads to 

 .x R x R x x

This is a contradiction. This completes the proof. 
The following corollary provides a necessary and sufficient condition for the 

state classification of the Markov chain P of 1GI G  type by means of the root 
distributions for the equations *det( ( )) 0I R z  and *det( ( )) 0I G z .

Corollary 3.10 Suppose that P is irreducible and stochastic, and the matrix 

1
k

k
kD  is finite. 

(1) P is positive recurrent if and only if all the zeros of the equation 
*det( ( )) 0I R z  reside outside the unit circle 1z .

(2) P is null recurrent if and only if all the zeros of the equations det(I
* ( )) 0R z  and *det( ( )) 0I G z  reside on the unit circle 1z .
(3) P is transient if and only if all the zeros of the equation *det( ( )) 0I G z

reside inside the unit circle 1z .
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3.5 Distribution of the Minimal Positive Root

In this section, we discuss distribution of the minimal positive root of the equation: 
*det( ( )) 0I R z  or *det( ( )) 0I G z .

We first construct some useful relations between a matrix equation and its 
associate spectral equation. Based on the RG-factorization for the repeated row 
and the state classification, we analyze the following three cases.  

3.5.1 The Positive Recurrence  

If the Markov chain P of 1GI G  type is irreducible and positive recurrent, then 
it follows from Eq. (3.19) that 

* *

*

{0 det( ( )) 0} {0 det( ( )) 0}

{0 det( ( )) 0},
A A

A

z I A z z I R z
z I G z (3.47)

since 0I  is invertible. Hence it follows from Eq. (3.47) and Corollary 3.10 that 

* *{1 det( ( )) 0} {1 det( ( )) 0}A Az I A z z I R z  (3.48) 

and

* *{0 1 det( ( )) 0} {0 1 det( ( )) 0}z I A z z I G z

Let ( ),ir z 2 i m, be all other eigenvalues of * ( )R z  whose maximal eigenvalue 
is r(z).

The following theorem provides a useful relation between the maximal eigenvalue 
equation and the matrix equation *det( ( )) 0I R z .

Theorem 3.21 Suppose that the Markov chain of 1GI G  type is irreducible 
and positive recurrent. 

(1) *min{1 det( ( )) 0} min{1 ( ) 1}.A Az I R z z r z         (3.49) 
(2) *min{1 det( ( )) 0} min{1 ( ) 1}.A Az I A z z z
(3) min{1 ( ) 1} min{1 ( ) 1}.A Az r z z z
Proof (1) Let 

0 {1 ( ) 1}Az r z

and
*{1 det( ( )) 0}.Az I R z
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It is clear that 0 , since *

2

det( ( )) [1 ( )] [1 ( )]i
i

I R z r z r z  for 1.z

There are two possible cases for the set  as follows: 
Case  is not empty. In this case, it follows from Theorem 3.23 that there 

exists an  such that 

*min{1 det( ( )) 0} minAz I R z

Suppose that 0 , i.e., ( ) 1r . Since *det( ( )) 0I R , there must exist a 

0
( )ir , 02 i m , such that 

0
( ) 1ir . Noting that ( )r  is the maximal eigenvalue 

of *( )R , therefore, 
0

( ) ( ) 1ir r . By the assumption that ( ) 1,r  we should 
have

0
( ) ( ) 1ir r .

Let ( ) 1 ( )f z r z . Then ( )f z  is continuous for [1 ]z , (1) 0f  and 
( ) 0f , hence there exists a point (1 )  such that ( ) 0f , i.e., ( ) 1r .

Clearly, . This leads to a contradiction that  is the minimum in .
Therefore, ( ) 1r  or 0.

Since 0 , 0min min . Clearly, 0min  follows from min
and 0. Therefore, 0min min  implies that Eq. (3.49) is true. 

Case  is empty. In this case, 0  also is empty, since 0 . Hence 
Eq. (3.49) is true in the sense that both sides are infinite. 

(2) The proof is slightly different from that in (1). In this case, let ( ) 1 ( ).f z z
Since (1) 1 , we need to find a 0 1z  such that 0( ) 1z  to make the argument 
used in (1).  

Since the Markov chain P of 1GI G  type is assumed to be irreducible and 
positive recurrent, and 1A , it follows from Proposition 4.6 in Asmussen [1] 

that
1

( ) 0k k
k

k A A e , which leads to 

1
(1) ( ) 0.k k

k
k A A e

Hence there exists a 0  small enough such that  

 (1 ) (1) 1.

Let 0 1z . Then 0( ) 0f z . The rest of the proof is similar to that in (1). 
(3) It follows from Eq. (3.47) that 

* *min{1 det( ( )) 0} min{1 det( ( )) 0}.A Az I R z z I A z

The proof follows from (1) and (2). This completes the proof. 
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3.5.2 The Null Recurrence 

If the Markov chain P of 1GI G  type is irreducible and null recurrent, then 

* *

*

{ 1 det( ( )) 0} { 1 det( ( )) 0}
{ 1 det( ( )) 0}.

z I A z z I R z
z I G z

Furthermore, we have 

 { 1 ( ) 1} { 1 ( ) 1} { 1 ( ) 1}.z z z r z z g z

3.5.3 The Transience 

If the Markov chain P of 1GI G  type is irreducible and transient, then 

* *{1 det( ( )) 0} {1 det( ( )) 0}A Az I A z z I R z

and

* *{0 1 det( ( )) 0} {0 1 det( ( )) 0}.z I A z z I G z

Therefore, we obtain 

 {1 ( ) 1} {1 ( ) 1}A Az z z r z

and

 {0 1 ( ) 1} {0 1 ( ) 1}.z z z g z

3.5.4 The Minimal Positive Root  

Now, we consider an irreducible and positive recurrent Markov chain of 1GI G
type. In this case, we analyze the minimal positive root of *det( ( )) 0I R z . To 

do this, we first provide expression for the generating function, *

1

( ) k
k

k
z z ,

of the stationary probability vector { }.k

Since the stationary probability vector { }k  can be expressed in terms of 
the R-measure as  

1

0 0,
1

, 1,
k

k k i k i
i

R R k
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we get 
* * * *

0 0( ) ( ) ( ) ( ),z R z z R z  (3.50) 

which leads to  
* * * 1

0 0( ) ( )[ ( )]z R z I R z  (3.51) 

whenever both sides are defined. 
Theorem 3.22 Suppose that the Markov chain of 1GI G  type is irreducible 

and positive recurrent, and the matrix k
k

A A  is irreducible.  

(1) If the set  
*{ 1 , det( ( )) 0}Az z I R z

is not empty, then there must exist a solution 1  to *det( ( )) 0I R z  such 
that 0z , for any 0 .z

(2) If the set  
*{ 1, det( ( )) 0}Az z I G z

is not empty, then there must exist a solution 0 1  to *det( ( )) 0I G z
such that 0z , for any 0 .z

Proof We only prove (1), while (2) can be proved similarly. 
To prove this theorem, we need construct a new Markov chain based on { }:kA

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

,

D D D D
D A A A

P D A A A
D A A A

 (3.52) 

where the matrices kD , 1k , and lA , l , are the same as that of P
given in Eq. (3.1) and the matrices kD , 0k , are constructed in a way such that 

(a) AD , and  
(b) the new Markov chain P  is irreducible and positive recurrent.  
Such a construction is always possible, for example,  

0
1 e , e , 1,

!

k

kE E kD Dm k

where E is the matrix of ones of size m and  is a positive scalar. 

It is easy to check that D , therefore, *
1

1

d
( )

dk z
k

kD D z
z

 is finite, which,  
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together with 1A  and the face that the Markov chain P in Eq. (3.1) is positive 
recurrent, implies that P  is positive recurrent, see Proposition 4.6 in Asmussen [1]. 
Since every entry of kD  is positive, 0k , and the Markov chain P in Eq. (3.1) 
is irreducible, it is obvious that P  is irreducible.  

Let { }k  be the stationary probability vector of P , which can be explicitly 
expressed in terms of the R-measure of .P  Let 0,{ }kR  and { }kR  be the R-measure 
of P . It is easy to see from Eq. (3.52) and Eq. (3.1) that kk RR , for all 1k .
Let *( )z  and *

0( )zR  be the generating functions of { }k  and 0,{ },kR  respectively. 
It follows from Eq. (3.51) that 

1* * * **
0 00 0*

1( ) ( ) ( )adj( ( )),[ ( )]
det( ( ))

z z z I R zI R zR RI R z

where *adj ( ( ))I R z  is the adjoint of *( )I R z . It follows from Theorem 3.8 that 

0 ADR
 and .R A  Let  be the radius of convergence of the vector 

series *

1

( ) .k
k

k
z z  Then, it follows from a standard result in complex 

analysis (see Theorem 17.13 in Markushevich [12]) that z  is a singular point 
of * ( )z . Since  is not empty, there exists a solution 1z  with 11 Az  to 
equation *det( ( )) 0I R z . This shows that 1z z  is a singular point of the vector 
complex function * * *

0 0 ( ) adj( ( )) det ( ( )).R z I R z I R z  Therefore, 1

1 ,Az  according to 

0
min{ , , } .R R

Suppose that *det( ( )) 0I R , then * * *
0 0 ( ) adj( ( )) det( ( ))R z I R z I R z

would be analytic at z , since 1 min{ , }A D . Hence * ( )z  also 
would be analytic at z . This leads to a contradiction that z  is a 
singular point of *( ).z  This completes the proof. 

Now, we provide a discussion on existence for a positive solution to 
*det( ( )) 0I R , including the case where A  itself can be such a solution.  

Let ( )r z  be the maximal eigenvalue of * ( )R z  for [1z , )A . We can extend the 
definition of ( )r z  to Az  by defining ( ) lim ( ).

A
A z

r r z  Clearly, ( ) 0r z  for 

1 Az , since * ( ) 0R z .
Theorem 3.23 Suppose that the Markov chain of 1GI G  type is irreducible 

and positive recurrent. To equation det[ ( )] 0I R z ,
(1) if ( ) 1Ar , then there exists a positive solution  satisfying 1 ;A

(2) if ( ) 1Ar  and A , then A  is a positive solution; and 



Constructive Computation in Stochastic Models with Applications 

170

(3) if ( ) 1Ar , then there does not exist any positive solution.  
Proof Let ( ) 1 ( ).f z r z  It is clear that (1) 1r , hence (1) 1f (1) 0.r
(1) If ( ) 1Ar , there are two possible cases:  
Case r ( )A . In this case, there always exists  with 1 A

such that 1 ( )r , since ( )r z  is continuous at z  for 1 Az . Thus, we 
have ( ) 1f ( ) 0r . Since ( )f z  is continuous on [1 ] , (1) 0f  and 

( ) 0f , there must exist a point (1 )  such that ( ) 0f .
Case 1 ( )Ar . In this case, an analysis similar to that of case 

shows that there always exists a point (1 )A  satisfying ( ) 0f .
(2) If ( ) 1Ar  and A , it is obvious that Az  is a solution to 

equation ( ) 0f z .
(3) If ( ) 1Ar , since (1) ( ) ( ) 0Af f z f , there does not exist any 

positive solution to equation det[ ( )] 0I R z  for 1z .
This completes the proof. 
Remark 3.4 Suppose that the Markov chain of 1GI G  type is irreducible 

and positive recurrent. (4) If ( ) 1Ar  and A , then it is possible that there 
does not exist any positive solution to equation det[ ( )] 0I R z  for 1z , for 
example, the Markov chain of 1GI G  type satisfies a condition that ( )r z  is strictly 
increasing for ( , )z a , where 1a .

3.6 Continuous-time Chains

In this section, it is necessary for practical applications that we simply list some 
crucial results for continuous-time Markov chains of 1GI G  type. 

Consider a continuous-time Markov chain of 1GI G  type whose transition 
probability matrix is given by 

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

,

B B B B
B C C C

Q B C C C
B C C C

 (3.53) 

where the sizes of the matrices 0 ,B  ,iB iB  for 1i  and jC  for j
are 0 0m m , 0m m , 0m m  and m m , respectively. 

Let nW  be the southeast corner of Q  beginning from level n. Then it is clear 
that nW W  for all 1n  and 1

maxW W . For 1n , i , 1j , 2 , 3 , , n ,

[ ] [ ( 1)] [ ( 2)]
, 1 , 1 2 , 2 .n n n

n i n j n i n j n i n jQ Q Q
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We can define that for 1 ,i j n ,

[ ]
0 , ,n

n nQ

[ ]
, ,n

i n i nQ

[ ]
, .n

j n n jQ

It is easy to see that the ( , )r s th entry of i  is the transition rate of the censored 
chain [ ]nQ  from state ( , )n i r  to state ( , )n s , while the ( , )r s th entry of j  is 
the transition rate of the censored chain [ ]nQ  from state ( , )n r  to state ( , )n j s .
The R- and G-measures can be given in terms of the matrices i  for i
as follows: 

1
0( ) , 1,i iR i

and
1

0( ) , 1.j jG j

At the same time, we can provide expressions for the matrices 0, jR  and ,0iG  for 
i, j 1 as follows: 

1( )
0, 0, 0( )j

j jR

and
1

,0 0 ,0( ) .i
i iG

The censored chain of Q to level 0 is given by 

[0]
0 0 0, 0 ,0

1
( ) .k k

k
Q B R G

For the continuous-time Markov chain of 1GI G  type, the UL-type 
RG-factorization is given as  

 ( ) ( ),U D LQ I R I G

where

0 1 0 2 0 3

1 2

1

0 0 0 0

0
0

,0
0

diag ( , , , , )

U

D

R R R
R R

R R

and
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1 0

2 0 1

3 0 2 1

0
0

0 .
0

L

G
G GG
G G G

The RG-factorization for the repeated row based on the z-transformation of the 

repeating blocks. Let *( ) k
k

k
C z z C . Then 

* * *
0( ) [ ( )]( )[ ( )].C z I R z I G z

We now consider conditions for the state classification. Suppose that Q and 

k
k

C C  are irreducible, 0Qe Ce , and the matrix 
1

k
k

kB  is finite. Let 

be the stationary probability vector of the Markov chain C. Then 

(1) Q is positive recurrent if and only if 
1 1

.k k
k k

kC e kC e

(2) Q is null recurrent if and only if 
1 1

.k k
k k

kC e kC e

(3) Q is transient if and only if 
1 1

.k k
k k

kC e kC e

On the other hand, we have the following useful conditions for the state 
classification:  

(1) Q is positive recurrent if and only if .R  In this case, .Ge e
(2) Q is null recurrent if and only if R  and .Ge e
(3) Q is transient if and only if .Ge e  In this case, .R
When the Markov chain Q is positive recurrent, the stationary probability 

vector { }k  can be expressed in terms of the R-measure as 
1

0 0
1

, 1,
k

k k i k i
i

R R k

and
* * * 1

0 0( ) ( )[ ( )] .z R z I R z

3.7 Notes in the Literature

Grassmann and Heyman [4] first analyzed Markov chains of 1GI G  type by 
means of the censored technique that generalized Markov chains of 1GI M  type 
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in Neuts [13] and Markov chains of 1M G  type in Neuts [14]. Zhao, Li, and 
Braun [20] and Zhao [17] gave a detailed discussion for the R- and G-measures 
and the A- and B-measures for the Markov chain of 1GI G  type. Ramaswami 
[15, 16] provided a duality theorem between the Markov chain of 1GI M  type 
and the Markov chain of 1M G  type. Asmussen and Ramaswami [3] gave 
probabilistic interpretations for the duality theorem. Zhao, Li and Alfa [18] 
extended the duality theorem to Markov chains of 1GI G  type. Zhao, Li, and 
Braun [20], Zhao, Li and Alfa [18], Zhao and Li, and Braun [21] gave a detailed 
discussion for spectral analysis for the R- and G-measures, which leads to 
conditions for the state classification of Markov chains of 1GI G  type. Spectral 
analysis for the R- and G-measures plays a key role in the study of stochastic 
models. Important examples include Chapter 1 of Neuts [13] for spectral analysis 
of the matrix R in Markov chains of 1GI M  type, and Chapters 2 and 3 of 
Neuts [14] for spectral analysis of the matrix G in Markov chains of 1M G  type. 
Zhao, Li, and Braun [19] provided the RG-factorization for the repeated blocks  
in a Markov chain of 1GI G  type. Li and Cao [6] provided the UL-type 
RG-factorization for any irreducible QBD process with either finitely-many 
levels or infinitely-many levels. Li and Zhao [8, 9] provided the UL-type 
RG-factorization for any irreducible Markov chain, while Li and Liu [7] gave the 
LU-type RG-factorization for any irreducible Markov chain. 

In this chapter, we mainly refer to Zhao, Li, and Braun [19 21], Zhao, Li and 
Alfa [18], Zhao [17], Li and Zhao [8 11], Li and Cao [6] and Li and Liu [7]. 

Problems

3.1 If the Markov chain P given in Eq. (3.1) is irreducible and stochastic, and the 
matrix A is substochastic, prove that the Markov chain P is positive recurrent. 
3.2 Prove that if the Markov chain P given in Eq. (3.1) is irreducible, then each 

row of the matrix 
1

k
k

G G  is not zero. 

3.3 Prove that 
0G D  and .G A

3.4 For the Markov chain P given in Eq. (3.1), compare the expression of the 
R-measure with that of the A-measure by means of the following partition 

0 .
D U

P
V W

Similarly, compare the G-measure with the B-measure. 
3.5 Suppose that the Markov chains P and A are irreducible and stochastic, and 

the matrix 
1

k
k

kD  is finite. Prove that 
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(1) P is positive recurrent if and only if .R
(2) P is null recurrent if and only if R  and .Ge e
(3) P is transient if and only if .Ge e

3.6 For the minimal positive root  to the equation *det( ( )) 0I R z , please 
provide examples to indicate the four cases of  given in Section 3.5. 
3.7 For an irreducible QBD process with the repeated blocks 1A , 0A  and 1A
of size m, we assume that the matrix 1 0 1A A A A  is stochastic, prove that 

(1) 1 0( )I .
(2) 1

1( )R A I  and 1
1.( )G AI

(3) Use the structures of the matrices 1A , 0A  and 1A  to analyze the structures 
of the two matrices R and G, respectively. 
3.8 For an irreducible QBD process with the repeated blocks 1A , 0A  and 1A  of 
size m, if the matrix 1 0 1A A A A  is irreducible and d-periodic, please 
discuss the period of the two matrices R and G.
3.9 For the 1MAP G  queue, compute the A- and B-measures 0,{ }kA  and ,0{ }kB ,
respectively. 
3.10 For the 1XBMAP PH  queue, provide conditions for the state classification 
and expression for the stationary queue length distribution. 
3.11 For the 1PH PH  queue, write the R-, G-, A- and B-measures, and 
construct their useful relations. 
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Abstract In this chapter, we consider asymptotic behavior for the stationary 
probability vector of any ergodic Markov chain of GI/G/1 type, and provide 
conditions under which the stationary probability vector is either light-tailed 
or heavy-tailed by means of the RG-factorization. At the same time, we 
provide expressions for both the light tail and the heavy tail. Note that the 
conditions and expressions can be completely determined by the repeating 
row and the boundary row. 
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This chapter considers asymptotic behavior for the stationary probability vector, 
0 1 2( , , , )  or { },k  of any ergodic Markov chain of 1GI G  type given in 

(3.1), including heavy tail and light tail. We indicate that this asymptotic behavior 
can be completely determined by the repeating row with the RG-factorization 
and the boundary row with the Wiener-Hopf equations.  

This chapter is organized as follows. Section 4.1 derives a necessary and sufficient 
condition under which the stationary probability vector of the Markov chain of 

1GI G  type is either light-tailed or heavy-tailed. Sections 4.2 discusses three 
singularity classes of the stationary probability vector, where the first two classes 
are light-tailed while the third one is for the heavy tail. For the light tail, Sections 
4.3 and 4.4 provide two classes of explicit expressions: The geometric tail and 
the semi-geometric tail. For the heavy tail, Section 4.5 derives long-tailed asymptotic 
for the matrix sequence { }kR  in terms of the RG-factorization for the repeating 
matrix sequence. Section 4.6 gives a detailed analysis for subexponential asymptotics 
of the stationary probability vector. Finally, Section 4.7 provides some notes to 
the references related to the results of this chapter. Note that a simple introduction 
to the light and heavy tails of the matrix sequences is given in Appendix B.  
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4.1 A Necessary and Sufficient Condition

In this section, we provide a necessary and sufficient condition under which the 
stationary probability vector { }k  is either light-tailed or heavy-tailed. As expected, 
the condition depends on asymptotic behavior of both the repeating blocks and 
the boundary blocks.  

We recall the R-measure expressions of the stationary probability vector { }k
as follows:  

0 0
1

0 0,
1

* * * *
0 0

,

1,,

( ) ( ) ( ) ( ),

k

k k i k i
i

x

R R k

z R z z R z

or  
* * * 1

0 0( ) ( )[ ( )] .z R z I R z  (4.1) 

Obviously, the two radii 
0R  and R  of convergence determine tailed classification 

of the stationary probability vector { }k  and the associated asymptotic expressions. 
Note that the Markov chain P of 1GI G  type is determined by the two matrix 
sequences { }kA  and { },kD  thus it is necessary to show that the two radii 

0R  and 
R  of convergence can be related to the two radii A  and D  of convergence, 

respectively.  
The following lemma provides useful asymptotic relations between { }kA  and 

{ },kR  and between { }kD  and 0,{ },kR  respectively. Note that { , 1}kA k  is light- 
tailed if and only if 1A , and { 1}kD k  is light-tailed if and only if 1D .

Lemma 4.1 (1) { }kR is light-tailed if and only if 1.A

(2) 0{ }kR is light-tailed if and only if 1.D

Proof We only prove (1), while (2) can similarly be proved by means of 

0R D  by Theorem 3.8. 
It is easy to check from Definition B.1 in Appendix B that the nonnegative 

matrix sequence { }kC  of size m n  is light-tailed if and only if 1,C  where 

C  is the radius of convergence of 
1

.k
k

k
z C  Thus, the conclusion in this lemma 

follows from R A  by Theorem 3.8. This completes the proof. 
Let  be the radius of convergence of ( ).z  The Eq. (4.1) implies that 

0
min{ , }.R R  Since  is equal to the radius of convergence of the 

expansion of the function in a power series on the right hand side, (4.1) shows 
that  will depend on 

0R , R  and the roots of the equation det ( ( )) 0I R z .
If det ( ( )) 0I R z  has a solution z such that 1,z  then, by the continuity of 
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an implicit function, there exists a solution 0z  such that 0 min{ :z z
det ( ( )) 0} 1,I R z  since det ( (1)) 0I R  in terms of Corollary 3.7. Thus, 
we obtain  

0
min{ , , }.R R  (4.2) 

The following theorem provides a necessary and sufficient condition under 
which the stationary probability vector { }k  is light-tailed.  

Theorem 4.1 Suppose that the Markov chain of 1GI G  type is irreducible 
and positive recurrent. { }k  is light-tailed if and only if both { }kD  and { }kA  are 
light-tailed (that is, min{ , } 1).A D

Proof Suppose first that both { }kD  and { }kA  are light-tailed. Hence 
min{ , } 1.A D  Note that if det ( ( )) 0I R z  has a solution, then it follows 
from Theorems 3.22 and 3.23 and Remark 3.4 that 

0 min{ ,1 ,det ( ( )) 0}Az z z I R z

implies that either 1  or .  Therefore, using min{ , } 1A D  and 
1 ,  we obtain 

0
min{ , , } 1,R R  hence { }k  is light-tailed.  

Now, suppose that { }k  is light-tailed. We assume that at least one of the  
two matrix sequences { }kD  and { }kA  is heavy-tailed, for example, { }kA  is 
heavy-tailed. Obviously, we would have that 1,A  which would lead to 

0
min{ , , } 1,R R  thus { }k  is heavy-tailed. This leads to a contradiction 

that { }k  is light-tailed. This completes the proof. 
In what follows we provide a necessary and sufficient condition under which 

the stationary probability vector { }k  is heavy-tailed. To do this, we first need to 
introduce two types of convolutions of nonnegative matrix sequences.  

For a sequence of nonnegative scalars { }ng  with 
0

,n
n

g  two associative 

functions are defined as 
0

x k
k x

g g  and x k
k x

g g  for an arbitrary real number 

0.x  Specifically, for an integer 0,n
0

n

n

k
k

g g  and 
1

.n k
k n

g g  For 

convenience, we also write ng  as 1.ng
For the real function xg  associated with the sequence { },ng  the tail of xg  is 

defined and expressed as x x xg g g g  for 0.x  Specifically, for an 
integer 0,n 1.n ng g  It is clear that if { }ng  is a probability sequence, then 

xg  is its distribution function and xg  is the tail of this distribution function.  
In terms of the Riemann-Stieltjes integral, the convolution of two functions 

( )F x  and ( )G x  is defined as 
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0
( ) ( ) ( )d ( ).

x
F x G x F x y G y  (4.3) 

We denote by [ ]x  the maximum integer part of a real number x. For two 
sequences { }nc  and { },nd  it follows from Eq. (4.3) that  

[ ] [ ] [ ]

[ ]0
0 0 0

( )d ( ) .
x x k xx

x x i k x k k
k i k

c d F x y G y c d c d

Specifically, for an integer 0,n

0

,
n

n n n k k
k

c d c d  (4.4) 

which is referred to as the convolution associated with the two sequences { }nc
and { }.nd  Furthermore, for a sequence { }nc  we define * ( 1)*

*
r r

n n nc c c  for 2r
with 1* .n nc c

It should be noted that the usual convolution of two sequences { }nc  and { }nd
is denoted by n nc d , defined as 

0

.
n

n n n k k
k

c d c d  (4.5) 

We further define ( 1)r r
n n nc c c  for 2r  with 1 .n nc c

According to Eq. (4.4) and Eq. (4.5), it is worthwhile to note a useful relationship 
between the usual convolution and the convolution associated with the sequences: 

0

n

n n n n k k
k

c d c d c d  (4.6) 

and

1 1.n n n n n nc d c d c d

Also, it is clear from Eq. (4.6) that 

1

.n n k k
k n

c d c d  (4.7) 

Remark 4.1 The above two convolutions can be extended to sequences 
{ : 0, 1, 2, }nc n  and { : 0, 1, 2, }nd n  by  

n n i j
i j n

c d c d

and

,n n i j
i j n

c d c d



Constructive Computation in Stochastic Models with Applications 

180

respectively. We then obtain that for an arbitrary integer n, 

n

n n k k
k

c d c d

and

1

.n n k k
k n

c d c d

For a sequence { , 0},nc n  if we set 0nc  for all 1,n  then 

2*

0 0

.
n

n k n k k n k
k k

c c c c c

Specifically, if { , 0}nc n  is a probability sequence, simple computations lead to  

2* 2*

0 0

1 1 .n n k n k k n k
k k

c c c c c c  (4.8) 

Now, we analyze the heavy-tailed asymptotics of the stationary probability 
vector { }.k  Since the Markov chain is positive recurrent, Corollary 3.10 shows 
that all solutions to the equation *det ( ( )) 0,I R z  if any, reside outside the 
unit circle 1.z  This means that * ( )I R z  is always invertible for all 

1.z  Therefore, 

* * * 1
0 0( ) ( )[ ( )] ,z x R z I R z  (4.9) 

which implies  

0 0
0

.n
k k k

n
x R R  (4.10) 

Therefore,

0 0
1 0

.n
k l l

l k n
x R R  (4.11) 

The following lemma provides an expression for the tail of the stationary 
probability vector { }.k

Lemma 4.2 For all 1,k

0 0,
0

,n
k k k

n
x R R  (4.12) 

where 0, 0,
1

k

k l
l

R R ,
1

k
n n

k l
l

R R and
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1
0, 0 0,

0 0

( ) .n n
k k k k

n n
R R R I R R R

Proof Note that 

1
0 0, 0 0 0

0 0 1 0

( ) ,
k

n n
l l l l

l n l k n
x R R x R R R I R

it follows from Eq. (4.10) and Eq. (4.7) that 

1
0 0 0 0,

1 0

1
0 0,

0

0,0
0

( )

( )

.

k
n

k l l
l n

n
k k

n

n
k k

n

x R I R x R R

R I R R R

x R R

This completes the proof. 
The following lemma provides a useful heavy-tailed property for the matrix 

sequences { }kA  and { }.kD
Lemma 4.3 (1) If 1,A  then the matrix sequence { }kR  is heavy-tailed. 
(2) If 1D , then the matrix sequence 0{ }kR  is heavy-tailed.  
Proof We only prove (1), while (2) can be proved similarly. 

Since 0kA  for each integer k and k
k

A A is stochastic, we obtain 

1
sup 1: 1.k

A k
k

z z A

If 1,A  then 
1

1 k
k

k
A  is infinite for any 0.  Hence, there exists at 

least a pair 0 0( , )i j  such that  

ln 1
0 0 0 0

1 1
e ( , ) ( , ) .1 kk

k k
k k

a i j a i j

Let ln (1 ) . Then 0  due to 0.  Therefore, it is clear from (1) of 
definition B.3 that { }kA  is heavy-tailed. Note that 1,R A  thus { }kR  is 
heavy-tailed. This completes the proof. 

The following theorem provides a necessary and sufficient condition under 
which the stationary probability vector { }k  is heavy-tailed.  
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Theorem 4.2 If the Markov chain of 1GI G  type is positive recurrent,  
then the stationary probability vector { }k  is heavy-tailed if and only if 
min{ , } 1.A D

Proof We first prove the necessity of the condition. Suppose that 
min{ , } 1.A D  Then both 1A  and 1D . It follows from (4.1) that 

* * 1
0 0( ) ( )[ ( )]z R z I R z

would yield that min{ , , } 1.A D  Hence, { }k  would be light-tailed. This 
is a contradiction to the assumption that { }k  is heavy-tailed. 

We now prove the sufficiency of the condition. Note that when 1A  and 
1,D  the assumption min{ , } 1A D  implies 1A  or 1D .

Case 1.D  In this case, since  

* * *1*
0 0 0 0( ) ( ) ( ),[ ( )]z R z R zI R z

0 0,k kR  for 1.k  Note that the Markov chain of 1GI G  type is irreducible 
and positive recurrent, the censored chain 0  to level 0 is irreducible and positive 
recurrent, which leads to 0 0  because 0 0x  with 0  and 0 0x . Under 
the assumption that 1D , 0,{ }kR  is heavy-tailed according to Lemma 4.3. Thus, 
there always exists at least a pair ( , )i j  such that the sequence 0{ ( , )}kr i j  is heavy- 
tailed, where 0, ( , )kr i j  is the ( , )i j th entry of the matrix 0 kR  for each 1.k  It is 
clear that 0 0,k kR  implies 

0 0
1 zeros zeros

( 0, ,0, ( ) ( ), 0, ,0 ),k ,k
j m j

i r i, j

where 0 ( )i  is the ith entry of the positive row vector 0.  Therefore, { }k  is 
heavy-tailed.  

Case 1D  and 1.A  In this case, since  

* * * 1 * *
0 0 0 0( ) ( )[ ( )] ( ) ( ),z R z I R z R z R z

which implies  

0 0, , for all 1.k k kR R k  (4.13) 

Under the assumption that 1,A  { }kR  is heavy-tailed according to Lemma 4.3. 
Thus there exists at least a pair 0 0{ , }i j  such that 0 0{ ( , )}kr i j  is heavy-tailed. The 
assumption that the Markov chain is irreducible and positive recurrent leads to 

0 0,  and Theorem 3.3 leads to 0 0 0.R  Note that 0 0,
1

.k
k

R R  Therefore, 
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there always exists an 0 1l  such that the *
0( , )i i th element 

0

*
0, 0( , )lr i i  of 

00,lR  is 
positive. Thus, it follows from Eq. (4.13) that for ,k N

0 0

0 0

* *
0 0, 0 0 0

1 zeros zeros

( 0, ,0 , ( ) ( , ) ( , ), 0, ,0 ).k l k l
i m i

i r i i r i j  (4.14) 

Since
0

* *
0 0, 0( ) ( , ) 0li r i i  and 

0 0 0{ ( , )}k lr i j  is heavy-tailed, Eq. (4.14) implies 
that { }k  is heavy-tailed. This completes this proof.  

4.2 Three Asymptotic Classes of { }k

In this section, we discuss three asymptotic classes of the stationary probability 
vector { },k  and provide conditions of classification based on the two matrix 
sequences { }kD  and { }kA  in the Markov chain of 1GI G  type. 

We define a collection of matrix sequences consisting of all nonnegative 
matrix sequences (not necessarily square ones), whose sum is convergent. Let  

0
{ }: 0, .k k k

k
B B B

We classify the matrix sequences in  into three classes as follows.  

Definition 4.1 Let B  be the radius of convergence of *

0
( ) k

k
k

B z z B  for 

{ } .kB  Then, 
(1) { }kB  is called class  if 1B  and * ( )BB  is infinite;  
(2) { }kB  is called class  if 1B  and * ( )BB  is finite;  
(3) { }kB  is called class  if 1.B
It is easy to see from 1B  or 1B  that { }kB  in class  or class  is 

light-tailed, while { }kB  in class  is heavy-tailed.  
When min{ , } 1,A D  both { }kD  and { }kA  are either class  or class .

On the other hand, the condition min{ , } 1A D  implies that either { }kA  or 
{ }kD  is class , and therefore, { }k  is class .

Recall that  if *det( ( )) 0I R z  for all .Az
Lemma 4.4 Suppose that the Markov chain of 1GI G  type is irreducible 

and positive recurrent.  

(1) If 1  and ,A  then *

0

n
k

n
R  is class .

(2) If ,  then *

0

n
k

n
R  is class  when { }kA  is class ; *

0

n
k

n
R  is 
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class  when { }kA  is class .
(3) If 1,D  then 0,{ }kR  is class  when { }kD  is class ; 0,{ }kR  is class 

when { }kD  is class .
Proof We prove (1) and (2), while (3) can be proved similarly.  
(1) Assume that 1  and .A  In this case, the radius of convergence 

of

* *
*

1 0

1 adj( ( ))
det( ( ))

k n
k

k n
z R I R z

I R z

is .  When ,z det( ( )) 0I R  and *adj ( ( )) 0I R  according to 

Lemma 4.6. Thus, *

0

n
k

n
R  is class .

(2) Since R A from Theorem 3.8, it follows from Eq. (3.19) that 

* * 1 * * 1
0

1 0

*
0

0

[ ( )] ( )[ ( )][ ( )]

( )[ ( )] [ ( )] .

k n
k

k n

n

n

z R I R z I I G z I A z

I I G z A z

Thus, the radius of convergence of *

1 0

k n
k

k n
z R  is .A

If { }kA  is class , then { }AA  is infinite, hence *

0
[ ( )]n

A
n

A  is infinite. 

Since 0I  and * ( )AI G  are invertible, *

1 0

k n
A k

k n
R  is infinite. Therefore, 

*

0

n
k

n
R  is class .

If { }kA  is class , then A  and ( ) .AA  Since ,  it follows 
from Eq. (3.19) that *{ }AI A  is invertible. Thus,  

* * * 1
0

1 0
( )[ ( )][ ( )] .k n

A k A A
k n

R I I G I A

Therefore, *

0

n
k

n
R  is class .

This completes the proof. 
Theorem 4.3 Suppose that the Markov chain of 1GI G  type is irreducible 

and positive recurrent. 
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(1) If 1  and min{ , },A D  then { }k  is class .
(2) If  and 1 ,A D  then { }k  is class  when { }kA  is class ;

{ }k  is class  when { }kA  is class .
(3) If  and A D , then { }k  is class  when at least one of { }kA

and { }kD  is class ; { }k  is class  when both { }kA  and { }kD  are class .
(4) If 1  and 1 ,D A  or  and 1 ,D A  then 

{ }k  is class  when { }kD  is class ; { }k  is class  when { }kD  is class .
Proof We only prove (1), while (2), (3) and (4) can be similarly proved.  
Assume that 1  and min{ , }.A D  Since the radius of convergence of  

* * *
0 0*

1( ) ( )adj( ( ))
det( ( ))

z R z I R z
I R z

is , *det( ( )) 0I R  and 

* * *
0 0 0 0

2

adj( ( )) ( ) ( ) ( ) [1 ( )] 0
m

i
i

R I R R v u r

according to Lemma 4.6 and Theorem 3.3, * ( )  is infinite. Therefore, { }k  is 
class . This completes the proof. 

Note that Sections 4.3 and 4.4 will analyze the light-tailed behavior of the 
stationary probability vector { },k  which is in classes  and ; while Sections 
4.5 to 4.7 will discuss the heavy-tailed case of { },k  which is in class .

4.3 The Asymptotics Based on the Solution 

In this section, we assume that the minimal positive solution 1  to 
*det( ( )) 0I R z  satisfies that A  and ,D  which together with 

0
min{ , , },R R  implies that { }k  is light-tailed and is determined by 

only. Based on this, we can derive explicit asymptotic expressions for the light 
tail of the stationary probability vector { }.k

4.3.1 A is Irreducible  

Note that ,R A 0
,R D A  and ,D  it is clear that 

0
min{ , , } 1.R R

Thus it follows from Eq.(4.1) that for any z with 1 z ,
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* * *
0 0*

1( ) ( ) adj( ( )).
det( ( ))

z R z I R z
I R z

 (4.15) 

The analysis on the singularity of * ( )z  depends on that of the three functions: 
*1 det( ( )),I R z *

0 ( )R z  and *adj( ( )).I R z  Since *
0 ( )R z  and *adj( ( ))I R z

are analytic in min{ , },A Dz  they are analytic at .z  Noting that z
is a singular point of *1 det( ( )),I R z  thus it also is a singular point of *( ).z

In the following, we show that when A  is irreducible, z is a pole of 
order 1 of *( ).z

For 0,z  ( )r z  is the maximal eigenvalue of the matrix * ( )R z , let ( )ir z  for 
2 i m  be all the other eigenvalues of * ( ).R z  It is clear that ( ) 1r  and 

( ) 1ir  for all 2 .i m  We denote by ( )u z  and ( )v z  the Perron-Frobenius 
left and right eigenvectors of * ( )R z  for 0,z  respectively. It is useful that 

( )u z  and ( )v z  can be expressed by the Perron-Frobenius left and right 
eigenvectors of * ( ),A z  respectively. The following lemma characterizes ( )u
and ( )v  based on that of * ( ).A

Lemma 4.5 If ( )s  and ( )t  are the Perron-Frobenius left and right 
eigenvectors of ( ),A  respectively, then  

(1) ( ) ( )u a s  and *
0( ) ( )[ ( )] ( ),v b I I G t  where a and b are 

two free positive factors.  
(2) ( ) 0u  if and only if ( ) 0;s ( ) 0v  but ( ) 0v  if and only if 

( ) 0;t  and ( ) ( ) ( ) 1.u z e u z v z
Proof In this proof, (1) is obvious by using Eq. (3.19), and (2) can be obtained 

by noting that 0( )I  and ( )I G  are all invertible, where the invertibility 
of ( )I G  follows from 1  and (1) of Corollary 3.10. This completes the 
proof.

To describe *( )z  in Eq. (4.1) for details, we need to express the adjoint 
matrix of *( )I R  more explicitly, which is given in the following lemma.  

Lemma 4.6 If the Markov chain of 1GI G  type is irreducible and positive 
recurrent, then 

2

adj( ( )) [1 ( )] ( ) ( ).i
i

I R r v u

Proof Noting that  

* * *
0det( ( )) det( ( ))det( )det( ( )) 0,I A I R I I G

and rank ( ( )) 1.I A m  Since * ( )A  is irreducible, 1 ( ) 0  is a simple 
eigenvalue of *( ),I A  and for any other eigenvalue 1 ( )y  of * ( ),I A
1 ( ) 1 ( ) 0.y  Thus, rank *( ( )) 1.I A m  Since the Markov chain 

of 1GI G  type is positive recurrent, it follows from Corollary 3.10 that for 
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1 , * ( )I G  is invertible. Thus, from (3.19), 

* * * 1 1
0( ) [ ( )][ ( )] ( ) .I R I A I G I

Therefore,
* *rank( ( )) rank( ( )) 1I R I A m

and rank (adj( ( ))) 1.I R  Noting that *adj( ( ))I R  is continuous for 
(0,1],  we obtain 

*

1
adj( ( )) lim adj( ( )).I R I R

For (0,1),  we have 

* * * 1

* 1

2

adj( ( )) det( ( )) [ ( )]

[1 ( )] (1 )[ ( )] .
m

i
i

I R I R I R

r I R

Let ( )T  be an invertible matrix such that 

1 * 1
( ) [ ( )] ( )

( )
T I R T

J

is the Jordan canonical form of *( ),I R  where the modules of all the diagonal 
entries of ( )J  are all greater than 1 .  Since rank *( ( )) 1,I R m

1 0
( ) (1)(1)

(1)
T I R T

J

and (1)J  is invertible. Therefore, we obtain 

* 1 1
1

1
(1 )[ ( )] ( ) ( ) .

(1 ) ( )
I R T T

J

Noting that 1

1
lim(1 ) ( ) 0,J  we get 

* *

1

1*
1

2

1

2

2

adj( ( )) lim adj( ( ))

lim [1 ( )] (1 )[ ( )]

1
[1 ( )] (1) (1)

0

[1 ( )] ( ) ( ).

m

i
i

m

i
i

m

i
i

I R I R

r I R

r T T

r v u
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This completes the proof. 
It is clear from the proof of Lemma 4.6 that z  is the only root of 

*det( ( )) 0I R  on .z  Therefore, z  is the only singular point of 
*( )z  on .z  The following lemma further illustrates that the singular point 

z  is a pole of order 1  of *( ).z
Lemma 4.7 Let

 1 ( ) ( ) ( ).r z z h z  (4.16) 

Then, ( ) 0.h
Proof It follows from Eq. (4.16) that  

( ) ( ) ( ),r z h z z h z

which follows that 

 ( ) ( ).h r  (4.17) 

Noting that  

*( ) ( ) ( ) ( ),u z R z r z u z

we have 

*d( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).
d

u z R z u z R z r z u z r z u z
z

This equation, multiplied by ( )v z  from the right and using ( ) ( ) 1,u z v z  yields 

*d( ) ( ) ( ) ( ).
d

r z u z R z v z
z

Thus, we obtain  

1

1 1

*

1( ) ( ) ( ) ( ) ( )

1 1 1( ) ( ) ( ) ( ) 0.

k k
k k

k k
r u k R v u k R v

u R v r

It follows from Eq. (4.17) that ( ) ( ) 0.h r  This completes the proof. 
We are now ready to provide an expression for * ( )z  by means of Lemmas 

4.6 and 4.7. 
According to Lemma 4.6, we write 

*

2

adj( ( )) [1 ( )] ( ) ( ) ( ) ( ).
m

i
i

I R z r v u z H z
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It follows from Eq. (4.1) and Eq. (4.16) that 

* *
0 0

2

2

1 1( ) ( )
( ) [1 ( )]

[1 ( )] ( ) ( ) ( ) ( ) .

m

i
i

m

i
i

z R z
z h z r z

r v u z H z (4.18)

Let
*

0 0
2

2

( ) ( ) [1 ( )]
.

( ) [1 ( )]

m

i
i

m

i
i

R z v r
L z

h z r z

Since ( )h z  is continuous at z  and ( ) 0,h  there exists a 0  small 

enough such that ( ) 0,h z  for all ( , ).z  Note that ( ),h z
2

[1 ( )]
m

i
i

r z

and *
0 ( )R z  are all analytic at ,z  it is obvious that ( )L z  is analytic at .z

Thus, an expansion of ( )L z  in a power series at z  is given by 

* ( )
0 0

1

( ) ( ) ( )( ) ( ) ,
( )

k
k

k

R v LL z z
h k

 (4.19) 

where ( ) d( ) ( ) .
d

k
k

zkL L z
z

 It follows from Eq. (4.18) and Eq. (4.19) that 

* ( ) ( ) ( ),Kz u g z
z

 (4.20) 

where
*

0 0 ( ) ( )
( )

R v
K

h

is a constant, and 
* ( )

10 0

1

2

( ) ( )( ) ( ) ( ) ( )
!( ) [1 ( )]

k
k

m
k

i
i

R z Lg z H z z u
kh z r z

is analytic at ,z  since 
*

0 0

2

( )
,

( ) [1 ( )]
m

i
i

R z

h z r z
 ( )H z  and 

( )

1

( ) ( )
!

k
k

k

L z
k

 are 

all analytic at .z
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Theorem 4.4 Suppose that the Markov chain of 1GI G  type is irreducible 
and positive recurrent. If 1 min{ , },A D  and the matrix A is irreducible, 
then the asymptotics of { }k  is geometric, i.e., 

1 ( ) (( ) ) ,k k T
k K u O e  (4.21) 

where  is a small positive number.  
Proof Based on Eq. (4.20), we first need to check 0.K  Then Eq. (4.21) is 

obviously true according to a standard result on asymptotics of complex functions 
(for example, Theorem 5.2.1 in Wilf [37]). 

According to the assumption made on the Markov chain of 1GI G  type, every 
k  is positive. It is clear that * *

0 0 0 0( ) (1) 0,R R  since 0 0  and each 
column vector of *

0 (1)R  is not identically zero according to Theorem 3.3. Noting 
that ( ) 0v  and ( ) 0,v  we obtain * *

0 0 0 0( ) ( ) (1) ( ) 0.R v R v Now, 
0K  follows from ( ) 0.h  This completes the proof. 

4.3.2 Markov Chains of 1GI M  Type 

As an illustrating example, we consider a Markov chain of 1GI M  type. In this 
case, 0kR  and 0 0kR  for 2.k  Therefore, *

0 0,1( ) ,R z zR *
1( ) ,R z zR

0R

D  and .R A  It follows from (4.1) and 1 0 0 1R  that  

* 1 1
1 1 1

2

1( ) ( ) adj( ),
1 (1 )

m

i
i

zz z I zR I zR
zr zr

where r  is the maximal eigenvalue of 1,R  which is smaller than one when the 
Markov chain is positive recurrent, and ,ir 2 ,i m  are the other eigenvalues 
of 1.R  It is clear that 1 .r  Therefore, 1 min{ , } ,A D  and the 
asymptotics of { }k  is geometric.  

4.3.3 Markov Chains of 1M G  Type  

The method of generating function is one of the common methods used to study 
the light-tailed behavior of the stationary probability vector { }.k  (3.3.2) in 

Neuts [29] (or (2.1) in Falkenberg [11]) expresses ( )z  in terms of 
1

k
k

k
z A

and another function *( ).D z  Note that our expression Eq. (4.1) is different from 
those in the literature, that is, * ( )z  is expressed in terms of the two R-measure 
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generating functions *
0 ( )R z  and * ( ).R z  Furthermore, the relationship between 

* ( )R z  and *( ),A z  and between *
0 ( )R z  and *( )D z  established in Theorems 3.5 

and 3.6, enables us to obtain sharper results than those in the literature.  
Following the idea in Falkenberg [11], the generating function for Markov 

chains of 1GI G  type can be written as  

* * *
0

1
( )[ ( )] ( ) .i j

i j
i j i

z I A z D z z z A

For a Markov chain of 1M G  type, it becomes 

1 1
1

i j
i j

i j i
z z A A

and
* * * 1

0 1 1( ) [ ( ) ][ ( )] ,z D z A I A z

which was used in the literature to study the asymptotic behavior, including 
Falkenberg [11] among others. However, for the Markov chain of 1GI G  type, 

it is very inconvenient or difficult to explicitly express 
1

.i j
i j

i j i
z z A  This 

illustrates the reason why the R-measure is effective for explicitly expressing the 
generating function ( ).z

4.3.4 A is Reducible 

After reordering the states, we assume that * ( )A z  is written in the normal form 

1

*
1

1 11

( )

( )
( )( ) ,

( ) ( ) ( ) ( ) ( )

p

p

p q

p p p q p q

a z

a z
a zA z

a
r z r z r z r z r z

where 1,p q  ( )ia z  for 1 i p q  are irreducible and stochastic, 1  is 
a solution to equation det( ( )) 0iI a z  for 1 ,i p  while 1( )p qI r  and 

( )p jI a  for 1 j q  are all invertible. It follows from Eq. (3.19) and 
Corollary 3.10 that for 1 z
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* * * 1 1
0( ) [ ( )][ ( )] ( ) .I R z I A z I G z I

Thus we obtain 

*
1

1 1

* 1 1
0

det( ( )) ( ) ( ) det[ ( )] det[ ( )]

[det( ( ))] [det( )] ,

p q
p

i p j p q
i j

I R z z b z I a z I r z

I G z I

where det( ( )) ( ) ( )i iI a z z b z  for 1 .i p  It follows from Lemma 4.7 that 
( ) 0ib  for 1 .i p  Thus, it follows from Eq. (4.1) and Eq. (4.16) that 

* 1( ) ( ),
( ) pz K z

z

where

1

1
1 1

* *
0 0 0

( ) ( ) det[ ( )] det[ ( )]

[det ( ( ))][det( )] ( ) adj( ( ))

p q

i p j p q
i j

K z b z I a z I r z

I G z I R z I R z

is analytic at .z  Let
( )

0

( )( ) ( ) ,
!

k
k

k

KK z z
k

 where ( ) d( ) ( ) .
d

k
k

zkK K z
z

Then

( )
* ( )

1 0

( )( ) ( )( ) .
( )

p ip
p j j

i
i j

Kz K z
z

By a standard result on asymptotics of complex functions (for example, Theorem 
5.2.1 in Wilf [37]) we obtain 

( ) ( ) T

1

1
( ) (( ) ) .( 1)

1

p
l k l p l k

k
l

k l
K O e

l
 (4.22) 

Remark 4.2 If 1 min{ , },A D  then Eq. (4.22) provides a more 
general result on the light tail of { }.k  Let *det( ( )) ( ),( ) pI A z T zz  where 

( ) 0.T  Then, the tail of { }k  is geometric if 1;p  the tail of { }k  is 
non-geometric if 2.p

4.4 The Asymptotics Based on the Boundary Matrices

In this section, we consider the role of the boundary matrices { }kD  played in 
analyzing the light-tailed asymptotics of { }.k  We assume that 1 .D A
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It is easy to see from Theorem 3.8 that Dz  is a singular point of * ( )z  so 
that the boundary matrices { }kD  determine the asymptotics of { }.k  For simplicity 
of description, we only discuss the cases where the singular point is either a pole 
of order d or an algebraic singular point.  

4.4.1 D  is a Pole 

We assume that D  is a pole of order d for the generating function matrix 
*( ).D z  The following lemma describes a singular point of the matrix *

0 ( ).R z
Lemma 4.8 If z D  is a pole of order d of * ( )D z  of size 0 ,m m  then 

z D  is also a pole of order d of *
0 ( ),R z  i.e., 

*
0

1( ) ( ),
( )d

D

R z S z
z

(4.23)

where ( )S z  is analytic in Dz  for some 0,  and ( ) 0.DS
Proof If z D  is a pole of order d of * ( )D z  of size 0 ,m m  then there 

always exists a matrix ( )B z  such that 

* 1( ) ( ),
( )d

D

D z B z
z

where ( )B z  is analytic in Dz  for some 0,  and ( ) 0.DB  It 
follows from Eq. (3.30) that when 0  is small enough and 1 ,z

1 * * 1
0 0 0

1 1( )( ) ( ) ( )[ (1 )]( ) ,
( )( )d d

DD

B z I R z B z I G I
zz

which illustrates that z D  is a pole of order d of 0 ( )R z  with Eq. (4.23). This 
completes the proof. 

Theorem 4.5 Assume that 1 ,D A  and z D  is a pole of order 
d of *( ).D z  Let *

0 ( )R z  be given by Eq. (4.23). Then, for some small 0 ,

( ) T

1

1
( 1) ( ) ,( )

1

d
kj k j

k D d j D
j

k j
L O e

j

where

* 1
0

1 d .{ ( )[ ( )] }
! d D

j

j j zL S z I R z
j z

Proof It follows from Lemma 4.8 and Eq. (4.1) that 
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* * 1
0

1( ) ( )[ ( )] ,
( )d

D

z S z I R z
z

where * 1( )[ ( )]S z I R z  is analytic in Dz  for 0 .A D  An 
expansion of * 1

0 ( )[ ( )]S z I R z  in a power series at Dz  is 

* 1
0

0
( )[ ( )] ( ) .j

j D
j

S z I R z L z

Hence we obtain  

*

1 0

1( ) ( ) .
( )

d
i

d j d i Dj
j iD

z L L z
z

A standard result on asymptotics of complex functions (for example, Theorem 
5.2.1 in Wilf [37]) leads to the desired result. This completes the proof. 

Corollary 4.1 Assume that 1 ,D A z D  is a pole of order d of 
* ( )D z  and the matrix A is irreducible. Let *

0 ( )R z  be given by Eq. (4.23). Then, 
for some small 0 ,

1
( ) T

1
1

1
( 1) (( ) ) .

1

d
j k j k

k D d j D
j

k j
L O e

j

Proof Under the irreducible assumption on the matrix A,  is a simple root 
of the equation *det( ( )) 0.I R z  Therefore, Dz  is a pole of order 1d  of 

* ( ).z  The rest of the proof is similar to that for Theorem 4.5. This completes 
the proof. 

It is easy to see from Theorem 4.5 that the asymptotics of { }k  is geometric if 
1d  and 1 ;D A  otherwise it is not geometric, though it is still 

light-tailed. Clearly, if 1 ,D A  then the asymptotics of { }k  is not 
geometric.  

4.4.2 D  is an Algebraic Singular Point 

We assume that Dz  is an algebraic singular point of ( )D z  such that  

** ( ) ( ),( )DD z D zz D  (4.24) 

where 1  is not an integer, * (1) ( 1) (1),DD D D
*( )zD  is analytic in 

Dz  for some 0,  and *( ) 0.DD  The restriction of 1

imposed here is to guarantee that 
1

.k
k

kD
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To provide the asymptotics of { }k  in this case, we need to introduce an 
operational principle. This principle for the continuous case was discussed in Abate 
and Whitt [2] (p.186).  

Heaviside Operational Principle Suppose that 
1

( ) k
k

k
f z z f  is the generating 

function of a nonnegative sequence { }.kf  If *z  is the radius of convergence of 
*( ),f z  and the asymptotic expansion is 

* * *

1

( ) ( ) ( ),k
k

k
f z a z z z

where * ( )z  is the generating function of a nonnegative sequence { },k  then 
~k kf  as .k
It follows from Eq. (3.30) that 

*
0( ) ( ) ( ),W z R z V z  (4.25) 

where
1

0( ) [ ( )]( )DW z D z Iz D  (4.26) 

and
* * 1 1

0( ) ( ) ( ) [ (1 )] ( ) .DV z D z z I G ID

It follows from Eq. (4.25) and Eq. (4.1) that for 0 ,Dz

* 1 * * 1
0 0( )[ ( )] ( ) ( )[ ( )] ,W z I R z z V z I R z  (4.27) 

since 0 0  and * 1[ ( )] 0.I R z
There are two possible cases:  
Case 1 .D A  In this case, * 1[ ( )]I R z  is analytic at ,Dz

hence an expansion of * 1[ ( )]I R z  in a power series at Dz  is given by 

* 1

0

[ ( )] ( ) ,n
n D

n
I R z z  (4.28) 

where * 11 d [ ( )] .
! d D

n

n zn I R z
n z

 Eq. (4.28), together with Eq. (4.27), yields  

* 1 1
0 0 0

0

* 1
0 0

0

( )[ ( )] ( ) ( )

( ) ( )( ) .

n
n D

n

n
D n

n

W z I R z D I z

z z ID
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Let

(1) * 1 (1)
0

1

( ) ( )[ ( )] k
k

k
z W z I R z z

and

0
( ) ( ) .j

Dj
j

z zD D

By Heaviside Operational Principle and Theorem 5.3.1 in Wilf [37] we obtain 
that for any given 1 m k  and as k

(1) ( ) 1
0 0

0 0

( ) 2 * 1
0 0

0

( ) 1
0 0

0 0

( ) 2 * 1
0 0

1
( )

(1)( )

1
( )

(1)( )

m
k n

k D nj
n j

k n m n
D n

n

m
k n

D D nj
j n

k m
D

n

k n j
IDk

O k D I

k n j
ID k

O k D I
0

.n n
D nk

Let

0 0

1
, .n n n

k j D n k D n
n n

k n j
k

k

Then

1 ( ) 1
0 0 , ,

0

( ) 2

( )

e .

m
k

k D k jj
j

k m T
D k

ID

O k (4.29)

Let

(2) * 1 (2)
0

1

( ) ( )[ ( )] .k
k

k
z V z I R z z

A similar analysis to Eq. (4.29) gives that for any given 1 m k  and as k ,

(2) ( ) * 1 1
0 0 , ,

0

( ) 2

[ (1 )] ( )

e .

m
k

k D k jj
j

k m T
D k

I G ID

O k (4.30)
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It follows from Eq. (4.27) that for 1,k

(1) (2) ,k k k  (4.31) 

It follows from Eq. (4.29), Eq. (4.30) and Eq. (4.31) that there exists a bounded 
matrix sequence { ( , )}kH m  with 

1 * 1 1
0 0( ) ( , ) [ (1 )] ( )kI H m I G I

such that for any given 1 m k  and as ,k

( )
0 , ,

0

( ) 2 T

( , )

( ).

m
k

k D k k jj
j

k m
D k

H mD

O k e (4.32)

Case 1 ,D A  and the matrix A is irreducible. In this case, we 
have

* 1 1[ ( )] ( ),
D

I R z S z
z

where ( )S z  is analytic at ,Dz  and ( ) 0.DS  A similar analysis to 
Eq. (4.32) can be used to obtain that for any given 1 m k  and as k ,

( 1)
0 , , 1

0

( 1) 1 T

( , 1)

.

m
k

k D k k jj
j

k m
D k

H mD

O k e

We summarize the above results into the following theorem.   
Theorem 4.6 Suppose that Dz  is an algebraic singular point of *( )D z

given by Eq. (4.23).
(1) If 1 ,D A  then for any given 1 m k  and as ,k

( )
0 , ,

0

( ) 2 T

( , )

.

m
k

k D k k jj
j

k m
D k

H mD

O k e

(2) If 1 ,D A  and A is irreducible, then for any given 1 m k
and as ,k

( 1)
0 , , 1

0

( 1) 1 T

( , 1)

.

m
k

k D k k jj
j

k m
D k

H mD

O k e
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4.5 Long-Tailed Asymptotics of the Sequence {Rk}

In this section, we provide long-tailed asymptotics for the matrix sequence { }kR
if the matrix sequence { }kA  is long-tailed. The results in this section are key to 
deriving subexponential and regularly varying asymptotics of the stationary 
probability vector { }k  in subsequent sections.  

For a matrix sequence { },kB  if there exists a scalar sequence { }k  and a finite, 

non-zero nonnegative matrix W such that lim ,k

k
k

B
W  then { }k  and W are called 

a uniformly dominant squence and the associate ratio matrix, respectively. 
The following two lemmas are useful in determining a uniformly dominant 

sequence of the matrix sequence { }kR  and the associated ratio matrix if the 
matrix sequence { }kA  is long-tailed.  

Lemma 4.9 If the Markov chain of 1GI G  type is positive recurrent and 

k
k

k A  is finite, then 
1

k
k

kG  is finite.  

Proof It follows from Eq. (3.20) that 

0 0
1 1 1 1

( )( ) ( )( ).k k k k
k k k k

kA kA I R I kG kR I I G

Since the Markov chain is positive recurrent, it follows from (1) in Corollary 3.7 
that I R  is invertible and ( ) 0.I G e  It is clear that 11

0( ) 0( )I I R

is finite. Since k
k

k A  is finite,  

1 1
0

1 1 1
( ) ( )k k k

k k k
kG e I I R kA kA e

is finite. Therefore, 
1

k
k

kG  is finite. This completes the proof. 

When the Markov chain of 1GI G  type is positive recurrent, the matrix I R
is invertible according to Corollary 3.7. It follows from Eq. (3.20) that I A

0( )( )( ).I R I I G  When A is irreducible and stochastic, the maximal 
eigenvalue of A is simple and equal to one. Hence, rank ( ) 1.I A m  Since the 
matrix 0I  is invertible, we obtain that rank ( ) 1,I G m  hence the 
maximal eigenvalue of G is simple and equal to one. Letting 1 1g  and ,ig  for 
1 ,i m  be the m eigenvalues of the nonnegative matrix G, we have the 
following lemma.  

Lemma 4.10 If the Markov chain of 1GI G  type is positive recurrent and 
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the matrix A is irreducible and stochastic, then the adjoint matrix of I G  can 
be expressed as  

0

0

( )( )
adj( ) ,

( )( )G
I R I

I G e
I R I e

(4.33)

where 
2

(1 ) 0.
m

G i
k

g

Proof Note that when the maximal eigenvalue of the matrix G is simple and 
is equal to one, we obtain for (0,1),

1

1

2

adj( ) det( ) ( )

(1 ) (1 )( ) .
m

i
i

I G I G I G

g I G

Let ( )T  be an invertible matrix such that 

1 1
( ) ( ) ( ) ,T I G T

J

which is the Jordan canonical form of the matrix .I G  Then 

1 1
1

1
(1 )( ) ( ) ( ) .

(1 ) ( )
I G T T

J

Since in the matrix 

1 0
(1) ( ) (1) ,

(1)
T I G T

J

(1)J  is invertible due to rank ( ) 1,I G m  this implies 1

1
lim(1 ) ( ) 0.J

Note that adj ( )I G  is continuous for (0,1],  we get 

1

1

1 2

1

0

0

adj( ) lim adj( )

lim (1 ) (1 )( )

1
(1) (1)

0
( )( )

.
( )( )

m

i
i

G

G

I G I G

g I G

T T

I R Ie
I R I e

since the vectors e and 0

0

( )( )
( )( )

I R I
I R I e

 are the right and left Perron-Frobenius 
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eigenvectors of G, respectively. Since rank ( ) 1,I G m  it is clear that 
adj ( ) 0,I G  which implies 0.G  This completes the proof. 

To study long-tailed asymptotics of the matrix sequence { },kR  we need to 
extend the results in Lemma 4 and Proposition 1 of Jelenkovi  and Lazar [17] to 
a matrix setting, which are described in the following two lemmas. All the 
measures involved in the following can be signed measures.  

Let ( )B  be the -algebra of Borel sets on ( , ).  The convolution 
of two measures 1  and 2  is defined as 

1 2 1 2( , )
( )( ) ( ) (d ),*

( ), { : }.

B B x x

B B x y y x BB

For ( ),B B  let ( )U B  and ( )V B  be two matrices of size m m  whose entries 
are finite measures, given as 

1 , 1 ,
( ( )) ( ( ))( ) and ( ) .ij iji j m i j m
u B v BU B V B

The convolution of the two matrices U and V of finite measures is defined as 

1 1 ,

( )( ) ( )( )
m

ik kj
k i j m

U V B u v B

and the convolution of a matrix U of finite measures and a finite scalar measure 
v  is defined as 

1 ,
(( )( ))( )( ) .ij i j m

u v BU v B

Remark 4.3 It should be noted that when B is a singleton, the convolution 
for measures coincides with the ordinary convolution for sequences.  

Lemma 4.11 Let U and U  be two matrices of finite measures of size m 

on ( , ( )).B  If (1)
( )

([ , ))lim ,
x

x

U x C
F

 where ( )F x  is a long-tailed 

distribution function and the matrix C is finite, and (2) U  has a support 
on ( ,0],  then the matrix U U  satisfies 

([ , ))lim (( 0]) ,
( )x

x U C
F x

and the matrix U U  satisfies 

([ , ))lim (( ,0]).
( )x

x CU
F x
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Proof By using Lemma 4 in Jelenkovi  and Lazar [17], we obtain 

1 1 ,

1 1 ,

([ , )) 1lim lim ( )([ , ))
( ) ( )

(( ,0])

(( ,0]) .

m

ik kjx x k i j m

m

ik kj
k i j m

x u u x
F x F x

u c

U C

This completes the proof. 
Lemma 4.12 Let U and U  be two matrices of finite measures of size m  on 

( , ( )).B  Assume that 
(1)  is a finite scalar measure with a support on ( ,0]  such that 

(( ,0]) 0  and 
( ,0]

0 (d ) ;x x

(2) U  has a support on [0, )  with at least one non-zero element, and all 
the non-zero elements U  of are strictly positive on [ )a  for 0;a  and  

(3)
( )

([ , ))lim ,
x

x

U x C
F

 where ( )F x  is a long-tailed distribution function and 

the matrix C is finite. If ,U U  then 

( )[ , ] ( 0]

([ , )) 1lim .
d dx

yx

U x C
F y x x

Proof The proof is obvious according to (2) of Proposition 1 in Jelenkovi
and Lazar [17].  

The following lemma provides a structural property for the matrix sequence 
{ }kR  if the matrix sequence { }kA  is long-tailed.  

Lemma 4.13 Suppose that the Markov chain of 1GI G  type is positive 
recurrent. If { }kA  is long-tailed with a uniformly dominant sequence { }kp  and 
the associated ratio matrix W, then 

1
0lim ( ) .k

k
k

R
W I

p

Proof Note that the Markov chain of 1GI G  type is positive recurrent, it 
follows from Eq. (3.12) and Eq. (3.9) that for all 1,k

1 1
0 0

1
1

0

( ) ( )

( ) ,

k k k l l
l

k

R A I R I

A I
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since 1
0( ) 0,I  0kR  and 0k  for 1.k  Hence, for all 1,k

1 1
0 0

1 1
( ) ( ) .k l k k

l k l k
R R A I A I

Since { }kA  is long-tailed and lim ,k

k
k

A
W

p
 it is clear that 

1 1
0 0lim lim ( ) ( ) .k k

k k
k k

R A
I W I

p p

Using Lemmas 4.11 and 4.12, we are able to prove the following theorem, 
which characterizes long-tailed asymptotics of the matrix sequence { }.kR

Theorem 4.7 Suppose that the Markov chain of 1GI G  type is positive 

recurrent, 1A  and k
k

k A  is finite. If { }kA  is long-tailed with a uniformly 

dominant probability sequence { }kp  and the associated ratio matrix W, then 

0
1

( )lim ,
( )( )

k

k
k j

j

R We I R

p I R I jG e
 (4.34) 

where 
1

.k n
n k

p p

Proof It follows from Eq. (3.19) that  

* * * * 1
0[ ( ) ]det( ( )) [ ( ) ]adj( ( ))( ) ,R z I I G z A z I I G z I  (4.35) 

when the matrix * ( )I G z  is invertible. To evaluate the asymptotics of the 
coefficient matrix sequence in the generating function * ( ) ,R z I  we first 
analyze the asymptotics of the coefficient matrix sequence in the generating 
function *[ ].A z I adj *( ( ))I G z  according to Lemma 4.11. Since *( )A z I
and adj *( ( ))I G z  are analytic for 1,A Az  where 1A  results from 
the fact that { }kA  is long-tailed, we can write 

* ( ) ,k
k

k
A z I z A

where

0

, if 0,
, if 0.

k
k

A k
A

A I k
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Since *

1
( ) ,k

k
k

G z z G  according to the definition of the adjoint matrix we can 

write
0

*adj( ( )) k
k

k
I G z z S  (4.36) 

and define 0kS  for all 1.k  Let 

* *[ ( ) ] adj( ( )).k
k

k
z Q A z I I G z

Then

k k k
k kk

k k k
z Q z z SA

with 
1

0k
k

k
z S  implies 

k j ki k
i j k

Q S SA A  (4.37) 

with 0jS  for 1j . Therefore, we obtain that for 1k

.k k kQ A S

If for a matrix sequence { },kC  we define the matrix of measures by ( )C B
,k

k B
C then it follows from Remark 4.3, Eq. (4.37) and Lemma 4.11 that 

0

lim adj .k
kk kk

Q
W S W I G

p
 (4.38) 

We now evaluate asymptotics of the coefficient matrix sequence in the generating 
function * ( )R z I  according to Eq. (3.19), Eq. (4.38) and Lemma 4.12. Let 

0
*det( ( )) .k

k
k

I G z z g

Define ( ) .kk B
B g  Since the Markov chain of 1GI G  type is positive 

recurrent, then applying (1) of Corollary 3.7 we have 

0
*det( (1)) det( ) 0.k

k
g I G I G
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It is clear that *
1

d .{det( ( ))}
dk z

k
kg I G z

z
To compute 

0

,k
k

kg  taking the 

derivatives, elementwise, of both sides of the equation 
* * *det( ( )) adj( ( )) [ ( )]I G z I I G z I G z

leads to 

*
1

1

*
1

d adj( ){det( ( ))}
d

d ( ).{adj( ( ))}
d

kz
k

z

I I G kGI G z
z

I GI G z
z

(4.39)

Multiplying by  and e on the both sides of Eq. (4.39), and using the fact that 
1e  and ( ) 0,I G e  it follows from Lemma 4.10 that 

0
*

1

1

0

10

d
{det( ( ))}

d

adj( )

( )( )
.

( )( )

k z
k

k
k

G k
k

kg I G z
z

I G kG e

I R I
kG e

I R I e
(4.40)

Note that k
k

k A  is finite, Lemma 4.9 illustrat es that 
1

k
k

kG  is finite. Thus 

k
k

kg  is finite and non-zero according to Lemma 4.10 and 
1

k
k

kG e Ge e.

Therefore, 
0

0 .k
k

kg  Since { }kA  is long-tailed with a uniformly dominant 

probabicity sequence {pk} and the associated ratio matrix W, Lemma 4.13 implies 

1
0lim ( ) .k

k
k

R
W I

p

Note the fact that 0W  and 1
0( ) 0,I  it is clear that 1

0( ) 0,W I
since the matrix 0I  is invertible. Hence, there exists at least a pair 0 0( , )i j
such that the 0 0( , )i j th element of the matrix 1

0( )W I  is positive. Therefore, 
Lemma 4.13 implies 0 0( , ) 0kr i j  for all ,k N  where N is a large enough 
positive integer. Similarly, for each positive element of the matrix 1

0( )W I ,
denoted as the * *( , )i j th element, we have * *( , ) 0kr i j  for all .k N  Define  

( ) k
k B

U B R  and 1
0( ) ( ) .k

k B
U B Q I  It follows from Eq. (3.19), Eq. (4.38) 

and Lemma 4.12 that  
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1
0

0

adj( )( )
lim .k

k
k k

k

R W I G I

p kg
 (4.41) 

Substituting Eq. (4.33) and Eq. (4.40) into Eq. (4.41) leads to the expression in 
Eq. (4.34). This completes the proof. 

4.6 Subexponential Asymptotics of { k}

In this section, we assume that 1A  and 1.D  Under the condition that 
*{ }kA S  and { }kD  is light-tailed, we characterize subexponential asymptotics 

of the stationary probability vector { }.k  At the same time, we explicitly express 
a uniformly dominant sequence of { }k  and the associated ratio vector.  

Since

0 0,
0

n
k k k

n
x R R

for 1k  according to Lemma 4.2, the tail of the stationary probability vector 
{ }k  can be expressed as a tail of convolution of the two matrix sequences 

0,{ }kR  and 
0

.n
k

n
R  It is well-known that the convolution of two long-tailed 

matrix sequences may not be long-tailed. Therefore, it is possible that the vector 
sequence { }k  is not long-tailed, even though the matrix sequence { }kA  is long- 
tailed. Based on this, the matrix sequence { }kA  is restricted to the subexponential 
class (including regularly varying class).  

According to Lemma 4.2, it is crucial to characterize subexponential asymptotics 

of the matrix sequence 
0

.n
k

n
R  To do this, we need Lemma 4.3 in Asmussen, 

Henriksen and Klüppelberg [3], which is restated in the following lemma. 
Lemma 4.14 Let ( )H x  be a matrix of nonnegative function such that 

( ) (0)H H H  is strictly substochastic (therefore, the spectral radius of H 
is strictly less than one). If there exists a probability distribution ( )F x S  and a 

finite matrix L such that ( )lim ,
( )x

H x L
F x

 then 

1 10
( )

lim ( ) ( ) .
( )

n

n

k

H x
I H L I H

F x
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The following lemma characterizes subexponential asymptotics for the matrix 

sequence
0

.n
kn

R

Lemma 4.15 Suppose that the Markov chain of 1GI G  type is positive 

recurrent, 1A  and k
k

k A  is finite. If *{ }kA S  with a uniformly 

dominant probability sequence { }kp  and the associated ratio matrix W, then 

0

n
k

n
R S  and 

1
0

0
1

( )lim .
( )( )

n
k

n

k
k j

j

R
I R We

p I R I jG e
 (4.42) 

Proof Since *{ }kA S  and ( ) 1I
k k

p

p p  for 1,k  where p

1 1
k k

k k
kp p  according to the assumption that k

k
k A  is finite. It 

follows from Theorem 4.7 that 

( )
lim lim ,1

k k
pIk k

k k
p

R R L
p p

 (4.43) 

where

0
1

( ) .
( )( ) j

j

We I RL
I R I jG e

Let 1 T
kk RG  for 1,k  where diag 1 2( , , , ).m  Since ,R  it is 

clear that 
1

k
k

G G  is strictly substochastic, since 

1 T 1 T 1 T

1 1
( ) .kk

k k
Ge e R e R eG

It follows from Eq. (4.42) that 1 T

( )
lim k

k

pIk

G L
p

 and from Proposition B.1 

that ( )I
kp  is a probability sequence in . Therefore, using Lemma 4.14 we yield 



4 Asymptotic Analysis 

207

1 1 T 10
( )

lim ( ) ( ) .

n
k

n
pIk

k

G
I G L I G

p
 (4.44) 

Since the Markov chain of 1GI G  type is positive recurrent, I R  is invertible. 
It is easy to see that 1 1( ) ( ) 0I R L I R  due to 0.L  Therefore, it follows 
from Eq. (4.44) that  

1 10
( )

1

0
1

lim ( ) ( )

( )
.

( )( )

n
k

n
pIk

k

p

j
j

R
I R L I R

p
I R We

I R I jG e

 (4.45) 

Notice that 

0 0

,n n
k k

n n
R R

it follows from Eq. (4.45) that 

00
( )

1

0
1

1

lim lim

( ) .
( )( )

nn
kk

npn
Ik k
kk

j
j

RR

pp
I R We

I R I jG e

Therefore,
0

n
k

n
R  according to Proposition B.4. This completes the proof.  

For simplicity of description, we need the asymptotic assumption: If 1,D
then the matrix sequence 0,{ }kR  is light-tailed. We only consider the light-tailed 
case in which there exists a uniformly dominant sequence { }kd  and the 
associated ratio matrix D such that 

0,lim .k

k
k

R
D

d
 (4.46) 

The following theorem characterizes subexponential asymptotics of { }k  for 
the case: *{ }kA  and { }kD  is light-tailed.  
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Theorem 4.8 Suppose that the Markov chain of 1GI G  type is positive 

recurrent, and k
k

k A  is finite. If 1,D  the light-tailed 0,{ }kR  has a 

uniformly dominant sequence { }kd  with associated ratio matrix D, and if 
*{ }kA  with a uniformly dominant sequence { }kp  and associated ratio matrix 

W, then { }k  and 

1
0

0
1

( )
lim .

( )( )

k

k
k j

j

D I R We

p I R I jG e

Proof If *{ }kA  with a uniformly dominant sequence { }kp  and associated 
ratio matrix W, then  

1
0

0
1

( )lim
( )( )

n
k

n

k
k j

j

R
I R We

p I R I jG e

according to Lemma 4.15. If 1D , then 0,{ }kR  is light-tailed. When 0,{ }kR  has 
a uniformly dominant sequence { }kd  and associated ratio matrix D, it is clear 

that ( )I
k kd o p , since ( )I

kp  according to *{ } .kA  Therefore, it follows 

from Lemma 4.2 and Proposition B.7 that 

1
0

0
1

( )lim .
( )( )

k

k
k j

j

D I R We

p I R I jG e

Therefore, { } .k  This completes the proof. 

4.6.1 Markov Chains of M/G/1 Type  

We consider a Markov chain of 1M G  type with *{ }kA  and 1.D  It is clear 
that 0jG  and 0j  for 2.j  In this case, we have 

1 1
0 0

0 1

( ) ( )lim .
( )( )

k

k
k

V I I R We
I R I G ep
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4.6.2 Regularly Varying Asymptotics of { k}

If the matrix sequence { }kA  is regularly varying and the matrix sequence { }kD  is 
light-tailed, then the stationary probability vector { }k  is regularly varying. At 
the same time, we provide explicit expressions for a uniformly dominant sequence 
of { }k  and the associated ratio vector.  

Theorem 4.9 Suppose that the Markov chain of 1GI G  type is positive 

recurrent, and 
1

k
k

kD  and k
k

k A  are both finite. If 1D  and { }kA

for 2,  then 1{ } .k

Proof If{ }kA  with a uniformly dominant sequence { }kp  and associated 
ratio matrix W, then { } .kp  Thus, k kp k l  for all 1,k  where  

0{ } .kl  Since k
k

k A  is finite, it is clear that 
0

p k
k

kp  and 

2  according to Proposition 1.3.6 in Bingham, Goldie and Teugels [7]. Let 
( )

0

1 .
k

I
k k

kp

p p  It follows from Proposition 1.5.10 in Bingham, Goldie and 

Teugels [7] that as ,k

( )

1 1

1
1

1 1

1~ .( 1)
( 1)

I
k k k

l k l kp p

k
p

p p k l

lk

Hence ( )
( 1){ } .I

kp  It follows from Lemma 4.15 that  

1
0

( )

0
1

( 1)( )
lim .

( )( )

n
k

pn
Ik
k j

j

R I R We

p I R I jG e

Therefore, 1
0

.n
k

n
R  According to (2) of Theorem 4.8, we obtain that 

1 (1)
0 2 1k kk l  as .k  This completes the proof. 

4.7 Notes in the Literature

Asymptotic analysis of block-structured Markov chains is an interesting topic 
and has been studied for many years. For light-tailed asymptotic behavior of 
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stationary probability vectors, it might have been inspired by Takahashi [35] and 
Neuts and Takahashi [30]. Neuts [27] provided an excellent overview for 
asymptotic behavior of Markov chains of 1GI M  type. To establish useful 
relations between the light-tailed asymptotics and the parameters of a concrete 
queueing model, Neuts [28] discussed the caudal characteristic curves for some 
queues by means of the matrix-geometric solution. Bean, Li and Taylor [6] analyzed 
the caudal characteristics for QBD processes and also for Markov chains 
of 1GI M  type. Fujimoto, Takahashi and Makimoto [13] obtained an interesting 
result on the asymptotics of QBD processes with both infinite levels and infinite 
phases. Subsequent papers have been published on this theme, e.g., see Miyazawa 
and Zhao [25], Kroese, Scheinhardt and Taylor [20], Haque, Zhao and Liu [15], 
Li, Miyazawa and Zhao [21]. In contrast to Markov chains of 1GI M  type, it is 
more difficult to analyze asymptotic behavior of stationary probability vectors of 
Markov chains of 1M G  type. This difficulty is due to two basic facts: The 
matrix-iterative solution makes such an asymptotic analysis more difficult; and 
the stationary probability vectors of Markov chains of 1M G  type can be either 
light-tailed or heavy-tailed. The light-tailed asymptotics of stationary probability 
vectors of Markov chains of 1M G  type was studied by Falkenberg [11], Abate, 
Choudhury and Whitt [1], Choudhury and Whitt [9], MØller [26], Takine [23], Li 
and Zhao[23].  

For subexponential asymptotics of stationary queue lengths, Resnick and 
Samorodnitsky [31] analyzed heavy-tailed asymptotic behavior for the stationary 
queue length of a 1G M  queue in terms of stochastic comparison when the 
arrival process is long range dependent. Based on a property on the generating 
functions of regularly varying sequences, Roughan, Veitch and Rumsewicz [32] 
derived power law asymptotics for the stationary queue length of an 1M G  queue 
with power law service times. According to the distributional version of Little’s 
law, Asmussen, Klüppelberg and Sigman [4] studied subexponential asymptotics 
for the stationary queue length of a 1GI G  queue with subexponential service 
times. Using the Mellin transform, Jacquet [16] provided results on polynomial 
tails for the stationary queue length of a single-server queue when the arrival 
process contains a finite or infinite number of on-off input sources. Shuang, Liu 
and Li [33] studied the subexponential asymptotics of stationary queue length for 
a 1M G  retrial queue. Li, Liu and Shuang [22] analyzed the regularly varying 
tail of the stationary buffer content for an infinite-buffer fluid queue driven by 
an 1M G  queue. Borovkov and Korshunov [8], Jelenkovi  and Lazar [17], Foss 
and Zachary [12] and Zachary [38] studied heavy-tailed asymptotics for random 
walks. Some researchers have studied heavy-tailed asymptotics of the stationary 
probability vectors. For a Markov chain of 1GI G  type with subexponential 
increments and with the repeating and boundary matrix sequences being tail- 
equivalent, Asmussen and MØller [5] discussed subexponential asymptotics for 
the stationary level process. Takine [36] and Li and Zhao [24] discussed heavy- 
tailed asymptotics for the stationary probability vectors of Markov chains of 
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1GI G  type. Kim and Sohraby [18] studied tail behavior of the queue size and 
waiting time in a queue with discrete autoregressive arrivals, while Kim and Kim 
[19] analyzed regularly varying tails in a queue with discrete autoregressive 
arrivals of order p.

This chapter mainly refers to Li and Zhao [23,24] and Jelenkovi  and Lazar [17]. 

Problems

4.1 For the 1MAP G  queue, prove that  
(1) the stationary queue length is light-tailed if and only if the service time 

distribution is light-tailed;  
(2) the stationary queue length is subexponential if and only if the service time 

distribution is subexponential.   
4.2 For the 1BMAP M  queue with the BMAP expression { },kD  if the matrix 
sequence { }kD  is regularly varying  for 2,  then compute the tails of the 
stationary queue length and the stationary waiting time.   
4.3 For the 1X XM M  queue, if the bulk arrival distribution and the bulk 
service distribution are regularly varying  and for , 2,  then 
compute the tails of the stationary queue length and the stationary waiting time.   
4.4 For the 1M G  retrial queue, if the service time distribution is regularly 
varying  for 2,  then compute the tails of the stationary queue length 
and the stationary waiting time.   
4.5 For the ( ) 1M G M G  queue with a repairable server, if the service time 
distribution and the repair time distribution are regularly varying  and 
for , 2,  respectively, then compute the tails of the stationary queue length 
and the stationary waiting time. 
4.6 For the 1XM G  queue with server multiple vacations, if the arrival bulk 
size distribution, the service time distribution and the vacation time distribution 
are all regularly varying, then compute the tails of the stationary queue length 
and the stationary waiting time. 
4.7 For the 1BMAP G  queue with server single vacation, if the arrival bulk 
size distribution, the service time distribution and the vacation time distribution 
are all regularly varying, then compute the tails of the stationary queue length 
and the stationary waiting time. 
4.8 Consider a double queue that arises when each arriving customer simul- 
taneously place two demands handled by two servers independently. Customer 
arrivals form a Poisson process with rate 0.  Server one has regularly varying 
service times with probability distribution ( )G x  for 2,  while server 
two has exponential service times with rate 0.  Compute the tails for the 
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two-dimensional stationary joint queue length, the first stationary queue length 
and the second stationary queue length. 
4.9 Consider a queueing system consisting of two parallel servers, each of 
which has a queue of itself. Customer arrivals form a Poisson process with rate 

0.  On arrival the customer joins the shorter queue. When both queues have 
equal length, he joins the first queue with probability  and the second one with 
probability 1 .  Server one has regularly varying service times with probability 
distribution ( )G x  for 2,  while server two has exponential service 
times with rate 0.  Compute the tails for the two-dimensional stationary joint 
queue length, the first stationary queue length and the second stationary queue 
length.
4.10 A queueing system consists of a server and two queues formed by two 
types of customers, respectively. Arrivals of the two types of customers form two 
Poisson processes with rates 1 2 0.  The server serves a customer in the 
longer queue. When both queues have equal lengths, he serves the first queue 
with probability  and the second one with probability 1 .

(1) If the service times for the first type of customers are regularly varying 
with probability distribution ( )G x  for 2,  while the service times for 
the second type are exponential with rate 0,  compute the tails for the two- 
dimensional stationary joint queue length, the first stationary queue length and 
the second stationary queue length.  

(2) If the service times for the two types of customers are all regularly varying 
with probability distributions ( )F x  and ( )G x  for , 2,
respectively, compute the tails for the two-dimensional stationary joint queue 
length, the first stationary queue length and the second stationary queue length. 
4.11 A queueing system consists of a server and two queues formed by two 
types of customers respectively. Arrivals of the two types of customers form two 
Poisson processes with rates 1 2 0.  The server alternately serves customers 
between both queues, for example, queue one to queue two, queue two to queue 
one, and so on.  

(1) If the service times for the first type of customers are regularly varying 
with probability distribution ( )G x  for 2,  while the service times for 
the second type are exponential with rate 0,  compute the tails for the two- 
dimensional stationary joint queue length, the first stationary queue length and 
the second stationary queue length.  

(2) If the service times for the two types of customers are all regularly varying with 
probability distributions ( )F x  and ( )G x  for , 2,  respectively, 
compute the tails for the two-dimensional stationary joint queue length, the first 
stationary queue length and the second stationary queue length.   
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4.12 We consider an irreducible QBD process with N  levels whose infinitesimal 
generator is given by 

1 0

2 1 0

2 1 0

2 1 0

2 1 0

2 1

.

B B
B A A

A A A
Q

A A A
A A C

C C

Let 0 1 2A A A A  be irreducible and stochastic, and  the stationary probability 
vector of the Markov chain A with finite states. It is clear that the QBD process is 
positive recurrent, and its stationary probability vector is expressed as 1( ,

2 , , ).N  Please discuss the limit lim NN
 for each of the following three cases: 

(1) 0 2A e A e , (2) 0 2A e A e  and (3) 0 2A e A e .
4.13 We consider a 1BMAP G N  queue. Let 1 2( , , ., )N be the stationary 
distribution of the queue length. Please discuss the limit lim NN

 for each of the 

following three cases: (1) 1,  (2) 1  and (3) 1,  where .
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Abstract In this chapter, we discuss Markov chains on continuous state space. 
We first analyze a discrete-time Markov chain on continuous state space, and 
then discuss a discrete-time Markov chain on a bivariate state space. Applying 
the censoring technique, we provide expression for the RG-factorizations, 
which are used to derive the stationary probability of the Markov chain. Further, 
we consider a continuous-time Markov chain on continuous state space. 
Specifically, we deal with a continuous-time level-dependent QBD process 
with continuous phase variable, and provide orthonormal representations for 
the R-, U- and G-measures, which lead to the matrix-structured computation 
of the stationary probability. As an application, we introduce continuous- 
phase type (CPH) distribution and continuous-phase Markovian arrival process 
(CMAP), and then analyze a CMAP/CPH/1 queue. Finally, we study a 
piecewise deterministic Markov process, which is applied to deal with more 
general queues such as the GI/G/c queue. 

Keywords Markov chains on continuous state space, QBD process with 
continuous phase variable, orthonormal representation, continuous-phase 
type distribution, continuous-phase Markovian arrival process, piecewise 
deterministic Markov process. 

In this chapter, we discuss Markov chains on continuous state space, which are a 
useful mathematical tool in the study of stochastic models. We first analyze a 
discrete-time Markov chain on continuous state space, and then discuss a discrete- 
time Markov chain on a bivariate state space N R , where {0,1, 2, ...}N
and [0, )R . Applying the censoring technique, we provide expression for 
the RG-factorizations, which are used to derive the stationary distribution. As an 
example, we study the 1GI G  queue in terms of the discrete-time Markov chain 
on continuous state space. Further, we consider a continuous-time Markov chain on 
continuous state space, and specifically deal with a continuous-time level-dependent 
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QBD process with continuous phase variable, and provide the RG-factorizations. 
In 2

2 ([0 ) )L , which is a space of square integrable bivariate real functions, we 
provide orthonormal representations for the R-, U- and G-measures, which lead 
to the matrix structure of the RG-factorizations. Based on this, we introduce 
continuous-phase type (CPH) distribution and continuous-phase Markovian arrival 
process (CMAP), and then analyze a 1CMAP CPH  queue. Finally, we study a 
piecewise deterministic Markov process to be able to deal with more general 
queueing systems such as the GI G c  queue. 

This chapter is organized as follows. Section 5.1 simply defines a discrete-time 
Markov chain on continuous state space, and discusses its irreducibility and 
aperiodicity. Section 5.2 extends the censoring technique to be able to deal with 
the Markov chain on bivariate state space {0,1, 2, ...} [0, ) , derives the 
RG-factorizations and also expresses the stationary probability distribution by 
means of an algebraic algorithm with orthonormal representations. Section 5.3 
applies the RG-factorizations to discuss the 1GI G  queue in terms of the Markov 
chain of 1GI M  type and the Markov chain of 1M G  type, respectively. 
Section 5.4 defines a continuous-time Markov chain on continuous state space, 
and expresses the stationary probability distribution. Section 5.5 deals with the 
continuous-time QBD process with continuous phase variable, provides the UL-type 
RG-factorization and expresses the stationary probability distribution as an 
operator-multiplicative solution. In Section 5.6, if the matrix of generalized 
density functions of the continuous-time QBD process with continuous phase 
variable is in 2

2 ([0, ) )L , then the integral equations given in Section 5.5 can 
be converted into the associated matrix equations. Section 5.7 introduces CPH 
distribution and continuous-phase Markovian arrival process (CMAP), and then 
analyzes a 1CMAP CPH  queue. Section 5.8 studies a piecewise deterministic 
Markov process which leads to be able to deal with more general queueing 
systems such as the GI G c  queue. Finally, Section 5.9 provides some notes to the 
references on Markov chains on continuous state space. 

5.1 Discrete-Time Markov Chains

In this section, we define a discrete-time Markov chain on continuous state space, 
and discuss its irreducibility and aperiodicity simply. 

Let ( )D  be a Borel -algebra on the interval D, for example, D is either 
[0, ) , [0, )a  or ( , ).b

We first introduce the identity kernel as follows. For a nonnegative kernel 
( , )F x A  for 0x  and ( ),A  if the bivariate function matrix ( , )I x y  satisfies 

that for all 0x  and ( ),A

0
( , ) ( , )d ( , )I x y F y A y F x A
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and

0
( , ) ( , )d ( , ),F x y I y A y F x A

then ( , )I x A  is called the identity kernel of ( , )F x A .
In this chapter, we always use the notation: 0 ( , ) ( , );F x y I x y  and for 1,n

1

0
( , ) ( , ) ( , )d .n nF x y F x z F z y z

It is easy to check that 

1

0
( , ) ( , ) ( , )d , 1.n nF x y F x z F z y z n

A Markov chain is a sequence of random variables 0 1 2, , , ...X X X , taking 
values in the state space .  A basic property of Markov chains is that the past is 
conditionally independent of the future, given the present. In our previous 
chapters, we have discussed the Markov chains with  be discrete; while this 
chapter will study a Markov chain on state space  be either continuous or 
semi-continuous. In this case, the Markov chain is governed by a transition 
kernel ( , )K x A  for x  and A . Let ( ) be a Borel -algebra on .
Then the transition kernel : ( ) [0,1]K  defines a Markov chain { }kX
through the relation 

1 1 0{ , , ... , } ( , ).k k k kP X A X X X K X A

It is clear that ( , )K x A  denotes the probability to move in one step from the 
state x  into the state set .A  The transition kernel ( , )K x A  has two main properties 
as follows: 

(1) ( , )K x  is a probability measure for each ,x  and  
(2) ( , )K A  is measurable for each .A
The two properties are explained as follows. The first property shows that 
( , )K x  defines a probability density for which the Markov chain will move to 

the next step, given that the Markov chain is currently at x. The second property 
indicates that we can always evaluate the probability that the Markov chain will 
jump into some state set A from all possible state x.

If there exists a function ( , )K x y  such that for all x  and ,A

 ( , ) ( , )d
A

K x A K x y y

then ( , )K x y  is said to be a density of the transition kernel ( , )K x A . We write 

1( , ) ( , )K x y K x y

and for 2n ,
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1

1

( , ) ( , ) ( , )d

( , ) ( , )d .

n n

n

K x y K x z K z y z

K x z K z y z

If the kernel ( , )K x A  is well behaved, then the Markov chain will have a 
stationary distribution ( )x  such that 

 ( ) ( ) ( , )d , ,y x K x y x y  (5.1) 

or

 ( ) ( ) ( , )d , .A x K x A x A  (5.2) 

It is clear that ( )y  is a density of the stationary probability ( )A .
The main requirement for the Markov chain to reach its stationary distribution 

is that the Markov chain is irreducible and aperiodic. The irreducibility is defined 
as, for any ,x y , there always exists a positive integer n such that ( , ) 0.nK x y
In other words, the Markov chain can jump into any state from any other state in 
a finite number of steps. If ( , ) 0K x y  for any , ,x y  then the Markov chain 
is said to be strongly irreducible. The aperiodicity means that there exist no subsets 
of the state space  that can only be periodically visited by the Markov chain.  

Now, we extend the Markov chain on continuous state space [0, ) to a more 
general Markov chain on semi-continuous state space {0,1, 2, ...} [0, ).
For such a Markov chain, we define the transition kernel as follows: 

1( , ; , ) { ( , ) ( , )}.k kK i x j A P X j A X i x

At the same time, the nth step iteration of ( , ; , )K i x j A  is given by 

1

0
0

( , ; , ) ( , ; , ) ( , ; , )d , 1.n n

k
K i x j A K i x k y K k y j A y n

The following proposition describes some properties of the transition kernel 
( , ; , )K i x j A . The proof is clear and is omitted here.  
Proposition 5.1 (1) 0 ( , ; , ) 1K i x j A for , 0,i j 0x  and ( ),A
(2) ( , ; , ) 0K i x j  for , 0i j , 0x  and the state set  is null, and 

(3)
0

0
( , ; , )d 1

k
K i x k y y  for 0i  and 0x .

Let , ( , ) ( , ; , )i jP x A K i x j A  and 

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

, , ,
, , ,

, .
, , ,

P x A P x A P x A
P x A P x A P x A

P x A
P x A P x A P x A

 (5.3) 
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Then the Markov chain on semi-continuous state space {0,1, 2, ...} [0, )  is 
determined by the transition kernel given in Eq. (5.3). 

It is clear that 
1

0
( , ) ( , ) ( , )d , 1,n nP x A P x y P y A y n

which can be expressed by means of the transition sub-kernel ( , ; , )nK i x j A  for 
, 0i j , 0x  and ( )A .

In what follows we provide some important examples of the Markov chain on 
semi-continuous state space {0,1, 2, ...} [0, ).  It is worthwhile to note that 
these examples are all the corresponding generalized versions of the discrete-time 
Markov chains with discrete state space studied in the previous chapters. 

5.1.1 Markov Chains of GI/G/1 Type 

The transition kernel in Eq. (5.3) is simplified as 

0 1 2

1 0 1

2 1 0

.

D x A D x A D x A
D x A x A x AP x A
D x A x A x A

A A
A A

5.1.2 Markov Chains of GI/M/1 Type  

The transition kernel in Eq. (5.3) is simplified as 

1 0

2 1 0

3 2 1 0

( , ) ( , )
( , ) ( , ) ( , )

( , ) .
( , ) ( , ) ( , ) ( , )

D x A D x A
D x A C x A C x AP x A
D x A C x A C x A C x A

5.1.3 Markov Chains of M/G/1 Type  

The transition kernel in Eq. (5.3) is simplified as 

1 2 3 4

0 1 2 3

0 1 2

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )( , ) .

( , ) ( , ) ( , )

D x A D x A D x A D x A
D x A C x A C x A C x AP x A

C x A C x A C x A
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5.1.4 QBD Processes 

The transition kernel in Eq. (5.3) is simplified as 

(0) (0)
1 0
(1) (1) (1)
2 1 0

(2) (2) (2)
2 1 0

( , ) ( , )
( , ) ( , ) ( , )

( , ) .
( , ) ( , ) ( , )

x A x A
x A x A x A

P x A
x A x A x A

A A
A A A

A A A

5.2 The RG-Factorizations

In this section, we extend the censoring technique to be able to deal with the 
discrete-time Markov chain on semi-continuous state space {0,1, 2, ...}
[0, ), Based on this, we derive the RG-factorizations and express the stationary 
probability distributions. 

Let {0,1, 2, ..., }E n  and { 1, 2, 3, ...}cE n n n . According to the subsets 
E and ,cE  the transition kernel ( , )P x A  is partitioned as 

( , ) ( , )
( , ) .

( , ) ( , )

c

c

E E
E
E

T x A U x A
P x A

V x A W x A
 (5.4) 

It is clear that if ( , )P x A  is irreducible and ( , ) 0V x A , then each element of 

0
( , ) ( , )n

n
W x A W x A  is finite, where 

0 ( , ) ( , ),W x A I x A

1( , ) ( , )W x A W x A

and for 2,n

1 1( , ) ( , ) ( , )d ( , ) ( , )d .n n nW x A W x z W z A z W x z W z A z

The matrix ( , )W x A  is referred to as the fundamental matrix of ( , ).W x A
Suppose that { , 0}kX k  is an irreducible Markov chain on semi-continuous 

state space {0,1, 2, ...} [0, ) . If the successive visits of nX  to the subset E
take place at the kn th step of state transition, we write 

k

E
k nX X  for 1k . Then 

the sequence { , 1}E
kX k  is called the censored chain with censoring set E. For 

convenience, we write [ ] ( , )nP x A  for the censored transition kernel ( , )EP x A  if 
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the censored set nE L , in particular, [ ] ( , ) ( , )P x A P x A  and [0] ( , )P x A
[ 0] ( , )P x A . Similarly, [ ] ( , )nP x A  is the censored transition kernel with the 

censored set nE L , specifically, [ ] ( , ) ( , )P x A P x A .
The following lemma shows that the censored chain { , 1}E

kX k  is a Markov 
chain again. The proof is clear and is omitted here. 

Lemma 5.1 (1) The censored chain { , 1}E
kX k  is a Markov chain whose 

transition kernel is given by  

0 0
( , ) ( , ) ( , ) ( , ) ( , )d d .EP x A T x A U x y W y z V z A y z (5.5)

(2) The censored chain { , 1}
cE

kX k  is a Markov chain whose transition 
kernel is given by 

0 0
( , ) ( , ) ( , ) ( , ) ( , )d d .

cEP x A W x A V x y T y z U z A y z

Note that the two censored Markov chains { , 1}E
kX k  and { , 1}

cE
kX k  have 

different utilities, which can lead to two different types of RG-factorizations.

5.2.1 The UL-Type RG-Factorization 

Let

( ) ( ) ( )
0,0 0,1 0,
( ) ( ) ( )

1,0 1,1 1,[ ]

( ) ( ) ( )
,0 ,1 ,

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) , 0,

( , ) ( , ) ( , )

n n n
n

n n n
nn

n n n
n n n n

x A x A x A
x A x A x A

P x A n

x A x A x A

be partitioned according to the levels.  
The following lemma provides a useful relationship among the entries of the 

censored Markov chains, which are essentially the Wiener-Hopf equations for the 
Markov chain. The proof is clear and is omitted here.  

Lemma 5.2 For 0n , 0 i , j n ,

( ) ( ) ( ) ( )
, , , , ,0 0

1
( , ) ( , ) ( , ) ( , ) ( , )d d .n k k k

i j i j i k k k k j
k n

x A P x A x y y z z A y z

Based on Lemma 5.2, we provide expressions for the R-, U- and G-measures. 
For 0 i j ,

( ) ( )
, ,0

( , ) ( , ) ( , )d .j j
i j i j j jR x A x y y A y
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For 0 j i ,

( ) ( )
, , ,0

( , ) ( , ) ( , )d .i i
i j i i i jG x A x y y A y

For 0n ,
( )
,( , ) ( , ).n

n n nx A x A

The following theorem provides the UL-type RG-factorization for the transition 
kernel ( , )P x A  given in Eq. (5.3). 

Theorem 5.1 For the Markov chain with the transition kernel ( , )P x A  given 
in Eq. (5.3),

0 0
( , ) ( , ) [ ( , ) ( , )]

[ ( , ) ( , )][ ( , ) ( , )]d d ,
U

D L

I x A P x A I x y R x y

I y z y z I z A G z A y z (5.6)

where 

0,1 0,2 0,3

1,2 1,3

2,3

0 1 2 3

0 ( , ) ( , ) ( , )
0 ( , ) ( , )

( , ) ,0 ( , )
0

( , ) diag( ( , ), ( , ), ( , ), ( , ), ...)

U

D

R x A R x A R x A
R x A R x A

R x A R x A

x A x A x A x A x A

and

1,0

2,0 2,1

3,0 3,1 3,2

0
( , ) 0

( , ) .( , ) ( , ) 0
( , ) ( , ) ( , ) 0

L

G x A
G x A G x A G x A

G x A G x A G x A

5.2.2 The LU-Type RG-Factorization 

Let
( ) ( ) ( )
, , 1 , 2

( ) ( ) ( )
[ ] 1, 1, 1 1, 2

( ) ( ) ( )
2, 2, 1 2, 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , ) .
( , ) ( , ) ( , )

n n n
n n n n n n
n n n

n n n n n n n
n n n

n n n n n n

x y x y x y
x y x y x y

P x y
x y x y x y
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Then for , 1,i j n

( 1) ( ) ( ) ( )
, , , , ,0 0

0

( , ) ( , ) ( , ) ( , ) ( , )d d .
n

n k k k
i j i j i k k k k j

k
x y P x y x u u v v y u v

We define the U-measure as 
( )
,( , ) ( , ), 0,n

n n nx y x y n

the R-measure as 

( )
, ,0

( , ) ( , ) ( , )d , 0 ,j
i j i j jR x y x z z y z j i

and the G-measure as 

( )
, ,0

( , ) ( , ) ( , )d , 0 .i
i j i i jG x y x z z y z i j

The LU-type RG-factorization for the Markov chain ( , )P x y  given in Eq.(5.3) 
is given by  

0 0
( , ) ( , ) [ ( , ) ( , )][ ( , ) ( , )]

[ ( , ) ( , )]d d ,
L D

U

I x y P x y I x u R x u I u v u v

I v y G v y u v

where

1,0

2,0 2,1

3,0 3,1 3,2

0 1 2 3

0
( , ) 0

( , ) ,( , ) ( , ) 0
( , ) ( , ) ( , ) 0

( , ) diag( ( , ), ( , ), ( , ), ( , ), ...)

L

D

R x y
R x y R x y R x y

R x y R x y R x y

x y x y x y x y x y

and

0,1 0,2 0,3

1,2 1,3

2,3

0 ( , ) ( , ) ( , )
0 ( , ) ( , )

( , ) .0 ( , )
0

U

G x y G x y G x y
G x y G x y

G x y G x y

5.2.3 The Stationary Probability Distribution 

Based on the UL-type RG-factorization, the following theorem provides expression 
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for the stationary probability distribution of the discrete-time Markov chain on a 
semi-continuous state space.  

Theorem 5.2 The stationary probability distribution of the Markov chain 
with the transition kernel ( , )P x A  given in Eq. (5.3) is given by 

0 0
1

0
0

( ) ( ),

( ) ( ) ( , )d , 1,
k

k i i k
i

A x A

A x R x A x k
(5.7)

where 0 ( )x A  is the stationary probability distribution of the censored Markov chain 
with the transition kernel 0 ( , )x A  to level 0, and the scalar  is uniquely 

determined by 
0

0

( )d 1k
k

x x .

Proof If the Markov chain ( , )P x A  given in Eq. (5.3) exists the stationary 

probability vector 0 1 2( ) ( ( ), ( ), ( ), ...),A A A A  then 
0

( )[ ( , )x I x A

( , )]d 0P x A x  and 
0

( )dx x 1e . Based on Theorem 5,1, we have 

0

0 0 0

0 ( )[ ( , ) ( , )]d

( )[ ( , ) ( , )][ ( , ) ( , )]

[ ( , ) ( , )]d d d .
U D

L

x I x A P x A y

x I x y R x y I y z y z

I z A G z A x y z

We write 

0
( ) ( )[ ( , ) ( , )]dUx A x I x A R x A x

and

0 1 2( ) ( ( ), ( ), ( ), ...).x A x A x A x A

Then

0 0
( )[ ( , ) ( , )][ ( , ) ( , )]d d 0,D Lx y I y z y z I z A G z A y z

which leads to 

0 00 0 0
1

,0

0 0 0
1

( ) ( , ) ( , ) d ( )

( , ) ( , ) ( , )d d 0,

( ) ( , ) ( , ) d ( )

( , ) ( , ) ( , )d d 0, for 1.

k
k

k k

i i k
k i

k k i

x y I y A y A y x y

I y z y z G z A y z

x y I y A y A y x y

I y z y z G z A y z i

 (5.8) 
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Note that 0 ( , )y A  is the transition kernel of the censored chain to level 0. If the 
Markov chain with the transition kernel ( , )P x A  given in Eq. (5.3) is positive 
recurrent, then 0 ( , )y A  is also positive recurrent, thus it exists the stationary 
probability distribution 0 ( )x A . Hence there exists the stationary probability density 

function 0 ( )x y  such that 0 00
( )[ ( , ) ( , )]d 0x y I y A y A y  and 00

( )d 1x y y .

It is easy to check that 0( ( ), 0, 0, ...)x A  is a non-zero nonnegative solution to the 

systems of Eq. (5.8), where  is uniquely determined by
0

0
( )d 1.k

k
x x

Solving the simplified system of linear equations 
0

( )[ ( , ) ( , )]dUx I x A R x A x

0( ( ), 0, 0, ...)x A , we obtain the desired result. 
In what follows we derive expression for the stationary probability distribution 

of some important examples.  

5.2.4 Markov Chains of GI/G/1 Type 

The R-measure is given by 0, ( , )kR x A  and ( , )kR x A  for 1k , 0x  and 
( )A . In this case, it follows from Theorem 5.2 that 

0 0
1

0 00 0
1

( ) ( )

( ) ( ) ( , )d ( ) ( , )d , 1,
k

k k i k i
i

A x A

A x R x A x x R x A x k

where 0 ( )x A  is the stationary probability distribution of the censored Markov 
chain with the transition kernel 0 ( , )x A  to level 0, and the scalar  is uniquely 

determined by 
0

0

( )d 1.k
k

x x

5.2.5 Markov Chains of GI/M/1 Type 

The R-measure is given by ( , )R x A  and 0,1( , )R x A , where ( , )R x A  is the minimal 
nonnegative solution to the kernel equation  

0
0

( , ) ( , ) ( , )d .k
k

k
R x A R x y C y A y  (5.9) 

Applying the kernel ( , ),R x A  we can obtain another kernel 0,1( , )R x A  as follows:  
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0,1 00
( , ) ( , ) ( , )d ,R x A D x y U y A y  (5.10) 

where

1

0
1

( , ) ( , ) ( , )d .k
k

k
U x A R x y C y A y

In this case, it follows from Theorem 5.2 and the R-measure given in Eq. (5.9) and 
Eq. (5.10) that 

0 0

1 0 0,10

1
10

( ) ( ),

( ) ( ) ( , )d

( ) ( ) ( , )d , 2.k
k

A x A

A x R x A x

A x R x A x k

 (5.11) 

Note that Eq. (5.11) is the same as Theorem 2 of Tweedie [27].  

5.2.6 Markov Chains of M/G/1 Type 

The R-measure is given by 0, ( , )kR x A  and ( , )kR x A  for 1k , 0x  and 
( ).A  Thus, the expression for the stationary probability distribution is the 

same as that for 1GI G  type. However, for a Markov chain of 1M G  type,
the R-measure 0, ( , )kR x A  and ( , )kR x A  for 1k , 0x  and ( )A  can be 
determined by the kernel G x A , which is the minimal nonnegative solution to 
the kernel equation  

0
0

( ) ( )dk
k

k
G x A C x y G y A y  (5.12) 

In this case, we have 

1
0, 0 0

1

( , ) ( , ) ( , ) ( , )d di
k k i

i
R x A D x y G y z U z A y z  (5.13) 

and

1

0 0
1

( , ) ( , ) ( , ) ( , )d d ,i
k k i

i
R x A C x y G y z U z A y z  (5.14) 

where

1

0
1

( , ) ( , ) ( , )d .k
k

k
U x A C x y G y A y
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5.2.7 QBD Processes  

The R- and G-measures are { ( , ), 0}kR x y k  and { ( , ), 1}lG x y l , respectively. 
The R-measure { ( , ), 0}kR x y k  is the minimal nonnegative solution to the system 
of nonlinear kernel equations 

( ) ( 1)
0 10

( 2)
1 20 0

( , ) ( , ) ( , ) ( , )d

( , ) ( , ) ( , )d d .

k k
k k

k
k k

R x y A x y R x z A z y z

R x u R u v A v y u v (5.15)

The G-measure { , 1}kG k  is the minimal nonnegative solution to the system of 
nonlinear kernel equations 

( ) ( )
2 10

0 10 0

( , ) ( , ) ( , ) ( , )d

( , ) ( , ) ( , )d d .

k k
k k

k
k k

G x y A x y A x z G z y z

A x u G u v G v y u v (5.16)

The U-measure { ( , ), 0}kU x y k  is given by 

( ) ( 1)
1 20

( 1)
1 0 10

( , ) ( , ) ( , ) ( , )d

( , ) ( , ) ( , )d .

k k
k k

k k
k

U x y A x y R x z A z y z

A x y A x z G z y z (5.17)

5.2.8 An Algorithmic Framework 

We provide an algorithmic framework for computing the stationary probability 
distribution. To do this, we need to introduce an orthogonal decomposition of 
functions in 2

2 ([0, ) )L .
We denote by { ( ), 0}k x k  an orthogonal basis in 2 ([0, ))L . Then 

0
( ) ( )dk l klx x x , where kl  is 1 or 0 according as k l  or k l ,

respectively. Such an orthogonal basis in 2 ([0, ))L  always exits. In the function 
space 2 ([0, ))L , Li, Wang and Zhou [19] gave two different orthogonal bases, 
while Nielsen and Ramaswami [24] provided a finite-interval orthogonal basis. 
For the three orthogonal bases, we simply describe them as follows:  

5.2.8.1 A Laguerre-Polynomial Orthogonal Base 

Let

! ,
! !

n n
k k n k
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( ) 1 , 0, 0 ,( 1)
!

kn
k

n
a n k n

k k
 (5.18) 

and
( )

0
( ) , 0.

n
n k

n k
k

l x a x n  (5.19) 

Then the function sequence 1exp ( ), 0
2 nx l x n  is an orthogonal basis in 

2 ([0, ))L .

5.2.8.2 A Hermite-Polynomial Orthogonal Base 

Let
2n

n
t  and 

2

0

!( 1)( ) .(2 )
!( 2 )!

n kt
n k

n
k

nH x x
k n k

Then the function sequence 1 241 2 ! exp{ 2} ( ), 0n
nn x H x n  forms an 

orthogonal basis in 2 ([0, ))L .

5.2.8.3 A Finite-Interval Orthogonal Base 

Nielsen and Ramaswami [24] provided an orthogonal basis { ( ), 0}n x n  in 
2 ([0,1])L , where 

2 1 d( ) .[ (1 )]
! d

n
n

n n

nx x x
n x

For simplicity of description, we consider the Markov chain of 1GI M  type 
whose transition kernel is given by 

1 0

2 1 0

3 2 1 0

( , ) ( , )
( , ) ( , ) ( , )

( , ) .
( , ) ( , ) ( , ) ( , )

D x A D x A
D x A C x A C x A

P x A
D x A C x A C x A C x A

We assume that the two kernel sequences { ( , ), 0}kD x y k  and { ( , ), 0}kC x y k
are all in 2 ([0, ))L . We write  

T( )

0 0
( , ) ( ) ( ) ( ) ( )k

k m n m n k
m n

C x y c x y x yC  (5.20) 
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and

T( )
,

0 0
( , ) ( ) ( ) ( ) ,( )k

k m n m n k
m n

D x y d x y x yD  (5.21) 

where

0 1 2( ) ( ( ), ( ), ( ), ),x x x x

( ) ( ) ( )
0,0 0,1 0,2
( ) ( ) ( )
1,0 1,1 1,2
( ) ( ) ( )
2,0 2,1 2,2

k k k

k k k

k k k k

c c c
c c c
c c c

C

and

( ) ( ) ( )
0,0 0,1 0,2
( ) ( ) ( )
1,0 1,1 1,2
( ) ( ) ( )
2,0 2,1 2,2

.

k k k

k k k

k k k k

d d d
d d d
d d d

D

It is easy to check that 

T( , ) ( ) ,( )R x y x R y  (5.22) 

where the matrix R is the suitable solution to the nonlinear matrix equation 

0
.k

k
k

R R C  (5.23) 

The stationary probability distribution 0 1 2( ) ( ( ), ( ), ( ), ...)x x x x  is given by 

T( ) , 0,( )k kx kx  (5.24) 

where

0 , 0,k
k x R k  (5.25) 

and the vector 0x  is a nonnegative non-zeroz solution to the system of 

equations 0
1

0k
k

k
x R D  and 0 1x e , and the scalar  is uniquely determined 

by 
0

0

( )d 1k
k

x x .



5 Markov Chains on Continuous State Space 

231

5.3 The GI/G/1 Queue

In this section, we apply the RG-factorizations to discuss the 1GI G  queue, which 
is constructed as either a Markov chain of 1GI M  type or a Markov chain of 

1M G  type under the semi-continuous state space.  
We consider a 1GI G  queue, where the service time and interarrival time 

distributions are denoted by the functions ( )G t  and ( )F t  with 1

0
d ( )t G t

and 1

0
d ( )t F t , respectively. 

5.3.1 Constructing a Markov Chain of GI/M/1 Type  

We consider the Markov chain { },nX  where ( , )n n nX N S  for 1n , nN  and nS
are the number of customers immediately before the nth interarrival time and the 
residual service time immediately after the nth interarrival time, respectively. 

Let 1, 2 , 3 ,  ... denote a renewal process with 1n n  having the 
service time distribution ( )G t ; and let tR  denote the residual lifetime at time t in 
this process, that is, ( ) 1 ,t N tR t  where ( )N t  is the renewal number in [0, )t .
If 0R x , then 1 x . We write 

1 0( , ) { , }.t
n n n tP x y P t R y R x

Clearly, ( , )t
nP x y  is the probability that n renewals occur in [0, )t  and the residual 

lifetime at time t is in [0, )y , given 0 .R x
Let 1n n nY  with 0 0  for 1n . Then { }nY  can be regarded as a 

Markov chain with continuous state space [0, )  whose transition kernel is 
given by 

1( , ) { }n nK x A P Y A Y x

which is independent of the number 1n . We write 

1 1( , ) { }n nD x y P Y y Y x

and

2 1( , ) { }.n nD x y P Y y Y x

The following lemma provides an iterative relationship for the kernel sequence 
{ ( , )}t

nP x y .
Lemma 5.3 For the kernel sequence { ( , ), 0}t

nP x y n ,

0 ( , ) ( , )tP x y I x y  (5.26) 
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and for 1,n

1 1 20 0
( , ) ( , ) ( , )d ( , ) ( , )d .t t t

n n nP x y P x z D z y z P x z D z y z  (5.27) 

Proof Equation (5.26) is clear. Hence we only need to prove Eq. (5.27). This 
is completed by the following computations 

1 0

1 2 0 2 00

1 2 0 2 00

1 2 0 2 10

1 2 0 20

( , ) { , }

{ , , }d{ }

{ , , }d{ }

{ , , }d{ }

{ , , }d{

t
n n n t

n n t

n n t

n n t

n n t

P x y P t R y R x

P t R y Y z R x Y z R x

P t R y Y z R x Y z R x

P t R y Y z R x Y z Y x

P t R y Y z R x Y 1

1 1 20 0

}

( , ) ( , )d ( , ) ( , )d .t t
n n

z Y x

P x z D z y z P x z D z y z

This completes the proof. 
When using the kernel sequence { ( , ), 0}t

nP x y n , the 1GI G  queue can be 
described as a Markov chain of 1GI M  type on continuous state space [0, ).
In this case, we have 

0
( , ) ( , )d ( ) 0,t

n nC x y P x y F t n

and

1

( , ) ( ) ( , ), 0.n k
k n

D x y G y C x n

Therefore, the Markov chain of 1GI M  type is determined by the two kernel 
sequences { ( , )}nC x y  and { ( , )}nD x y .

Let

0

( , ) ( , ).n
n

C x y C x y

Then

0
0

00

( , ) ( , )d ( )

{ }d ( ).

t
n

n

t

C x y P x y F t

P R y R x F t

The bivariate function ( , )C x y  is the transition probability kernel of the residual 
lifetime process sampled at points of an independent renewal process generated 

by ( ).F t  If 1

0
d ( )t G t , then the residual lifetime process has the 
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invariant measure 
0

( ) [1 ( )]d
x

x G t t . This is summarized in the following 

lemma.  
Lemma 5.4 ( )x is the invariant measure of the Markov chain with transition 

probability kernel ( , ).C x y

Proof We only need to check the equality 
0

( ) ( , )d ( )x C x y x y .

Note that 

0{ } ( )P R x x

0 00 0 0

0

0

( ) ( , )d { } { }d ( )d

{ }d ( )

{ }
( ).

t

t

x C x y x P R x P R y R x F t x

P R y F t

P R y
y

This completes the proof. 
Let

0

1 0
0

0

( ) ( , )

{ }

[ ( ) ].

t t
n

n

n n
n

x nP x

nP t R x

E N t R x

Then

1

0 0

0 00 0

0 0

( )d ( )d ( )

[ ( ) ]d { }d ( )

[ ( )]d d ( )

,

t x x F t

E N t R x P R x F t

E N t F t t F t

where [ ( )]E N t t  and 1

0
d ( )t F t . Hence . Obviously, if 1,

then the 1GI G  queue is stable. 
Let ( , )R x y  be the minimal nonnegative solution to the nonlinear kernel equation 

0
0

( , ) ( , ) ( , )d .n
n

n
R x y R x z C z y z
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We write 

1
0 0

1

( , ) ( , ) ( , )d .n
n

n
x y R x z D z y z

It is easy to check that 0 ( , )x y  is the transition probability kernel of the censored 
chain to level 0. 

Lemma 5.5 Let 0 ( )x x  be the invariant measure of the censored Markov 
chain with transition probability kernel 0 ( , )x y  to level 0. Then 0 ( ) ( )x x G x
for 0x .

Proof We only need to check the equality 0 0 00
( ) ( , )d ( )x x x y x x y .

1
0 0 00 0 0

1

1
00 0

1 1

( ) ( , )d ( ) ( , ) ( , )d d

( ) ( , ) ( , )d ( )d .

n
n

n

n
k

n k n

x x x y x x x R x z D z y z x

x x R x z C x zG y x

Let

1
00 0

1 1

( ) ( , ) ( , )d d .n
k

n k n
c x x R x z C x z x

Then

0 00
( ) ( , )d ( ).x x x y x cG y

Thus we can take 0 ( ) ( )x y cG y . Note that 0 ( )x y  is the invariant measure of the 
censored Markov chain with transition probability kernel 0 ( , )x y , we obtain 

00
( )d 1x y y . Since 00

( )dx y y c , hence we have 1c , which leads to 

0 ( ) ( )x y G y  for 0y . This completes the proof. 
The following theorem provides the distribution of the stationary queue length 

for the 1GI G  queue. The proof is clear and is omitted here.  
Theorem 5.3 If 1, then the distribution of the stationary queue length is 

given by 

0 ( ) ( )x G x

and

0
( ) ( ) ( , )d , 1,n

n x G z R z x z n

where 
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0 0
1

1 .
1 ( ) ( , )d dn

n

G z R z x z x

5.3.2 Constructing a Markov Chain of M/G/1 Type  

We take the Markov chain { },nX  where ( , )n n nX N T  for 1n , nN  and nT  are 
the number of customers immediately after the nth interarrival time and the residual 
interarrival time immediately before the nth service time, respectively. 

Let 1, 2 , 3 ,  ... denote a renewal process with 1n n  having the interarrival 
time distribution ( )F t ; and let tR  denote the residual lifetime at time t in this 
process, that is, 1t N tR t , where ( )N t  is the renewal number in [0, )t . If 

0R x , then 1 .x  We write 

1 0( , ) { , }.t
n n n tP x y P t R y R x

Clearly, ( , )t
nP x y  is the probability that n renewals occur in [0, )t  and the residual 

lifetime at time t is in [0, )y , given 0 .R x
For the Markov chain of 1M G  type, we write 

0 00
( , ) ( , )d ( ),tD x y P x y G t

10
( , ) ( , )d ( ), 1,t

n nD x y P x y G t n

and

0
( , ) ( , )d ( ), 0.t

n nC x y P x y G t n

Let

0
( , ) ( , ).n

n
C x y C x y

Then

0
0

00

( , ) ( , )d ( )

{ }d ( ).

t
n

n

t

C x y P x y G t

P R y R x G t

Hence ( , )C x y  is the transition probability kernel of the residual lifetime process 
sampled at points of an independent renewal process generated by ( )G t . If 
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1

0
d ( )t F t , then the residual lifetime process has the invariant measure 

0
( ) [1 ( )]d .

x
x F t t

Let

0
0

( ) ( , ) [ ( ) ].t t
n

n
x nP x E N t R x

Then

0 0

0 0

( )d ( )d ( )

[ ( )]d ( ) d ( )

,

t x x G t

E N t G t t G t

where 1

0
d ( )t G t . Hence . Obviously, if 1 , then the 1GI G

queue is stable. 
Let ( , )G x y  be the minimal nonnegative solution to the nonlinear kernel 

equation

0
0

( , ) ( , ) ( , )d .n
n

n
G x y C z y G x z z

Let

1
0 0 0

1
( , ) ( , ) ( , ) ( , )d di

k k i
i

R x y D x u G u v U v y u v

and

1

0 0
1

( , ) ( , ) ( , ) ( , )d d ,i
k k i

i
R x y C x u G u v U v y u v

where

1

0
1

( , ) ( , ) ( , )d .k
k

k
U x y C x z G z y z

We write 

0 0
1

( , ) ( , ) ( , )d .n
n

n
x y D x z G z y z

It is easy to check that 0 ( , )x y  is the transition probability kernel of the censored 
Markov chain to level 0. Let 0 ( )x x  be the invariant measure of the censored 
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Markov chain with transition probability kernel 0 ( , ).x y
If 1 , then the distribution of the stationary queue length is given by 

0 0
1

0 00 0
1

( ) ( ),

( ) ( ) ( , )d ( ) ( , )d , 1,
k

k k i k i
i

x x x

x z R z x z z R z x z k

where the scalar  is uniquely determined by 
0

0

( )d 1k
k

x x .

5.4 Continuous-Time Markov Chains

In this section, we define and study continuous-time Markov chains on continuous 
state space. We provide expression for the stationary probability distribution of 
the Markov chain, which is Harris recurrent and ergodic. 

For convenience of description, we always use calligraphic letters (for example, 
, ) to denote elements in ( )D .
To define a continuous-time Markov chain on continuous state space [0, ),

let real number ( , )x  denote the kernel of the Markov chain from an initial 
state x to a state set ([0, )) . Intuitively, we interpret ( , )x  in two 
possible cases: 

(1) If x , then ( , )x  is the transition rate of the Markov chain from x to B.
(2) If x , then ( , ) ( , )cx x , where [0, ) .c

The two cases can be well understood by means of the results for a continuous- 
time Markov chain on a discrete state space. 

We now provide conditions on the function ( , )x  such that ( , )x  for 
0x , ([0, ))  forms the kernel of a continuous-time Markov chain on 

continuous state space. These conditions resemble that for the infinitesimal generator 
of a continuous-time Markov chain on a discrete state space. 

Definition 5.1 For the continuous-time Markov chain on continuous state 
space [0, ) , ( , )x  on [0, ) ([0, ))  is called the kernel of the Markov 
chain if  

(1) for each fixed 0, ( , )x x  is a signed measure on ([0, )); and for each 
fixed [0 )  is a real-value measurable function on [0, );x

(2) ( , ) 0x  for ;x  while 0 ( , )x  for ;x  and 
(3) when 1i i  and i j  for all i j , where ([0, ))i  for 
1i  and  is an empty set, we have 
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1
( , ) ( , ).i

i
x x

Based on Definition 5.1, we easily obtain the following useful properties. The 
proof is obvious and is omitted here.  

Proposition 5.2 (1) [0 ) 0x x and ( , ( , )) 0x x .
(2) For the set sequence { }n  on ([0, ))  with 1n n  for 1n , 0

1 2( , ) ( , ) ( ,[0, )) ( , ( , ))x x x x x x  if x  where lim ;nn

while 1 2( ,{ }) ( , ) ( , ) ( ,[0, )) 0x x x x x  if 1x .
For the continuous-time Markov chain on continuous state space [0, ),  the 

irreducibility and the associated conditions may be similarly provided as that in 
Tweedie [27] (p. 370). Intuitively, if the Markov chain with the kernel ( , )x
is irreducible, then there exist at least two sets 1 ([0, ))x  and 2

(( , ))x  such that 1( , ) 0x  and 2( , ) 0.x
The negative number ( ,{ })x x  is crucial for the classification of the continuous- 

time Markov chains on continuous state space. For example, 
(1) if ( ,{ }) [ ( ,[0, )) ( , ( , ))]x x x x x x  for all 0x , then the Markov 

chain is said to be conservative;  
(2) if ( ,{ })x x  for all 0x  (resp. ( ,{ })x x  for some 0x ), then 

the Markov chain is said to be stable (resp. instantaneous).  
Henceforth we always assume that the Markov chain is conservative, irreducible, 

stable and regular, see, e.g. Anderson [1]. 
If ([0, ))F x , (( , ))B x  and x , then { }F Bx

([0, )).  We assume that there exists an almost everywhere nonnegative 
function ( , )x y  for x , 0y  such that 

( , ) ( , )d
F

Fx x y y

and

( , ) ( , )d .
B

Bx x y y

Then, we write ,x  as 

( , ) ( , )d ( ,{ }) ( , )d .
F B

x x y y x x x y y  (5.28) 

We call ( , )x y  the generalized density function of the kernel ( , )x  on 
[0, ) ([0, )) .

To understand the generalized density function ( , )x y , we now provide a 
useful expression for ( , )x y . Let 
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( ) ( ,[0, )) ( , ( , )) .x x x x x

Then

 ( ,{ }) ( , ) ( )x x x x x

and

 ( , ) ( , )(1 ) ( ) ,xy xyx y x y x

where xy  is equal to one or zero according to x y  or x y , respectively. 
Remark 5.1 (1) For a continuous-time Markov chain on a discrete state space 

{0,1, 2, ...}  whose infinitesimal generator is given by , , 0,1,2,...
( )i j i j
qQ , the 

integral expression Eq. (5.28) has the sum form: , ,di y i j
j

q y q .

(2) We now provide a concrete example to construct the generalized density 
function ( , )x y , which illustrates that the continuous-time Markov chain on 
continuous state space is a convenient mathematical tool for studying many real 
systems. Let 

3

4

3

1 , ,
( 1)

( , )
, .

( 1)

y x
y x

x y
y y x

x

Then

4 5

3 3 30

1 1( ) d d .
2 5( 1) ( 1) ( 1)

x

x

y xx y y
x y x x

Thus, for , 0x y  we have 

 ( , ) ( , )(1 ) ( ) .xy xyx y x y x

For the continuous-time Markov chain { ( ), 0}X t t  on continuous state space 
[0, )  whose kernel is given by ( , )x  on [0, ) ([0, )) , we define its 
transition probability as 

 ( ; , ) { ( ) (0) }, 0.P t x P X t X x t

We assume that the initial transition probability (0; , ) 1 ( )P x x , where 1 ( )x
stands for the indicator function, which is equal to one or zero according to 
x  or x , respectively. The transition probability ( ; , )P t x  can be regarded 
as a solution to the Kolmogorov differential equation. The Kolmogorov’s backward 
and forward equations are respectively given by 
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0
( ; , ) ( , ) ( ;d , )P t x x y P t y

t
 (5.29) 

and

0
( ; , ) ( ; ,d ) ( , ).P t x P t x y y

t
 (5.30) 

We assume that the continuous-time Markov chain with the kernel ( , )x  on 
[0, ) ([0, ))  is Harris recurrent and ergodic (e.g., see Athreya and Ney [3]). 
Let ( )  for ([0, ))  be the stationary probability distribution of the 
Markov chain. We also assume that there exists a generalized density function 

( ) 0x  for 0x  such that ( ) ( )d .x x  It is worthwhile to note that such 

a nonnegative function 2( ) ([0, ))x L  can be explicitly expressed below if 
the kernel 2

2( , ) ([0, ) )x y L .

Note that 
0

( ) ( , )d 0x x x  for each ([0, )) , it is clear that ( )x

for 0x  is a non-zero solution to the integral equation 

0
( ) ( , )d 0, for each 0,x x y x y  (5.31) 

with the normalization condition 
0

( )d 1x x .

Using the orthogonal basis { ( ), 0}k x k , for 2
2( , ) ([0, ) )x y L  we write 

0 0
( , ) ( ) ( ),k l k l

k l
x y a x y  (5.32) 

where these coefficients k la  for k , 0l  are uniquely determined by the bivariate 
function ( , )x y  and the orthogonal basis { ( ), 0}k x k . Therefore, for each 

([0, )) ,

0 0
( , ) ( ) ( )d .k l k l

k l
x a x y y

On the other hand, for 2( ) ([0, ))x L  we have 

0
( ) ( ),i i

i
x b x  (5.33) 

where these coefficients ib  for 0i  are uniquely determined by the bivariate 
function ( )x  and the orthogonal basis { ( ), 0}k x k . It is clear that 

0
( ) ( )d ( )d .i i

i
x x b x x  (5.34) 
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Based on the expression Eq. (5.34), the stationary probability distribution ( )
can be given once all the unknown coefficients ib  for 0i  are determined. 

It follows from Eq. (5.31), Eq. (5.32) and Eq. (5.33) that for each 0,y

0
0 0 0

( ) ( ) ( )d 0,i i k l k l
i k l

b x a x y x

which leads to the unknown row vector 0 1 2( , , , ...)b b b  is a non-zero solution to 
the system of linear equations 

0,0 0,1 0,2

1,0 1,1 1,2
0 1 2

2,0 2,1 2,2

( , , , ) 0

a a a
a a a

b b b
a a a

 (5.35) 

with the normalization condition 
0

0
( )d 1i i

i
b x x .

5.5 The QBD Processes

In this section, we deal with continuous-time QBD processes with continuous phase 
variable, and derive the UL-type RG-factorization. Based on this, the stationary 
probability distribution of the QBD process is shown to be an operator- 
multiplicative solution by means of the UL-type RG-factorization.  

We describe a more general continuous-time Markov chain with a discrete level 
and continuous phase. The kernel matrix of the Markov chain is denoted as the 
function matrix ( , )B x  for 0x , ([0, ))  with the ( , )i j th entry , ( , )i jb x
for i , 0j . Then it is easy to see from Definition 5.1 that 

(1) , ( , )i ib x  is the kernel of a Markov chain for each 0i ,
(2) , ( , ) 0i jb x  for each i j ,
(3)

0

( , ) 0i j
j

b x  for each 0i , and  

(4) ( , ) ( , )dB x B x y y .

The continuous-time Markov chains with a discrete level and continuous phase 
have many important examples, including 1GI G  type, 1GI M  type, 1M G
type and QBD processes. For simplification of discussion, here we mainly deal 
with the QBD processes.  

Let {( , ), 0}t tL P t  be a continuous-time QBD process on a semi-continuous 
state space {0,1, 2, ...} [0, ) . The first coordinate {0,1, 2, ...}tL  is called level 
variable and the second coordinate [0, )tP , phase variable. To write the 
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kernel of the QBD process, we need to introduce an element ( ) ( , )k
jA x  for 

0x , ([0, )) , and for either 0k , 1i , 2  or 1k , 0j , 1 , 2 . It is 
obvious that ( ) ( , )k

jA x  is the transition rate from an initial state ( , )k x  to the state 
set ( 1 , )k j  for either 0k , 0j , 1  or 1k , 0j , 1 , 2 . Henceforth 
we assume that the continuous-time QBD process with continuous phase variable 
is conservative, stable and regular. According to Definition 5.1, we further show 
additional conditions on these elements as follows: 

(1) ( )
1 ( ,{ }) 0kA x x  for 0k  and  

( ) 0, if 1 and ,
( , )

0, otherwise.
k

j

j x
A x

(2) For each pair ( , )k j  for either 0k , 1j , 0  or 1k , 0j , 1 , 2 , there 
exists a generalized density function ( ) ( , )k

jA x y  such that 

( ) ( )( , ) ( , )d .k k
j jA x A x y y

(3)

(0) (0)
1 00

( , ) ( , ) d 0A x y A x y y

and

( ) ( ) ( )
2 1 00

( , ) ( , ) ( , ) d 0, 1.l l lA x y A x y A x y y l

(4) There exist two non-empty sets 2 , 0 ([0, ))  such that ( )
2 2( , ) 0lA x

for all 1l  and ( )
0 0( , ) 0kA x  for all 0k .

Based on these elements, we write the kernel matrix of the QBD process as 
( , ) ( , )dQ x Q x y y  with elementwise integrals for ([0, )) , where the 

matrix ( , )Q x y  of generalized density functions for x, 0y  is given by 

(0) (0)
1 0
(1) (1) (1)
2 1 0

(2) (2) (2)
2 1 0

( , ) ( , )
( , ) ( , ) ( , )

( , ) .
( , ) ( , ) ( , )

A x y A x y
A x y A x y A x y

Q x y
A x y A x y A x y

 (5.36) 

Now, we always use the matrix of generalized density functions to study the 
continuous-time QBD processes with continuous phase variable. To use the 
censoring technique, we need to define the matrix-integral inverse.  

Definition 5.2 (1) Let ( , )B x  for 0x , ([0, ))  be the kernel matrix 
of a continuous-time Markov chain with a discrete level and continuous phase 
and ( , )B x y  for x, 0y , the associated matrix of generalized density functions.  



5 Markov Chains on Continuous State Space 

243

(2) For the bivariate function matrix ( , )A x y  for x , 0y , if there exists a 
bivariate function matrix ( , )A x y  such that for each x , 0y ,

0
( , ) ( , )d ( , )A x z B z y z I x y

and

0
( , ) ( , )d ( , ),B x z A z y z I x y

then ( , )A x y  is called the matrix-integral inverse of ( , )B x y , we set ( , )A x y
( , )B x y .

(3) Let  be the set of all negative matrix-integral inverses of ( , )B x y . If 

max ( , )B x y  and max( , ) ( , ) 0B x y B x y  for all ( , ) ,B x y  then max ( , )B x y
is called the maximal negative matrix-integral inverse of ( , )B x y .  

5.5.1 The UL-Type RG-Factorization 

To derive the UL-type RG-factorization, from Eq. (5.36) we write 

( ) ( )
1 0

( 1) ( 1) ( 1)
2 1 0

( 2) ( 2) ( 2)
2 1 0

( , ) ( , )
( , ) ( , ) ( , )

( , ) .
( , ) ( , ) ( , )

k k

k k k

k k k k

A x y A x y
A x y A x y A x y

Q x y
A x y A x y A x y

If the continuous-time QBD process with continuous phase variable given in 
Eq. (5.36) is irreducible, then there must exist the maximal nonpositive matrix- 
integral inverse of ( , )k Q x y  for 1k . Let ( , )kN x y  be the (1,1)st entry of 

max ( , )k Q x y  for 1k . We define the R- and G-measures as follows: 

0 10
d 0k

k kR x y A x z N z y z k  (5.37) 

and

20
( , ) ( , ) ( , )d , 1.k

k kG x y N x z A z y z k  (5.38) 

We write the U-measure as 

( ) ( 1)
1 20

( , ) ( , ) ( , ) ( , )dl l
l lU x y A x y R x z A z y z  (5.39) 

or
( ) ( )
1 0 10

( , ) ( , ) ( , ) ( , )d , 0.l l
l lU x y A x y A x z G z y z l  (5.40) 
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It is obvious that for 1k ,

max
( , ) ( , ),k kN x y U x y  (5.41) 

which leads to 

0 0
( , ) ( , )d ( , ) ( , )d ( , ).k k k kU x z N z y z N x z U z y z I x y  (5.42) 

Remark 5.2 0 ( , )U x is the kernel of the censored Markov chain of the 
QBD process to level 0 . Based on a censoring property, we need to identify the 
following two cases: 

(1) If the QBD process is positive recurrent (resp. null recurrent), then the 
censored Markov chain to level 0 with the kernel 0 ( , )U x y  is also positive recurrent 

(resp. null recurrent), and 0 00
( ,[0, )) ( , )d 0U x U x y y  for all 0x .

(2) If the QBD process is transient, then the censored Markov chain to level 0
with the kernel 0 ( , )U x y  is also transient, and 0 00

( ,[0, )) ( , )d 0U x U x y y

for some 0x .
The following theorem provides the minimal nonnegative solutions to the 

kernel equations for the R-, U- and G-measures. 
Theorem 5.4 (1) The kernel sequence { ( , ), 0}kR x y k  is the minimal non- 

negative solution to the system of integral equations 

( ) ( 1)
0 10

( 2)
1 20 0

( , ) ( , ) ( , )d

( , ) ( , ) ( , )d d 0.

k k
k

k
k k

A x y R x z A z y z

R x z R z u A u y u z (5.43)

(2) The kernel sequence { ( , ), 1}kG x y k  is the minimal nonnegative solution 
to the system of integral equations 

( ) ( )
2 10

( )
0 10 0

( , ) ( , ) ( , )d

( , ) ( , ) ( , )d d 0.

k k
k

k
k k

A x y A x z G z y z

A x z G z u G u y u z (5.44)

Proof We only prove Eq. (5.43), while the proof of Eq. (5.44) is similar. 
It follows from Eq. (5.37) that 

( )
1 0 1 10 0 0

( , ) ( , )d ( , ) ( , ) ( , )d d .k
k k k kR x z U z y z A x u N u z U z y u z  (5.45) 

Substituting Eq. (5.41) into the right-hand side of Eq. (5.42) leads to 

( ) ( )
0 1 1 00 0

( , ) ( , ) ( , )d d ( , ).k k
k kA x u N u z U z y u z A x y  (5.46) 
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Substituting Eq. (5.39) into the left-hand side of Eq. (5.45) leads to 

( 1)
1 10 0

( 2)
1 20 0

( , ) ( , )d ( , ) ( , )d

( , ) ( , ) ( , )d d .

k
k k k

k
k k

R x z U z y z R x z A z y z

R x z R z u A u y u z (5.47)

Thus, Eq. (5.45) and Eq. (5.47), together with Eq. (5.46), illustrate that the kernel 
sequence { ( , ), 0}kR x y k  is a nonnegative solution to the system of integral 
functions Eq. (5.43). Furthermore, using a similar discussion to Chapter 1 in 
Neuts [23] yields that { ( , ), 1}kR x y k  is the minimal nonnegative solution of 
Eq. (5.43). This completes the proof. 

For the function ( , )R x y  for , 0x y , the positive number r is called the spectral 
radius of ( , )R x y  if there exist two non-zero nonnegative functions ( , )u x y  and 

( , )v x y  such that 

0
( , ) ( , ) ( , )dru x y u x z R z y z

and

0
( , ) ( , ) ( , )d .rv x y R x z v z y z

It is interesting to study the spectral radius of ( , )R x y , the key issues of which 
include (1) spectral radius existence, (2) spectral radius uniqueness and (3) spectral 
radius structure. If the QBD process is Harris recurrent and ergodic, and ( , )R x y
has the spectral radius r, then 0 1r , and r is an eigenvalue of the function 

( , )R x y , if any. 
For the continuous-time QBD processes with continuous phase variable, the 

UL-type RG-factorization is given by 

0 0
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) d d ,U D LQ x y I x z R x z U z u I u y G u y u z  (5.48) 

where

0

1

2

0 ( , )
0 ( , )

( , ) ,0 ( , )
0

U

R x y
R x y

R x y R x y

0 1 2( , ) diag( ( , ), ( , ), ( , ), )DU x y U x y U x y U x y

and
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1

2

3

0
( , ) 0

( , ) .( , ) 0
( , ) 0

L

G x y
G x y G x y

G x y

Proof Computing the matrix product ( , ) ( , ) ( , )[ ( , )U DI x z R x z U z u I u y
( , )]LG u y  yields that the ( , )k k th entry, the ( 1, )k k th entry and the ( , 1)k k th 

entry of this product are 

1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , ),
( , ) ( , ) ( , )

k k k k

k k

I x z U z u I u y R x z U z u G u y
I x z U z u G u y

and

1( , ) ( , ) ( , ),k kR x z U z u I u y

respectively. 
For the ( , )k k th entry of this product, since  

0 0
( , ) ( , ) ( , )d d ( , )k kI x z U z u I u y u z U x y

and

( )
1 1 0 10 0 0

( , ) ( , ) ( , )d d ( , ) ( , )d ,k
k k k kR x z U z u G u y u z A x z G z y z

it follows from Eq. (5.40) that 

10 0
( )

1 1

[ ( , ) ( , ) ( , ) ( , ) ( , )

( , )]d d ( , ).
k k k

k
k

I x z U z u I u y R x z U z u

G u y u z A x y

Similarly, we can obtain 

( )
20 0

( , ) ( , ) ( , )d d ( , )k
k kI x z U z u G u y u z A x y

and

( )
1 00 0
( , ) ( , ) ( , )d d ( , ).k

k kR x z U z u I u y u z A x y

This completes the proof. 
For the continuous-time QBD process with continuous phase variable, the 

following theorem uses the RG-factorization to show that the generalized density 
function of the stationary probability distribution is an operator-multiplicative 
solution.
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Theorem 5.5 If the continuous-time QBD process with continuous phase 
variable is Harris recurrent and ergodic, then the generalized density function 

0 1 2( ) ( ( ), ( ), ( ), ...)y y y y  of its stationary probability distribution is operator- 
multiplicative, given by 

1 10
( ) ( ) ( , )d , 1,k k ky z R z y z k (5.49)

where 0 0( ) ( )y v y , 0 ( )v y  is the generalized density function of the stationary 
probability distribution of the censored chain to level 0 with the kernel 0 ( , )U x y  
which is Harris recurrent and ergodic, and  is a positive constant such that 

0
0

( )d 1.l
l

x x

Proof Note that 

0
( ) ( , )d 0,z Q z y z  (5.50) 

substituting Eq. (5.48) into Eq. (5.50) leads to 

0 0 0
( ) ( , ) ( , ) ( , )

( , ) ( , ) d d d 0.
U D

L

z I z x R z x U x u

I u y G u y u x z (5.51)

We now solve the Eq. (5.51) by two steps. In the first step, we set 

0
( ) ( ) ( , ) ( , ) d ,Uw y z I z y R z y z  (5.52) 

which is partitioned as 0 1 2( ( ), ( ), ( ), ...)w y w y w y  according to the levels, then 
Eq. (5.52) becomes 

0 0 00
( ) ( ) ( , )d ( )w y z I z y z y  (5.53) 

and for 1k ,

1 10

1 10

( ) ( ) ( , ) ( ) ( , ) d

( ) ( ) ( , )d .

k k k k

k k k

w y z R z y z I z y z

y z R z y z (5.54)

In the second step, we determine the sequence { ( )}kw y  in terms of another 
equation

0 0
( ) ( , ) ( , ) ( , ) d d 0,D Lw x U x u I u y G u y u x

which is equivalent to  
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1 1 10 0
( ) ( , ) ( , ) ( ) ( , ) ( , ) d d 0l l l l lw x U x u I u y w x U x u G u y u x  (5.55) 

for all 0l . Since the QBD process is Harris recurrent and ergodic, so is the 
censored chain to level 0 with the kernel 0 ( , )U x y . Let 0 ( )v y  be the generalized 
density function of the stationary probability distribution for the censored chain 
to level 0 with the kernel 0 ( , )U x y . Then it is clear that 0( ( ), 0, 0, ...)v y  is a non- 
zero nonnegative solution to the Eq. (5.55), where  is a positive constant. 
Therefore,

0 0( ) ( )
( ) 0, for 1.k

w y v y
w y k

 (5.56) 

Substituting Eq. (5.56) into Eq. (5.54) leads to 

1 10
( ) ( ) ( , )d , for 1.k k ky z R z y z k

Using the normalization condition yields that the positive constant  is determined 

by 
0

0
( )d 1l

l
x x . This completes the proof. 

Remark 5.3 For the continuous-time level-independent QBD process with 
continuous phase variable whose matrix ( , )Q x y  of generalized density functions 
is given in Eq. (5.68), by means of the uniformization technique we can transform 
this continuous-time QBD process to a discrete-time level-independent QBD process 
with continuous phase variable whose matrix of generalized density functions is 
given by 

( , ) ( , ) ( , ) ( , ),P x y x y x y Q x y

where 
( , ) diag( , , , ...)xy xy xyx y

and
1 1 1( , ) diag( ( ) ( ), ( ), ...).x y x x x

Based on this, we can compute the stationary probability distribution of the 
continuous-time QBD process with continuous phase variable in terms of that 
algorithm proposed for the corresponding discrete-time QBD process.  

5.5.2 The LU-Type RG-Factorization 

We now provide a computable framework for solving the following integral equation 

0
( ) ( , )d ( ),x Q x y x f y  (5.57) 
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given that ( ) 0f y  for some 0y  and ( , )Q x  is the kernel matrix of the 
continuous-time QBD process with continuous phase variable. The solution is a 
key for deriving expressions for some transient performance measures in stochastic 
models, for example, the probability distribution at time t, the distribution of a 
first passage time and the distribution of a sojourn time. 

It is easy to obtain that max0
( ) ( ) ( , )dx f y Q y x y . Thus, it is necessary to 

provide an expression for the maximal negative matrix-integral inverse of ( , )Q x y .
For simplicity, we introduce the notation 

0
( , ) ( , ) ( , ) ( , )d .f x y g x y f x z g z y z

We write 
( )

1 1( , ) ( , ) ( , ) ( , ), 1,l
k l l l kY x y G x y G x y G x y l k

and
( )

1 2( , ) ( , ) ( , ) ( , ), 1, 0.l
k l l l kZ x y R x y R x y R x y k l

Theorem 5.6 If the continuous-time QBD process with continuous phase 
variable given in Eq. (5.36) is transient, then 

max max
( , ) ( , ) ( , ) ,( , ) ( , ) ( , ) UL DQ x y I x y R x yI x y G x y U x y

where 

(1)
1
(2) (2)

2 1

( , )
( , ) ( , )

,( , ) ( , )
( , ) ( , ) ( , )L

I x y
Y x y I x y

I x y G x y
Y x y Y x y I x y

0 1 2max max maxmax
diag ( , ) , , ,( , ) ( , ) ( , )D U x yU z u U x y U x y

and
(0) (0)
1 2

(1)
1

( , ) ( , ) ( , )
( , ) ( , )

[ ( , ) ( , )] .
( , )U

I x y Z x y Z x y
I x y Z x y

I x y R x y
I x y

Proof We only need to check that 

max ( , ) ( , ) ( , )Q x y Q x y I x y

and
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max( , ) ( , ) ( , ).Q x y Q x y I x y

Note that the matrices ( , ) ( , )LI x y G x y  and ( , ) ( , )UI x y R x y  of generalized 
density functions are lower-triangular and Eupper-triangular, respectively, thus 
their inverses are both unique. Some integral calculations lead to the stated result. 

To solve the integral equation Eq. (5.57), it is necessary to derive another 
useful factorization: The LU-type RG-factorization for the continuous-time QBD 
process with continuous phase variable. 

We write 
(0)

0 1( , ) ( , )U x y A x y

and

( ) ( ) ( 1)
1 2 1 0( , ) ( , ) ( , ) ( , ) ( , ), 1.k k k

k kU x y A x y A x y U x y A x y k  (5.58) 

It is easy to check that the generalized density function ( , )kU x y  is invertible 
for 0k .

Let the sequence { ( , )}kR x y  of generalized density functions be the unique 
nonnegative solution to the system of integral equations 

( 1) ( )
1 0 1 1

( 1)
2

( , ) ( , ) ( , ) ( , ) ( , )
( , ) 0, 2,

k k
k k k

k

R x y R x y A x y R x y A x y
A x y k (5.59)

with the boundary condition 

(1)
1 2 0( , ) ( , ) ( , ) .R x y A x y U x y  (5.60) 

Similarly, let the matrix sequence { ( , )}kG x y  be the unique nonnegative solution 
to the system of integral equations 

( ) ( )
0 1

( )
2 1

( , ) ( , ) ( , )
( , ) ( , ) ( , ) 0, 1,

k k
k

k
k k

A x y A x y G x y
A x y G x y G x y k (5.61)

with the boundary condition 

(0)
0 0 0( , ) ( , ) ( , ).G x y U x y A x y  (5.62) 

The following theorem provides the LU-type RG-factorization for the continuous- 
time QBD process with continuous phase variable. The proof is obvious and is 
omitted here.  

Theorem 5.7 For the continuous-time QBD process with continuous phase 
variable given in Eq. (5.36), the LU-type RG-factorization is given by

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,L D UQ x y I x y R x y U x y I x y G x y  (5.63) 
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where 

0 1 2 3( , ) diag( ( , ), ( , ), ( , ), ( , ), ...),DU x y U x y U x y U x y U x y

1

2

3

0
( , ) 0

( , ) ( , ) 0
( , ) 0

L

R x y
R x y R x y

R x y

and

0

1

2

0 ( , )
0 ( , )

.0 ( , )
0

U

G x y
G x y

G G x y

We write 

( )
1 1( , ) ( , ) ( , ) ( , ), 1,l

k l l l kX x y R x y R x y R x y l k  (5.64) 

and
( )

1 1( , ) ( , ) ( , ) ( , ), 1, 0.l
k l l l kY x y G x y G x y G x y k l  (5.65) 

The following Theorem provides expressions for each entry in the maximal 
nonpositive inverse max ( , )Q x y . We set 1

,max , 0
( ( , ))( , ) m n m n
q x yQ x y  partitioned 

according to the levels.  
Theorem 5.8 For the continuous-time QBD process with continuous phase 

variable given in Eq. (5.36), we have 

( ) ( )

1
( )

1,

1

( , ) ( , ) ( , ) ( , )

( , ), if 0 1,

( , ) ( , ) ( , ) ( , ),
( , )

if ,

( , ) ( , ) ( , ) ( , )

m m
m m n i i m

i
i m

i m n

m i m
m i i m i

im n

m m
n m n i i m

i n m

i

U x y X x y Y x y U x y

X x y n m

U x y Y x y U x y X x y
q x y

n m

Y x y U x y Y x y U x y

X ( , ), if 1.i m
n m x y n m
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5.6 Structured Matrix Expressions

In this section, if the matrix of generalized density functions of the continuous-time 
QBD process with continuous phase variable is in 2

2 ([0, ) )L , then the integral 
equations given in the above section can be converted into the associated matrix 
equations. Therefore, some useful matrix-structured formulae, which resemble 
that in Section 1.3, are derived again. This leads to an algebraically algorithmic 
framework for calculating some performance measures of the continuous-time 
QBD processes with continuous phase variable.  

Since 2
2( , ) ([0, ) )Q x y L , we obtain that for either 0, 0,1k i  or 1,k

0i , 1 , 2 , 

T( ) ( ) ( )

0 0
( , ) ( ) ( ) ( ) ,( )k k k

i i m n m n i
m n

A x y a x y x yA

where { ( )}i x  is an orthogonal basis in 2 ([0, ))L ,

0 1 2( ) ( ( ), ( ), ( ), )x x x x

and

( ) ( ) ( )
,00 ,01 ,02
( ) ( ) ( )

( ) ,10 ,11 ,12
( ) ( ) ( )
,20 ,21 ,22

k k k
i i i

k k k
k i i i

i k k k
i i i

a a a
a a a
a a a

A

We write 

 ( ) diag ( ( ), ( ), ( ), )D x x x x

and
( ) ( )
1 0

( 1) ( 1) ( 1)
2 1 0

( 2) ( 2) ( 2)
2 1 0

.

k k

k k k

k k k kQ

A A
A A A

A A A

Note that 0 ( , ) ( , )Q x y Q x y  and 0 .Q Q  It is easy to check that for 0k ,

T( , ) ( )( ) .( )k kQ x y D x Q D y

Proposition 5.3 (1) The matrix-identity kernel is given by 

T( , ) ( ) .( )I x y D x D y
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(2) For 1k , the maximal negative matrix-integral inverse of the matrix ( , )k Q x y
is given by 

T
max ( , ) ( ) ,( )k kQ x y D x Q D y  (5.66) 

where k Q  is an inverse of the matrix k Q .  
Proof We only prove (1), while (2) can be proved similarly. 
We assume that the matrix-identity kernel T( , ) ( ) ( )I x y D x CD y , where the 

matrix C is unknown. Let ( , )B x y  be an arbitrary matrix of generalized density 
functions in 2

2 ([0, ) )L . Then 

T( , ) ( ) .( )B x y D x BD y

Notice that 

0
( , ) ( , )d ( , )I x z B z y z B x y

and

0
( , ) ( , )d ( , ),B x z I z y z B x y

we obtain 
T( )( ) 0( )D x I C BD y

and

T( ) ( ) 0.( )D x B I C D y

Since { ( )}i x  is an orthogonal basis in 2 ([0, ))L  and the matrix B is arbitrary, 
we obtain C I . This completes the proof. 

The following proposition provides an algebraically computational framework 
for calculating the kernel sequences { ( , ), 0}kR x y k , { ( , ), 1}kG x y k  and 
{ ( , ), 0}lU x y l . The proof is obvious and is omitted here.  

Proposition 5.4 Let kN  be the (1,1)st block of the matrix k Q  cor- 
responding to the block-structure of the matrix k Q, given in Eq. (5.66).

(1) For 0k

T( , ) ( ) ,( )k kR x y x R y

where ( )
0 1
k

k kR NA  satisfies the system of matrix equations 

( ) ( 1) ( 2)
0 1 1 2 0.k k k

k k kR R RA A A  (5.67) 

(2) For 1k
T( , ) ( ) ,( )k kG x y x G y
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where ( )
2
k

k kG N A  satisfies the system of matrix equations 

( ) ( ) ( )
2 1 0 1 0.k k k

k k kG G GA A A

(3) For 0l ,
T( , ) ( ) ,( )l lU x y x U y

where 
( ) ( 1) ( ) ( )
1 2 1 0 1.
l l l l

l l lU R GA A A A

Furthermore, 

, 1,k kN U k

while 0U  is singular if the QBD process is recurrent, otherwise it is invertible. 
Remark 5.4 The sequence { }kR  is a non-zero solution to the system of matrix 

Eq. (5.67). However, a non-zero solution to the system of matrix Eq. (5.67) may 
not be the sequence { },kR  because the system of matrix Eq. (5.67) possibly has 
different non-zero solutions, e.g., see Gail, Hantler and Taylor [13]. From the 
viewpoint of solutions, it is necessary but more difficult to provide conditions  
for identifying whether a non-zero solution to the system of matrix Eq. (5.67) is 
the sequence { }kR . At the same time, the sequence { }kG  also has the same 
characteristics.

The following theorem provides a matrix-structured form for the RG-factorization, 
which will be useful in constructing algebraically algorithmic solutions for the 
continuous-time QBD processes with continuous phase variable. 

Theorem 5.9 

 ( ) ( ),U D LQ I R U I G

where 

0 1 2diag( , , , ),DU U U U

0

1

2

0
0

0U

R
R

R
R

and

1

2

0
0

.
0L

G
G

G
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Proof Note that 
T( , ) ( ) ,( )Q x y D x QD y

T( , ) ( ) ,( )D DU x y D x U D y

T( , ) ( ) ,( )U UR x y D x R D y

T( , ) ( ) ,( )L LG x y D x G D y

it follows from Eq. (5.48) that 

T( )[ ( ) ( )] 0.U D LD x Q I R U I G D y

Therefore, we obtain 

 ( ) ( ).U D LQ I R U I G

This completes the proof. 
The following theorem provides an algebraically computational framework  

for calculating the generalized density function ( )x  of stationary probability 
distribution.  

Theorem 5.10 If the continuous-time QBD process with continuous phase 
variable is Harris recurrent and ergodic, then  

T( ) , 0,( )l ly S ly

where the row vector lS  is iteratively determined by 

1 1, 1,l l lS S R l

and 0S  is a non-zero solution to the equation 0 0 0S U  satisfying T
0 0( )S y

for some 0y .
Proof It follows from Eq. (5.49) that 

T
1 1( ) 0.( )l l lS S R y

Since { ( )}i x  is an orthogonal basis in 2 ([0, ))L , we obtain 1 1l l lS S R . On the 

other hand, 0 00
( ) ( , )d 0x U x y x  and 

0
0

( )d 1k
k

x x  imply 0 0 0S U  and 

0 0S . Note that 0 ( ) 0y  for some 0y , hence T
0 ( ) 0S y  for some 0y .

This completes the proof. 
We now discuss an important special case: A continuous-time level-independent 

QBD process with continuous phase variable whose matrix of generalized density 
functions is given by 
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1 0

2 1 0

2 1 0

( , ) ( , )
( , ) ( , ) ( , )

( , ) .
( , ) ( , ) ( , )

B x y B x y
B x y A x y A x y

Q x y
A x y A x y A x y

 (5.68) 

In this case, we have 

 ( , ) ( , ), 1,kR x y R x y k

and the generalized density function of the stationary probability is given by 

0 0

1 0 00

1 1 1 20 0 0

2 3 1 1 2 1

( ) ( )

( ) ( ) ( , )d

( ) ( ) ( , )

( , ) ( , )d d d , 2.
k

k k

x v x

x z R z x z

x z R z z

R z z R z x z z z k

At the same time, we have 

1 0 0
1

1

,
, for 2.k

k

S S R
S S R k

Now, we provide an algorithm framework for computing the stationary 
distribution of the continuous-time level-independent QBD process with continuous 
phase variable whose matrix of generalized density functions is given in Eq. (5.68). 
We assume that the QBD process is Harris recurrent and ergodic, and each entry 
of its matrix of generalized density functions is in 2([0, ) )L .

To compute the stationary distribution of the QBD process, we describe an 
orthogonal algorithm as follows:  

Step 1 Orthogonal basis and orthogonal expansion 
Let the function sequence { ( ), 0}n x n  be an orthogonal basis in 2 ([0, ))L .

Then for an arbitrary function 2
2( , ) ([0, ) )f x y L , we have 

,
0 0

( , ) ( ) ( ),m n m n
m n

f x y f x y

where

, 0 0
( , ) ( ) ( )d d , , 0.m n m nf f x y x y x y m n

Step 2 Orthogonal expansions for kernel elements  
Using the orthogonal basis { ( ), 0}n x n  given in Step 1, we provide the 

orthogonal expansion for each entry of the matrix ( , )Q x y  given in Eq. (5.68). 
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First, we give the orthogonal expansions for the off-diagonal entries 0 ( , )A x y ,
2 ( , )A x y , 0 ( , )B x y , 2 ( , )B x y  as follows: 

( )
,

0 0
( , ) ( ) ( ), 0, 2,i

i m n m n
m n

A x y a x y i

and

( )
,

0 0
( , ) ( ) ( ), 0, 2.i

i m n m n
m n

B x y b x y i

We take the matrix iA  with the ( , )m n th entry ( )i
m na  and the matrix iB  with the 

( , )m n th entry ( )
,

i
m nb  for 0, 2i .

Then, we give the orthogonal expansions for the diagonal entries 1( , )A x y  and 
1( , )B x y , respectively. To that end, we write 

0 1( ) ( ,[0, )) ( ,[0, ) ( , ))x B x B x x x

and

0 1 2( ) ( ,[0, )) ( ,[0, ) ( , )) ( ,[0, )) .x A x A x x x A x

Note that 

0 1 2( ) ( ,[0, )) ( ,[0, ) ( , )) ( ,[0, ))x A x A x x x B x

due to 2 2( ,[0, )) ( ,[0, ))B x A x . It is easy to see that for any , 0x y ,

1 1( , ) ( , )[1 ] ( )xy xyA x y A x y x

and

1 1( , ) ( , )[1 ] ( ) .xy xyB x y B x y x

Let

(1,1)
1 ,

0 0
( , )[1 ] ( ) ( )xy m n m n

m n
A x y a x y

and

(1,2)
,

0 0
( ) ( ) ( ).xy m n m n

m n
x a x y

Then

(1)
1

0 0
( , ) ( ) ( ),m n m n

m n
A x y a x y

where
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(1) (1,1) (1,2)
, , , , , 0.m n m n m na a a m n

Therefore, we take the matrix 1A  with the ( , )m n th entry (1)
,m na .

Similarly, let 

(1,1)
1 ,

0 0
( , )[1 ] ( ) ( )xy m n m n

m n
B x y b x y

and

(1,2)
,

0 0
( ) ( ) ( ).xy m n m n

m n
x b x y

Then

(1)
1 ,

0 0
( , ) ( ) ( ),m n m n

m n
B x y b x y

where

(1) (1,1) (1,2)
, , , , , 0.m n m n m nb b b m n

We take the matrix 1B  with the ( , )m n th entry (1)
,m nb .

Step 3 Computation of the stationary probability distribution  
Let R be a non-zero solution to the matrix equation 2

0 1 2 0A RA R A  with 
the setting that lim ( )

N
R R N , where (0) 0R  and 1 2 1

0 1 2 1( ) ( 1)R N A A R N A A

for 1N . If 0S  is the non-zero solution to the matrix equation 0 0 0S U ,

where 0 1U B 1
0 21 2[ ( )]B BA RA , then the stationary probability distribution 

is given by 

T
0 0( ) , 0, 0,( )l

l y S R R l yy

where 0 1 3( ) ( ( ), ( ), ( ), ...)y y y y .
Step 4 A truncated approximation  
When the sizes of the matrices 1A  and / or 1B  are infinite, it is necessary to 

truncate the matrices in order to compute the matrix R and / or the vector 0S
approximately. After choosing a larger positive integer N, for 0,1, 2i  we take 

( ) ( ) ( )
0,0 0,1 0,
( ) ( ) ( )
1,0 1,1 1,

( ) ( ) ( )
,0 ,1 ,

i i i
N

i i i
N

i

i i i
N N N N

a a a
a a a

A

a a a
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and

( ) ( ) ( )
0,0 0,1 0,
( ) ( ) ( )
1,0 1,1 1,

( ) ( ) ( )
,0 ,1 ,

i i i
N

i i i
N

i

i i i
N N N N

b b b
b b b

B

b b b

For these new matrices iA  and iB  for 0,1, 2i , after going to step 3 again, we 
can give an approximate probability distribution below 

T
0 0( ) , 0, 0,( )l

l y S R R l yy

where 0 1( ) ( ( ), ( ), ..., ( ))Ny y y y , 0S  is a row vector of dimension 1N ,
0R  and R  are two matrices of order 1N .
Now, we provide a structure for the numbers (1,2)

,m na  and (1,2)
,m nb  for , 0m n . To 

that end, we need to note a crucial result for the -function xy  for , 0x y  as 
follows:

0
( ) d ( ).xyx y x

Let

0
( ) ( ).m m

m
x a x

Then

(1,2)
, 0 0

0

( ) ( ) ( )d d

( ) ( ) ( )d

, if ,
0, if .

m n xy m n

m n

m

a x x y x y

x x x x

a m n
m n

Similarly, we have 

(1,2)
,

, if ,
0, if .

m
m n

b m n
b

m n

where

0
( ) ( ).m m

m
x b x
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The following theorem constructs a basic relationship among these numbers ( )
,

i
m na

and ( )
,

i
m nb  for 0,1, 2i  and , 0m n . This relationship is similar to the ordinary 

result that each row sum is zero in the infinitesimal generator of a continuous-time 
QBD process with countable phases. 

Theorem 5.11 Let
0

( )dn nc y y . For each given 0m , we have 

(1)

(1,1) ( )
, ,

0 0,2

.i
m n m n m n

n i
a c a a

(2)

(1,1) (0)
, ,

0
.m n m n m n

n
b c b b

Proof We only prove (1), while the proof of (2) is similar. 
Note the QBD process is Harris recurrent and ergodic, we yield 

0 1 20
( , ) ( , ) ( , ) d 0.A x y A x y A x y y

Using the orthogonal expansions given in Step 2, we obtain  

(0)
0 ,0

0 0
( , )d ( ) ,m n m n

m n
A x y y x c a

(2)
2 ,0

0 0
( , )d ( ) ,m n m n

m n
A x y y x c a

and the relation 1 1( , ) ( , )[1 ] ( )xy xyA x y A x y x  leads to 

(1,1)
1 ,0

0 0
( , )[1 ]d ( )xy m n m n

m n
A x y y x c a

and

0
0

( ) d ( ) .xy m m
m

x y x a

Thus, we obtain 

(1,1) ( )
, ,

0 0 0,2
( ) 0.i

m m n m n m n
m n i

x a c a a

Since { ( ), 0}m x m  is an orthogonal basis in 2 ([0. ))L , we obtain that for 
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each given 0,m

(1,1) ( )
, ,

0 0,2

.i
m n m n m n

n i
a c a a

This completes the proof. 
We now extend the mean drift condition of the continuous-time level-independent 

QBD process with countable phases to the corresponding QBD process ( , )Q x y
for , 0x y  with continuous phase. To do this, for , 0x y  we write 

0 1 2( , ) ( , ) ( , ) ( , )A x y A x y A x y A x y

and

0 1 0 20

1 0 10

( , ) ( , ) ( , ) ( , )d

( , ) ( , ) ( , )d .

U x y B x y R x z B z y z

B x y B x z G z y z

We assume that the two Markov chains ( , )A x y  and 0 ( , )U x y  on continuous state 
space are all Harris recurrent and ergodic. Let ( )x  be the stationary probability 

distribution of the Markov chain ( , )A x y . Then 
0

( ) ( , )d 0x A x y x  for each 

0y  and 
0

( )d 1x x .

Using a similar analysis on the mean drift condition of the continuous-time 
level-independent QBD process with countable phases, it is easy to see that the 
QBD process ( , )Q x y  is Harris recurrent and ergodic if for all 0,y

0 20 0
( ) ( )d ( ) ( )dx A x y x x A x y x

When using an orthogonal base to provide orthogonal expansions for some 
entries of the matrix of the generalized density functions given in Eq. (5.68), it is 
easy to see that the signs of the orthogonal coefficients always alternate. For this, 
the subtractive cancellation may be catastrophic in order to compute the matrix R
in Step 3 according to the basic iterative procedure: lim ( ),

N
R R N  where (0) 0R

and 1 2 1
0 1 2 1( ) ( 1)R N A A R N A A  for 1N . In general, the sign alternation 

and the subtractive cancellation may result in the fact that the basic iterative 
computation is not numerically stable unless the size of the orthogonal expansion 
is small or otherwise is well structured. 

We now provide an example to indicate how the orthogonal algorithm works, 
which demonstrates that the algorithm is full of promise for numerical computation 
of the QBD process with continuous phase. We take the entries of the matrix 

( , )Q x y  given in Eq. (5.68) as follows: 
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1 0

0

1

( , ) 1, ( , ) 1, for all , 0,
1( , ) exp ( ) ,
2

1 1( , ) ( 2)exp ( ) [1 ]
3 2

2 19 6(1 ) exp
3 2

xy

xy

B x y B x y x y

A x y xy x y

A x y x y x y

x x

and

2 2
1 1( , ) ( , ) ( 1)( 1)exp ( ) .
4 2

A x y B x y x y x y

It is easy to check that 

0

2

1 1 11 1( , ) exp (1,1 ) exp ,
1 1 12 2

11 11 12( , ) exp (1,1 ) exp
1 1 12 2
2 4

A x y x x y
y

A x y x x y
y

and

1

11 11 13( , ) exp (1,1 ) exp
1 12 21
3
2 19 01 1exp (1,1 ) exp3

12 20 6
2 18 11 13 3exp (1,1 ) exp

1 12 21 6
3

A x y x x y
y

x x y
y

x x y
y

.

Note that 1 1exp , (1 )exp
2 2

x x x  are orthogonal bases in 2 ([0, )),L

According to (1) in Remark 10, we obtain 
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0 1 2

2 1 2 18 81 1 3 3 3 3, , .
1 1 1 11 6 1 6

3 3

A A A

Let R be a non-zero solution to the matrix equation 2
0 1 2 0A RA R A , and this 

solution is iteratively obtained by using step 3 of the orthogonal algorithm. Then 

1 2

1 1( ) ( , ) exp ,
1 2

l
l y r r R y

y

where 1 2 0( , )r r R  and  is constant such that 
0

0

( )d 1.l
l

y y

5.7 A CMAP/CPH/1 Queue

In this section, we discuss a 1CMAP CPH  queue in terms of the continuous-time 
QBD process with continuous phase variable. 

5.7.1 The CPH Distribution 

Let ( , )x  on [0, ) ([0, ))  and ( , )x y  for , 0x y  be the kernel and 
the generalized density function of the continuous-time Markov chain on continuous 
state space [0, ), respectively. We assume that 

0
( ,[0, )) ( , )d ( , ) ( , )d 0

x

x
x x y y x x x y y

and there exists an interval [ ) [0 )a b  such that 

 ( ,[0, )) 0 for all [ , ).x x a b  (5.69) 

Let (0) ( ) ( ,[0, ))x x . Then it is easy to see that the absorbing rate of the 
Markov chain ( , )x  from state x into the absorbing state is (0) ( )x  for 0x .
Using a similar discussion on the PH distribution with an irreducible expression 
( , )T  of size m (e.g., see Neuts [23] for more details), we write the kernel 
expression of the CPH distribution as ( ( ), ( , )),x x y  where ( ) 0x  for 0x

and
0

( )d 1x x . A simple computation leads to explicit expression of the CPH 

distribution below: 
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0 0
( ) 1 ( )exp{ ( , ) } exp{ ( , ) }d d .F t x x x t x y t y x  (5.70) 

Note that 

0
0 exp{ ( , ) } exp{ ( , ) }d 1 for all [0, ).x x t x y t y x

Remark 5.5 To understand Eq. (5.70), we analyze the expression for the 
ordinary PH distribution with irreducible representation { , }S  of size m, where 

1 2( , , ..., )m  and , 1 ,
( )i j i j m
sS . It is easy to check that 

, ,
1

( ) 1 exp{ }

1 exp{ } ,exp{( )}
m m

i i i i j
i j i

F t St e

s t S

where 1,1 2,2 ,diag( , , ..., )m ms s s .
It is well known from Neuts [23] that the PH distribution with an irreducible 

expression ( , )T  of size m  for m  must be light-tailed. However, the CPH 
distribution with the kernel expression ( ( ), ( , ))x x y  is either light-tailed or 
heavy-tailed. To construct the heavy-tailed case, we let 

1, for [0,1],
( )

0, otherwise,
x

x

( , ) 0x y  for all x y  and ( , ) 0x x  for all [0 )x . Then 

1

0
( ) 1 exp{ ( , ) }d .F t x x t x

We take that ( , ) ln( ( ))x x a x , where ( ) (1, )a x . It is clear that 

1

0

d( ) 1 .
[ ( )]t

xF t
a x

When 1( )a x x , we have ( ) 1 1 (1 )F t t ; when ( ) ta x x , we have ( )F t
21 1 (1 )t . Obviously, ( )F t  is heavy-tailed in each of the two cases.  

5.7.2 The CMAP 

Let ( , )C x  and ( , ) ( , )C x D x  on [0, ) ([0, )) be the kernels of the two 
continuous-time Markov chains on continuous state space [0, ), and ( , )C x y
and ( , ) ( , )C x y D x y  the generalized density functions of the two Markov chains. 
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We further assume that 
(1)

 ( ,[0, )) 0C x

and there exists an interval [ , )a b  such that for each [ , )x a b

 ( ,[0, )) 0.C x

(2) The continuous-time Markov chain ( , ) ( , )C x D x  on [0, )
([0, ))  is Harris recurrent and ergodic. Specifically, for [0, ),x

 ( ,[0, )) ( ,[0, )) 0.C x D x

We write 

( , ) ( , )
( , ) ( , )

( , )
( , ) ( , )

C x D x
C x D x

Q x
C x D x

for [0, )x  and ([0, )) . The Markov process with kernel ( , )Q x  for 
[0, )x  and ([0, ))  is called a Markovian arrival process on continuous 

state space, denoted by CMAP.  
Let ( )N t  and ( )J t  be the arrival number and the continuous phase of the CMAP 

at time t. We write 

, ( , ) { ( ) , ( ) (0) 0, ( ) }.xP k t P N t k J t N J t x

Then the probability sequence ,{ ( , ), 0}xP k t k  for 0, [0, )t x  and 
([0, ))  satisfies the forward Chapman-Kolmogorov differential equations 

0
(0, ) (0, ) ( , )dx x yP t P t C y y

t

and for 1k

, ,0 0
( , ) ( , ) ( , )d ( 1, ) ( , )d ;x x y x yP k t P k t C y y P k t D y y

t

or the backward Chapman-Kolmogorov differential equations 

, ,0
(0, ) ( , ) (0, )dx yP t C x y P t y

t

and for 1k
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0 0
( , ) ( , ) ( , )d ( , ) ( 1, )d .x y yP k t C x y P k t y D x y P k t y

t

Let

*

0
( , ) ( , ).k

x x
k

P z t z P k t

Then

* *

0
( , ) ( , )[ ( , ) ( , )]dx x yP z t P z t C y zD y y

t

or

* *
,0

( , ) [ ( , ) ( , )] ( , )d .x yP z t C x y zD x y P z t y
t

We assume that the continuous-time Markov chain with kernel ( , ) ( , )C x D x
on [0, ) ([0, ))  is Harris recurrent and ergodic. Let ( )B  be the stationary 
probability of this Markov chain with kernel ( , ) ( , )C x D x . Then the stationary 
arrival rate of the CMAP is given by 

0 0
( ) ( , )d d .x D x y x y

5.7.3 The CMAP/CPH/1 Queue 

Now, we use the CMAP and the CPH distribution to study a single server queue, 
where the customer arrivals form a CMAP with the kernel expression ( ( , ),C x y

( , ))D x y , and the service times are i.i.d. with a CPH distribution with the kernel 

expression ( ( ), ( , ))x x y . (0)

0
( ) ( , )d .x x y y  We denote such a queue as 

the 1CMAP CPH  queue. Let ( )N t , ( )I t  and ( )J t  be the number of customers 

in this system at time t, the phases of the arrival and service processes at time t,
respectively. { ( ), ( ),N t I t  ( ), 0}J t t  is a continuous-time QBD process with 

continuous phase variable whose matrix of generalized density functions is given by 

(0)
*

(0)

( , ) ( , )
( ) ( ) ( , ) ( , ) ( , )

( , ) .
( ) ( ) ( , ) ( , ) ( , )

C x y D x y
x y C x y x y D x y

Q x y
x y C x y x y D x y
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Let ( )x  be the generalized density function of the stationary probability of the 
continuous-time Markov chain with continuous state space [0, ) whose gener- 
alized density function is (0)( , ) ( , ) ( , ) ( , ) ( ) ( )x y C x y D x y x y x y . Then 
it is easy to check that this system is stable if and only if 

(0)

0 0 0 0
( ) ( , )d d ( ) ( ) ( )d d .x D x y x y x x y x y

We denote by ( , )R x y  the minimal nonnegative solution to the integral equation 

0

(0)

0 0

( , ) ( , ) ( , ) ( , ) d

( , ) ( , ) ( ) ( )d d 0.

D x y R x z C z y z y z

R x z R z u u y u z

Let ( )x  be the generalized density function of the stationary probability of the 
censored Markov chain whose generalized density function is given by 

(0)
0 0
( , ) ( , ) ( , ) ( ) ( )d .U x y C x y R x z z y z

We write the generalized density function 0 1 2( ) ( ( ), ( ), ( ), ...)y y y y  of 
stationary probability distribution of the QBD process with the matrix *( , )Q x y
of generalized density functions. Then 

0

10

( ) ( )

( ) ( ) ( , )d , for 1,k k

y y

y z R z y z k

where ( )y  is the stationary probability of the censored chain with kernel 0 ( , ),U x y

and  is a positive constant such that 
0

0

( )d 1k
k

y y .

5.8 Piecewise Deterministic Markov Processes

In this section, we first study a piecewise deterministic Markov process (PDMP). 
Then we apply the PDMP to analyze the GI G c  queue, and provide the stationary 
and transient probability distributions of the queue length. 

5.8.1 Semi-Dynamic Systems 

A deterministic system is described as follows. Given an initial state 0x , the state 
tx  of a deterministic system at time t is completely determined by the initial state 
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0x  and time t. We denote by 0( , )tx t x  the state change of this system. Obviously, 
tx  is a function of 0x  and t. It can be seen that the function  satisfies the 

following two conditions: 
(1) (0, ) ;x x
(2) ( , ( , )) ( , )t s x t s x .
In this case, the function 0( , )tx t x  defines a dynamic system.  
Let E denote the state space of the dynamic system, and  the -algebra

generated by the Borel subsets of E. Now, we define a local semi-dynamic system, 
which is useful in the study of the PDMPs later.  

Definition 5.3 Let ( , )E  be a Polish space. A local semi-dynamic system or 
a local semi-flow on E is a measurable mapping : D E , where D E ,
such that for each x E

( ) { : ( , ) } [0, ( ))D x t t x D c x

and  satisfies the following two conditions: 
(1) (0, )x x ;
(2) for all x E  and all ( )s D x ,

( ( , )) ( ),t D s x if and only if s t D x

and in this case 

 ( , ( , )) ( , ).t s x t s x

Condition (2) in Definition 5.3 can be interpreted as the future of this system can 
be precisely predicted as long as the present state of this system is known, and is 
independent of its history. This is the Markov property for the local semi-dynamic 
system, which indicates that a Markov process is a random generalization of the 
local semi-dynamic system.  

Now, we introduce some basic concepts for the local semi-dynamic system. 
The function ( , )t t x  is called a motion of the local semi-dynamic system, 
starting from state x. For each ,x E  the subset ( ) { ( , ) : ( )}E x t x t D x  is called 
a trajectory of the local semi-dynamic system, starting from state x. A state x E is 
called an equilibrium point if ( , )t x x  for all ( )t D x . A trajectory ( )E x  is said 
to be periodic if it is the trajectory of a periodic motion, that is, there exists the 
minimal positive number ( )T D x  such that ( , ) ( , )t T x t x  for all ( ),t D x
where state x is also called to be periodic. 

Theorem 5.12 If state x E  is periodic, then ( ) [0, )D x .
Proof If 0T  is the period of state x, then ( , ) (0, )T x x x. Since 

 [0, ( )) ( ) ( ( , )) [0, ( )),c x D x D T x T c x

we obtain 
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 ( ) ( ).c x T c x

Note that 0T  and ( ) 0c x , it is clear that ( )c x . This completes the proof. 
Definition 5.4 State x E  is called a joint point of  if there exist two states 

1x  and 2x  with 

1 2 2 1 1 2( ), ( ), ( ) ( )x E x x E x E x E x
such that 

*
1 2 1( ( , ), ),x t x x x

where

1 2 1 1 2( ) inf{ ( ) ( ) ( )}t x x t D x t x E x

We call  to be time reversible if for a fixed t , the map ( , ) :t
{ : ( )}x E t c x E  is reversible. Let ( , )y t x . Then ( , ).x t y  Obviously, 
a time reversible semi-dynamic system has no joint point.  

A semi-dynamic system is said to be smoothing if ( , )t x  is differentiable for 
time t. In this case, we have 

0

0

0

d ( , ) ( , )lim
d

( , ( , )) ( , )lim

( , )
lim .

t

t

t

t t

t

x t t x t x
t t

t t x t x
t

t x x
t

Thus, we can write 

d
( ),

d
t

t
x

v x
t

where

0

( , )
( ) lim .t t

t t

t x x
v x

t

Clearly, the smoothing semi-dynamic system can be expressed by a stationary 
ordinary differential equation. 

5.8.2 The -Memoryless Distribution Family 

Let { ( , ) : }F x x E  be a probability distribution family satisfying the following 
two conditions: 

(1) for a fixed x E , ( , )F x  is a probability distribution on ( ), and  
(2) for a fixed ( )A , ( , )F A  is -measurable. 
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Definition 5.5 The probability distribution family { ( , ) : }F x x E  is said to 
be memoryless if 

( , ) ( , ) ( ( , ), ),F x s t F x s F s x t (5.71)

and for each x E , the support of ( , )F x : supp{ ( , )} ( )F x D x , where ( , )F x t
( ,[ , ))F x t .
Theorem 5.13 Suppose { ( , ) : }F x x E  is a memoryless probability distri- 

bution family. If the function ( , )F x t  has right derivative at t s  supp{ ( , )}F x ,
then ( ( , ), )F s x t  has right derivative at 0t , and 

1
0

( ( , ), ) ( , ) .[ ( , )]t t s
F s x t F x tF x s

t t

Proof It follows from Eq. (5.71) that 

0

0

0

0

( , ) ( , ) ( , )lim

( , ) ( ( , ), ) ( , )lim

( ( , ), ) 1( , ) lim

( ( , ), )( , ) ,

t s
t

t

t

t

F x t F x s t F x s
t t

F x s F s x t F x s
t

F s x tF x s
t

F s x tF x s
t

since

0 0

( , )lim ( ( , ), ) lim 1.
( , )t t

F x s tF s x t
F x s

This completes the proof. 
For each ,x E  we write 

0 0
( , ) ( , ), if exists,( )

0, otherwise.

t t
F x t F x t

x t t

The measurability of ( , )F x t  with respet to x E  indicates that ( )x  is 
-measurable. 
Theorem 5.14 Suppose { ( , ) : }F x x E  is a memoryless probability distri- 

bution family. If ( , )F x t  is absolutely continuous in [0, ( ))Fc x  for a fixed x E
and there exist at most countable points [0, ( ))Ft c x  such that ( , )t x  is a -joint 
point, where ( ) inf{ : ( , ) 0}Fc x t F x t , then 
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0
exp ( ( , ))d , [0, ( ))

( , )
0, [ ( ), ).

t

F

F

u x u t c x
F x t

t c x

Proof It follows from Theorem 5.13 that 

( , )

( ( , )), a.e. on [0, ( )).
( , ) F

F x t
t t x c x

F x t

Hence we obtain 

ln ( , ) ( ( , )), a.e. on [0, ( )),FF x t t x c x
t

which leads to 

0
( , ) exp ( ( , ))d , a.e. on [0, ( )).

t

FF x t u x u c x

Note that ( ,0) 1F x , it is clear that 1 and we obtain the desired result. This 
completes the proof. 

Corollary 5.1 Let eE  be the set of all equilibrium points of a semi-dynamic 
system . Then there exists a nonnegative function  defined on eE  such that 
for each ex E ,

 ( , ) exp{ ( ) }.F x t x t

Proof If ex E , then ( , )u x x  for 0 u t , and x is a periodic point 
which leads to ( )Fc x . Thus we obtain 

0
( , ) exp ( ( , ))d

exp ( ) , a.e. on [0, ).

t
F x t u x u

x t

This completes the proof. 
Definition 5.6
Let

( ) { ( , ) : ( , ) ( , ) 0, , }.J E t x F x t F x t x E t

If ( )x J E , state x is called an F-jump point. 
For any x E  and [0, ( ))Ft c x , we write 

( , ) ( , )( , ) ( ( , ))
( , )

F x t F x ta x t a t x
F x t
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with convention 0 0.
0

Theorem 5.15 (1) If ( , ) ( )y t x J E , then ( , ) ( ) 0.a x t a y
(2) If ( , ) ( )y t x J E  but it is not a -joint point, then ( , ) ( )a x t a y  which 

is independent of the pair ( , )t x .  
Proof (1) is clear. We only need to prove (2). 
If ( , ) ( )y t x J E  but it is not a -joint point, then for any two states 1,x

2x E  with 1 1( , )y t x  and 2 2( , ) ,y t x  there exists a u for 1 20 min{ , }u t t
and a state z such that 

1 1 2 2( , ), ( , ), ( , ).y u z z t u x z t u x

Hence

1 1 1 1
1 1

1 1

1 1

1 1

( , ) ( , )( , )
( , )

( , )[ ( , ) ( , )]
( , ) ( , )

( , ) ( , ) .
( , )

F x t F x ta x t
F x t

F x t u F z u F z u
F x t u F z u

F z u F z u
F z u

Similarly, we have 

2 2
( , ) ( , )( , ) .

( , )
F z u F z ua x t

F z u
Thus, we obtain 

1 1 2 2( , ) ( , ) ( )a x t a x t a y

which is independent of the pair ( , )t x . This completes the proof. 
The function ( )a y  has the following probabilistic setting 

( ) sup{ ( , ) ( , ) : ( , )}.a y F x t F x t y t x

Clearly, ( ) 1a y . Specifically, a necessary and sufficient condition under which 
( ) 1a y  is that ( , ) ( )y t x J E  and ( ( ), )Fy c x x  for some .x E
Theorem 5.16 Let ( , )F x t  be discrete type for x E  and its jump times { }nt

can be ordered as 1 2 ...t t . If for each n, ( , )n nx t x  is not a -joint point, then 

1

1

( ) [1 ( )],
n

n n m
m

p a x a x

where ( , ) ( , )n n np F x t F x t .
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Proof Note that ( ) ( , )n n na x p F x t  and ( , )n m
m n

F x t p , we obtain 

( ) ,n
n

m
m n

pa x
p

hence we have 

1 1
1

1

1

( )
[1 ( )]

( )

( ) [1 ( )].

n
n n n

n
n

n m
m

a xp a x p
a x

a x a x

This completes the proof. 

5.8.3 Time Shift -Invariant Transition Kernel 

Let ( , , )Q x t B  for x E , t  and B E  satisfy  
(1) for a fixed pair ( , ), ( , , )x t Q x t  is a probability measure on ,
(2) for a fixed B, ( )Q B  is ( )-measurable. 
Definition 5.7 The transition kernel ( , , )Q x t B  for ,x E  t  and B

is called time shift -invariant if for any x E, B , ,s t  with s t ,
[0, ( ))c x ,

 ( , , ) ( ( , ), , ).Q x s t B Q s x t B

We introduce a -exit boundary as follows: 

{ ( ( ), ) : },E c x x x E

which extends the concept of the -joint point. 
Theorem 5.17 Let ( , , )Q x t B  for x E , t  and B  be the time shift 

-invariant transition kernel. The following two statements are true.  
(1) There exists a transition kernel : ( ) [0,1]q E E  such that if 

x E E  is neither a -joint point nor an equilibrium point, then for any 
0x E  and [0, ( ))t c x  with 0( , )x t x , we have 

0( , , ) ( , ),Q x t B q x B

which is independent of the pair 0( , ).x t
(2) There exists a transition kernel : [0,1]e eq E  such that if ex E  is an 
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equilibrium point, then 

( , , ) ( , ),eQ x t B q x B

which is independent of time t.  
Proof (1) If x E E  is neither a -joint point nor an equilibrium point, 

then for any 1 2 1 1 2 2, , [0, ( )), [0, ( ))x x E t c x t c x  satisfying 1 1 2 2( , ) ( , ),x t x t x
there exists a 0t  for 0 1 20 t t t  such that 

0 1 0 1 2 0 2( , ) ( , ).x t t x t t x

Thus we obtain 

1 1 1 0 1 0

0 0

2 0 2 0

2 2

( , , ) ( ( , ), , )
( , , )
( ( , ), , )
( , , ),

Q x t B Q t t x t B
Q x t B
Q t t x t B
Q x t B

which shows that 0( , , )Q x t B  is independent of the pair 0( , )x t , we write it as 
( , )q x B .
(2) If ex E  is an equilibrium point, then ( , )s x x . Thus we obtain 

 ( , , ) ( ( , ), , ) ( , , ) ( , 0, )Q x s t B Q s x t B Q x t B Q x B

which is denoted as ( , )eq x B .
This completes the proof. 

5.8.4 Piecewise Deterministic Markov Processes 

PDMPs are a generalization from Markov jump processes with respect to three 
main features. (1) The state space is not constrained to a countable set anymore, 
while it may be allowed to be continuous. (2) Between two jump points, the process 
is not restricted to remain constant, but may change deterministically. (3) The 
possibility of movement among jump points gives rise to a new kind of jumps 
which occur immediately upon reaching a certain state. The new kind of jump is 
called an intrinsic jump, since it is induced exclusively by the state of the system, 
while the other kind of jump, as induced by Markovian arrivals, is called an 
extrinsic jump.  

The PDMP { , }tX t  is a continuouzs-time Markov process on a 
Polish state space E, and can be determined by the following four characteristic 
representations:

(1) A flow : E E  is a local semi-dynamic system on the state space E.
(2) A closed set  contains the states that induce the intrinsic jumps.  
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(3) A function : E  satisfies 

sup{ ( )} .
x E

x c

The function ( )x  indicates the intensity of an extrinsic jump occurring if the 
Markov process X is at state x. At the same time, 

0
( , ) exp ( ( , ))d ,

t
F x t u x u

which leads to the conclusion that { ( , ), }F x x E  is a -memoryless distribution 
family. 

(4) ( , , )Q x t  for x E  and t  is the time shift -invariant transition kernel. 
Specifically, the transition measure 0: [0,1]q E  with 0 ( )E \ ,
describes the behavior upon (extrinsic and intrinsic) jumps.  

We first define for all 0x E E \  the deterministic variable 

* inf{ : ( , ) }t t x t

as the time until the set  is reached from a state x E. Then we define the 
random vaiable ( )T x  as the first (intrinsic and extrinsic) jump time after starting 
in state x. This is distributed as 

*0

*

exp ( ( , ))d , if ,
{ ( ) }

0, if ,

t
x u u t t

P T x t
t t

for all t . For simplicity of description on the distribution { ( ) }P T x t , we 
assume that the Markov process has only finitely many jumps in any finite interval. 

The PDMP  evolves in the following way: Starting in any state x E \ , it 
changes deterministically according to the flow  until it enters ,  inducing  
an intrinsic jump, or an extrinsic jump. Upon a jump, the state of  changes 
immediately according to the transition measure Q, leading to a state y E \ .
Then the PDMP starts a new cycle, behaving as described until the next jump. 

5.8.5 The Stationary Distribution 

We consider a PDMP { , }tX t  with characteristic triple ( , , )F q . For 
x E  and A , we write 

 ( , ) ( , ) ( , ),p x A K x A L x A

where
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( )

0
( , ) e ( ( , ), ) ( ,d )

c x sK x A q s x A F x s

and
( )

0
( , ) e ( , ) ( ( , ))d .

c x s
AL x A F x s I s x s

We denote by U the resolvent kernel associated with the PDMP , that is, 

0
( , ) ( )e d .t

x A tU x A E I X t

Lemma 5.6 If the PDMP  is regular, then the resolvent kernel U is the 
minimal nonnegative solution to

 ( , ) ( , ) ( , ),KU x A L x A U x A

where 
( )

0
( , ) e ( ,d ) ( ( , ), d ) ( , ).

c x s

E
KU x A F x s q s x y U y A

Proof If the PDMP  is regular, then the random time sequence { }n

satisfies lim nn
. Let  be an exponential distributed random variable with 

rate 1 which is independent of the PDMP . We write 

 ( , ) { }, ( , ) { }.
nn x xU x A P X A U x A P X A

It is seen that 

lim ( , ) lim { } { } ( , )
nn x xn n

U x A P X A P X A U x A

and

1

1 1

1 1 1

1 1

1

1 1

[ ]

( )

0

( , ) { }
{ } { }
( , ) [ { } ]

( , ) [ ( , ) ]

( , ) e ( ,d ) ( ( , ) d ) ( , )

( , ) ( , ).

n

n n

n

n x

x x

x x

x n

c x s
nE

n

U x A P X A
P X A P X A
L x A E P X A X I

L x A E U X A I

L x A F x s q s x y U y A

L x A KU x A

We take 

0

1

1

( , ) 0,
( , ) ( , ),

( , ) ( , ) ( , ), 2.n n

U x A
U x A L x A

U x A L x A KU x A n
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It is clear that for any x E  and A , the kernel sequence { ( , )}nU x A  is 
monotonely increasing for 0.n  This indicates that the resolvent kernel lim nn

U U

is the minimal nonnegative solution to 

 ( , ) ( , ) ( , ).KU x A L x A U x A

This completes the proof. 
For x E  and A , we write 

( )( , )
( , )
AI xR x A

L x A

and

 ( , ) ( , ) ( ).AS x A L x A I x

Lemma 5.7 Let  be a -finite measure on ( , ).E  Then the following two 
statements are equivalent.  

(1) cvR , where v  is a probability measure and c  is a positive constant. 
(2) ( )S E .
Proof (1)  (2). 

d

( ) (d ) ( , )

(d ) ( ,d ) ( , )

( )
(d ) ( , )

( , )
.

E

E E

x
E E

S E x S x E

c v y R y x S x E

I yc v y L x E
L y E

c

(2)  (1). 
We define the probability measure as 

.
( )
Sv

S E

Hence we obtain that cvR , where ( )c S E .
This completes the proof. 
For x E  and A , we define 

0
( , ) ( ,d ) ( , ).n

A
n

J x A K x y L y E

Obviously, ( , ) ( , ) 1J x E U x E  if the PDMP  is regular, hence J  is a 
stochastic kernel.  
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The following theorem provides useful relations between the existence of a 
stationary distribution of the PDMP  and the existence of a -finite invariant 
measure of the transition kernel p.

Theorem 5.18 The following three statements are equivalent.  
(1) There exists a stationary distribution  of the PDMP .
(2) There exists a probability measure v  such that the positive -finite measure 

vR  is invariant for the transition kernel p.
(3) There exists a positive -finite measure , which is invariant for the 

transition kernel p, such that ( )S E .
Proof (1)  (2). 
Let  be a stationary distribution of the PDMP . Then U . We define 

v J, which is clearly a probability measure, since ( ) ( ) ( ) 1J E U E E .

Let vR . Then 
0

n

n
K . Note that L  and K , we obtain 

 ( ) .p K L K

(2)  (1). 
If there exists a probability measure v  such that the positive -finite measure 

vR  is invariant for the transition kernel p , and L , then for each A ,

( , )( ) (d )
( , )E

L y AA v y
L y E

is a probability measure. Since  is a positive -finite measure, there exists a 
partition { }iE  of E  such that ( )iE . Note that L p K  and P ,
we obtain that for each A ,

( ) ( , ) (d )

( , ) ( )(d )

( , ) (d )

( ).

i

i

i

E
i

E
i

E
i

U A U x A L x

U x A I K x

L x A x

A

Therefore,  is the stationary distribution of the PDMP .
(2)  (3) can be easily proved by means of Lemma 5.7.  
This completes the proof. 
Corollary 5.2 (1) If  is a stationary distribution of the PDMP , then the 

positive -finite measure JR  is invariant for the transition kernel p , and 
JRL .
(2) If v  is a probability measure such that vR  is invariant for the transition 

kernel p , then v  is a stationary distribution  of the PDMP , and vRLJ v .
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In what follows we provide an approach to express the stationary distribution 
of the PDMP .

Let 0Z  denote the initial state of , and nZ  the state of  after the nth jump. 
Then { : 0}nZ n  is called the Markov chain associated with . If has a 
stationary distribution  satisfying 

* ( ) ( , )

0
e d d ( ) ,

t x x t

E
t x

where
0

( , ) ( ( , ))d
t

x t x u u , then a stationary distribution of  can be 

constructed as follows: We define the set *{( , ) : ( )}M x t E t t x , and 
denote by  the Borel -algebra on M. For any set A  and measurable 
functions 1 2,t t E  with 1 2 *( ) ( ) ( )t x t x t x  for all x E, we write 

1 2
1 2{( , ) : ( ) ( ), }t t

AB x t M t x t t x x A

and
2

11 2

*

( ) ( , )

( )
( )

0

e d d ( )
.

e d d ( )

t x x t

A t xt t
A t x x t

E

t x
v B

t x

Obviously, v  can be uniquely extended to a measure on . Using the measurable 
restriction of the flow function M E  to the set M, the measure 1v  is the 
stationary distribution of .

5.8.6 The GI/G/k Queue  

We consider a GI G k queue. Arrivals occur independently with i.i.d. interarrival 
time distributed by A, and only single arrivals are allowed. In order to avoid 
multiple events (for example, arrivals and departures) occurring at the same time 
instant, we assume that A has a Lebesgue density a. There are k independent and 
identical servers in the queueing system, and each customer has identical service 
time distribution B in each server. The service discipline is FCFS and the capacity 
of the waiting room is infinite.  

5.8.6.1 The State Change is Induced by a Service Event 

Let ( )Q t  and ( )iJ t  be the queue length and the remaining service time of the ith 
server at time t for 1 i k  and 0t . Then the Markov process 

1 2( ( ), ( ), ( ), , ( )) : 0kQ t J t J t J t t
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has the state space ( )kE . Specifically, if the ith server is idle, then 
( ) 0i iJ t x  for 1 i k . For y E , we express ( , )y n x  with 1( ,x x

2 , ... , )kx x .
We now describe the Markov process  as a PDMP as follows:  
(1) The flow function A flow  on E is defined by 

1 2( , ) ( , ( ) , ( ) , , ( ) ),t kn t n x t x t x t

where ( ) max{0, }.i ix t x t  Obviously, this flow represents the proceeding 
service time.  

(2) The first passage time We define 

*

min{ : 0,1 }, if 0,
( )

, if 0.
i ix x i k x

t x
x

(3) The transition measure The transition measure SQ  describes the state 
changes of the system in the case of a server becoming idle. Let ( )kx  and 

1 2 ,k
kA A A A

where k  is the -algebra of the Borel sets on ( )k . Then 

, 1

0

,

1 ( ) ( ), for 1,
(( , ), { } )

1 ( ), for 0.

j

i

m n A j j
j i
xS

m n A

x B A n
Q n x m A

x n

(4) The transition probability kernel For the case 1n , only one server can 
become idle at a time. Since the queue has the Lebesgue-dominated single arrival 
input and the servers work independently, the probability that two servers finish 
their work (or an arrival and a service) at the same time instant is zero. Let 

( ;( , ), { } )P t n x m A  be the probability that at time t after the last arrival, the 
PDMP is in state set { }m A  under the condition that it was in state ( , )n x
immediately after the last arrival. Further, let ( ) ( ; ( , ), { } )rP t n x m A  denote the 
same probability, but restricted to the set of paths with r service completions until 
time t. Then the transition probability kernel and hence the transient distribution 
of the interarrival process is given iteratively by 

( )

0
( ;( , ),{ } ) ( ;( , ),{ } ),r

r
P t n x m A P t n x m A

where



5 Markov Chains on Continuous State Space 

281

, *

(0)
,0

1 ( ), for 1, ( ),

( ;( , ),{ } ) 1 ( ), for 0,( )
0 otherwise;

m n A

m A

x te n t t x

P t n x m A nx te

and

( )
*

( 1)

*

( ( ); ( , ),{ } )
( ;( , ),{ } ) (( , ),d( , )), ( ),

0, otherwise.

i

E
i

S

P t t x l y m A
P t n x m A Q n x l y t t x

5.8.6.2 The State Change is Induced by an Arrival Event 

We define another transition measure AQ , which describes the state changes of 
the queueing process induced by an arrival event, as follows: 

, 1

0

1 ( ), if 0,
(( , ),{ } ) 1 ( ) ( ), there exists 0.

j

i

m n A

A m n A j j i
j i
x

x x
Q n x m A x B A x

Then the transient distribution of the queueing process is given iteratively by 

( )

0
( ;( , ),{ } ) ( ;( , ),{ } ),r

r
P t n x m A P t n x m A

where
(0) ( ;( , ),{ } ) ( ;( , ),{ } )IP t n x m A P t n x m A

which is an initial probability, and 

( 1) ( )

0 ( , )

( )

( ;( , ),{ } ) ( ; ( , ), { } )

( ;( , ), d( , )) (( , ),d( , )) ( )d

ti i

h z

I
Al y

P t n x m A P t u h z m A

P u n x l y Q l y h z a u u

5.8.6.3 An Embedded Markov Chain of GI/M/1 Type  

Let { : 0}lt l  denote the time instants of successive arrivals. Then { : 0}lt l  is 
a series of stopping times with respect to the canonical filtration of the queueing 
process { ( ) : 0}Q t t . We define ( )l lX Q t  as the system state immediately before 
the l th arrival. Then { : 0}lX X l  is the embedded Markov chain immediately 
before arrival instants whose transition probabilities are defined by 

1(( , ),{ } ) { { } ( , )}.X
l lP n x m A P X m A X n x
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We have 

0
(( , ),{ } ) (( , ),d( , )) ( ;( , ),{ } ) ( )d .X I

AE
P n x m A Q n x l y P t l y m A a t t

Let

0

( , ) (( , ),{ 1} )

( ;( 1, ),{ 1} ) ( )d

X
i

I

A x A P n x n i A

P t n x n i A a t t

and

0

0 0

( , ) (( , ),{0} )

( ;( 1, ),{0} ) ( )d , 0,

( ;(0, ),{0} )d ( ) ( )d , 0,

X
i

I

I
i l

B x A P i x A

P t n x A a t t x

P t y A B y a t t x

for all 0n i , ( )kx  and kA . In this case, the transition probability 
kernel is given by 

0 0

1 1 0

2 2 1 0

.X

B A
B A A

P
B A A A

It is clear that 

1
( , ) ( , ) 1( ) ( )k k

n i
i n

B x A x

for all 0n  and ( )kx .
For the sequence { ( , ), 0}nA x A n  of probability kernels, let ˆ ( , )A x A

0
( , )n

n
A x A . We assume that the Markov chain with transition probability kernel 

ˆ ( , )A x A  is Harris recurrent and ergodic, and let ( )A  denote the stationary 

probability of the the Markov chain with transition probability kernel ˆ ( , )A x A .

Note that this kernel ˆ ( , )A x A  is equal to the transition probability kernel of the 
remaining service times immediately before arrival instants if there is always at 
least one waiting customer, the stationary distribution of the kernel ˆ ( , )A x A  equals 
the k-fold convolution of the respective stationary distribution ( )A  for one server. 

Hence we obtain that *([0, )) ([0, ))kx x , where 
0

([0, )) [1 ( )]d
x

x B v v
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with
0

1 [1 ( )]dB v v . We define 
1

( ) , ( )k
n

n
x nA x  for ( )kx .

Then using the mean drift condition, we obtain that 
( )

( )d ( ) 1k x x .

Since

1

d ( ) [1 ( )]d ,
k

i i
i

x B x x

we obtain 

0( ) ( )
1

1 2
1

0

d ( ;( , ),{1} )( )

[1 ( )]d d d ( )d

( )d ,

k k

kI

n
k

i k
i

x x nP t n x

B x x x x a t t

kk ta t t

where
0

1 ( )dta t t . Therefore, this queueing system is stable if and only if 

k .
Let ( , )R x y  be the minimal nonnegative solution to the nonlinear kernel equation 

0
0

( , ) ( , ) ( , )d .n
n

n
R x y R x z A z y z

We write 

1
0 10

1
( , ) ( , ) ( , )d .n

n
n

x y R x z B z y z

It is easy to check that 0 ( , )x y  is the transition probability kernel of the censored 
chain to level 0. If k , then the stationary distribution of the embedded 
Markov chain with kernel XP  is given by 

0 0( ) ( )x w x

and

00
( ) ( ) ( , )d , 1,n

n x w z R z x z n

where 0 ( )w x  is the stationary probability of the Markov chain with transition 
probability kernel 0 ( , )x y  and 
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00 0
1

1 .
1 ( ) ( , )d dn

n
w x R z x z x

Now, we compute the stationary distribution ( )np A  of the queueing process. 
To do this, we write 

0
( ) 1 ( )d ,

tcA t a u u

( ;( , ),{ } ) { ( ) { } , (0) ( , )}
( ) ( ;( , ),{ } ),c I

K t n x m A P Q t m A H t Q n x
A t P t n x m A

where H  denotes the first inter-arrival time. Therefore, we obtain 

0( )
( ) ( ) ( ;( , ),{ } )d dkm n

n m
p A x K t n x m A x t

for 0m  and .kA B

5.9 Notes in the Literature

Early results on discrete-time Markov chains on continuous state space were well 
documented in Finch [12], Athreya and Ney [3,4], Meyn and Tweedie [22], 
Hernández-Lerma and Lasserre [15] and Prieto-Rumeau and Hernández-Lerma 
[25]. As an important example, Tweedie [27] considered a discrete-time Markov 
chain of 1GI M  type with continuous phase variable. He showed that the 
stationary probability distribution is operator-geometric. Sengupta [26] used the 
operator-geometric solution to study the stationary buffer occupancy distribution in 
a data communication model. Nielsen and Ramaswami [24] studied orthonormal 
expansion for a discrete-time level-independent QBD process with continuous 
phase variable under appropriate and regular conditions, which lead to a 
computational framework in order to implement Tweedie’s operator-geometric 
solution. Breuer [5] described the infinitesimal generator for a Markov jump process 
on continuous state space, and provided the Kolmogorov’s forward and backward 
differential equations. 

Available results for the continuous-time Markov chains on continuous state 
space are few. From the standard theory of Markov chains (e.g. Anderson [1] and 
Kemeny, Snell and Knapp [17]), it is well known that the study of the continuous- 
time Markov chains is different from that of discrete-time Markov chains, although 
both of them can be related by using the uniformization technique. However, it is 
possible that the conditions for the uniformization technique cannot be satisfied 
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by some practical continuous-time Markov chains, e.g., see Artalejo and Gómez- 
Corral [2] for some simple retrial queues. Li and Lin [18] provides a new theoretical 
framework for studying the continuous-time QBD process with continuous phase 
variable. Finally, this chapter introduces the PDMPs which enables us to deal 
with more general queueing systems such as the GI G c  queue. For the PDMPs, 
reader may refer to Davis [9], Gugerli [14], Costa [8], Dempster [10], Liu [20,21], 
Dufour and Costa [11] and Hou and Liu [16]. At the same time, Breuer [6,7] used 
the PDMPs to deal with some general queueing systems. 

This chapter is written by means of Tweedie [27], Nielsen and Ramaswami 
[24], Li and Lin [18], Davis [9], Costa [8], Hou and Liu [16] and Breuer [6, 7]. 

Problems

5.1 Compute the stationary distribution of the queue length for the 1G SM
queue, where the interarrival time distribution is denoted by ( )F x , and the service 
times form a semi-Markov process with the transition probability matrix ( )G x  of 
size k.
5.2 Compute the stationary distribution of the queue length for the 1SM G
queue, where the arrival process is a semi-Markov process with the transition 
probability matrix ( )F x  of size k, and the service time distribution is denoted by 

( )G x .
5.3 Consider the 1SM CPH  queue by means of the Markov chain of 1GI M
type on a continuous state space. 
5.4 Discuss the 1CMAP G  queue by means of the Markov chain of 1M G
type on a continuous state space. 
5.5 Study the 1CMAP CPH  queue by means of the continuous-time QBD 
process.
5.6 For a fluid queue driven by the 1GI G  queue, please apply the continuous- 
time Markov chain on continuous state space to analyze this fluid model. 
5.7 Construct a more general fluid queue driven by a continuous-time Markov 
chain on continuous state space. 
5.8 For the 1CMAP CPH  queue, apply the orthogonal algorithm to compute 
the means of the stationary queue length and the stationary waiting time. 
5.9 Define a batch Markovian process with continuous phase variable, and then 
discuss its useful properties. 
5.10 Use the PDMP to study the M G c  retrial queue, and derive its stationary 
distributions for the queue length and the waiting time. 
5.11 Use the PDMP to study the 1G G  queue with server vacations whose time 
distribution is general, and derive its stationary distributions for the queue length 
and the waiting time. 
5.12 Use the PDMP to study the 1G G  queue with negative customers whose 
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interarrival time distribution is general, and derive its stationary distributions for 
the queue length and the waiting time. 
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Abstract In this chapter, we provide the UL- and LU-types of RG-
factorizations for the transition probability mass matrix of any irreducible 
Markov renewal process in terms of the censoring technique. Specifically, 
we deal with Markov renewal processes of GI/G/1 type, including the 
RG-factorization, the RG-factorization for the repeated blocks, the spectral 
analysis and the first passage time. 

Keywords Markov renewal process, Markov renewal processes of GI/G/1
type, RG-factorization, spectral analysis, the first passage time. 

This chapter provides the UL- and LU-types of RG-factorizations for the transition 
probability mass matrix of an irreducible Markov renewal process in terms of the 
Wiener-Hopf equations. Specifically, Markov renewal processes of 1GI G  type 
are dealt with for such as, the RG-factorization for the repeated blocks, the spectral 
analysis and the first passage time. Note that Markov renewal process is a useful 
mathematical tool in the study of non-Markovian stochastic models. 

This chapter is organized as follows. Section 6.1 discusses the censoring Markov 
renewal processes for block-structured Markov renewal processes. Sections 6.2 
and 6.3 derive the UL- and LU-types RG-factorizations for the transition probability 
mass matrix based on the Wiener-Hopf equations, respectively. Section 6.4  
deals with block-structured Markov renewal processes with finitely-many levels. 
Section 6.5 studies Markov renewal processes of 1GI G  type. Section 6.6 
considers spectral properties for the R- and G-measures. Section 6.7 analyzes the 
first passage times with effective algorithms, and also provides conditions for the 
state classification of Markov renewal processes of 1GI G  type in terms of the 
R-, U- and G-measures. Finally, Section 6.8 gives some notes to the references 
on Markov renewal processes. 
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6.1 The Censoring Markov Renewal Processes

In this section, the censoring technique is applied to deal with an irreducible block- 
structured Markov renewal process. Based on the censored processes, conditions 
on the state classification of the Markov renewal process are provided.  

We consider a Markov renewal process {( , ), 0}n nX T n  on the state space 
[0, )  with {( , ) : 0,1 }kk j k j m , where nX  is the state of the 

process at the nth renewal epoch and nT  is the total renewal time up to the n th 

renewal, or 
0

n

n i
i

T  with 0 0  and n  being the inter-renewal interval time 

between the ( 1)n st and the nth renewal epochs for 1n . The transition pro- 
bability mass matrix of the Markov renewal process {( , ), 0}n nX T n  is given by 

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

( ) ( ) ( )
( ) ( ) ( )

( ) ,
( ) ( ) ( )

P x P x P x
P x P x P x

P x
P x P x P x

 (6.1) 

where , ( )i jP x  is a matrix of size i jm m  whose ( , )r r th entry is  

1 1( ( )) { ( , ), ( , ), }.ij n n n n nr r
P x P X j r T x T X i r T

The matrix ( ),P defined as lim ( )
x

P x  entry-wisely, is referred to as the 

embedded Markov chain of the Markov renewal process. Throughout this chapter, 
we assume that the Markov renewal process ( )P x  is irreducible and ( )P x e e  for 
all 0x , Where e is a column vector of ones with suitable size. Because of the 
block-partitioned structure of ( )P x , the Markov renewal process {( , ), 0}n nX T n
is referred to as a block-structured Markov renewal process. Many application 
problems can be naturally modeled as a block-structured Markov renewal process. 

We first define a censored process for a Markov renewal process whose transition 
probability mass matrix consists of scalar entries. We then treat a block-structured 
Markov renewal process as a special case. 

Definition 6.1 Suppose that {( , ), 0}n nX T n  is an irreducible Markov renewal 
process on the state space [0, ), where {0,1, 2, ...}nX  and nT
[0, ). Let E be a non-empty subset of .  If the successive visits of nX  to the 
subset E take place at the kn th step of state transition, then the inter-visit time  

E
k  between the ( 1)k st and the k th visits to E  is given by 

1 1k

E
k n

1 2k kn n  for 1k . Let 
k

E
k nX X  and 

1

k
E E

k i
i

T  for 1k . Then the 
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sequence , , 1E E
k kX T k  is called the censored process with censoring set E. 

Throughout this chapter, we denote by ( )r rB  the ( , )r r th entry of the matrix B and 

by ( )B C x  (or ( ) ( )B x C x ) the convolution of two matrix functions ( )B x  and ( ),C x

i.e.,
0

( ) ( )d ( ).
x

B C x B x u C u  We then recursively define * ( 1)*( ) ( )n nB x B B x

for 1n  with 0* ( )B x I  where I is the identity matrix. 
For convenience of description, we write [ ] ( )nP x  for the censored transition 

probability mass matrix ( )EP x  if the censored set ,nE L  in particular, 
[ ] ( ) ( )P x P x  and [0] [ 0]( ) ( )P x P x . On the other hand, we write [ ] ( )nP x  for 

the censored transition probability mass matrix with the censored set nE L ,
specifically, [ 0] ( ) ( ).P x P x

Let .cE E  According to the subsets E and ,cE  the transition probability 
mass matrix ( )P x  is partitioned as 

( ) ( )
( ) .

( ) ( )

c

c

E E
E
E

T x U x
P x

V x Q x
 (6.2) 

Lemma 6.1 If ( )P x  is irreducible, then each element of *

0
( ) ( )n

n
Q x Q x

is finite for 0x .
Proof If ( )P x  is irreducible, then ( )P  is irreducible, since 0 ( )P x

( )P . It is obvious that ( )Q  is strictly substochastic due to ( ) 0V .
Hence, using Lemma 2.1 we have 

1

0
( ) ( ) ,[ ( )]n

n
Q Q I Q

where 1[ ( )]I Q  is the minimal nonnegative inverse of ( )I Q . Since 
each element of ( )Q  is finite and 0 ( ) ( )Q x Q  for 0x , each element 
of ( )Q x  is finite. This completes the proof. 

The matrix ( )Q x  is referred to as the fundamental matrix of ( )Q x . In the 
following, we show that the censored process {( , ), 1}E E

k kX T k  is a Markov 
renewal process again.  

Theorem 6.1 The censored process {( , ), 1}E E
k kX T k  is a Markov renewal 

process whose transition probability mass matrix is given by  

( ) ( ) ( ).EP x T x U Q V x  (6.3) 

Proof To show that {( , ), 1}E E
k kX T k  is a Markov renewal process, we need 

to show that the 1
E

nT  is independent of 0
EX , 1

EX , , 1
E
nX , 0

ET , 1
ET , , E

nT ,
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given the state of E
nX . This is clear from the fact that {( , ), 0}n nX T n  is a Markov 

renewal process with the strong Markov property. The (i,j)th entry of the transition 
probability mass matrix of the Markov renewal process {( , ), 1}E E

k kX T k  is 

1 1,

1 1 0 0

, ,( ( ))

, , 0 .

E E E E EE
n n n n ni j

E E E E

P X j T x T X i TP x

P X j T x X i T

To explicitly express ( )EP x  in terms of the original transition probability mass 
matrix, we consider the following two possible cases:  

Case 1 1n . In this case, i, j E, 1 1
EX X , 1 1

ET  and 

1 1 0 0 ,{ , , 0} .( ( ))E E E E
i jP X j T x X i T T x  (6.4) 

Case 1n k  for 2k . In this case, i, j E, 1
E

kX X , 1
1

k
E

l
l

T  and 

1 1 0 0

0 0
1

( 2)*
,

{ , , 0} { ,

for 1, 2, , 1, , 0}

.( ( ))

E E E E
k j

k

l
l

k
i j

P X j T x X i T P X j X E

j k x X i

U Q V x (6.5)

It follows from Eq. (6.4) and Eq. (6.5) that 

( 2)*
1 1 0 0 , ,

2

, ,

{ , , 0} ( ( )) ( ( ))

.( ( )) ( ( ))

E E E E k
i j i j

k

i j i j

P X j T x X i T T x U Q V x

T x U Q V x

This completes the proof. 

Remark 6.1 The censored process , , 1
c cE E

k kX T k  is a Markov renewal 
process whose transition probability mass matrix is given by  

( ) ( ) ( ).
cEP x Q x V T U x

As seen in Chapter 2, the UL- and LU-types of RG-factorizations are obtained by 
means of the two different censored processes ( )EP x  and ( )

cEP x , respectively. 
Based on the censored renewal processes above, a probabilistic interpretation 

for each component in the expression Eq. (6.3) for ( )EP x  is available and useful. 
For the Markov renewal process ( )P x , let 

,
( , )c cE E

T i j  be total renewal time until 
the process visits state cj E  for the last time before entering E, given that the 
process starts in state ci E . Formally, assume that at the kth transition the process 
visits state cj E  for the last time before entering E, given that the process starts  



Constructive Computation in Stochastic Models with Applications 

292

in state ci E . Then 
,

1
( , )c c

k

lE E
l

T i j . Similarly, let 
,

( , )cE E
T i j  be the total 

renewal time until the process visits state cj E  before returning to E, given that 
the process starts in state ;i E

,
( , )cE E

T i j  the total renewal time until the 

process enters E and upon entering E the first state visited is ,j E  given that 
the process started at state ci E ; and , ( , )E ET i j  the total renewal time until the 
process enters E and upon returning to E the first state visited is ,j E  given 
that the process started at state .i E

(1)
,( ( ))i jQ x  is the expected number of visits to state cj E  before entering E

and ( , )c cE E
T i j x , given that the process starts in state .ci E

(2)
,( ( ))i jU Q x  is the expected number of visits to state cj E  before 

returning to E and ( , )cE E
T i j x , given that the process starts in state .i E

(3)
,( ( ))i jQ V x  is the probability that the process enters E and upon entering 

E the first state visited is j E  and 
,

( , )cE E
T i j x , given that the process starts 

in state ci E .
(4)

,( ( ))i jU Q V x  is the probability that upon returning to E the first state 

visited is j E  and , ( , )E ET i j x , given that the process starts in state i E .
Define the double transformation of n and x for the censored Markov renewal 

process as 

* *
, ,

( , ) ( , ) ,E E
i j i j E

z s z sP P

where

*
0 0, 0

1
( , ) e d { , , 0}.n sxE

n ni j
n

z s z P X j T x X i TP

The single transformations ( ),T s ( ),U s ( )V s  and ( )Q s  are defined conven- 

tionally, for example, 
0

( ) e d ( ).sxT s T x

The following corollary provides a useful result for studying the two-dimensional 
random vector 1 1( , )E EX T , the proof of which is obvious from Eq. (6.4) and 
Eq. (6.5). 1 1( , )E EX T  is important for the study of the Markov renewal process 
{( , ), 1}n nX T n . It is worthwhile to notice that an important example is analyzed 
in Section 2.4 of Neuts [17]. 
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Corollary 6.1 
1* 2( , ) ( ) ( ) ( ),[ ( )]E z s zT s z U s V sI zQ sP

where 
1

0
.[ ( )] [ ( )]

nn

n
zI zQ s Q s

Based on Definition 6.1, we have the following two useful properties. 
Property 6.1 For 1 2E E , 11 2( ) ( )( )EE EP x xP .
Property 6.2 ( )P x  is irreducible if and only if ( )EP x  is irreducible for all 

the subsets E  of .
Now, we consider the state classification for an irreducible Markov renewal 

process. Çinlar [6] shows that ( )P x  is recurrent or transient if and only if ( )P
is recurrent or transient, respectively. Therefore, we illustrate the following useful 
relations.

Proposition 6.1 (1) ( )P x is recurrent if and only if ( )EP x  is recurrent for 
every subset E .

(2) ( )P x  is transient if and only if ( )EP x  is transient for every subset E .
Proposition 6.2 If ( )P x  is irreducible, then 
(1) ( )P x  is recurrent if and only if ( )EP x  is recurrent for some subset E ;

and
(2) ( )P x  is transient if and only if ( )EP x  is transient for some subset E .
The following proposition provides a sufficient condition under which a Markov 

renewal process ( )P x  is positive recurrent. The proof is easy according to the 

fact that 
0

0
d ( )i j

j
x P x e  is the mean total sojourn time of the Markov renewal 

process ( )P x  in state i. It is worthwhile to note that ( )P x  may not be positive 
recurrent when ( )P  is positive recurrent. This is a further result of Proposition 
6.2 from the recurrent to the positive recurrent.  

Proposition 6.3 The Markov renewal process ( )P x  is positive recurrent if  
(1) ( )P  is positive recurrent and  

(2)
0

0
d ( )i j

j
x P x e  is finite for all 0.i

Remark 6.2 (1) Remark b in Section 3.2 of Neuts [17] (p. 140) illustrates 
that condition (2) in Proposition 6.3 is strong. For example, for a Markov renewal 

process of 1M G  type, the sufficient condition only requires that 
0

0
d ( )i j

j
x P x e

for 0i  and 1 00
d ( )x P x  are finite. Therefore, condition (2) in Proposition 6.3 

can further be weakened.  
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6.2 The UL-Type RG-Factorization

In this section, we define the UL-type R-, U- and G-measures for the Markov 
renewal process, and derive the UL-type RG-factorization for the transition 
probability mass matrix.  

For 0 i j , ( , )i jR k x  is an i jm m  matrix whose ( , )r r th entry , ,
( ( ))i j r r
R x

is the probability that starting in state ( , )i r  at time 0, the Markov renewal 
process makes its k th transition in the renewal time interval [0, ]x  for a visit into 
state ( , )j r  without visiting any states in ( 1)jL  during intermediate steps; or 

, ( 1),

0

( ( , )) { ( , ), for 1, 2, , 1,

( , )}.
i j k l jr r

k

R k x P X j r X L l k

T x X i r (6.6)

Let , ,
1

( ) ( , )i j i j
k

R x R k x . Then the ( , )r r th entry of , ( )i jR x  is the expected 

number of visits to state ( , )j r  made in the renewal time interval [0, ]x  without 
visiting any states in ( 1)jL  during intermediate steps, given that the process 
starts in state ( , )i r  at time 0. 

For 0 j i , , ( , )i jG k x  is an i jm m  matrix whose ( , )r r th entry , ,
( ( ))i j r r
G x

is the probability that starting in state ( , )i r  at time 0, the Markov renewal process 
makes its k th transition in the renewal time interval [0, ]x  for a visit into state 
( , )j r  without visiting any states in ( 1)iL  during intermediate steps; or 

, ( 1),

0

( ( , )) { ( , ), for 1, 2, , 1,

( , )}.
i j k l ir r

k

G k x P X j r X L l k

T x X i r (6.7)

Let , ,
1

( ) ( , )i j i j
k

G x G k x . Then the ( , )r r th entry of , ( )i jG x  is the probability  

that starting in state ( , )i r  at time 0, the Markov renewal process makes its first 
visit into ( 1)iL  in the renewal time interval [0, ]x  and upon entering ( 1)iL  it 
visits state ( , )j r .

The two matrix sequences ,{ ( )}i jR x  and ,{ ( )}i jG x  are called the UL-type R-
and G-measures of the Markov renewal process ( )P x , respectively.  

We partition the transition probability mass matrix ( )P x  according to the three 
subsets ( 1)nL , nL  and 1nL  as  

0 1

0 0 2

1 2 0

( ) ( ) ( )
( ) ( ) ( ) ( ) .

( ) ( ) ( )

T x U x U x
P x V x T x U x

V x V x Q x
 (6.8) 
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Let

0 2

2 0

( ) ( )
( )

( ) ( )
T x U x

Q x
V x Q x

 (6.9) 

and

11 12*

21 22

( , ) ( , )
( ) , 0.

( , ) ( , )
n D n x D n x

Q x n
D n x D n x

 (6.10) 

Partition *

0
( ) ( )n

n
Q x Q x  accordingly as 

11 12

21 22

( ) ( )
( ) .

( ) ( )
H x H x

Q x
H x H x

 (6.11) 

We write  
TT T T T

0, 1, 2, 1,( ) ( ( ), ( ), ( ), , ( ))n n n n n nR x R x R x R x R x  (6.12) 

and

,0 ,1 ,2 , 1( ) ( ( ), ( ), ( ), , ( )).n n n n n nG x G x G x G x G x  (6.13) 

The following lemma provides expressions for the matrices ( )nR x  and ( ).nG x
Lemma 6.2 For 0x  and 1n ,

0 11 1 21( ) ( ) ( )nR x U H x U H x  (6.14) 

and

11 0 12 1( ) ( ) ( ).nG x H V x H V x  (6.15) 

Proof We only prove Eq. (6.14) while Eq. (6.15) can be proved similarly. 
For 0 1i n , we consider two possible cases for , ,

( ( , ))i n r r
R k x  as follows: 

Case 1k . In this case, 

, 1 1 0 0,

0 ,

( ( , )) { ( , ), ( , ), 0}

( ( )) .

i n r r

i
r r

R k x P X n r T x X i r T

U x (6.16)

Case 2k . In this case, 

, ( 1),

0 0

0 11 1 21 ,

( ( , )) { ( , ), for 1, 2, , 1,

( , ), 0}

( ( 1, ) ( 1, )) .

i n k l jr r

k
i

r r

R k x P X n r X L l k

T x X i r T

U D k x U D k x (6.17)
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Noting that 11(0, )D x I  and 21(0, ) 0D x , it follows from Eq. (6.16) and 
Eq. (6.17) that 

, ,, ,
1

0 0 11 1 21, ,
2

0 11 1 21
0 ,

0 11 1 21 ,

( ( )) ( ( , ))

( ( )) ( ( 1, ) ( 1, ))

( ( , ) ( , ))

( ( ) ( )) .

i n i nr r r r
k

i i
r r r r

k
i

k r r

i
r r

R x R k x

U x U D k x U D k x

U D k x U D k x

U H x U H x

This completes the proof. 
For the Markov renewal process ( )P x , let ( )nQ x  be the southeast corner of 

( )P x  beginning from level n, i.e., ,( ( ))( ) i jn i j n
P xQ x . Let *

0

( ) ( )k
nn

k
x Q xQ ,

and ( )( )k

n
xQ  and ( )( )l

n
xQ  be the kth block-row and the l th block-column of 

( )
n

xQ , respectively. The following corollary easily follows from Lemma 6.2.  
Corollary 6.2 For 0 i j ,

( ,1)
, , , 1 , 2( ) ( ( ), ( ), ( ), ) ( )i j i j i j i j j

R x P x P x P x xQ  (6.18) 

and for 0 j i ,
T(1, ) T T T

, , 1, 2,( ) ( ) ., , ,( ) ( ) ( )i j i j i j i ji
G x x P P Px x xQ  (6.19) 

It follows from Eq. (6.9) that  

0 2

02

( ) ( )
( )

( ) ( )

s sUTQ s
s Q sV

and from Eq. (6.10) that 

11 12

21 22

( ) ( )
( ) .

( ) ( )
s sH HQ s
s sH H

From either Lemma 6.2 or Corollary 6.2 it is clear that the determination of the 
R- and G-measures relies on the entries of the fundamental matrix ( )

k
xQ . The 

following lemma provides a formula for expressing the transformation of the 
fundamental matrix. 

Lemma 6.3 For Re( ) 0s ,
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1

011 0 2 2

1

0 012 0 2 2 2

1

0 021 02 2 2

1

0 0 0 022 02 2 2 2

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).

s I s s Q s sU VH T

s I s s Q s s s Q sU V UH T

s Q s s I s s Q s sV U VH T

s Q s Q s s I s s Q s s s Q sV U V UH T

Symmetrically, 

1

0 0 0 0011 2 2 2 2

1

0 0012 2 2 2

1

0 0021 2 2 2

0022 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ).

s T s T s s I Q s s T s s s T sU V U VH

s T s s I Q s s T s sU V UH

s I Q s s T s s s T sV U VH

s I Q s s T s sV UH

Theorem 6.2 For 0x  and 1n ,

*
0 1 2 00

0 0

( )*

2 20

( ) ( ) ( ) ( )

( )

l
k

n
l k

l k

l
R x U x U Q V x T x

k

U Q V x

and

( )*
*

0 2 20
0 0

0 2 10

( ) ( ) ( )

( ) ( ) .

l l k
k

n
l k

l
G x T x U Q V x

k

V x U Q V x

Proof It follows from Lemmas 6.2 and 6.3 that 

1

0 000 1 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n s s s Q s s I s s Q s sU U V U VR T

and
1

0 00 2 2 0 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .n s I s s Q s s s s Q s sQ U V V U VT

The inverse transform for the above two equations immediately leads to the desired 
result.
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The following theorem provides a censoring invariance for the R- and G-measures 
of Markov renewal processes. We denote by [ ]

, ( )n
i jR x  and [ ]

, ( )n
i jG x  the R- and 

G-measures of the censored Markov renewal process [ ] ( )nP x .
Theorem 6.3 (1) For 0 i j n , [ ]

, ,( ) ( )n
i j i jR x R x .

(2) For 0 j i n , [ ]
, ,( ) ( )n

i j i jG x G x .

Proof We only prove (1) while (2) can be proved similarly.  
First, we assume that n j  and ( )P x  is partitioned according to the three 

subsets nL , nL  and nL  as in Eq. (6.8). It follows from Theorem 6.1 that 

0 1[ ]
1 20

0 0 2

1 1 0 1 20 0

0 2 1 0 2 20 0

( ) ( ) ( )
( ) ( ) ( ( ), ( ))

( ) ( ) ( )

( ) ( ) ( ) ( )
.

( ) ( ) ( ) ( )

n T x U x U x
P x Q x V x V x

V x T x U x

T x U Q V x U x U Q V x

V x U Q V x T x U Q V x
(6.20)

Hence, simple calculations lead to 

*
[ ]

0 1 2 0 2 20 0
0

*
0 1 2 00

0 0

( )*

2 20

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) .

l
n

n
l

l
k

l k

l k

R x U x U Q V x T x U Q V x

l
U x U Q V x T x

k

U Q V x (6.21)

Therefore, [ ] ( ) ( )n
n nR x R x  according to Theorem 6.2. 

If n j , we first censor the matrix ( )P x  in the set jL , [ ]
, ,( ) ( )j

i j i jR x R x  based 

on the fact just proved. Next, we censor the matrix ( )P x  in the set nL . Since 
according to Property 1 the censored matrix [ ]jP  can be obtained by the censored 
matrix [ ]nP , [ ] [ ]

, ,( ) ( )n j
i j i jR x R x  based on the fact just proved, hence, [ ]

, ( )n
i jR x

, ( )i jR x  for j n . This completes the proof. 
Let

( ) ( ) ( )
0,0 0,1 0,
( ) ( ) ( )

1,0 1,1 1,[ ]

( ) ( ) ( )
,0 ,1 ,

( ) ( ) ( )
( ) ( ) ( )

( ) , 0,

( ) ( ) ( )

n n n
n

n n n
nn

n n n
n n n n

x x x
x x x

P x n

x x x

be block-partitioned according to levels. 
The equations in the following lemma provide a relationship among the entries 

of censored Markov renewal processes, which are essentially the Wiener-Hopf 
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equations for the Markov renewal process.  
Lemma 6.4 For 0n , 0 i , j n ,

*( ) ( ) ( ) ( )
, , , , ,

1 0

( ) ( ) ( ) ( ) ( ).
ln k k k

i j i j i k k k k j
k n l

x P x x x x

Proof Consider the censored matrix [ ] ( )nP x  based on [ ( 1)] ( )nP x . It follows 
from Theorem 6.1 that 

1 ( 1) ( 1)
0,0 0,1 0,

1 ( 1) ( 1)
[ ] 1,0 1,1 1,

( 1) ( 1) ( 1)
0 1 ,

( 1)
0, 1
( 1)

*1, 1

0
( 1)
, 1

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

( )
( )

( )

n n n
n

n n n
n n

n n n
n n n n

n
n
n

ln

l
n

n n

x x x

x x xP x

x x x

x
x

x

( 1)
1, 1

( 1) ( 1) ( 1)
1,0 1,1 1,

( )

( ), ( ), , ( ) .

n
n n

n n n
n n n n

x

x x x

Therefore, from repeatedly using Theorem 6.1 we obtain 

*( ) ( 1) ( 1) ( 1) ( 1)
, , , 1 1, 1 1,

0

*( 2) ( 2) ( 2) ( 2)
, , 2 2, 2 2,

0

*( 1) ( 1)
, 1 1, 1 1

0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

ln n n n n
i j i j i n n n n j

l

ln n n n
i j i n n n n j

l

ln n
i n n n n

l

x x x x x

x x x x

x x ( 1)
,

*( ) ( ) ( )
, , ,

1 0

( )

( ) ( ) ( ) ( ),

n
j

lk k k
i j i k k k k j

k n l

x

P x x x x

where ( )
, ,( ) ( )i j i jP x x . This completes the proof. 

The following lemma provides expressions for the R- and G-measures. 
Lemma 6.5 (1) For 0 i j ,

*( ) ( )
, , ,

0

( ) ( ) ( ) .
lj j

i j i j j j
l

R x x x

(2) For 0 j i ,

*( ) ( )
, , ,

0

( ) ( ) ( ).
li j

i j i i i j
l

G x x x
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Proof Applying Corollary 6.2 to the censored process [ ] ( )jP x  gives that 

*[ ] ( ) ( )
, , ,

0

( ) ( ) ( ) , 0 ,
lj j j

i j i j j j
l

R x x x i j

and

*[ ] ( ) ( )
, , ,

0

( ) ( ) ( ), 0 .
li i j

i j i i i j
l

G x x x j i

The rest of the proof follows from the censoring invariance for the R- and 
G-measures proved in Theorem 6.3. 

Let
( )
,( ) ( ), 0.n

n n nx x n

The following theorem provides an equivalent form, to the equations in 
Lemma 6.4, of the Wiener-Hopf equations stated in terms of the R- and G-measures. 

Theorem 6.4 (1) For 0 i j ,

, , , ,
1

( ) [ ( )] ( ) ( ) [ ( )] ( ).i j j i j i k k k j
k j

R x I x P x R x I x G x

(2) For 0 j i ,

, , ,
1

[ ( )] ( ) ( ) ( ) [ ( )] ( ).i i j i j i k k k j
k i

I x G x P x R x I x G x

(3) For 0n ,

, , ,
1

( ) ( ) ( ) [ ( )] ( ).n n n n k k k n
k n

x P x R x I x G x

Proof We only prove (1) while (2) and (3) can be proved similarly. 
It follows from (1) in Lemma 6.5 that 

( )
, ,( ) [ ( )] ( ).j

i j j i jR x I x x

Using Lemma 6.4 and Theorem 6.5 leads to 

( ) ( ) ( ) ( )
, , , , ,

1 0

[ ] [ ]
, , ,

1

, , ,
1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

lj k k k
i j i j i k k k k j

k j l

k k
i j i k k k j

k j

i j i k k k j
k j

x P x x x x

P x R x I x G x

P x R x I x G x
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This completes the proof. 
Based on the Wiener-Hopf equations, the following theorem gives the UL-type 

RG-factorization for the transition probability mass matrix.  
Theorem 6.5 For the Markov renewal process ( )P x  given in Eq. (6.1),

 ( ) [ ( )] [ ( )] [ ( )], 0,U D LI P x I R x I x I G x x  (6.22) 

or

( ) ( ) ( ) ( ) , Re( ) 0,U D LI P s I s I s I s sGR

where 

0,1 0,2 0,3

1,2 1,3

2,3

0 1 2 3

0 ( ) ( ) ( )
0 ( ) ( )

( ) ,0 ( )
0

( ) diag( ( ), ( ), ( ), ( ), )

U

D

R x R x R x
R x R x

R x R x

x x x x x

and

1,0

2,0 2,1

3,0 3,1 3,2

0
( ) 0

( ) .( ) ( ) 0
( ) ( ) ( ) 0

L

G x
G x G x G x

G x G x G x

Proof We only prove Eq. (6.22) for the entries in the first block-row and first 
lock-column. The rest can be proved similarly. 

The entry (0, 0)  on the right-hand side is 

0 0, ,0
1

( ) ( ) [ ( )] ( ),k k k
k

I x R x I x G x

which is equal to 0,0 ( )I P x  according to (3) of Theorem 6.4.  
The entry (0, )l  with 1l  on the right-hand side is  

0, 0,
1

( ) [ ( )] ( ) [ ( )] ( ),l l k k k l
k l

R x I x R x I x G x

which is equal to 0, ( )lP x  according to (1) of Theorem 6.4.  
Finally, to see that the entry ( ,0)l  with 1l  on the right-hand side is equal to 

the corresponding entry on the left-hand side, it follows from (2) of Theorem 6.4 that 
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,0 , ,0 ,0
1

[ ( )] ( ) ( ) ( ) ( ) ( ).l l l k k k l
k l

I x G x R x I x G x P x

This completes the proof. 
In what follows we list the main results for two important examples: Level- 

dependent Markov renewal processes of 1M G  type, and level-dependent Markov 
renewal processes of 1GI M  type. 

6.2.1 Level-Dependent Markov Renewal Processes of M/G/1 Type 

Let

, , 1 , 2

1, 1, 1 1, 2

2, 1 2, 2

( ) ( ) ( )
( ) ( ) ( )

( ) , 1.
( ) ( )

k k k k k k

k k k k k k
k

k k k k

P x P x P x
P x P x P x

Q x k
P x P x

We denote by ( ) T
1,1

( ( )k xQ , ( ) T
2,1

( )k xQ , T)  the first block-column of the matrix ( )
k

xQ

*

0
( ) l

k
l

Q x . Thus, the R- and G-measures are defined as 

( )
, , 1,1

0
( ) ( ) ( ), 0 ,j

i j i j l l
l

R x P x x i jQ  (6.23) 

def ( )
, 1 , 11,1

( ) ( ) ( ) ( ), 1,k
k k k k kG x G x x P x kQ  (6.24) 

, ( ) 0i jG x  for 0 2j i , and  

, , 1 1
1

( ) ( ) ( ) ( ) ( ) ( ), 0,k k k k k i k i k i k
i

x P x P x G x G x G x k  (6.25) 

and
( ) ( )

1,1 1,1
[ ( )] ( ) ( ) [ ( )] .k k

k kI x x x I x IQ Q

Therefore, we can obtain 
(1) For 0 i j ,

, , , 1
1

1

( ) [ ( ) ( ) ( ) ( )* *

( )] ( ).* * *

i j i j i j l j l j l
l

j j

R x P x P x G x G x

G x x
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(2) The matrix sequence { ( )}iG x  is the minimal nonnegative solution to the 
system of matrix equations 

, 1 , 1
0

( ) ( ) ( ) ( ) ( ) ( ), 1.i i i i i l i l i l i
l

G x P x P x G x G x G x i

(3) In the RG-factorization, we have 

1

2

3

0
( ) 0

( ) .( ) 0
( ) 0

L

G x
G x G x

G x

6.2.2 Level-Dependent Markov Renewal Processes of GI/M/1 Type 

We write 

, , 1

1, 1, 1 1, 2

2, 2, 1 2, 2

( ) ( )
( ) ( ) ( )

( ) , 1.
( ) ( ) ( )

k k k k

k k k k k k
k

k k k k k k

P x P x
P x P x P x

W x k
P x P x P x

We denote by ( ) ( )
1,1 1,2( ), ( ), ...k kx xW W  the first block-row of the matrix ( )k xW

*

0
( ) l

k
l

W x . Based on Corollary 2.2, we have 

def ( 1)
, 1 , 1 1,1( ) ( ) ( ), 0,k

k k k k kR x R x P x kW

, ( ) 0i jR x  for 2,j i

( )
, ,1,

1
( ) ( ), 0 ,i

i j i l jl
l

G x P x j iW

and

, 1 ,
1

( ) ( ) ( ), 0.* * * *k k k k k k i k i k
i

x P x R R R P x k

The matrix sequence { ( )}kR x  is the minimal nonnegative solution to the system 
of matrix equations 
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, 1 1 1 , 1
1

( ) ( ) ( ), 0.k k k k k k i k i k
i

R x P x R R R P x k

In the RG-factorization, we have 

0

1

2

0 ( )
0 ( )

( ) .0 ( )
0

U

R x
R x

R x R x

6.2.3 Markov Renewal Equations 

We use the R-, U- and G-measures to express the block-structured Markov renewal 
matrix. Note that the Markov renewal equation plays an important role in the study 
of Markov renewal processes. 

Consider a block-structured Markov renewal equation 

0
( ) ( ) (d ) ( ), 0,

t
U t H t P x U t x t  (6.26) 

where ( )P x  is a block-structured transition probability mass matrix and ( )H x  is 
a given matrix. We partition ( )U x  and ( )H x  according to the levels, and denote 
their block-entries by , ( )i jU x  and , ( )i jH x  for i , 0j , respectively.  

To solve the Eq. (6.26), we need to compute the Markov renewal matrix 

*

0
( ) [ ( )] .n

n
M t P t  (6.27) 

It is obvious that 

* 1

0
( ) [ ( )] [ ( )] ,n

n
M s P s I P s  (6.28) 

which is the minimal nonnegative inverse of ( )I P s  for 0s . It follows from 
Eq. (6.26) and Eq. (6.28) that 

1( ) [ ( )] ( ) ( ) ( ).U s I P s H s M s H s  (6.29) 

It is clear from Eq. (6.29) that the computation of the inverse of the matrix ( )I P s
is crucial for expressing ( )U s . For Re( ) 0s , using the UL-type RG-factorization 
we obtain  

1 1 1 1( ) [ ( )] [ ( )] [ ( )] [ ( )]L D UM s I P s I G s I s I R s
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or

** *

0 0 0
( ) ( ) .( ) ( ) nn n

UL D
n n n

M x R xG x x

6.3 The LU-Type RG-Factorization

In this section, we define the LU-type R-, U- and G-measures by means of another 
censored process, and derive the LU-type RG-factorization for the transition 
probability mass matrix.  

Let
[ ] ( ) ( ) ( ),nP x Q x V T U x  (6.30) 

where

*

0
( ) ( ).n

n
T x T x

The block-entry expression of the matrix [ ] ( )nP x  is given by  

( ) ( ) ( )
, , 1 , 2

( ) ( ) ( )
[ ] 1, 1, 1 1, 2

( ) ( ) ( )
2, 2, 1 2, 2

( ) ( ) ( )
( ) ( ) ( )

( ) .
( ) ( ) ( )

n n n
n n n n n n
n n n

n n n n n n n
n n n

n n n n n n

x x x
x x x

P x
x x x

Lemma 6.6 For i, 1j n , we have 

( )( 1) ( ) ( )
, , , ,,

0

( ) ( ) ( ).
n

kn k k
i j i j i k k jk k

k
x P x x  (6.31) 

Proof Since

( ) ( ) ( )
1, 1 1, 2 1, 3

( ) ( ) ( )
[ ( 1)] 2, 1 2, 2 2, 3

( ) ( ) ( )
3, 1 3, 2 3, 3

( )
1,

( )
2,

( )
3,

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

n n n
n n n n n n
n n n

n n n n n n n
n n n

n n n n n n

n
n n
n

n n
n

n n

x x x
x x x

P x
x x x

( ) ( ) ( ) ( )
, 1 2 , 3,

( ) ( ) ( ) ,n n n n
n n n n n nn n

x x x
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we obtain 

( )( 1) ( ) ( ) ( )
, , , ,,

( 1)( 1) ( 1) ( 1)
, , 1 1,1, 1

( )( ) ( )
, ,,

( )(0) ( ) ( )
, , ,,

0

( ) ( ) ( )

( ) ( )

( )

( ) ( ).

nn n n n
i j i j i n n jn n

nn n n
i j i n n jn n

nn n
i n n jn n

n
kk k

i j i k k jk k
k

x x x

x x

x

x x

Note that (0)
, ,( ) ( )i j i jx P x  for all i , 0j . This completes the proof. 

Using the censoring invariance, we define the U-measure as 

( )
,( ) ( ), 0,n

n n nx x n  (6.32) 

the R-measure as 

( )( )
, , ,

( ) ( ), 0 ,jj
i j i j j j

R x x j i

and the G-measure as 

( ) ( )
, ,,

( ) ( ), 0 .i i
i j i ji i

G x x i j

It is obvious that 

( )
,( ) ( ), 0 ,j

i j i j jR x x j i  (6.33) 

and

( )
, ,( ) ( ), 0 .i

i j i jiG x x i j  (6.34) 

The following theorem provides the important Wiener-Hopf equations, which 
are satisfied by the R-, U- and G-measures. 

Theorem 6.6 The R-, U- and G-measures defined above satisfy the following 
Wiener-Hopf equations, 

1

, , ,
0

( ( )) ( ) ( ) ( ), 0 ,
j

i j i i j i k k k j
k

R I x P x R I G x j i  (6.35) 

1

, , ,
0

( ) ( ) ( ) ( ) ( ), 0 ,
i

i i j i j i k k k j
k

I G x P x R I G x i j  (6.36) 

and



6 Block-Structured Markov Renewal Processes 

307

1

, , ,
0

( ) ( ) ( ) ( ), 0.
n

n n n n k k k n
k

x P x R I U G x n  (6.37) 

Proof We only prove Eq. (6.35), while Eq. (6.36) and Eq. (6.37) can be proved 
similarly. 

It follows from Eq. (6.33) that 

( )
, ,( ( )) ( ).j

i j j i jR I x x  (6.38) 

By Lemma 6.6, we have 

1
( )( ) ( ) ( )

, , , ,,
0

( ) ( ) ( ).
j

kj k k
i j i j i k k jk k

k
x P x x  (6.39) 

From Eq. (6.33), Eq. (6.34) and Eq. (6.39) we obtain 

1
( )
, , , ,

0

( ) ( ) ( ) ( ),
j

j
i j i j i k k k j

k
x P x R I G x

which, together with Eq. (6.38), leads to the stated result. 
By the Wiener-Hopf Eq. (6.35), Eq. (6.36) and Eq. (6.37), the following theorem 

constructs an LU-type RG-factorization.  
Theorem 6.7 The Markov renewal process ( )P x  defined in Eq. (6.1) can be 

factorized as follows, 

( ) ( ( )) ( ( )) ( ( )),L D UI P x I R x I x I G x  (6.40) 

where 

1,0

2,0 2,1

3,0 3,1 3,2

0 1 2 3

0
( ) 0

( ) ,( ) ( ) 0
( ) ( ) ( ) 0

( ) diag( ( ), ( ), ( ), ( ), ...)

L

D

R x
R x R x R x

R x R x R x

x x x x x

and

0,1 0,2 0,3

1,2 1,3

2,3

0 ( ) ( ) ( )
0 ( ) ( )

.0 ( )
0

U

G x G x G x
G x G x

G x G x
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Proof We prove Eq. (6.40) for the block-entries of the first two block-rows. 
The rest can be proved similarly. For the first block-row, the entry (0, 0)  is 

(0)
0 0,0 0,0( ) ( ) ( ),I x I x I P x

and the entry (0, )l  for 1l  is, from Eq. (6.34) 

(0)(0) (0)
0 0, 0,0 0,0,0

(0)
0, 0,

( ) ( ) ( )

( ) ( ).

l l

l l

I G x I x

x P x

For the second block-row, the entry (1, 0)  is 

(0)(0) (0)
1,0 0 1,0 0,00,0

(0)
1,0 1,0

( ( )) ( )

( ) ( )

R I x I x

x P x

by Eq. (6.33). By Lemma 6.6, the entry (1,1)  is 

1,0 0 0,1 1

(0) (0)(0) (0) (0) (1)
1,0 0,0 0,1 1,10,0 0,0

(0)(0) (0) (1)
1,0 0,1 1,10,0

1,1

( ) ( ) ( )

( )

( ) ( )

( ),

R I G x I x

I x I x

x I x

I P x

and the entry 1, k  for 2k  is 

1,0 0 0, 1 1,

(0) (0) (1)(0) (0) (0) (1) (1)
1,0 0,0 0, 1,1 1,0,0 0,0 1,1

(0)(0) (0) (1)
1,0 0, 1,0,0

1,

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ).

k k

k k

k k

k

R I G x I G x

I x I x

x x

P x

This completes the proof. 

6.4 Finite Levels

In this section, as an important example we considers an irreducible Markov renewal 
process with finite levels, and derive the UL- and LU-types of RG-factorizations.

We consider an irreducible block-structured Markov renewal process with finite 
levels whose transition probability mass matrix is given by 
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0,0 0,1 0,

1,0 1,1 1,

,0 ,1 ,

( ) ( ) ( )
( ) ( ) ( )

( ) ,

( ) ( ) ( )

M

M

M M M M

P x P x P x
P x P x P x

P x

P x P x P x

where , ( )i iP x  is a matrix of size i im m  for all 0 i M , and the sizes of the 
other blocks are determined accordingly. 

6.4.1 The UL-Type RG-Factorization  

For 0 ,i j k  and 0 k M , it is clear from Section 6.2 that 

[ ][ ] [ ] [ ]
, , , ,,

1

( ) ( ) ( ).
M

nk n n
i j i j i n n jn n

n k
P x P x P P xP

Note that [ ]
, ,( ) ( )M

i j i jP x P x  and [ 0] [0]
, ,( ) ( )i j i jP x P x .

Let

[ ]
,

[ ]
, ,

( ) ( ), 0 ,

( ) ( ), 0 ,

n
n n n

j
i j i j j

x P x n M

R x P x j i M

and

[ ]
, ,( ) ( ), 0 .i

i j i jiG x P x i j M

Then the UL-type RG-factorization is given by 

 ( ) ( ) ( ) ( ( )),U D LI P x I R I I G x

where

0,1 0,2 0,3 0, 1 0,

1,2 1,3 1, 1 1,

2,3 2, 1 2,

2, 1 2,

1,

0 1 2 3

0 ( ) ( ) ( ) ( ) ( )
0 ( ) ( ) ( ) ( )

0 ( ) ( ) ( )
( ) ,

0 ( ) ( )
0 ( )

0
( ) diag( ( ), ( ), ( ), ( ), ,

M M

M M

M M

U

M M M M

M M

D M

R x R x R x R x R x
R x R x R x R x

R x R x R x
R x

R x R x
R x

x x x x x 1( ), ( ))Mx x

and
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1,0

2,0 2,1

3,0 3,1 3,2

4,0 4,1 4,2 4,3

,0 ,1 ,2 ,3 , 1

0
( ) 0
( ) ( ) 0
( ) ( ) ( ) 0( ) .
( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) 0

L

M M M M M M

G x
G x G x
G x G x G xG x
G x G x G x G x

G x G x G x G x G x

6.4.2 The LU-Type RG-Factorization 

For ,k i j M  and 0 k M , it is clear from Section 6.3 that 

[ ][ 1] ] [ ]
, , , ,,

0
( ) ( ) ( ).

k
nk n n

i j i j i n n jn n
n

P x P x P P xP

Note that [ ] [ ]
, ,( ) ( )M M

i j i jP x P x  and [ 0]
, ,( ) ( )i j i jP x P x .

Let
[ ]
,( ) ( ), 0 ,n

n n nx P x n M

[ ]
, ,( ) ( ), 0 ,j

i j i j jR x P x i j M

and

[ ]
, ,( ) ( ), 0 .i

i j i jiG x P x j i M

Then the LU-type RG-factorization is given by 

( ) ( ) ( ) ( ( )),L D UI P x I R I I G x

where

1,0

2,0 2,1

3,0 3,1 3,2

4,0 4,1 4,2 4,3

,0 ,1 ,2 ,3 , 1

0 1 2 3 1

0
( ) 0
( ) ( ) 0
( ) ( ) ( ) 0( ) ,
( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) 0

( ) diag( ( ), ( ), ( ), ( ), , ( ), ( ))

L

M M M M M M

D M M

R x
R x R x
R x R x R xR x
R x R x R x R x

R x R x R x R x R x

x x x x x x x
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and

0,1 0,2 0,3 0, 1 0,

1,2 1,3 1, 1 1,

2,3 2, 1 2,

2, 1 2,

1,

0 ( ) ( ) ( ) ( ) ( )
0 ( ) ( ) ( ) ( )

0 ( ) ( ) ( )
( ) .

0 ( ) ( )
0 ( )

0

M M

M M

M M

U

M M M M

M M

G x G x G x G x G x
G x G x G x G x

G x G x G x
G x

G x G x
G x

6.5 Markov Renewal Processes of GI/G/1 Type

In this section, we simplify the UL-type expressions for the R-, U- and G-measures 
and the RG-factorization for Markov renewal processes of 1GI G  type. 
Furthermore, we derive the RG-factorization for the repeated blocks and four 
Wiener-Hopf inequalities for the boundary blocks. 

Consider a Markov renewal process of 1GI G  type whose transition probability 
mass matrix is given by 

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ,( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

D x D x D x D x
D x A x A x A x

P x D x A x A x A x
D x A x A x A x

 (6.41) 

where the sizes of the matrices 0 ( )D x , ( )iD x , ( )iD x  for 1i  and ( )jA x  for 
j  are 0 0m m , 0m m , 0m m  and m m , respectively. 

Comparing Eq. (6.41) with Eq. (6.1), it is easy to yield 0, ( ) ( )j jP x D x  for 
0j , ,0 ( ) ( )i iP x D x  for 1i  and , ( ) ( )i j j iP x A x  for i , 1j . It is clear 

that ( ) ( )nQ x Q x  for all 1n . Thus, we write ( ,1) ( ,1)( ) ( )
j

x xQ Q  and (1, )( )xQ
(1, )( )
i

xQ  for all i , 1j . Therefore,  
( ,1)

0, 1 2

( ,1)
, 1 2

( ) ( ( ), ( ), ( ), ) ( ), 1,

( ) ( ( ), ( ), ( ), ) ( ), 1 .

j j j j

i j j i j i j i

R x D x D x D x x jQ

R x A x A x A x x i jQ

It is obvious that the matrices , ( )i jR x  for 1 i j  only depend on the difference 
j i . We write , ( )i jR x  as ( )j iR x  for all 1 i j . Therefore, for 1k

( ,1)
1 2( ) ( ( ), ( ), ( ), ) ( ).k k k kR x A x A x A x xQ
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Similarly, for 1i ,
T(1, ) T T T

,0 ( 1) ( 2)( ) ( ) ( ), ( ), ( ),i i i iG x x D x D x D xQ

and for 1 j i ,

T(1, ) T T T
, ( ) ( 1) ( 2)( ) ( ) .( ), ( ), ( ),i j i j i j i jG x x A x A x A xQ

The matrices , ( )i jG x  for 1 j i  only depend on the difference i j. We write 
, ( )i jG x  as ( )i jG x  for all 1 j i . Therefore, for 1k ,

T(1, ) T T T
( 1) ( 2)( ) ( ) .( ), ( ), ( ),k k k kG x x A x A x A xQ

For the Markov renewal process of 1GI G  type, the following lemma is a 
consequence of the repeating property of the transition probability mass matrix, 
which also leads to the censoring invariance. 

Lemma 6.7 For 1n , i , 1j , 2 , 3 , , n ,  

[ ] [ ( 1)] [ ( 2)]
, 1 , 1 2 , 2( ) ( ) ( ) .n n n

n i n j n i n j n i n jP x P x P x

Proof For 1n , i , 1j , 2 , 3 , , n , it is easy to see that 

[ ]
, 1 2

TT T
( 1) ( 2)

( ) ( ) ( ), ( ), ( )

,( ), ( ),

n
n i n j i j i i

j j

P x A x A x A x Q x

A x A x

which is independent of 1n . Thus 

[ ] [ ( 1)] [ ( 2)]
1 1 2 , 2( ) ( ) ( ) .n n n

n i n j n i n j n i n jP x P x P x

This completes the proof. 
Based on Lemma 6.7, we can define for 1 ,i j n ,

[ ]
0 ,

[ ]
,

[ ]
,

( ) ( ),

( ) ( ),

( ) ( ).

n
n n

n
i n i n

n
j n n j

x P x

x P x

x P x

The following theorem explicitly expresses the R- and G-measures in terms of 
the matrix sequence { ( ) : for }i x i .

Theorem 6.8 (1) For 0i ,

*
0

0
( ) ( ) ( ).l

i i
l

R x x x  (6.42) 
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(2) For 1j ,

*
0

0
( ) ( ) ( ).l

j j
l

G x x x  (6.43) 

Proof We only prove Eq. (6.42) while Eq. (6.43) can be proved similarly. 
It follows from Lemma 6.7 and Eq. (6.42) that 

*[ ] [ ] [ ] [ ]
, , ,

0

*
0

0

( ) ( ) ( ) ( ) ( )

( ) ( ).

ln n n n
i i n i n n i n n n

l

l
i

l

R x R x R x P x P x

x x

This completes the proof. 
The following theorem provides Wiener-Hopf equations for the repeating matrix 

sequence and also for the boundary matrix sequence. 
Theorem 6.9 (1) For 1i ,

0 0
1

( ) [ ( )] ( ) ( ) [ ( )] ( ),i i i k k
k

R x I x A x R x I x G x  (6.44) 

for 1j ,

0 0
1

[ ( )] ( ) ( ) ( ) [ ( )] ( )j j k j k
k

I x G x A x R x I x G x  (6.45) 

and

0 0 0
1

( ) ( ) ( ) [ ( )] ( ).k k
k

x A x R x I x G x  (6.46) 

(2) For 1i ,

0, 0 0, 0
1

( ) [ ( )] ( ) ( ) [ ( )] ( ),i i i k k
k

R x I x D x R x I x G x  (6.47) 

for 1j ,

0 ,0 0 ,0
1

[ ( )] ( ) ( ) ( ) [ ( )] ( )j j k j k
k

I x G x D x R x I x G x  (6.48) 

and

0 0 0, 0 ,0
1

( ) ( ) ( ) [ ( )] ( ).k k
k

x D x R x I x G x  (6.49) 

Proof We only prove Eq. (6.44) while Eq. (6.45) to Eq. (6.49) can be proved 
similarly. 
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When n is big enough, it follows from Theorem 6.8 that 

* [ ]
0 0 0 ,

0
( ) [ ( )] ( ) ( ) [ ( )] ( ) ( ),l n

i i i n i n
l

R x I x x x I x x P x

and

[ ] [ ( 1)] [ ( 1)] [ ( 1)]
, , 1 1,

[ ( 1)] [ ( 1)] [ ( 1)] [ ( 1)]
, 1 1, 1 1

[ ( 1)]
, 1 0 1

[ ( )]
,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) [ ( )] ( )

(

n n n n
n i n n i n i n n

n n n n
n i n i n n

n
n i n i

n N
n i n

P x P x R x P x

P x R x I P x G x

P x R x I x G x

P x 0
1

0
1

) ( ) [ ( )] ( )

( ) ( ) [ ( )] ( ).

N

i k k
k

i i k k
k

R x I x G x

A x R x I x G x

This completes the proof. 
For an irreducible Markov renewal process of 1GI G  type, the UL-type 

RG-factorization given in Eq. (6.22) can be simplified as 

 ( ) [ ( )] [ ( )] [ ( )],U D LI P x I R x I x I G x  (6.50) 

where

0,1 0,2 0,3

1 2

1

0 0 0 0

0 ( ) ( ) ( )
0 ( ) ( )

( ) ,0 ( )
0

( ) diag ( ), ( ), ( ), ( ),

U

D

R x R x R x
R x R x

R x R x

x x x x x

and

1,0

2,0 1

3,0 2 1

0
( ) 0

( ) .( ) ( ) 0
( ) ( ) ( ) 0

L

G x
G x G x G x

G x G x G x

It is worthwhile to note that the LU-type RG-factorization given in Eq. (6.40) 
can not be further simplified. Thus we will not discuss the LU-type RG-factorization 
here.
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For the Markov renewal process of 1GI G  type, we write 

000 0
( ) e d ( ), ( ) e d ( ),sx sx

ii s A x s xA

0 0
( ) e d ( ), ( ) e d ( ),sx sx

i ii is R x s G xGR

*( , ) ( ),i
i

i
z s z sA A

**

1 1
( , ) ( ), ( , ) ( ).i j

i j
i j

z s z s z s z sG GR R

The following theorem provides the RG-factorization for the repeated blocks 
based on the double transformations. Note that this RG-factorization is very useful 
for transient performance analysis such as the first passage time and the sojourn time. 

Theorem 6.10

** *
0( , ) [ ( , )][ ( )][ ( , )].I z s I z s I s I z sGA R  (6.51) 

Proof It follows from Eq. (6.44), Eq. (6.45) and Eq. (6.46) that 

0 0
1

( )[ ( )] ( ) ( )[ ( )] ( ), 1,i i i k k
k

s I s s s I s s iGR A R

0 0
1

[ ( )] ( ) ( ) ( )[ ( )] ( ), 1,j kj j k
k

I s s s s I s s jG GA R

0 0 0
1

( ) ( ) ( )[ ( )] ( ).k k
k

s s s I s xGA R

Therefore, we obtain 

**
0 0 0

1 2 0
1

( , )[ ( )] [ ( )] ( , ) ( )

( )[ ( )] ( ),k k
k k

k

z s I s I s z s sGR

I I z s I s z xGR

where

1 0
1 1

**
0

0
1 1

( )[ ( )] ( )

( , )[ ( )][ ( , )]

( )[ ( )] ( )

i k k
i k k

i k

k
i k

i k
k i

I z s I s z xGR

z s I s I z sGR

z s I s z xGR
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and

( )
2 0

1 1

*
0

0
1

( ) ( ) ( )

( , ) ( ) ( , )

( ) ( ) ( ).

k j k
k j k

j k

j k
j k

k j k

I z s I s z xGR

z s I s I z sGR

z s I s z xGR

Since

*
1 2 0

1

**
0

( )[ ( )] ( ) ( , )

( , )[ ( )] ( , ),

k k
k k

k
I I z s I s z x z sGR A

z s I s z sGR

we get 
** *

0 0 0

**
0

( , )[ ( )] [ ( )] ( , ) ( ) ( , )

( , )[ ( )] ( , ),

z s I s I s z s s z sGR A
z s I s z sGR

which is equivalent to Eq. (6.51). This completes the proof. 
Let

0
( ) e d ( ),sx

ii s D xD

* *

1 1

( , ) ( ), ( , ) ( ),i i
i i

i i
z s z s z s z sD D D D

0, ,00, ,00 0
( ) e d ( ), ( ) e d ( ),sx sx

i ii is R x s G xGR

and

**
0 0, 0 ,0

1 1
( , ) ( ), ( , ) ( ).i j

i j
i j

z s z s z s z sG GR R  (6.52) 

Theorem 6.11 For 0z  and 0s ,

1* *
00 [ ( )]( , ) ( , ) ,I sz s z sR D  (6.53) 

** *
0 0( , )[ ( )][ ( , )] ( , ),z s I s I z s z sGR D  (6.54) 

1* *
00 [ ( )]( , ) ( , )I sz s z sG D  (6.55) 

and
** *

0 0[ ( , )][ ( )] ( , ) ( , ).I z s I s z s z sGR D  (6.56) 
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Proof We only prove Eq. (6.53) and Eq. (6.54), while Eq. (6.55) and Eq. (6.56) 
can be proved similarly. 

It follows from Eq. (6.47) that 

0, 0 0, 0
1

( )[ ( )] ( ) ( )[ ( )] ( ),i i i k k
k

s I s s s I s sGR D R  (6.57) 

and from Eq. (6.43) that  
1

0[ ( )]( ) ( ).kk I ss sG

It is obvious that for 0s ,

0, 0 0,
1 1

( )[ ( )] ( ) ( ) ( ) 0.i k i k kk
k k

s I s s s sGR R

Hence it follows from Eq. (6.57) that 

0, 0( )[ ( )] ( )i is I s sR D

and for 0z ,
* *
0 0( , ) ( ) ( , ).z s I s z sR D  (6.58) 

Since the Markov renewal process is irreducible, the spectral radius 

00 0( ( )) ( (0)) ( ( )) 1sp s sp sp

for all 0s . Furthermore, the matrix 0( )I s  is invertible and 1
0[ ( )] 0I s .

Therefore, it follows from Eq. (6.19) that 

1* *
00 [ ( )]( , ) ( ) .I sz s z sR D

It follows from Eq. (6.58) that 
** * *

0 0 0 0( , )[ ( )] ( , ) ( , )[ ( )] ( , ),z s I s z s z s I s z sGR D R

simple computations lead to  
** *

0 0( , )[ ( )][ ( , )] ( , ).z s I s I z s z sGR D

This completes the proof. 

6.6 Spectral Analysis

In this section, we provide spectral properties for the R- and G-measures of a 
Markov renewal process of 1GI G  type. These spectral properties are important 
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in the study of stochastic models. For simplicity, we assume that the matrix 
*
(1,0)A A  is irreducible and stochastic. 

To discuss the equations 
*

det( ( , )) 0I z sR  and 
*

det( ( , )) 0I z sG , we first 
need to provide the relations among the radii of convergence for some matrix 
functions.

For 0,s  we denote by ( ),R s  ( ),G s
0
( ),R s

0
( ),G s  ( ),A s  ( ),A s

( )D s  and ( )D s  the convergence radii of the matrices *( , ),z sR
*( , ),z sG

*
0( , ),z sR

*
0( , ),z sG

* ( , ),z sA
* ( , ),z sA

* ( , )z sD  and *( , ),z sD  respectively, where 

*

1
( , ) ( )k

k
k

z s z sA A  and *

1

( , ) ( )k
k

k
z s z sA A .

Theorem 6.12 For 0s ,
(1)

 ( ) ( ) 1, 0 ( ) ( ) 1;A R A Gs s s s  (6.59) 

(2)

0 0
( ) ( ), ( ) ( ).D R D Gs s s s  (6.60) 

Proof We first prove (1). It follows from Eq. (6.51) that 

** *
0 0

*
0

( , ) ( , )[ ( )][ ( , )] ( )

[ ( )] ( , ),

z s z s I s I z s sGA R
I s z sG (6.61)

and
** *

0 0

*
0

( , ) [ ( , )][ ( )] ( , ) ( )

( , )[ ( )].

z s I z s I s z s sGA R
z s I sR (6.62)

Noting that ( )R s  is increasing in 0s  and ( )G s  is decreasing in 0s , it 
follows from Corollary 3.10 that ( ) (0) 1R Rs  and 0 ( ) (0) 1G Gs . It 
follows from Eq. (6.52) that *( , )z sR  is analytic in ( )Rz s  and *( , )z sG  is 
analytic in ( )Gz s . Also, noting that 0( )I s  is invertible, it follows from 
Eq. (6.61) that ( ) ( ) 1A Rs s  and from Eq. (6.62) that 0 ( ) ( ) 1A Gs s .

Next we prove (2). We only prove the first one while the second one can be 
proved similarly.  

For 0s , it is easy to see that either ( ) 1D s  or ( ) 1D s . We consider 
the following two possible cases: 

Case ( ) 1D s . In this case, since *( , )z sA  is irreducible, we obtain that 
for 0s  and 1 ( )Dz s ,

* *( ( , )) ( (1,0)) ( ) 1,sp z s sp sp GG G
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thus it follows from Eq. (6.54) that 
1** * 1

00( , ) ( , )[ ( , )] ( ( )) ,z s z s I z s I sGR D

it is clear that 
0
( ) ( )R Ds s . On the other hand, it follows from Eq. (6.53) that 

0
( ) ( )R Ds s . Hence 

0
( ) ( )R Ds s .

Case ( ) 1D s . In this case, it follows from Eq. (6.53) that 
0
( )R s

( ) 1D s . Since *
0(1, )sR  is always finite and has the probabilistic interpretation 

in Theorem 6.11 
0
( ) 1R s . Hence, 

0
( ) ( )R Ds s . This completes the proof. 

For 0z  and 0s , let ( , )z s , ( , )r z s  and ( , )g z s  be the maximal eigenvalues 
of *( , )z sA , *( , )z sR  and *( , )z sG , respectively. 

The following Lemma provides the useful relations among the minimal positive 
solutions for the R-measure and among the maximal positive solutions for the 
G-measure. 

Lemma 6.8 (1) For 0s , the minimal positive solution of the equation 
*det( ( , )) 0I z sR  has the following relations 

*

*

min{ ( ) 1: det( ( , )) 0} min{ ( ) 1:1 ( , ) 0},

min{ ( ) 1: det( ( , )) 0} min{ ( ) 1:1 ( , ) 0},
min{ ( ) 1:1 ( , ) 0} min{ ( ) 1:1 ( , ) 0}.

z s I z s z s r z sR
z s I z s z s z sA

z s r z s z s z s

(2) For 0,s  the maximal positive solution of the equation *det( ( , )) 0I z sG
has the following relations 

*

*

max{ ( ) 1: det( ( , )) 0} max{ ( ) 1:1 ( , ) 0},

max{ ( ) 1: det( ( , )) 0} max{ ( ) 1:1 ( , ) 0},
max{ ( ) 1:1 ( , ) 0} max{ ( ) 1:1 ( , ) 0}.

z s I z s z s g z sG
z s I z s z s z sA

z s g z s z s z s

We now determine the distribution of the roots of *det( ( , )) 0I z sR  and 
*det( ( , )) 0I z sG .

Let

 min{| |, 1 | | , det( * ( )) 0}Az z I R z

and

 max{| |, | | 1, det( * ( )) 0}.Az z I G z

Note that  is the minimal positive solution of the equation *det( ( )) 0I R z ,
and  is the maximal positive solution of the equation *det( ( )) 0I G z .

Theorem 6.13 Suppose that  and  are given in (1) and (2) of Theorem 3.22, 
respectively.  

(1) If ( )P x  is positive recurrent, then for 0s ,
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*{ ( ) : det{ ( , )} 0} { : }z s I z s z zR  (6.63) 

and
*{ ( ) : det{ ( , )} 0} { : }.z s I z s z zG

(2) If ( )P x  is null recurrent, then for 0s ,
**{ ( ) : det{ ( , )} 0 or det{ ( , )} 0} { : }.z s I z s I z s z zGR

(3) If ( )P x  is transient, then for 0s ,

*{ ( ) : det{ ( , )} 0} { : }z s I z s z zR

and
*{ ( ) : det{ ( , )} 0} { : }.z s I z s z zG

Proof We only prove Eq. (6.63) while the other four can be proved similarly. 
It follows from Lemma 6.8 that 

*

*

min{ ( ) 1: det( ( , )) 0} min{ ( ) 1:

det{ ( , )} 0} min{ ( ) 1:1 ( , ) 0}.

z s I z s z sR
I z s z s z sA

Since *( , )z sA  is irreducible for 0z  and 0s , ( , )z s  is strictly increasing 
for 0z  and strictly decreasing for 0,s  hence 0 ( ) min{ ( )z s z s
1:1 ( , ) 0}z s  is increasing for 0s . A similar analysis to that used for 
proving Theorem 3.22 leads to the fact that if ( )P  is positive recurrent, then 
for any solution ( )z z s  to equation *det{ ( , )} 0I z sR ,

0 0( ) ( ) (0) .z s z s z

This completes the proof. 
The following theorem provides the positive roots for the equations 

*det( ( , )) 0I z sR  and *det( ( , )) 0I z sG .
Theorem 6.14 (1) If ( )P x  is positive recurrent, then for each 0s , there 

must exist a unique 0 ( )z s  with 01 ( )z s  such that det(I *
0( ( ), )) 0z s sR .

(2) If ( )P x  is transient, then for each 0s , there must exist a unique 0 ( )z s
for 00 ( ) 1z s  such that *

0det( ( ( ), )) 0.I z s sG
Proof We only prove 1) while 2) can be proved similarly.  
We write ( , ) 1 ( , )f z s z s . Since *( , )z sA  is nonnegative and irreducible 

for 0z  and 0s , it is obvious that ( , )z s  is strictly increasing for 0z
and strictly decreasing for 0s . Noting that ( ,0) 1, we obtain that for any 
given 0s ,

 ( , ) 1 ( , ) 1 ( ,0) 0.f s s  (6.64) 
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On the other hand, since for any given 0s , *lim ( , ) ,
z

z sA  so that 

( , ) ,s  we get  

 ( , ) 1 ( , ) 0,f s s  (6.65) 

Noting that for an arbitrarily given 0s , ( , )f z s  is continuous and strictly 
increasing for [ , )z , it follows from Eq. (6.64) and Eq. (6.65) that there 
always exists a unique positive solution 0 ( ) ( , )z s  such that  

0 0( ( ), ) 1 ( ( ), ) 0.f z s s z s s

Therefore, for 0z  and 0s  it follows from Theorem 3.22 and Eq. (6.64) that 

0
*

( ) min{ ( ) 1:1 ( , ) 0}

min{ ( ) 1: det( ( , )) 0}.

z s z s z s

z s I z sR

This completes the proof. 

6.7 The First Passage Times

In this section, we first provide an algorithmic framework for computing the first 
passage time of any irreducible Markov renewal process, and then consider the 
first passage times for a Markov renewal process of 1GI G  type.  

6.7.1 An Algorithmic Framework 

Consider a Markov renewal process {( , ), 0}n nX T n  whose transition probability 
mass matrix is given in Eq. (6.1). Let {0}E  and {1,2,3,4,...}cE . According to 
the subsets E and cE , the transition probability mass matrix ( )P x  is partitioned as 

( ) ( )
( ) .

( ) ( )

c

c

E E
E

E
T x U x

P x
V x Q x

 (6.66) 

Let 0( , )  be the initial probability vector of the Markov renewal process 
{( , ), 0}n nX T n , where 1 2 3( , , , ...)  and 0 1e . We denote by ( )kf x
the joint probability that the Markov renewal process {( , ), 0}n nX T n  first visits 
state 0 at the k th step no later than time 0x . It is easy to check that 

0 0( ) ( )f x x  (6.67) 
and

( 1)*( ) ( ) ( ), 1.k
kf x Q x V x k  (6.68) 
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Taking the Laplace-Stieltjes transforms for Eq. (6.67) and Eq. (6.68), we obtain 
*

00
( )sf

and
1* * *( ) ( ), 1.[ ( )]

k

k
s s ksf Q V

We write 
**

0

( , ) ( ).k
k

k
s z z sfF

It is clear that 
1* **

0( , ) ( ).[ ( )]s z z sI z sQ VF

When 0s  and 0 1z , it is clear that *( )z sQ  is the transition probability matrix 
of a Markov chain. In this case, we can obtain the UL-type RG-factorization

*( ) [ ( , )][ ( , )][ ( , )],U D LI z s I R s z I U s z I G s zQ

which leads to that 

11 1 **
0( , ) [ ( , )] ( );[ ( , )] [ ( , )] UL Ds z z I R s z sI G s z I U s z VF

and the LU-type RG-factorization

*( ) [ ( , )][ ( , )][ ( , )],L D UI z s I R s z I U s z I G s zQ

which yields that 
1 1 1 **

0( , ) ( ).[ ( , )] [ ( , )][ ( , )] D LUs z z sI U s z I R s zI G s z VF

6.7.2 Markov Renewal Processes of GI/G/1 Type 

Let
*

( ) (1, )A s sA ,
*

( ) (1, )R s sR  and *( ) (1, )G s sG . Then it follows from 
Eq. (6.51) that 

0( ) [ ( )][ ( )][ ( )].I A s I R s I s I sG  (6.69) 

Hence, we obtain 

0( ) [ ( )] [ ( )] [ ( )].I A x I R x I x I G x  (6.70) 

Notice that 
1

( ) ( )k
k

G x G x  is the distribution matrix of the first passage times  

of the Markov renewal process of 1GI G  type from iL  to ( 1)iL  for 2i .
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Specifically, for a Markov renewal process of 1M G  type 1( ) ( )G x G x  is called 
the matrix distribution of the fundamental period according to Chapter 2 and 
Chapter 3 in Neuts [17]. It is clear that if the Markov chain ( )P  is recurrent, 
then ( )G  is stochastic; otherwise ( )G  is strictly substochastic. 

For a matrix ( )M s  we write 0( ) ( )( 1) k

k
k d

k sds
M M s . In the following, we 

show how to compute conditional moments of the matrix distribution ( )G x ,
defined as ( )k G , based on Eq. (6.69). It follows from Eq. (6.69) that the first 
conditional moment of ( )G x  satisfies 

1 1 0 1 0

0 1

( ) ( )( )( ) ( ) ( )( )
( )( ) ( ),

G R I I G I R I G
I R I G

and the second conditional moment of ( )G x  satisfies 

2 2 0 2 0

0 2 1 1 0

1 0 1 1 0 1

( ) ( )( )( ) ( ) ( )( )
( )( ) ( ) 2 ( ) ( )( )
2( ) ( ) ( ) 2 ( )( ) ( ).

G R I I G I R I G
I R I G R I G

I R G R I G

Specifically, if the Markov renewal process is recurrent, then the first conditional 
moment of ( )G x  is simplified as  

1 1
1 0 1( ) ( ) ( ) ,( )G e I A eI R

and the second conditional moment of ( )G x  is simplified as 

1 1
2 0 2 1 0 1

1 0 1

( ) ( ) { ( ) 2( ) ( ) ( )( )
2 ( )( ) ( )}

G e I A I R GI R
R I G e

since ( ) 0I G e .

Now, we consider the matrix distribution 0 ,0
1

( ) ( )k
k

G x G x , which often 

represents the matrix distribution of the busy period. To explicitly express 0 ( )G x ,
we need to compute ,0 ( )kG x  for all 1k . It follows from Eq. (6.42) that 

0 ,0 ,0
1

[ ( )] ( ) ( ) ( ) ( ), 1,j kj k j
k

I s s s s s jG GD

hence,

1 2 3 11,0

1 2 22,0

1 33,0

44,0

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,( ) ( ) ( )
( ) ( )

I B s B s B s s F sG
I B s B s s F sG

I B s s F sG
I s F sG

 (6.71) 
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where 1
0[ ( )]( ) ( )i iI sB s s  and 1

0[ ( )]( ) ( )i iI sF s sD  for 1i .
Lemma 6.9 Let

1 2 3

1 2

1

( ) ( ) ( )
( ) ( )

( ) .( )

I B s B s B s
I B s B s

s I B s
I

Then for Re( ) 0s , there always exists a unique inverse matrix 1( )s  such 
that 1 1( ) ( ) ( ) ( )s s s s I , and  

1 2 3

1 2
1

1

( ) ( ) ( )
( ) ( )

( ) ,( )

I X s X s X s
I X s X s

s I X s
I

 (6.72) 

where 

1 2

1 21
1,1

( ) ( ) ( ) ( ), 1.
i

i
j

l n n n
i n n n l

n j i

X s B s B s B s l

Proof Noting that 1( ) ( )s s I , we obtain 

1

1
( ) ( ) ( ) ( ) 0, 1.

k

k k i k i
i

X s B s B s X s k  (6.73) 

Let *

1

( , ) ( )k
k

k
X z s z X s  and *

1
( , ) ( )k

k
k

B z s z B s . Then it follows from Eq. (6.73) 

that  

* * * *( , ) ( , ) ( , ) ( , ) 0.X z s B z s B z s X z s

We obtain 

1 2
1 2

1* ** *

1

1 1
1, 1

( , ) ( , )[ ( )] [ ( , )]

( ) ( ) ( ).
i

i
j

i

i

l
n n n

l i n n n l
n j i

X z s B z sI B z s B z s

z B s B s B s



6 Block-Structured Markov Renewal Processes 

325

Therefore,

1 2

1 21
1, 1

( ) ( ) ( ) ( ), 1.
i

i
j

l n n n
i n n n l

n j i

X s B s B s B s l

This completes the proof. 
Theorem 6.15 For Re( ) 0s ,

1 2

1 2

1 1
000

1 1 1 1
1, 1

1 1
0 0

1
0

[ ( )]( ) ( ) ( )

[ ( )] [ ( )]( ) ( ) ( )

[ ( )] ( ).

i
j

i

k
k k l i n n n l

n j i

n n n

k l

I ss I s sG D

I s I ss s s

I s sD

Proof It follows from Eq. (6.71) that 

1 2

1 2

,0
1

1 1
0 0

1 1
1, 1

11
0 0

1
0 ( )

( ) ( ) ( ) ( )

[ ( )] [ ( )]( )

[ ( )]( ) ( ) ( )[ ]

[ ( )] ( ).

i
j

i

k l k lk
l

k
l i n n n l

n j i

n n n

k l

s F s X s F sG

I s I ssD

I ss s sI s

I s sD (6.74)

Noting that 0 ,0
1

( ) ( )k
k

s sG G , simple computations yield the proof. 

Now, we provide conditions on the state classification for the Markov renewal 
processes of 1GI G  type. 

Based on the result in Theorem 6.15, simple computations can lead to the 
following corollary.  

Corollary 6.3 (1) If ( )P x  is recurrent, then 0 ( ) .G e e
(2) If ( )P x  is transient, then 0 ( ) .G e e
Remark 6.3 For a Markov renewal process of 1M G  type, since ( ) 0k sD ,

2k , it is clear that 1
0 10( ) ( ) ( )s I s sG D , which is the same as (2.4.3) in 

Neuts [17] (p. 107). Theorem 6.15 extended Lemma 2.4.1 of Neuts [17] to a 
Markov renewal process of 1GI G  type. 

In what follows we express the transformation of the matrix [0]
0 ( ) ( )x P x . It 

follows from Theorem 6.1 that 

1
0 0( ) ( ) ( )[ ( )] ( ).s s s I Q s sD U V  (6.75) 
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Let *[0]
( , ) (1,0)( , ) z sz s ePz

. Then 

2 T T T T
0 1 2 3 1 2 3( , , , )(2 3 ) ( , , , ) .( )D e D D D I Q D D D eI Q

Therefore, if the Markov chain is positive recurrent, it follows from Corollary 3.5 
in Asmussen [2] that 

1
0 0 0( ) ,x x  (6.76) 

where 0x  is the stationary probability vector of 0 ( ) .
Remark 6.4 If the Markov renewal process is of 1M G  type, Eq. (6.75) is 

the same as (3.2.1) in Neuts [17] (p. 135) and Eq. (6.76) is the same as (3.2.6) in 
Neuts [17] (p. 137). 

It is obvious that the state classification for the Markov chain ( )P  is 
crucial for classifying the Markov renewal process ( )P x  as recurrent or transient. 
The following corollary, a consequence of Proposition 6.2, provides a sufficient 
condition for a recurrent Markov renewal process of 1GI G  type to be positive 
recurrent.

Corollary 6.4 A Markov renewal process ( )P x  of 1GI G  type is positive 
recurrent if  

(1) ( )P  is positive recurrent and  

(2)
0

( )dkxD x x  for all 0k ,
0

1
( )dk

k
xD x x  and 

0
( )dk

k
xA x x  are 

all finite.  

6.8 Notes in the Literature

The literature on Markov renewal processes is extensive. References, which are 
closely related to this chapter, include Pyke [19 21], Pyke and Schaufele [22 23], 
Teugels [28], Hunter [11], Çinlar [5, 7, 8], Todorovic and Gani [29], Malinovski
[15], Lam [12], Johnson, Liu and Narayana [10], Rossetti and Clark [26], Vesilo 
[30], Ball and Milne [4]. For a comprehensive discussion on Markov renewal 
processes, readers may refer to a survey article by Çinlar [6]. 

The study of block-structured Markov renewal processes provides a useful 
modelling tool. Readers may refer to Neuts [17] for a study of Markov renewal 
processes of 1M G  type. Other references on block-structured Markov renewal 
processes include Neuts [16, 18], Sengupta [27], Asmussen and Ramaswami [3], 
Ramaswami [24 25], Zhao, Li and Alfa [31] and Hsu, Yuan and Li [9] among 
others. Li and Zhao [13 14] systemically studied the UL-types RG-factorization 
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for block-structured Markov renewal processes, while the LU-types RG-factorization 
is given in this chapter for the first time. 

In this chapter, we mainly refer to Li and Zhao [13 14], Çinlar [5 8] and 
Neuts [17]. 

Problems

6.1 Prove Proposition 6.2 
6.2 Prove Proposition 6.3 
6.3 Provide a concrete example to indicate that Condition (2) of Proposition 6.3 
can be further weakened. 
6.4 Please provide an example to indicate that the embedded Markov chain 

( )P  is positive recurrent, but the Markov renewal process ( )P x  is not positive 
recurrent.
6.5 Prove Corollary 6.1. 
6.6 Prove the censoring invariance for the block-structured Markov renewal 
process as follows: 

(1) for 0 i j n , [ ]
, ,( ) ( )n

i j i jR x R x ; and 
(2) for 0 j i n , [ ]

, ,( ) ( )n
i j i jG x G x .

6.7 Prove Corollary 6.2. 
6.8 If ( )P x  is the transition probability mass matrix of an irreducible QBD 
renewal process with infinitely-many levels, please compute the Markov renewal 
matrix ( )M x .
6.9 If the transition probability mass matrix ( )P x  is of 1GI G  type, please 
compute the Markov renewal matrix ( )M x .
6.10 Consider a 1MAP G  with a repairable server, where the life time and the 
repair time of the server are exponential and general, respectively. Compute the 
reliability function by means of the UL-type RG-factorization.
6.11 For the Markov renewal process of 1GI M  type, please express , ( )i jG x
and ( )j x  by using the matrix ( )R x .
6.12 In an irreducible Markov renewal process of 1GI G  type, please analyze 
the asymptotic behavior of the four matrix functions 0( ), ( ), ( )G x G x R x  and 0 ( )R x
with respect to each of the following three cases: 

(1) The matrix function ( ) ( )k
k

A x A x  is heavy-tailed, and the matrix function 

( ) ( )k
k

D x D x  is light-tailed. 

(2) The matrix function ( )A x  is light-tailed, and the matrix function ( )D x  is 
heavy-tailed. 

(3) The matrix functions ( )A x  and ( )D x  are both heavy-tailed. 
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6.13 In an irreducible Markov renewal process of 1GI G  type, please analyze 
the asymptotic behavior of the four matrix functions 0( ), ( ), ( )G x G x R x  and 0 ( )R x
with respect to each of the following three cases: 

(1) The matrix sequence { ( )}kA  is heavy-tailed, and the matrix sequence 
{ ( )}kD  is light-tailed.  

(2) The matrix sequence { ( )}kA  is light-tailed, and the matrix sequence 
{ ( )}kD  is heavy-tailed.  

(3) The matrix sequences { ( )}kA  and { ( )}kD  are both heavy-tailed. 
6.14 In a 1MAP G  queue, if the service time distribution is heavy-tailed, please 
analyze the asymptotic behavior of the four matrix functions ( )kG x  for 1,k

( ), ( )lG x R x  for 1l  and ( )R x , where 
1

( ) ( )k
k

G x G x  and 
1

( ) ( )k
k

R x R x .

6.15 In a stable 1BMAP G  queue, please analyze the asymptotic behavior of 
the stationary queue length, waiting time and busy period with respect to each of 
the following three cases: 

(1) The service time distribution is light-tailed and the BMAP matrix descriptor 
{ }kC  is heavy-tailed.  

(2) The service time distribution is heavy-tailed and the BMAP matrix descriptor 
{ }kC  is light-tailed.  

(3) The service time distribution is heavy-tailed and the BMAP matrix descriptor 
{ }kC  is heavy-tailed. 
6.16 In a 1MAP G N  queue, when 1  (or 1 , or 1) , please analyze 
the asymptotic behavior lim NN

q  of the stationary queue length distribution { ,0kq

}k N  with respect to each of the following two cases:  
(1) The service time distribution is light-tailed. 
(2) The service time distribution is heavy-tailed. 

6.17 In a 1BMAP G  queue, compute the transient distributions of the queue 
length and waiting time. 
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Abstract In this chapter, we apply the RG-factorizations to deal with 
practical stochastic models, and indicate concrete procedures of performance 
computation under a unified algorithmic framework. The processor-sharing 
queue is directly constructed as a block-structured Markov chain, and the 
fluid queue can be constructed as a block-structured Markov chain by means 
of the Laplace transform; while the negative-customer queue and the retrial 
queue need to combine the supplementary variable method and the RG-
factorizations such that the boundary conditions are simplified as a block- 
structured Markov chain or a block-structured Markov renewal process. We 
provide performance analysis of the practical stochastic models. 

Keywords practical stochastic models, RG-factorization, supplementary 
variable method, processor-sharing queue, fluid queue, queue with negative 
customers, retrial queue. 

In this chapter, we apply the RG-factorizations to deal with practical stochastic 
models, and indicate concrete procedures both for constructing a block-structured 
Markov chain and for applying the RG-factorizations to provide performance 
computation under a unified algorithmic framework. The processor-sharing queue 
is directly constructed as a block-structured Markov chain. The fluid queue can 
be constructed as a block-structured Markov chain by means of the Laplace 
transform or the Laplace-Steltjes transform. The negative-customer queue and 
the retrial queue need to combine the supplementary variable method and the 
RG-factorizations such that the boundary conditions are simplified as a block- 
structured Markov chain or a block-structured Markov renewal process. 

This chapter is organized as follows. Section 7.1 investigates a 1BMAP M
processor-sharing queue with generalized processor-sharing discipline. Section 7.2 
discusses an infinite-capacity fluid queue driven by a QBD process. Section 7.3 
deals with a 1MAP G  queue with negative customers. Section 7.4 analyzes a 
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1BMAP G  retrial queue with a repairable server. Finally, Section 7.5 summarizes 
the references related to the results of this chapter.  

7.1 Processor-Sharing Queues

In this section, we study a 1BMAP M  processor-sharing queue with generalized 
processor-sharing discipline. Applying the RG-factorizations, we provide the stable 
condition of the system, and express the stationary distribution of queue length 
and the Laplace transform of the sojourn time.  

The processor-sharing queueing model is described as follows:  
The arrival process: The arrivals to the queue are modelled by a BMAP with 

irreducible matrix descriptor { , 0}kD k  of size m. We assume that 
1

k
k

kD  is 

finite, and 
0

k
k

D D  is the infinitesimal generator of an irreducible Markov 

chain with 0De ,Where e is a column vector of ones with suitable size. 

Let  be the stationary probability vector of D. Then 
1

k
k

kD e  is the 

stationary arrival rate.  
The service times: The service times { , 1}n n  of the customers are assume 

to be i.i.d. exponential random variables with the service rate .
The generalized processor-sharing discipline: When there are n  jobs in the 

system, the attained service of each job increases with rate ( )f n  relative to being 
along in the system. Here, ( )f n  is a positive function such that 10 C

2( )nf n C  for all 1,n  where 1C  and 2C  are two positive constants. 
The independence: We assume that all the random variables defined above are 

mutually independent. 
Remark 7.1 (1) If ( ) 1 ,f n n  then 1 2 1.C C  In this case, the generalized 

processor-sharing becomes the ordinary processor-sharing. In fact, it is easy to 
see that the generalized processor-sharing describes a wider class of the service 
disciplines.

(2) The condition that 10 C  is necessary for guaranteeing the stability 
of the generalized processor-sharing queue.  

(3) If 2 ,C  then there are two useful cases in practice: (a) ( )nf n  for 
all 1n  but lim ( ) ;

n
nf n  and (b) there exists a finite integer N  such that 

( ) .Nf N  For the two cases, the approach given in this section still works well.
Let ( )q t  and ( )I t  be the number of the jobs in the system and the phase 

number of the BMAP input at time t, respectively. Then { ( ), ( ); 0}q t I t t  is a 
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continuous-time level-dependent Markov chain of 1M G  type whose infinitesimal 
generator is given by 

0 1 2 3

0 1 2

0 1

0

(1) (1)
.2 (2) 2 (2)

3 (3) 3 (3)

D D D D
f I D f I D D

Q f I D f I D
f I D f I

 (7.1) 

Let inf{ ( )},
n N

C nf n  where N is a large positive integer. Then 0 C

according to the condition 1 20 ( )C nf n C  for all 1.n  Based on the main 
drift of the Markov chain Q, it is obvious that the generalized processor-sharing
queue is stable if ,C  since ( )nf n C  for all .n N

For the Markov chain of 1M G  type, let ( ){ , 1}kG k  for the G-measure be 
the minimal nonnegative solution to the system of matrix equations 

( ) ( ) ( 1) ( )
0

1

( ) [ ( ) ] 0, 1.k k i k i k
i

i
k f k I D kf k I G D G G G k

Then for 0k  and 1,l  the R-measure is given by 

( ) ( 2) ( 3) ( 2) 1
1 2 1[ ] ,k k k k

l l l l kR D D G D G G U

and for 0,k  the U-measure is given by  

( ) ( 1) ( 1)
0

1

( ) .k i k i k
k i

i
U D k f k I D G G G

Thus, the RG-factorization is given by 

( ) ( ),U D LQ I R U I G

where

(0) (0) (0)
1 2 3

(1) (1)
1 2

(2)
1( ) ,U

I R R R
I R R

I R I R
I

0 1 2diag ( , , , ),DU U U U

and
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(1)

(2)

(3)

( ) .L

I
G I

I G G I
G I

Using the RG-factorization, the stationary probability vector 0 1 2( , , , )  of 
the Markov chain Q is given by 

0 0
1

( )

0

,

, 1,
k

i
k i k i

i

x

R k

where 0x  is the stationary probability vector of the transition rate matrix 0U  and 

the scalar  is uniquely determined by 
0

1.k
k

e

Let lim { ( ) }k t
q P q t k  for 0.k  Then 

0
1

( )

0

,

, 1.
k

i
k i k i

i

q

q R e k

Thus, the mean of the stationary queue length is given by 

1
( )

1 0

[ ] .
k

i
i k i

k i
E q k R e

Now, we derive the Laplace transform for the complementary distribution of 
the sojourn time by means of the RG-factorization, and also obtain the mean of 
the sojourn time.  

Let nW  denote the sojourn time experienced by a customer when there are 
1n  customers in the system at his arrival time, and nI  the phase number of the 

BMAP input at the arrival time of the nth customer. We write 

( , ) { , }n n nW x i P W x I i

and

( ) ( ( ,1), ( ,2), , ( , )).n n n nW x W x W x W x m

Using a standard probabilistic analysis, we show that the vector sequence { ( )}kW x
satisfies the following system of differential-difference equations 
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1 1 0 1
1

d ( ) ( )[ (1) ] ( )
d l l

l
W x W x D f I W x D

x
 (7.2) 

and for 2k

1 0

1

d ( ) ( 1) ( ) ( )[ ( ) ]
d

( ) ,

k k k

k l l
l

W x kf k W x W x D kf k I
x

W x D (7.3)

with the initial conditions 

 (0) and (0) 0 for all ,n kW W k n  (7.4) 

where  is a probability vector with 1.e
Let

1 2 3( ) ( ( ), ( ), ( ), )W x W x W x W x

and

0 1 2

0 1

0

(1)
(2) 2 (2)

.
2 (3) 3 (3)

D f I D D
f I D f I D

f I D f I
 (7.5) 

Then the system of equations Eq. (7.2) to Eq. (7.5) is rewritten as 

d ( ) ( )
d

W x W x
x

 (7.6) 

with an initial condition 

1 vectors 0 of size

(0) 0,0, ,0, ,0,0, .
n m

W

Thus, we obtain 

( ) (0)exp{ }.W x W Ax

We denote by *( )w s  and *( )nw s  the Laplace transform of the row vectors ( )W x

and ( ),nW x  respectively. For example, *

0
( ) e ( )d .sxw s W x x  It is easy to check 

that

*

0
e d ( ) (0) ( ).sx W x W sw s
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Thus, it follows from Eq. (7.6) that 

( )( ) (0).w s sI W  (7.7) 

Let 1
max( )sI  denote the maximal non-positive inverse of the matrix sI

of infinite size with the setting that 1 1
max( ) 0( ) sIsI  for an arbitrary 

inverse 1( )sI  of .sI  Then 

1
max( ) (0)( ) .w s W sI

Let ( ){ ( ), 1}kG s k  for the G-measure be the minimal nonnegative solution to 
the system of matrix equations 

( ) ( 1) ( )
0 1

( 2) ( 1) ( )
2

( ) { ( ) } ( ) ( ) ( )
( ) ( ) ( ) 0, 1.

k k k

k k k

kf k I D s kf k I G s D G s G s
D G s G s G s k

For 0,k  the U-measure is given by  

( ) ( 1) ( 1)
0

1
( ) [ ( ) ] ( ) ( ) ( ),k i k i k

k i
i

U s D s kf k I D G s G s G s

and for 0k  and 1l  the R-measure is given by  
( ) ( 2) ( 3) ( 2) 1

1 2 1( ) [ ( ) ( ) ( ) ][ ( )] .k k k k
l l l l kR s D D G s D G s G s U s

Therefore, we obtain  

 [ ( )] ( )[ ( )],U D LsI I R s U s I G s  (7.8) 

where

(0) (0) (0)
1 2 3

(1) (1)
1 2

(2)
1

( ) ( ) ( )
( ) ( )

( ) ,( )U

I R s R s R s
I R s R s

I R s I R s
I

0 1 2 3( ) diag( ( ), ( ), ( ), ( ), ),DU s U s U s U s U s          

(1)

(2)

(3)

( )
( ) .( )

( )
L

I
G s I

I G s G s I
G s I
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Let

( ) ( )
1 1( ) ( ), 0,l lX s R s l

( ) ( ) ( 1) ( ) ( 2) ( ) ( )
1 1 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ),

0, 1,

l l l l l l l k
k k k kX s R s X s R s X s R s X s

l k

and

( ) ( ) ( 1) ( 1)( ) ( ) ( ) ( ), 1, 1.l l l l k
kY s G s G s G s l k

If Re( ) 0,s  then ( ),UI R s ( )DU s  and ( )LI G s  are invertible,  

(0) (0) (0)
1 2 3

(1) (1)
1 2

1 (2)
1

( ) ( ) ( )
( ) ( )

[ ( )] ,( )U

I X s X s X s
I X s X s

I R s I X s
I

1 1 1 1 1
0 1 2 3( ) diag( ( ) , ( ) , ( ) , ( ) , )DU s U s U s U s U s

and

(1)
1

1 (2) (2)
2 1
(3) (3) (3)

3 2 1

( )
[ ( )] .( ) ( )

( ) ( ) ( )
L

I
Y s I

I G s Y s Y s I
Y s Y s Y s I

Let * ( )nw s  be the Laplace transform of the sojourn time distribution ( ).nW x  It 
follows from Eq. (7.7) and Eq. (7.8) that 

* * * *
1 2 3

1 1 1

1 vectors 0 of size

( ) ( ( ), ( ), ( ), )

0,0, ,0, ,0,0, [ ( )] [ ( )] [ ( )] .L D U
n m

w s w s w s w s

I G s U s I R s

Thus, for Re( ) 0s  we obtain 

1
* 1 ( 1) 1 ( 1 )

1 1
1

( ) [ ( )] ( )[ ( )] ( ).
n

n n i
n n i n i i

i
w s U s Y s U s X s

It follows from Eq. (7.7) that  
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1
1

1
( 1) 1 ( 1 )

1
1

[ ] [ (0)]

(0)[ (0)] (0) .

n n
n

n n i
i n i i

i

E W U e

Y U X e (7.9)

7.2 Fluid Queues

In this section, we study an infinite-capacity fluid queue driven by a level- 
dependent QBD process, and derive the stationary probability distribution of the 
buffer content.  

Consider an infinite capacity buffer in which the fluid input rate and the fluid 
output rate are influenced by a stochastic environment. The fluid model is 
described as a continuous-time QBD process { ( ), 0}Z t t  whose infinitesimal 
generator is given by 

(0) (0)
1 0
(1) (1) (1)
2 1 0

(2) (2) (2)
2 1 0

,

A A
A A A

Q
A A A

 (7.10) 

where the size of the matrix ( )
1

kA  is k km m  for 0,k  the sizes of the other 
block-entries are determined accordingly, and all empty entries are zero. The 
QBD process { ( ), 0}Z t t  is assumed to be irreducible and positive recurrent. 
Let 0 1 2( , , , )  be the stationary probability vector of the QBD process 
{ ( ), 0}Z t t  partitioned according to the levels. Whenever the environment 

( )Z t  stays in state ( , ),k i  the net input rate of fluid (i.e., the input rate-the output 
rate) is k i  for 0,k  1 .ki m  We assume that 

00,1 0,2 0,

,1 ,2 ,

( , , , ) 0,
( , , , ) 0, 1,

k

m

k k k m k

and there exists at least a 0 1k  such that 
0 0 0 0,1 ,2 ,( , , , ) 0.

kk k k m

Let ( )X t  be the buffer content at time t. Then it can not be negative. We write 

,1 ,2 ,diag( , , , ), 0.
kk k k k m k

Let

0
.k k

k
d e

Since the change of the process ( )X t  depends only on its rate, which in turn 
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changes according to the Markov chain { ( ), 0},Z t t  it is clear that {( ( ), ( )),X t Z t
0}t  is a Markov process. The state space of the Markov process {( ( ), ( )),X t Z t
0}t  is given by 

{( , , ) : 0, 0,1,2, , 1,2, , }.kx k j x k j m

If the stochastic environment { ( ), 0}Z t t  is ergodic, the quantity d is called the 
mean drift of the process { ( ), 0}.X t t  When the buffer is infinite, the bivariate 
Markov process {( ( ), ( )), 0}X t Z t t  is ergodic under the mean drift 0.d

We define 

( , , ( , ); , ( , )) { ( ) , ( ) ( , ) (0) , (0) ( , )}F t x k j y l i P X t x Z t k j X y Z l i

for , 0, , 0,1,2, ,1 lx y k l i m  and 1 .kj m Note that ( , , ( , ); ,F t x k j y
( , ))l i  is the joint conditional probability distribution of the process {( ( ), ( )),X t Z t

0}t  at time t. When the process {( ( ), ( )), 0}X t Z t t  is ergodic, we write 

, ( ) lim ( , , ( , ); , ( , )),k j t
F x F t x k j y l i

which is irrelevant to the initial state (0)X y  and (0) ( , )Z l i  according to a 
standard result in the theory of Markov processes.  

Let diag 0 1 2( , , , ), 0 1 2( ) ( ( ), ( ), ( ), ),x x x x  where 

,1 ,2 ,( ) ( ( ), ( ), , ( )), 0.
kk k k k mx F x F x F x k

Using a standard probabilistic analysis, the vector function ( )x  for 0x  can 
be shown to satisfy the following system of differential equation 

d ( ) ( )
d

x x Q
x

 (7.11) 

with the boundary conditions 

0 0(0) and (0) 0 for 1.k k  (7.12) 

Now, we provide an approach for solving the system of differential Eq. (7.11) 
and Eq. (7.12). The approach is based on the RG-factorization of the matrix 
Q s  for an arbitrary 0.s

We write the Laplace transform of the vector function ( )x  as * ( ),s  that is, 
*

0
( ) e ( )d .sxs x x  Note that 0 ( ) 1s  for 0.s  Then  

0
e d ( ) (0) ( ).sx x F s s

It follows from Eq. (7.11) and Eq. (7.12) that 
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*
0 0( )[ ] (0) ( ,0,0,0, ).s Q s  (7.13) 

To solve the Eq. (7.13), we first define the R- and G-measures of the matrix 
Q s  for an arbitrary 0,s  and then provide the RG-factorization.  

Let { ( )}kR s  and { ( )}kG s  for 0s  be the minimal nonnegative solutions to 
the systems of matrix equations 

( ) ( 1) ( 2)
0 1 1 1 2( ) ( ) ( ) 0, 0,l l l

l l l lA R s A s R s R s A l

and
( ) ( ) ( )
0 1 1 2( ) ( ) [ ] ( ) 0, 1,k k k

k k k kA G s G s A s G s A k

respectively. Thus, we obtain  

( ) ( 1)
1 2( ) ( ) , 0,l l

l l lU s A s R s A l

or
( ) ( )
1 0 1( ) ( ), 0.l l

l l lU s A s A G s l

Clearly, the matrix ( )kU s  is invertible for 1k  and the matrix 0 ( )U s  may not 
be invertible for some 0s  due to 0 0.

The RG-factorization of the matrix Q s  for 0s  is given by 

 [ ( )] ( )[ ( )],U D LQ s I R s U s I G s  (7.14) 

where

0 1 2 3( ) diag( ( ), ( ), ( ), ( ), ),DU s U s U s U s U s

0

1

2

0 ( )
0 ( )

( ) 0 ( )
0

U

R s
R s

R s R s

and

1

2

3

0
( ) 0

( ) .( ) 0
( ) 0

L

G s
G s G s

G s
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Let

( )
1 1( ) ( ) ( ) ( ), 0, 1,l

k l l l kX s R s R s R s l k  (7.15) 

and

( )
1 1( ) ( ) ( ) ( ), 1.l

k l l l kY s G s G s G s l k  (7.16) 

Then for 0,s

(0) (0) (0)
1 2 3

(1) (1)
1 2

1 (2)
1

( ) ( ) ( )
( ) ( )

[ ( )] ( )U

I X s X s X s
I X s X s

I R s I X s
I

 (7.17) 

and

(1)
1

1 (2) (2)
2 1
(3) (3) (3)

3 2 1

( )
[ ( )] .( ) ( )

( ) ( ) ( )
L

I
Y s I

I G s Y s Y s I
Y s Y s Y s I

 (7.18) 

To solve the Eq. (7.13), we need the following assumption: 
The matrix 0 ( )U s  is invertible for ( , ),s a b  where 0 .a b
The following theorem provides the unique solution to the Eq. (7.13). 
Theorem 7.1 If the matrix 0 ( )U s  is invertible for ( , ),s a b  then 

* 1
0 0 0 0( ) [ ( ) ]s U s

and
1

0 0 0 0 1 1( ) [ ( ) ] ( ) ( ) ( ), 1.k ks U s R s R s R s k

Proof It follows from Eq. (7.13) and Eq. (7.14) that 

* 1
0 0

1 1 1
0 0

( ) ( ,0,0,0, )( )
( ,0,0,0, )[ ( )] ( ) [ ( )] .L D U

s Q s
I G s U s I R s

Thus, we obtain 

1*
0 0 0 0( ) [ ]( )s U s
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and
* 1 (0)

0 0 0
1

0 0 0 0 1 1

( ) ( ) ( )
[ ( ) ] ( ) ( ) ( ), 1.

k k

k

s U s X s
U s R s R s R s k

This completes the proof. 
We define 

( , ; ) { ( ) (0) },G t x y P X t x X y

which is the conditional probability distribution of the process { ( ), 0}X t t  at 
time t. When the fluid model is ergodic, we write ( ) lim ( , ; )

t
x G t x y  for all 

0.y
The following corollary provides the Laplace transform of the stationary 

probability distribution ( )x  of the buffer content.   
Corollary 7.1 If the matrix 0 ( )U s  is invertible for ( , ),s a b  then 

* 1
0 0 0 0 1

0
( ) [ ( ) ] ( ) ( ) ( ) .l

l
s U s I R s R s R s e

In particular, if the QBD process is level-independent, that is, ( )
2 2

kA A  for all 
2,k  and ( )

1 1
kA A  and ( )

0 0
kA A  for all 1,k  then 

1* 1
0 0 0 0( ) [ ( ) ]{ ( ) } .( )s U s I R s eI R s

Proof Note that * *

0
( ) ( ) ,k

k
s s e  we obtain 

* * * *
0 1 2( ) ( ) ( ) ( ) .s s e s e s e

Simple computation leads to the stated result. 
Now, we express the Laplace-Stieltjes transforms for both the conditional 

distribution and the conditional mean of a first passage time.  
We define a first passage time as 

inf{ 0 : ( ) 0}.T t X t

It is clear that the first passage time T is finite a.s. if the mean drift 0.d
We write the conditional distribution of the first passage time T as 

, ( , ) { (0) ( , ), (0) }.k iB t x P T t Z k i X x

Let

,1 ,2 ,( , ) ( ( , ), ( , ), , ( , ))
kk k k k mB t x B t x B t x B t x
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and

0 1 2( , ) ( ( , ), ( , ), ( , ), ).t x B t x B t x B t x

Then the vector function ( , )t x  satisfies the following system of differential 
equation

( , ) ( , ) ( , ) , 0,t x t x t x Q x
t x

 (7.19) 

with the initial conditions 

def0

0

( ,0) , if 0,

(0, ) 0, if 0,

t t
e

x x

and

(0,0) 0, if 1.kB k

Let

*

0
( , ) e ( , )d , 0.xt t x x

Then

*

0

1e ( , )d [ ( ,0) ( , )].x t x x t t

It follows from Eq. (7.19) that 

* * *1 1[ ,0 ( , )] ( , ) [ ( ,0) ( , )] .t t t t t Q
t

Note that ( ,0) ( ,0,0,0, ),t  we obtain 

* *( , ) ( , )( ) ( ,0,0,0, ) .t t Q Q
t

 (7.20) 

Let

* *

0
( , ) e ( , )d , 0.t t t

Then

* * *

0

1e ( , )d (0, ) ( , ) .t t t
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It follows from Eq. (7.20) that 

* * *1 1( , ) (0, ) ( , ) ( ) ( ,0,0,0, ) .Q Q

According to the initial conditions we obtain * (0, ) 0.  Therefore,  

* (0) (0)
1 0( , )( ) ( , ,0,0, ).Q I A A  (7.21) 

We now study the conditional distribution of the first passage time T. Let 

( ) { }H t P T t  and 
0

( ) e d ( )tH H t  for 0.

Theorem 7.2 Suppose that 

( ), if 0,
{ (0) ( , ), (0) }

0, if 1.
i x k

P Z k i X x
k

Let
01 2( ) ( ( ), ( ), , ( )).mx x x x  Then 

00
( ) ( ) ( , )d ,H x x x

where 0( , )x  is determined by 

1*
0 00( , ) [ ( ) ( , ) ].I I U

Proof Applying the RG-factorization, it follows from Eq. (7.21) that 

1*
0 00( , ) [ ( ) ( , ) ].I I U

Let the initial probability ( )k x  of level k  be equal to ( )x  or 0  according 
as 0k  or 1,k  respectively. By the formula of total probability we obtain 

00 0
0

( ) ( ) ( , )d ( ) ( , )d .k k
k

H x x x x x x

This completes the proof. 
We write the conditional mean of the first passage time T as 

, ( ) [ (0) ( , ), (0) ].k iH x E T Z k i X x

Let

,1 ,2 ,( ) ( ( ), ( ), , ( )).
kk k k k mH x H x H x H x

and

0 1 2( ) ( ( ), ( ), ( ), ).x H x H x H x
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Then the vector function ( )x  satisfies the following system of differential 
equation

Td ( ) ( ) e , 0,
d

x x Q x
x

 (7.22) 

with the boundary conditions 

def
0

0

(0) 0 and ( ) , 1.
1

k
k kx k

e
 (7.23) 

Let

0
( ) e d ( ), 0.sxs x s

Then

*

0

1e ( )d [ (0) ( )].sx x x s
s

It follows from Eq. (7.22) and Eq. (7.23) that 

* T
1 2( )( ) [(0, , , ) e ].s Q s s

Therefore, we obtain 

* T 1
1 2

T 1 1 1
1 2

( ) [(0, , , ) e ]( )
[(0, , , ) e ][ ( )] ( ) [ ( )] .L D U

s s Q s
s I G s U s I R s

We can further express *( )s  by means of the R-, U- and G-measures of the 
matrix Q s  without any difficulty.  

7.3 A Queue with Negative Customers

In this section, we apply the RG-factorizations to analyze a queue with negative 
customers, and obtain the distributions of the stationary queue length and the 
busy period.  

Consider a single-server FCFS queue with two types of independent arrivals, 
positive and negative. Positive arrivals join the queue with the intention of being 
served and then leaving the system. At a negative arrival epoch, the system is 
affected if and only if customers are present. The arrival of a negative customer 
removes all the customers in the system.  

We assume that the arrivals of both positive and negative customers are MAPs 
with matrix descriptors 1 1( , )C D  and 2 2( , ),C D  respectively. Also, the infinitesimal 
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generators 1 1C D  and 2 2C D  of sizes 1 1m m  and 2 2m m  are both irreducible. 
Thus the two Markov chains 1 1C D  and 2 2C D  are positive recurrent. Let 1

and 2  be the stationary probability vectors of 1 1C D  and 2 2 ,C D  respectively. 
Then 1 1 1D e  and 2 2 2D e  are the stationary arrival rates of positive and 
negative customers, respectively. Further, we assume that the first customer to 
join the queue, when the server is idle, has the service time distribution given by  

0 00
( ) 1 exp ( )d

x
B x v v

with mean 01 (0, ).  While the service times of all the other customers are 
i.i.d. random variables whose distribution function is given by  

0
( ) 1 exp ( )d

x
B x v v

with mean 1 (0, ). 0 ( )B x  and ( )B x  may be different and are referred to as 
distributions of the special and regular service times, respectively. The service 
process and the arrival processes of positive and negative customers are assumed 
to be mutually independent.  

7.3.1 The Supplementary Variables  

We introduce several supplementary variables to construct the differential 
equations for the queueing model. Further, we provide an approach for solving 
these equations. The crucial step of solving these equations is the connection of 
the boundary equations to a Markov chain of 1GI G  type.  

Let ( )N t  be the number of customers in the system at time t, and let 1( )J t  and 
2 ( )J t  be the phases of the arrivals of positive and negative customers at time t,

respectively. We define the states of the server as 

0

0, if the server is idle
( ) , if the server is working with service time distribution ( ),

, if the server is working with service time distribution ( ).
I t S B x

G B x

For 0,t  we define the random variable ( )S t  as follows: i) If ( ) ,I t S  then 
( )S t  represents the elapsed service time received by a customer with the special 

service time up to time t. ii) If ( ) ,I t G  then ( )S t  represents the elapsed service 
time received by a customer with the regular service time up to time t. iii) If 

( ) 0,I t  then ( )S t  represents the elapsed time since the last service completion 
during a busy period up to time t. Obviously, 1 2{ ( ), ( ), ( ), ( ), ( ) : 0}I t N t J t J t S t t
is a Markov process. Note that ( ) 0I t  is equivalent to ( ) 0,N t  the state space 
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of the process is expressed as 

1 2 1 1 2 2

1 2 1 1 2 2

1 2 1 1 2 2

{(0, , , ) :1 ,1 , 0}
{( , , , , ) : 1,1 ,1 , 0}
{( , , , , ) : 1,1 ,1 , 0}.

j j x j m j m x
S k j j x k j m j m x
G k j j x k j m j m x

We write  

0, , 1 2

1 2

1 2

( , )d { ( ) 0, ( ) , ( ) , ( ) d },
( , )d { ( ) , ( ) , ( ) , ( ) , ( ) d },

d { ( ) , ( ) , ( ) , ( ) , ( ) d },

i j

Sk i j

Gk i j

p t x x P I t J t i J t j x S t x x
p t x x P I t S N t k J t i J t j x S t x x
p t x x P I t G N t k J t i J t j x S t x x

0, , 0, ,

, , , ,

, , , ,

( ) lim ( , ),

( ) lim ( , ),

( ) lim ( , );

i j i jt

Sk i j Sk i jt

Gk i j Gk i jt

p x p t x

p x p t x

p x p t x

2 1 1 2

2 1 1 2

2 1 1 2

0 0 1 1 0,1, 0, ,1 0, ,

,1,1 ,1, , ,1 , ,

,1,1 ,1, , ,1 , ,

( ) ( ( ), , ( ), , ( ), , ( )),
( ) ( ( ), , ( ), , ( ), , ( )),
( ) ( ( ), , ( ), , ( ), , ( )).

m m m m

Sk Sk Sk m Sk m Sk m m

Gk Gk Gk m Gk m Gk m m

P x p x p x p x p x
P x p x p x p x p x
P x p x p x p x p x

It is easy to see that 0 ( ),P x  ( )SkP x  and ( )GkP x  for 1k  are row vectors of size 
1 2.m m
Consider the number ( )N t  of customers in the system at time t, the stability 

conditions of the system can be easily discussed in the same way as that in Jain 
and Sigman [87]. The arrival of a negative customer removes all the customers in 
the system. Therefore, the arrival epochs of negative customers with the irreducible 
MAP descriptor 2 2( , )C D  form positive recurrent regenerative times of the system. 
Clearly, { ( ), 0}N t t  is a positive recurrent regenerative process with a unique 
stationary distribution. Therefore, the queueing system is stable.  

If this system is stable, then the system of stationary differential equations of 
the joint probability density 0{ ( ), ( ), ( ), 1}Sk GkP x P x P x k  can be written as 

0 0 1 2 2
d ( ) ( )[( ) ( )],

d
P x P x C C I D

x
 (7.24) 

1 1 1 2 0
d ( ) ( )[ ( ) ],
d S SP x P x C C x I

x
 (7.25) 

for 2,k

1 2 0 1 1
d ( ) ( )[ ( ) ] ( )( ),
d Sk Sk SkP x P x C C x I P x D I
x

 (7.26) 
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1 1 1 2
d ( ) ( )[ ( ) ],
d G GP x P x C C x I
x

 (7.27) 

for 2,k

1 2 1 1
d ( ) ( )[ ( ) ] ( )( ).
d Gk Gk GkP x P x C C x I P x D I
x

 (7.28) 

The joint probability density function 0{ ( ), ( ), ( ), 1}Sk GkP x P x P x k  should satisfy 
the boundary conditions 

0 0 1 10 0

20 0
1

(0) ( ) ( )d ( ) ( )d

( )d ( )d ( ),

S G

Sk Gk
k

P x P x x x P x x

P x x P x x I D (7.29)

1 0 10
(0) ( )d ( ),SP P x x D I  (7.30) 

 (0) 0, 2,SkP k  (7.31) 

0 1 10 0
(0) ( ) ( )d ( ) ( )dGk Sk GkP x P x x x P x x  (7.32) 

for 1,k  and the normalization condition 

00 0 0
1

( )d ( )d ( )d 1.Sk Gk
k

P x x P x x P x x e  (7.33) 

7.3.2 A Markov Chain of GI/G/1 Type  

We provide an approach to solve the equations Eq. (7.24) to Eq. (7.33), which can 
be described as a Markov chain of 1GI G  type.  

It follows from Eq. (7.24) that 

0 0 1 2 2( ) (0)exp{[ ( )] }.P x P C C D x  (7.34) 

To solve the equations Eq. (7.25) to Eq. (7.33), we define 

* *

1 1
( , ) ( ), ( , ) ( ).k k

S Sk G Gk
k k

Q z x z P x Q z x z P x

It follows from Eq. (7.25) and Eq. (7.26) that 

* *
1 1 2 0( , ) ( , )[( ) ( ) ],S SQ z x Q z x C zD C x I

x
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which leads to 

* *
1 1 2 0( , ) ( ,0)[exp{( ) } exp{ }] ( ).S SQ z x Q z C zD x C x xB  (7.35) 

Similarly, it follows from Eq. (7.26) and Eq. (7.27) that 

* *
1 1 2( , ) ( ,0)[exp{( ) } exp{ }] ( ).G GQ z x Q z C zD x C x B x  (7.36) 

To obtain expressions of the vectors ( )SkP x  and ( )GkP x  for 1,k  we need to 
define the conditional probabilities of the MAP with matrix descriptor 1 1( , )C D as

1 1( , ) { ( ) , ( ) (0) 0, (0) },i jP n t P K t n J t j K J i

where ( )K t  denotes the number of arrivals of the MAP during [0, ).t  Let 

1 1
( ( , ))( , ) i j m m
P n tP n t  and *

0
( , ) ( , ).n

n
P z t z P n t  Then it follows from Chapter 5 

of Neuts [24] that 

*
1 1( , ) exp{( ) }.P z t C zD t  (7.37) 

Substituting Eq. (7.37) into Eq. (7.35) and Eq. (7.36), we have 

2 0
1

( ) (0)[ ( , ) exp{ }] ( )
k

Sk Sj
j

P x P P k j x C x xB  (7.38) 

and

2
1

( ) (0)[ ( , ) exp{ }] ( ).
k

Gk Gj
j

P x P P k j x C x B x  (7.39) 

Clearly, all the probability vectors (0) 0SjP  for 2j  according to Eq. (7.31) 

and 1(0)SP  can be determined from Eq. (7.34) and Eq. (7.30) as 

1
1 0 1 2 2 1(0) (0){ [ ( )] }( ).SP P C C D D I  (7.40) 

Therefore

0 2 0( ) (0) [ ( 1, ) exp{ }] ( ),SkP x P L P k x C x xB  (7.41) 

where
1

1 2 2 1[ ( )] ( ),L C C D D I

which is a stochastic matrix.  
The equations Eq. (7.40) and Eq. (7.41) provide a solution for the system of 

differential equations Eq. (7.24) to Eq. (7.28). Further, the boundary Eq. (7.29) to 
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Eq. (7.33) we used to determine the vectors 0 (0)P  and (0)GkP  for 1,k  which 
are complicated. To that end, we define 

( )
1 1 2 00

exp{( ) } exp{ } ( )d ,ST C D x C x x xB

( )
2 00

( , ) exp{ }d ( ),S
kA P k x C x B x

( )
20

( , ) exp{ }d ( ),G
kA P k x C x B x

( )
20

( , ) exp{ } ( )d ,G
kB P k x C x B x x

( ) ( ) ( )
0 0 2[ ( )], , 1,S S S

k kH L A T I D H LA k

( ) ( )
1 0 2 2 2

0
, ( ).G G

j
j

H A H H B I D

Then it follows from Eq. (7.29) to Eq. (7.33) that  

G GP P  (7.42) 

where

0 1 2 3( (0), (0), (0), (0), )G G G GP P P P P

and

0 1 2 3
( ) ( ) ( )

1 1 2 3
( ) ( ) ( )

2 0 1 2
( ) ( )

2 0 1
( )

2 0

.

G G G

G G G

G G

G

H H H H
H A A A
H A A A
H A A
H A

 (7.43) 

Theorem 7.3 The matrix  is irreducible, stochastic and positive recurrent. 
Proof According to the definition of iH  for 2 i  and ( )G

kA  for 0,k
it is not difficult to see that  is irreducible.  

To prove that is stochastic, we only need to check that 
0

,k
k

H e e

( )
1

1

G
k

k
H e A e e  and ( )

2
0

.G
k

k
H e A e e  It is easy to see that 1H e

2
1 0

.G G
k k

k k
A e H e A e  We can obtain  
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( ) ( )
2

0 0

1 1 2 00

1 1 2 200

( )

exp{( ) } exp{ }d ( )

exp{( ) } exp{ } ( )d ( )

S S
k k

k k
H e L T I D A e

L C D x C x B x e

L C D x C x x x I D eB

1 1 2 00

1 1 2 200

exp{[( ) ] }d ( )

exp{[( ) ] } ( )d ( ) .

L C D C x B x e

L C D C x x x I D eB

Note that 

1 1 2 200

1 1 2 00

exp{[( ) ] } ( )d ( )

exp{[( ) ] }d ( )

C D C x x x I D eB

e C D C x B x e

and the matrix L is stochastic, we obtain 
0

.k
k

H e e  Similarly, we can prove that 

( )
2

0
.G

k
k

H e A e e

Since ( )
2

0

G
k

k
H A  is stochastic and 2 0H e  the matrix ( )

0

G
k

k
A  is 

substochastic. The matrix  is irreducible and stochastic, and the matrix 

0

G
k

k
A  is substochastic. Thus  is positive recurrent by means of theorem 3.16. 

This completes the proof. 
Let 0 1 2( , , , )x x x  be the stationary probability vector of the matrix .  Then it 

follows from Eq. (7.42) that 

0 1 2( , , , ),GP x x x

where  is determined by Eq. (7.33) as 

( ) ( )
0

1

1

[ ]S G
k

k
x V LT e x T e

with
1

1 2 2[ ( )]V C C D
and

( )
1 1 20

exp{( ) } exp{ } ( )d .GT C D x C x B x x
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We solve the equation 0 1 2 0 1 2( , , , ) ( , , , )x x x x x x  for 0 1 2( , , , )x x x  based 
on the censoring technique and the RG-factorization.  

Note that the Markov chain  is of 1GI G  type, and is analyzed in Chapter 3 
in detail. Let [ 1].Q  Then the matrix Q is of 1M G  type. We denote by G the 

minimal nonnegative solution to the matrix equation ( )

0

.G i
i

i
G A G  Thus we 

have

( ) ( )
0 1 1

1

,G G i
i

i
A A G  (7.44) 

1
0, 0

0

[ ] , 1,i
j i j

i
R H G I j  (7.45) 

and

( ) 1 1
0

1

[ ] , 1.G i
j i j

i
R A G I j  (7.46) 

The following lemma is useful for studying the generating function of the 
matrix sequence { }.kR

Lemma 7.1 The matrix * (1)GI A  is invertible, where * ( )

0

( ) .k G
G k

k
A z z A

Proof Let
11 2, , , m  be the 1m  eigenvalues of the matrix 1 1C D  of 

size 1 1,m m  and 
21 2, , , m  the 2m  eigenvalues of the matrix 2C  of size 

2 2.m m  We denote by 
0i

 and 
0j
 the eigenvalues with largest real parts of the 

matrices 1 1C D  and 2 ,C  respectively. Note that 1 1( , )C D  and 2 2( , )C D  are the 
irreducible matrix descriptors of the MAPs for the positive and negative customers, 
respectively, it is clear that the matrices 1 1C D  and 2C  are infinitesimal generators 
of two continuous-time Markov chains. Therefore, 

0
0i  due to 1 1( ) 0,C D e

and
0

0j  due to both 2 0C e  and the fact that 2 2C D  is irreducible. At the 
same time, the real part Re( ) 0i  for 0 ,i i  since 1 1C D  is irreducible, and 

0
Re( ) 0j j  for 0.j j  Note that the eigenvalues of the matrix 1 1 2( )C D C
are i j  for 11 i m  and 21 j m  (a standard result of the Kronecker 
sum, for example, see 2.4 in Graham [12]), the eigenvalue with largest real part 
of the matrix 1 1 2( )C D C  is 

0j
 due to the fact 

0 0 0 0 0
Re( ) Re( ) Re( ) Re( ) Re( ) 0.i j i j i j i j j

Since

*
1 1 20

(1) exp{[( ) ] }d ( ),GA C D C x B x
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the eigenvalues of the matrix * (1)GA  are 
0

exp{( ) }d ( )i j x B x  for 11 i m

and 21 .j m  Using Re( ) 0,i j  we obtain 

0 0
exp{( ) }d ( ) exp{[Re( )] }d ( ) 1i j i jx B x x B x

for 11 i m  and 21 .j m  This implies that all the 1 2m m  eigenvalues of the 
matrix * (1)GI A  are not equal to zero. Therefore, the matrix * (1)GI A  is invertible. 
This completes the proof.  

It follows from Theorem 3.5 that 

* *
0( ) [ ( )]( )( ).GzI A z I R z I zI G  (7.47) 

Since *
2(1) ,GA e e H e e  it is clear that * (1)GI A  is invertible  which implies 

that * (1),I R 0I  and I G  in Eq. (7.47) are all invertible.  

Let *

1
( ) .k

k
k

X z z x  Then 

* * 10
0 0* * 1

0 0

1
( ) ( )[ ( )] ,

(1)[ (1)]
x eX z x R z I R z

x R I R e
 (7.48) 

or

* *0
0 0,* * 1

00 0

1
, 1.

(1)[ (1)]
n

k k k
n

x e
x x R R k

x R I R e
 (7.49) 

The following lemma provides the G-measure and the censored chain 0 , both 
of which are necessary for determining the crucial vector 0x  given in Eq. (7.49). 

Lemma 7.2 The transition probability matrix 0  of the censored Markov 
chain of  to level 0 is given by 

0 0 1 1,0 2,0
0 2 0

,i i
i i j

i j i
H H G G H G G  (7.50) 

where 
1

( ) 1
2,0 2

0 1
,G k

k l
l k

G I A G H

and
1

( ) 1 ( ) 1
1,0 1 2,0

1 1 1
.G i G i

i i j
i j i

G I A G H A G G
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Proof It follows from Eq. (3.17) that 

0 0 0, 0 ,0
1

( ) ,j j
j

H R I G

which leads to 

0 0 1 1,0 2,0
0 2 0

,i i
i i j

i j i
H H G G H G G

by using Eq. (7.45) and ,0 2,0iG G  for 2.i  It follows from Eq. (3.16) that 

0 ,0 0 ,0
1

( ) ( ) , 1,k k j j k
j

I G H R I G k

which leads to 

0 1,0 1 0 2,0
1

( ) ( )j
j

I G H R I G  (7.51) 

and

0 2,0 2 0 2,0
1

( ) ( )j
j

I G H R I G  (7.52) 

by using ,0 2,0iG G  for 2.i  Eq. (7.51) and Eq. (7.52) imply 

( ) 1 ( ) 1
1,0 1 2,0

1 1 1

,G i G i
i i j

i j i
I A G G H A G G

and

( ) 1 ( ) 1
2,0 2 2,0

1 1 1

,G i G i
i i j

i j i
I A G G H A G G

respectively, by applying Eq. (7.44) and Eq. (7.46). Since the matrices 
( ) 1

0 1

G i
i j

j i
I A G  and ( ) 1

1

G i
i

i
I A G  are invertible, we obtain 

1
( ) 1

2,0 2
0 1

G k
k l

l k
G I A G H

and
1

( ) 1 ( ) 1
1 0 1 2,0

1 1 1

.G i G i
i i j

i j i
G I A G H A G G



7 Examples of Practical Applications 

355

This completes the proof. 
We now summarize the above discussions into the following theorem.  
Theorem 7.4 For the stable system, let 0y  be the stationary probability 

vector of the censored Markov chain 0  given in Eq. (7.50). Then,  

0 0 1 2 2( ) 0 exp{[ ( )] },P x P C C D x

0 2 0( ) (0) [ ( 1, ) exp{ }] ( ), 1,SkP x P L P k x C x x kB

and

2
1

( ) (0)[ ( , ) exp{ }] ( ), 1,
k

Gk Gj
j

P x P P k j x C x B x k

where 

0
0 ( ) * ( )

0

(0) ,
[ ] (1)S G

x
P

x V LT e X T e

and

0 0,
0 0

( ) * ( ) * * 1
0 0 0

1
(0) , 1,

[ ] (1) (1)[ (1)]

n
k k

n
Gk S G

x R R
x e

P k
x V LT e X T e x R I R

with

0
0 * * 1

0 0

.
1 (1)[ (1)]

y
x

R I R e

7.3.3 The Stationary Queue Length  

Now, we consider the distribution of the stationary queue length. Note that ( )N t
is the number of customers in the system at time t , we write  

lim { ( ) }, 0,k t
p P N t k k

( ) lim { ( ) , ( ) }, 1,S
k t

p P N t k I t S k

and

( ) lim { ( ) , ( ) }, 1.G
k t

p P N t k I t G k
( ) ( ) , 1.S G

k k kp p p k
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Theorem 7.5 If the system is stable, then 

0 0

( ) ( )
0 1

1

,

, 1,
k

S G
k k j k j

j

p x Ve

p x LB x B e k

where 

( )
2 00

( , ) exp{ } ( )d , 1.S
kB P k x C x x x kB

Proof It follows from Eq. (7.34) that 

1
0 0 0 1 2 2 00

( )d (0){ [ ( )] } ,p P x xe P C C D e x Ve

and from Eq. (7.39) and Eq. (7.41) that 

( ) ( ) ( )
0 1 0 10

( )d (0)S S S
k Sk k kp P x xe P LB e x LB e

and

( ) ( ) ( )

0
1 1

( )d (0) .
k k

G G G
k Gk Gj k j j k j

j j
p P x xe P B e x B e

This completes the proof. 
If the system is stable and lim ( ),

t
N N t  then  

0 0 1 1 2 00

* * 10
0 0* * 1

0 0

1 1 20

[ ] exp{[( ) ] } ( )d

(1 )
( )[ ( )]

(1)[ (1)]

exp{[( ) ] } ( )d .

NE z x Ve x Lz C zD C x x xeB
x e

x R z I R z
x R I R e

C zD C x B x xe

7.3.4 The Busy Period  

We provide an analysis for the busy period of the negative-customer queue. Let 
us introduce a new absorbing state 0 and modify the Markov process in the 
following way: Whenever the process visits state 1 2(0, , , ),j j x  it is absorbed into 
state 0. We study the absorbing time of the modified process, given that it starts 
from the state set 1 2 1 1 2 2{( ,1, , ,0) :1 ,1 }S j j j m j m  with probability vector 

0  of size 1 2.m m  A similar analysis to the equations Eq. (7.24) to Eq. (7.28) and 
Eq. (7.29) to Eq. (7.33) can be used to obtain the following differential equations: 
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1 1 1 2 0( , ) ( , )[ ( ) ],S SP t x P t x C C x I
t x

 (7.53) 

1 2 0

1 1

( , ) ( , )[ ( ) ]

( , )( ),

Sk Sk

Sk

P t x P t x C C x I
t x

P t x D I (7.54)

1 1 1 2( , ) ( , )[ ( ) ],G GP t x P t x C C x I
t x

 (7.55) 

1 2

1 1

( , ) ( , )[ ( ) ]

( , )( ),

Gk Gk

Gk

P t x P t x C C x I
t x

P t x D I (7.56)

with the boundary conditions: 

1 0( ,0) ( ), ( ,0) 0, 2,S SlP t t P t l  (7.57) 

for 1k

0 10

10

( ,0) ( ) ( , )d

( ) ( , )d ,

Gk Sk

Gk

P t x P t x x

x P t x x (7.58)

and the initial conditions: 

1 0(0, ) ( ), (0, ) 0, 2,S SlP x x P x l  (7.59) 

and

 (0, ) 0, 1,GkP x k  (7.60) 

where

0, if 0,
( )

1, if 1.
t

t
t

Let

*

0
1

( , ) e ( , )d , ( , , ) ( , ),st k
SkSk SkS

k
s x P t x t s z x z s xQP P

*

0
1

( , ) e ( , )d , ( , , ) ( , ).st k
GkGk GkG

k
s x P t x t s z x z s xQP P
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Then it follows from Eq. (7.53), Eq. (7.54) and Eq. (7.57) that 

*
0 1 1 2 0

0 2 0
1

( , , ) exp{[ ( ) ] } ( )

[ ( 1, ) exp{ }]e ( ).

S

k sx

k

s z x z sI C zD C x xQ B

z P k x C x xB

Hence,

0 2 0( , ) [ ( 1, ) exp{ }]e ( ), 1.sx
Sk s x P k x C x x kP B  (7.61) 

It follows from Eq. (7.55) and Eq. (7.56) that 

* *
1 1 2

2
1 1

( , , ) ( , ,0)exp{[ ( ) ] } ( )

( ,0)[ ( , ) exp{ }]e ( ).

G G
k

k sx
Gj

k j

s z x s z sI C zD C x B xQ Q

z s P k j x C x B xP

We obtain that for 1,k

2
1

( , ) ( ,0)[ ( , ) exp{ }]e ( ).
k

sx
Gk Gj

j
s x s P k j x C x B xP P  (7.62) 

Clearly, ( , )Sk s xP  is explicitly expressed by the given information, while 
( , )Gk s xP  is explicitly expressed by both the given information and the vectors 
( ,0)Gj sP  for 1 ,j k  where ( ,0)Gj sP  can be determined by the boundary 

condition Eq. (7.58). It follows from Eq. (7.58) that for 1,k

0 1 10 0
( ,0) ( ) ( , )d ( ) ( , )d .Gk Sk Gks x s x x x s x xP P P  (7.63) 

Substituting Eq. (7.61) and Eq. (7.62) into Eq. (7.63) leads to  

( )[ ( )] ( ),G s I Q s sP  (6.64) 

where

1 2 3 4( ) ( ( ,0), ( ,0), ( ,0), ( ,0), ),G G G G Gs s s s sP P P P P
( ) ( ) ( ) ( )

0 0 0 01 2 3 4( ) ( ( ), ( ), ( ), ( ), )S S S Ss s s s sA A A A

and
( ) ( ) ( )
1 2 3
( ) ( ) ( )
0 1 2

( ) ( )
0 1

( )
0

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

G G G

G G G

G G

G

s s sA A A
s s sA A A

Q s s sA A
sA
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with

( )
2 00

( ) ( , ) exp{ } e d ( ), 0,S sx
k s P k x C x B x kA

and

( )
20

( ) ( , ) exp{ } e d ( ), 0.G sx
k s P k x C x B x kA

For the discrete-time Markov chain ( )Q s  of 1M G  type without the boundary, 
we easily obtain the R-measure { ( )},k sR  the U-measure 0( ),s  and the G-measure 

( ).G s  Therefore, the RG-factorization of the matrix ( )I Q s  is given by 

( ) [ ( )][ ( )][ ( )],U D LI Q s I s I s I sGR  (7.65) 

where

1 2 3

1 2

1

0 ( ) ( ) ( )
0 ( ) ( )

( ) ,0 ( )
0

U

s s sR R R
s sR R

s sR R

0 0 0 0( ) diag( ( ), ( ), ( ), ( ), )D s s s s s

and

0

( ) 0
( ) .( ) 0

( ) 0
L

G s
s G sG

G s

If Re( ) 0,s  then ( ),UI sR ( )DI s  and ( )LI sG  are invertible, and 
their inverses are respectively given by  

1 2 3

1 2
1

1

( ) ( ) ( )
( ) ( )

[ ( )] ,( )U

I X s X s X s
I X s X s

I s I X sR
I
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where

1 2

1 2
1 1

1

( ) ( ) ( ) ( ), 1,
i

n n n li
n j ij

l n n n
i

X s s s s lR R R

1 1 11
0 0 0[ ( )] [ ( )] [ ( )][ ( )] diag( , , , )D I s I s I sI s

and

1 2

3 2

( )
[ ( )] .( ) ( )

( ) ( ) ( )
L

I

G s I
I s s G s IG G

s s G s IG G

Let B  be the absorbing time of the modified process, given that it starts from 
the state set 1 2 1 1 2 2{( ,1, , ,0) :1 ,1 }S j j j m j m  with probability vector 0 ,
where

0 1
0

0 1

( )
.

( )
x V D I
x V D I e

We write 

0
( ) { } and ( ) e ( )d .stB t P t B s B t tB

Theorem 7.6 If Re( ) 0,s  then 

0 1 1 2 00

11( ) ( )
0 0

1 1

1

1 1 20
1

( ) exp{[( ) ] }e ( )d

( ) ( ) ( )

( ) exp{[( ) ] }e ( )d .

sx

kG G
l k

l k l

sx
k

k

B s C D C x x xeB

s s s I sGA A

I s C D C x B s xeR

Proof By using the supplementary variable method we can obtain 

* *

0 0
( ) ( ,1, )d ( ,1, )d .S GB s s x xe s x xeQ Q

Note that 

*
0 1 1 2 00 0

( ,1, )d exp{[( ) ] }e ( )dsx
S s x x C D C x x xQ B

and



7 Examples of Practical Applications 

361

* *
1 1 20 0

( ,1, )d ( ,1,0) exp{[( ) ] }e ( )d ,sx
G Gs x x s C D C x B x xQ Q

we only need to compute * ( ,1,0).
G

sQ

Since *

1

( ,1,0) ( ,0)GkG
k

s sQ P , * T( ,1,0) ( ) .( , , , )GG
s s I I IQ P  It follows from 

Eq. (7.64) and Eq. (7.65) that  

* 1 T

1 11 T

1( ) ( )
0

1 1
1

1
0

1

( ,1,0) ( ) ( , , , )[ ( )]
[ ( )] [ ( )][ ( )]( ) ( , , , )

( ) ( ) ( )

[ ( )] ( ) .

G

UDL

kG G
l k

l k l

k
k

s s I I IQ I Q s
I s I sI ss I I IG R

s s sGA A

I s I sR

Some simple computations can lead to the desired result. 
It is easy to see from Theorem 7.6 that 

0 1 1 2 00

11( ) ( )
0 0

1 1

1

1 1 20
1

[ ] exp{[( ) ] } ( )d

[ (0)](0) (0) (0)

(0) exp{[( ) ] } ( )d .

kG G
l k

l k l

k
k

E C D C x x xeB

IGA A

I C D C x B x xeR

B

7.4 A Repairable Retrial Queue

In this section, we consider a 1 1BMAP G  retrial queue with a server subject to 
breakdowns and repairs, obtain the distribution of stationary queue length, the 
stationary availability and the stationary failure frequency.  

The retrial queueing model is described as follows:  
The arrival process: The arrivals to the retrial queue are modelled by a BMAP 

with irreducible matrix descriptor { , 0}kD k  of size .m  We assume that 

0
k

k
D D  is the infinitesimal generator of an irreducible Markov chain with 

0De . Let  be the stationary probability vector of the Markov chain D. Then 

1
k

k
kD e  is the stationary arrival rate of the BMAP.  
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The service times: The service times { , 1}n n  of the customers are assume to 
be i.i.d. random variables whose distribution function is given by  

0
( ) { } 1 exp ( )d

t

nB t P t v v

with [ ] 1 .nE
The life time and the repair time: The life time X of the server is exponential 

with a mean life time 1 ,  and does not change during the idle period of the 
server. The repair time Y of the server has the following distribution function  

0
( ) { } 1 exp ( )d

y
V y P Y y v v

with [ ] 1 .E Y
The retrial rule: We assume that there is no waiting space in the retrial queue, 

and the size of the orbit is infinite. If an arrival, either a primary or a retrial 
customer, finds that there is no customer in the server, then it enters the server 
immediately and receives service. Otherwise, it enters the orbit and makes a 
retrial at a later time. Returning customers behave independently of each other, 
and are persistently keep making retrials until they receive their requested service. 
Successive inter-retrial times { , 1}k k  are i.i.d. exponential random variables 
with mean inter-retrial time 1 .

The service discipline: If the server is busy at the arrival epoch, then all calls 
join the orbit, If the server is free, then one of the arriving customers begins his 
service and the others form sources of repeated calls.  

The repair discipline: When the server fails, it enters the state of failure and 
undergoes repair immediately. The customer who has been partially served has to 
wait to continue service. As soon as the repair of the server is completed, the 
server enters the working state immediately and continues to serve the customer. 
We assume that the repaired server is as good as a new server, and the service 
time is cumulative.  

The independence: We assume that all the random variables defined above are 
mutually independent.  

7.4.1 The Supplementary Variables  

Now, we introduce several supplementary variables to make the model Markovian 
and set up the system of stationary differential equations for the model.  

Let
n
 be the generalized service time of the n th customer, which is the 

length of time since the beginning of the service for the n th customer until the 
completion of the service. Clearly, 

n
 includes the down time of the server due  
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to server failures during the service period of the nth customer. It is easy to see that 

the sequence n
 for 1n  are i.i.d. random variables and 1 1 .nE

It follows from Theorem 3 of Dudin and Klimenok [107] or Liang and Kulkarni 

[119] that if 1 1,nE  then the queueing system is stable.  

For the repairable 1BMAP G  retrial queue defined above, we denote by ( )N t
the number of sources of repeated calls at time t, and define the states of the 
server as  

, if the server is idle at time ,
( ) , if the server is working at time ,

, if the server is under repair at time .

I t
L t W t

R t

We introduce three variables ( ),J t  ( )S t  and ( )R t  representing the phase of the 
arrival process, the elapsed service time and the elapsed repair time at time t,
respectively. Then {( ( ),L t ( ),N t ( ),J t ( ),S t ( )) :R t 0}t  is a Markov process 
with state space expressed as  

{( , , ) : 0,1 } {( , , , ) : 0,1 , 0}
{( , , , , ) : 0,1 , 0, 0},
I k j k j m W k j x k j m x

R k j x y k j m x y

where k , j , x  and y  denote the number of customers in the orbit, the phase of 
the arrival process, the amount of the elapsed service time and the elapsed repair 
time, respectively.  

For 0,k  we define  

( , , ) ( ) { ( ) , ( ) , ( ) },I k jP t P L t I N t k J t j

( , , ) ( , )d { ( ) , ( ) 1 , ( ) , ( ) d }W k jP t x x P L t W N t k J t j x S t x x

and

( , , ) ( , , )d { ( ) , ( ) 1 , ( ) ,
( ) , ( ) d }.

R k jP t x y y P L t R N t k J t j
S t x y R t y y

We write the above probabilities into vector form as 

, ( , ,1) ( , ,2) ( , , )( ) ( ( ), ( ), , ( )),I k I k I k I k mP t P t P t P t

, ( , ,1) ( , ,2) ( , , )( , ) ( ( , ), ( , ), , ( , ))W k W k W k W k mP t x P t x P t x P t x

and

, ( , ,1) ( , ,2) ( , , )( , , ) ( ( , , ), ( , , ), , ( , , )).R k R k R k R k mP t x y P t x y P t x y P t x y
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Since we are interested in the stationary behavior of the system, we define 

, ,

,

,

lim ( ),

( ) lim ( , ),

( , ) lim ( , , ).

I k I kt

W k W kt

R k R kt

P P t

P x P t x

P x y P t x y

The joint probability density , , ,{ , ( ), ( , ), 0}I k W k R kP P x P x y k  satisfies the following 
system of differential equations 

,0 ,0 0 ,00

d ( ) ( ){ [ ( )] } ( ) ( , )d ,
d W W RP x P x D x I y P x y y
x

 (7.66) 

, , 0 ,
0

d ( ) ( ){ [ ( )] } ( )
d

k

W k W k W i k i
i

P x P x D x I P x D
x

    ,0
( ) ( , )d , 1,R ky P x y y k  (7.67) 

,0 ,0 0( , ) ( , )[ ],R RP x y P x y D y I
y

 (7.68) 

, ( , ) 0 ,
0

( , ) ( , )[ ( ) ] ( , ) , 1,
k

R k R k R i k i
i

P x y P x y D y I P x y D k
y

 (7.69) 

with the boundary conditions  

, 0 ,0
( ) ( ) ( )d , 0,I k W kP k I D x P x x k  (7.70) 

, , 1 , 1
0

(0) ( 1) , 0,
k

W k I i k i I k
i

P P D k P k  (7.71) 

, ,( ,0) ( ), 0,R k W kP x P x k  (7.72) 

and the normalization condition 

, , ,0 0 0
0

( )d ( , )d d 1.I k W k R k
k

P P x x P x y x y e  (7.73) 

7.4.2 A Level-Dependent Markov Chain of M/G/1 Type  

Now, we provide an approach for solving the Eq. (7.66) to Eq. (7.73) with two 
crucial steps: Express , ( )W kP x  and , ( , )R kP x y  in terms of boundary probabilistic 
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vectors , (0)W kP  by recognizing a new BMAP, and obtain ,I kP  and , (0)W kP  by 
converting boundary equations into a level-dependent Markov chain of 1M G
type. 

Let

* * *

0
0

( ) , ( ( )) exp{ ( ) }d ( ).k
k

k
D z z D v D z D z y V y

The following lemma recognizes a new BMAP, which appears in the process 
of solving the system of differential equations.  

Lemma 7.3 Let 

* * *

0
( ) ( ) [ ( ( ))].k

k
k

z z D z I v D z  (7.74) 

Then k  for 0k  are coefficient matrices of a BMAP of size m. 
Proof To prove this lemma, we need to show that the following three 

conditions are satisfied: i) The diagonal entries of 0  are strictly negative, the 
off-diagonal entries are nonnegative, and 0  is invertible. ii) For 1,k  0k

and
1

.k
k

k  iii) 
0

k
k

 is irreducible and 0.e

(1) It follows from Eq. (7.74) that 

0 0 0[ ( )].D I v D  (7.75) 

It is clear from Eq. (7.75) that the off-diagonal entries of 0  are nonnegative due 
to 0( ) 0.v D  Note that the i th diagonal entry of the matrix 0( )v D  is the 
conditional probability that the BMAP returns to state i and no arrival occurs 
during a repair time, given that the BMAP starts in state i, we obtain that the i th
diagonal entry of the matrix 0( )I v D  is nonnegative. Hence, the diagonal entries 
of 0  are strictly negative according to the assumption of 0.D  It is easy to see 
from Eq. (7.75) that the off-diagonal entries of 0  are nonnegative, and 0 0.e
Therefore, the real parts of the eigenvalues of 0  are all negative according to 
Ger gorin Theorem given in Horn and Johnson [112], and so 0  is invertible.  

(2) It is clear that for 1,k *
0

d 0.[ ( ( ))]
d

k

k zv D z
z

 Since 

*
0

1 d ,[ ( ( ))]
!d

k

k k k zD v D z
k z

0kD  for 1k  and 0,  we obtain that for 1,k  0.k  Using 

1
,k

k
kD  we obtain  
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0
1 1

exp{ }d ( ) .k k
k k

k I x Dx V x kD

(3) Note that 

0
( ) ,k

k
D v D I

it is clear that  is irreducible, since D is irreducible and ( ) 0.v D  Noting that 
0De  and [ ( )] 0,I v D e  it is obvious that 0.e  This completes the proof. 

Remark 7.2 The BMAP with coefficient matrix sequence { }k  may be 
regarded as a generalized arrival process, which is composed of the sum of two 
parts: the first is the original BMAP with coefficient matrix sequence { }kD  the is 
an additional BMAP with coefficient matrix sequence 

*
0 0

1 d[ ( )], [ ( ( ))] , 1,2, .
! d

k

zkI v D v D z k
k z

The additional BMAP is related to the server subject to breakdowns and repairs. 
For the two BMAPs having coefficient matrix sequences { }kD  and { },k  let 
( )DK t  and ( )K t  denote the numbers of arrivals in the time interval [0, ),t

respectively, and ( )DJ t  and ( )J t  the phases at time t, respectively. We introduce 
the conditional probabilities for the two BMAPs by  

, ( , ) { ( ) , ( ) (0) 0, (0) }.D D D D D
j jP n t P K t n J t j K J j

and

, ( , ) { ( ) , ( ) (0) 0, (0) }.j jP n t P K t n J t j K J j

Let ( , )DP n t  and ( , )P n t  be the matrices with entries ( , )D
j jP n t  and ( , )j jP n t

for 1 ,j  ,j m  respectively. Then it follows from Neuts [24] or Lucantoni 
[120] that  

* *

0
( , ) ( , ) exp{ ( ) }n D

D
n

P z t z P n t D z t  (7.76) 

and

* *

0
( , ) ( , ) exp{ ( ) }.n

n
P z t z P n t z t  (7.77) 

We write 

( ) 1 ( ), ( ) 1 ( ),B x B x V y V y
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* *
, ,

0 0
( , ) ( ), ( , , ) ( , ).k k

W W k R R k
k k

P z x z P x P z x y z P x y

Now, we solve the system of matrix equations Eq. (7.66) to Eq. (7.73). It 
follows from Eq. (7.68) and Eq. (7.69) that 

* * *( , , ) ( , , )[ ( ) ( )],R RP z x y P z x y D z y
y

hence from Eq. (7.72) we obtain  

* * *

* *

( , , ) ( , ,0)exp{ ( ) } ( )
( , )exp{ ( ) } ( ).

R R

W

P z x y P z x D z y V y
P z x D z y V y (7.78)

It follows from Eq. (7.66) and Eq. (7.67), together with Eq. (7.78), that 

* * * *( , ) ( , ){ ( ) [ ( ( ))] ( ) }.W WP z x P z x D z I v D z x I
x

Hence, 
* * * *

* *

( , ) ( ,0)exp{{ ( ) [ ( ( ))]} } ( )
( ,0)exp{ ( ) } ( ),

W W

W

P z x P z D z I v D z x B x
P z z x B x (7.79)

which, together with Eq. (7.77), leads to  

, ,
0

( ) (0) ( , ) ( ).
k

W k W i
i

P x P P k i x B x  (7.80) 

Similarly, Eq. (7.78), together with Eq. (7.76) and Eq. (7.80), leads to 

, ,
0

,
0 0

( , ) ( ) ( , ) ( )

(0) ( , ) ( , ) ( ) ( ).

l
D

R l W k
k

l k
D

W i
k i

P x y P x P l k y V y

P P k i x P l k y B x V y (7.81)

Equations Eq. (7.80) and Eq. (7.81) provide a solution for , ( )W kP x  and , ( , )R kP x y
in terms of , (0),W kP  0.k  In order to completely solve the system of differential 
equations, we still need to determine the vectors , (0)W kP and ,I kP  for 0k  from 
the boundary equations Eq. (7.70) and Eq. (7.71), and the normalization condition 
Eq. (7.73). We defiue  

,0 ,0 ,1 ,1 ,2 ,2 ,3 ,3( , (0), , (0), , (0), , (0), ),IW I W I W I W I WP P P P P P P P P

0
( , )d ( ), 0,kC P k x B x k
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( )
0

0
, 1,

0 0
k k I

A k

0 1( )
1

0

, 0,k k I D D
A k

C I

1

0
, 2,

0
k

k
k

D
A k

C
and

(0)
1 2 3 4
(1) (1)
0 2 31

(2) (2)
0 21

(3) (3)
0 1

.

A A A A
A A A A

Q A A A
A A

 (7.82) 

According to the above definitions and the expression for , ( )W kP x  in Eq. (7.80), 
the boundary equations Eq. (7.70) and Eq. (7.71) can be written as 

 0IWP Q  (7.83) 

In what follows, we show that the matrix Q is the infinitesimal generator of a 
continuous-time positive recurrent Markov chain. Therefore, the unique stationary 
probability vector X of Q can be used to determine the vectors , (0)W kP  and ,I kP
for 0.k  It is clear that .IWP X  Let 0 1 2( , , , ),X x x x  where ,1 ,2( , )k k kx x x
for 0k  and the size of each vector , ,k jx 0k  and 1,j 2, is m. The 
normalization condition Eq. (7.73) and the expressions for , ( )W kP x  in Eq. (7.80) 
and , ( , )R kP x y  in Eq. (7.82) lead to  

,1 ,2 ,2
0 0 0 0 0

1 ,
( )

k l k

i i k i i k i l k
k i l k i

x x F e x F H

where 

0 0
( , ) ( )d , ( , ) ( )d .D

k kF P k x B x x H P k y V y y

Theorem 7.7 The matrix Q is the infinitesimal generator of a continuous-time 
irreducible positive recurrent Markov chain.  

Proof It can be easily verified that the matrix Q can be regarded as the 
infinitesimal generator of a continuous-time irreducible Markov chain based on 
the definition of Q. In what follows we only need to prove that it is positive 
recurrent.
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For each 1,k

0( ) ( )
0 1

2
,k k

l
l

D k I D k I
A A A

C I

where 
1

l
l

D D  and 
0

.l
l

C C  It is clear that the transition rate matrix 

( ) ( )
0 1

2

k k
l

l
A A A  is irreducible and positive recurrent. Let ( ) ( )

1 2,k ky y  be the 

stationary probability vector of ( ) ( )
0 1

2
.k k

l
l

A A A  Then  

0( ) ( )
1 2, 0,k k D k I D k I

y y
C I

hence, solving this equation gives 

( )
1 0

1 ( ) 0.ky D D C C I
k

Noting that the matrix C is stochastic and the matrix 0D D  is an infinitesimal 

generator, 0
1 D D C C I

k
 is an irreducible infinitesimal generator of size m

for each 1.k  Thus, for each 1k  the Markov chain 0
1 ( )D D C C I

k
 is 

positive recurrent. Let ( )kw  be the stationary probability vector of 0
1 (D

k
) .D C C I  Then  

( )( )
( ) ( )
1 2( ) ( )

( )and .
1 1

kk
k k

k k

w D k Iwy y
k w D e k w D e

Noting that ,k

0
1 ( ) ,D D C C I C I

k

it is clear that ( ) ,kw w  as ,k  where w is the stationary probability vector 
of the irreducible infinitesimal generator .C I  Thus, as ,k

( )( )
( ) ( )
1 2( ) ( )

( )0 and .
1 1

kk
k k

k k

w D k Iwy y w
k w D e k w D e
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As ,k  simple computation leads to  
1

( )
0

( ) ( ) ( ) ( )
1 2 0 1 1

( )
0

1

, 1
1 11

k

k k k k

k

w C I D e
ky y A e k y e

w C I D e
k k

 (7.84) 

and

( ) ( ) ( ) ( )
1 2 1 2 1

2 2 2

1
2

, ( 1) ( 1) ( 1)

( 1) 1

k k k k
l l l

l l l

l
l

y y l A e y l D e y l C e

w l C e (7.85)

due to the stable condition 1 1.  It follows from Eq. (7.84) and 

Eq. (7.85) that  

( ) ( ) ( ) ( ) ( )
1 2 0 1 2

2
lim , lim , ( 1) .k k k k k

lk k l
y y A e y y l A e

Thus, there always exists a positive integer N big enough such that for all 
,k N

( ) ( ) ( ) ( ) ( )
1 2 0 1 2

2
, , ( 1) .k k k k k

l
l

y y A e y y l A e  (7.86) 

It is easy to check that 

2
( 1) .l

l
l A e  (7.87) 

Therefore, it is easy to see from Eq. (7.86) and Eq. (7.87) that the continuous- 
time irreducible Markov chain Q is positive recurrent based on the principle of 
the mean drift. This completes the proof.  

For the level-dependent Markov chain Q of 1M G  type, let ( ){ }kG  be the 
minimal nonnegative solution to the system of matrix equations 

( ) ( ) ( ) ( 1) ( ) ( 2) ( 1) ( )
0 1 2 3 0, 1.k k k k k k k kA A G A G G A G G G k

Then for 0k  and 1,l
( ) ( 2) ( 3) ( 2) 1

1 2 3 1[ ]( ),k k k k
l l l l kR A A G A G G U

and for 0,k
( ) ( 1) ( 2) ( 1) ( 3) ( 2) ( 1)
1 2 3 4 .k k k k k k k

kU A A G A G G A G G G
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Therefore,  

 ( ) ( ),U D LQ I R U I G  (7.88) 

where  
(0) (0) (0)
1 2 3

(1) (1)
1 2

(2)
1( ) ,U

I R R R
I R R

I R I R
I

0 1 2diag ( , , , )DU U U U

(1)

(2)

(3)

( ) .L

I
G I

I G G I
G I

Using the RG-factorization, the stationary probability vector of Q  is given by 

0 0
1

( )

0

,

, 1,
k

i
k i k i

i

x y

x x R k

where 0y  is the stationary probability vector of the transition rate matrix 0U  and 

the scalar  is uniquely determined by 
0

1.k
k

x e

7.4.3 The Stationary Performance Measures  

The solution of the system of differential equations for the vectors , ,I kP , ( )W kP x
and , ( , )R kP x y  for 0k  is summarized in the following theorem.  

Theorem 7.8 If the system is stable, then for 0,k

, ,1

, ,2
0

, ,2
0 0

,

( ) ( , ) ( ),

( , ) ( , ) ( , ) ( ) ( ).

I k k
k

W k k
i

k l
D

R k i
l i

P x

P x x P k i x B x

P x y x P l i x P k l y B x V y
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Remark 7.3 The method proposed in this section can be used in principle to 
deal with a retrial queue with a more general total retrial rate, where the total retrial 
rate is a function ( , ),f n n  is the number of customers in the orbit and  is a 

parameter. For example, 
0

( , ) ( )
M

i
i

i
f n a n  or 1 2( , ) ln e .nf n C n C  The case 

with linear retrial rate ( , )f n n  was studied in Dudin and Klimenok [107].
Now, we express the distribution of stationary queue length. If the system is 

stable, we write 

lim { ( ) }, 0.k t
p P N t k k

Note that 
( ) lim ( ) , ( ) , 0,I
k t

p P L t I N t k k
( ) lim { ( ) , ( ) }, 1,W
k t

p P L t W N t k k
( ) lim ( ) , ( ) , 1.R
k t

p P L t R N t k k

we have 
( ) ( ) ( ) ( )

0 0 , , 1,I I W R
k k k kp p p p p p k

which leads to 

( ) ( )
0 ,0 ,, , 1,I I

I k I kp p e p p e k
( ) ( )

, 1 , 10 0 0
( )d , ( , )d d , 1.W R

k W k k R kp P x xe p P x y x y k

Therefore, the stationary queue length distribution is given by 

0 0,1

1 1

,1 ,2 1 ,2 1
0 0 0

, 1.
jk k

k k i k i i j i k j
i j i

p x e

p x e x F x F H e k

To obtain the stationary availability and the stationary failure frequency of the 
server, we need the following lemma.  

Lemma 7.4 If the system is stable, then  

(1) the probability that the server is idle is 1 1IP ,

(2) the probability that the server is working is ,WP  and 

(3) the probability that the server is under repair is .RP
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Proof It follows from Eq. (7.70) and Eq. (7.79) that 

* * * *
0

d ( ) ( ) ( ,0) ( ( )),
d I I Wz P z P z D P z b z

z
 (7.89) 

where 

* * *
, 0

0
( ) , ( ( )) exp{ ( ) }d ( ).k

I I k
k

P z z P b z z x B x

It follows from Eq. (7.71) that 

* * * *
0

1 d( ,0) ( )[ ( ) ] ( ).
dW I IP z P z D z D P z

z z
 (7.90) 

From Eq. (7.89) and Eq. (7.90) we obtain 

* * * * 1( ,0) ( ) ( )[ ( ( ))] .W IP z P z D z zI b z

Noting that 
* * * 1

0
exp{ ( ) } ( )d [ ( ( ))][ ( )]z x B x x I b z z

and
* * * 1

0
exp{ ( ) } ( )d [ ( ( ))][ ( )] ,D z x V x x I v D z D z

using Eq. (7.78), Eq. (7.79) and Eq. (7.90) yields 

* * * *

0 0 0
( ) ( ) ( , )d ( , , )d dI W RP z P z P z x x P z x y x y

1* * * * 1*( ){ ( ) [ ( ( ))][ ( )][ ( ( ))]IP z I D z I b z zzI b z
                                  * * 1{ [ ( ( ))][ ( )] }}.I I v D z D z  (7.91) 

For 0,z  we denote by ( )z  and ( )e z  the eigenvalue with maximal real 
part of the matrix *( )D z  and the associated right eigenvector with the first entry  
normalized to one, respectively. It is obvious that 

1
lim ( ) 0,
z

z
1

lim ( )
z

z

and
1

lim ( ) .
z

e z e  It follows from Eq. (7.91) that  

* * 1( ) ( ) ( ) ( ) .
( ( ) [1 ( ( ))])I

zP z e z P z e z
z b z v z

 (7.92) 

Noting that, after some calculations, 

1

1 1lim
( [1 ( ( ))]) 1 1

z

z
z b z v z
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and
*

1
lim ( ) ( ) 1,
z

P z e z

we obtain 

* (1) (1) 1 1 .I IP P e

We can similarly obtain that WP  and .RP  This completes the proof. 

This lemma shows that we can determine the scalar function * ( ) ( )P z e z  from 
Eq. (7.89) to Eq. (7.92). However, we can not explicitly obtain the vector 
function * ( ).P z  This is the main reason why it is necessary for us to provide an 
approach for solving the Eq. (7.66) to Eq. (7.73). Meanwhile, it is also easy to 
see the basic difficulty of using the standard method (e.g., see Subsection 1.2.2 in 
Falin and Templeton [109]) to deal with the 1BMAP G  retrial queue and more 
generally, retrial queues of 1M G  type.  

Let

( ) {the server is up at time }A t P t

and define the stationary availability of the server as lim ( ).
t

A A t  We denote 

by fW  the stationary failure frequency of the server.  
Theorem 7.9 If the system is stable, then  
(1) the stationary availability of the server is given by 

1 ,A

(2) the stationary failure frequency of the server is given by 

.fW

Proof Noting that 

* *
, ,0 0

0
( )d (1) (1, )dI k W k I W I W

k
A P P x x e P P x x e P P

and

*
,0 0

0
( )d (1, )d .f W k W W

k
W P x x e P x xe P

This completes the proof. 
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It is easy to see from Eq. (7.78) to Eq. (7.81) that Lemma 7.3 is a key to 
express the vector generating function * ( , ),WP z x  which is necessary to derive the 
two reliability indexes: The stationary availability and failure frequency, as shown 
in the proof of Theorem 7.9. 

7.5 Notes in the Literature

In this section, we provide a simple introduction to the literature for processor- 
sharing queues, fluid queues, queues with negative customers, and retrial queues. 

7.5.1 The Processor-Sharing Queues  

Processor-sharing queues are useful in the study of computer and communication 
systems. Early work on processor-sharing queues was motivated by the study of 
multiuser mainframe computer systems, e.g., see Kleinrock [16], Coffman and 
Kleinrock [6] and Coffman, Muntz and Trotter [7]. Recent interest in processor- 
sharing queues is due to their applications to communication networks and web 
servers, for example, modeling congested links with TCP traffic and job schedulers 
in web servers. During the last few decades considerable attention has been paid 
to the study of processor-sharing queues, which have been well documented by, 
for example, books of Kleinrock [17], Cohen [9] and Asmussen [1] and survey 
papers of Cohen [8], Yashkov [34,35] and Yashkov and Yashkova [36].  

For the 1M M  processor-sharing queue, Coffman, Muntz and Trotter [7] and 
O’Donovan [26] derived the Laplace–Stieltjes transform of the sojourn time 
distribution. Morrison [22] and Guillemin and Boyer [13] obtained an integral 
representation for the complementary distribution of the sojourn time by means 
of the Laplace-Stieltjes transform expression and the spectral theory, respectively. 
Sengupta and Jagerman [31] studied moments of the sojourn time conditioned on 
the number of customers found by an arriving customer. Braband [3,4] discussed 
the waiting time distributions of the closed M M N  processor-sharing queue. 
Núñez-Queija [25] studied a Markovian processor-sharing queue with a service 
rate that varies over time, depending on the number of customers and on the state 
of a stochastic environment. Masuyama and Takine [21] provided a recursive 
formula to compute the stationary sojourn time distribution in the 1MAP M
processor-sharing queue. Li, Liu and Lian [20] applied the RG-factorization and 
a level-dependent Markov chain of 1M G  type to study a 1BMAP M  generalized 
processor-sharing queue. For the 1GI M  processor-sharing queue, the first two 
moments and the Laplace-Stieltjes transform of the sojourn time were derived  
in Ramaswami [27], Cohen [10], and Jagerman and Sengupta [14]. For the 

1M G  processor-sharing queue, reader may refer to Schassberger [30], Resing, 
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Hooghiemstra and Keane [29], Yang and Knessl [33], Zwart and Boxma [37], 
Sericola, Guillemin and Boyer [32], Li and Lin [19], Cheung, van den Berg and 
Boucherie [5], and Egorova, Zwart and Boxma [11]. For the processor-sharing 
queues with bulk arrivals, Kleinrock, Muntz and Rodemich [18] first analyzed a 
processor-sharing queue with bulk arrivals. Rege and Sengupta [28] studied 
the 1M G  processor-sharing queue with bulk arrivals under a general job size 
distribution. Bansal [2] obtained expression for the expected response time of a 
job as a function of its size, where the service times of jobs have a generalized 
hyperexponential distribution and more generally, a distribution with rational 
Laplace transforms. Li, Liu and Lian [20] applied the RG-factorizations to study 
a 1BMAP M  generalized processor-sharing queue. Kim and Kim [15] considered 
concavity of the conditional mean of sojourn time in the 1M G  processor-sharing 
queue with batch arrivals. 

7.5.2 The Fluid Queues 

Fluid queues are motivated as modelling, e.g., high-speed communication networks, 
transportation systems, and manufacturing systems. During the last few decades 
considerable attention has been paid to the study of fluid queues, which have 
been well documented, for example, by survey papers of Kulkarni [51] and Ahn 
and Ramaswami [40].  

In most of the studies of the fluid queues, the state space of the external 
stochastic environment is assumed to be finite. In this case, the stationary 
probability distribution of the buffer content is the unique solution to a system of 
differential equations, for example, see (8) in Anick, Mitra and Sondhi [41]. Until 
now, four methods for solving the system of differential equations have been 
presented as follows:  

(1) A spectral method was proposed in terms of computing the eigenvalues and 
eigenvectors of the coefficient matrices involved in a fluid model. Readers may 
refer to Anick, Mitra and Sondhi [41], van Doorn, Jagers and de Wit [65], Mitra 
[57], Stern and Elwalid [64], Kontovasilis and Mitrou [50], Blaabjerg, Andersson 
and Andersson [45], Karandikar and Kulkarni [48], Kulkarni [51], Lenin and 
Parthasarathy [53], Kulkarni and Tzenova [52], Adan, Resing and Kulkarni [39], 
and Masuyama and Takine [56]. Further, Asmussen [42] and Karandikar and 
Kulkarni [48] used this spectral method to analyze second-order fluid models 
with finite states. Rabehasaina and Sericola [60] studied a second-order 
Markov-modulated fluid queue with linear service rate.  

(2) Sericola and Tuffin [63] proposed a stable algorithm for computing the 
stationary probability distribution of the buffer content. In the stable algorithm, 
the stationary probability distribution is first assumed to be the product of an 
exponential function and a power series. Then the determination of the stationary 
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probability distribution becomes the computation of the coefficients in the product. 
Barbot, Sericola and Telek [43] and Parthasarathy, Sericola and Vijayashree [59] 
further applied the stable algorithm to calculate transient distributions of fluid 
models such as the distribution of the busy period.  

(3) Based on the Wiener-Hopf factorization given in Barlow, Rogers and 
Williams [44], the stationary probability distribution of the buffer content is 
expressed as a matrix-exponential form by Rogers [62]. Li and Zhao [55] used 
the RG-factorizations to study a block-structured fluid models driven by level- 
dependent QBD processes with either infinitely-many levels or finitely-many 
levels.

(4) Ramaswami [61] provided the matrix-analytic method for deriving the 
stationary probability distribution of the buffer content. He illustrated that the 
stationary probability distribution is a PH distribution. The matrix-analytic 
method was further extended by da Silva Soares and Latouche [46], Ahn and 
Ramaswami [40], and van Lierde, da Silva Soares and Latouche [66].  

When the state space of the external stochastic environment is countably 
infinite, Virtamo and Norros [67] provided a spectral method for a fluid queue 
driven by an 1M M  queue, where the generalized eigenvalues are explicitly 
expressed by means of the Chebyshew Polynomials of the second kind. Adan and 
Resing [38] presented a method of embedded points, for deriving the stationary 
probability distribution of the buffer content. Parthasarathy, Vijayashree and 
Lenin [58] proposed a method of continued fraction to derive Laplace transform 
of the stationary probability distribution. Li, Liu and Shang [54] discussed the 
heavy-tailed behavior for the stationary probability distribution of the buffer 
content in a fluid queue driven by an 1M G  queue. Konovalov [49] analyzed 
the stability issue of a fluid queue driven by a 1GI G  queue. van Doorn and 
Scheinhardt [65] used the orthogonal Polynomials to express the stationary 
probability distribution of the buffer content for a fluid queue driven by an 
irreducible birth-death process. Li and Zhao [55] analyzed a block-structured 
fluid models driven by level-dependent QBD processes. Guillemin and Sericola 
[47] provided stationary analysis of a fluid queue driven by some countable state 
space Markov chain.  

7.5.3 The Queues with Negative Customers  

During the last decade, considerable attention has been paid to the study of 
queueing systems with negative arrivals. Since the introduction of the concept of 
negative customers by Gelenbe [77], research on queueing systems with negative 
arrivals has been greatly motivated by some practical applications such as 
computers, neural networks, manufacturing systems and communication networks. 
For a comprehensive analysis of queueing networks with negative arrivals, 
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readers may refer to Gelenbe and Pujolle [81], Chao, Miyazawa and Pinedo [74], 
and Serfozo [90].  

Gelenbe [77] introduced negative arrivals to queueing networks and established 
the product form solution for an open queueing network. Subsequent papers have 
been published on this theme, among which, see Gelenbe and Schassberger [82], 
Henderson [86], Gelenbe [78,79], Pitel [89], Harrison and Pitel [84], Chao [73], 
Gelenbe and Pujolle [81], Artalejo and Gómez-Corral [70], Chao, Miyazawa and 
Pinedo [74], Serfozo [90], Anisimov and Artalejo [68], Zhu and Zhang [92], 
Dudin and Semenova [76], and Shin [91]. A recent review can be found in 
Artalejo [69].  

Gelenbe, Glynn and Sigman [80] provided necessary and sufficient conditions 
for stability of single-server queues with negative arrivals. They illustrated that 
stability conditions may depend upon not only the arrival and service rates, but 
also the distributions of the interarrival and service times. For the 1M G  queue 
with negative arrivals, Harrison and Pitel [85] explicitly expressed the stability 
conditions. Harrison and Pitel [83] derived expressions for the Laplace transform 
of the sojourn time density in the 1M M  queue with Poisson arrivals of negative 
customers. For the stationary workload for 1M G  queues with negative arrivals, 
Boucherie and Boxma [72] studied a generalization in which a negative arrival 
removes a random amount of positive customers. Jain and Sigman [87] analyzed 
the case where a negative arrival removes all the customers in the system. They 
derived a Pollaczek-Khintchine formula. Bayer and Boxma [71] provided Wiener- 
Hopf analysis for an 1M G  queue in which positive customers are removed just 
after a service completion time. Harrison and Pitel [85] studied the distributions 
of stationary queue length for the 1M G  queue with negative arrivals. The 
generating functions are expressed in terms of the Fredholm integral equations of 
the first kind. Artalejo and Gómez-Corral [96] extended the 1M G  queue with 
negative arrivals to handle situations where the positive customers follow a 
retrial policy. They proved that the distributions of the stationary queue length 
can still satisfy the Fredholm integral equation of the first kind, and provided an 
effective algorithm for numerically solving the Fredholm integral equation. Dudin 
and Nishimura [75] used the matrix-analytic method to analyze a 1BMAP SM
queue with disasters. Li and Zhao [88] considered the 1MAP G  queue with 
MAP arrivals of negative customers under two classes of removal rules.  

7.5.4 The Retrial Queues  

Retrial queues are an important mathematical model for telephone switch 
systems, digital cellular mobile networks, computer networks and so on. During 
the last two decades considerable attention has been paid to the study of retrial 
queues, which has been well documented, for example, by survey papers of Yang 
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and Templeton [125], Falin [108], Kulkarni and Liang [116], Artalejo [96] and 
Gómez-Corral [110], and by two books of Falin and Templeton [109] and 
Artalejo and Gómez-Corral [98].  

Retrial queues have been studied by some authors in terms of the matrix-analytic 
method. Readers may refer to Kulkarni [113,114], Kulkarni and Choi [115], 
Neuts and Rao [121], Liang and V. G. Kulkarni [118,119], Diamond and Alfa 
[104,105,106], Choi, Yang and Kim [102], He, Li and Zhao [111], Dudin and 
Klimenok [107], Choi, Chung and Dudin [103], Breuer, Dudin and Klimenok [99], 
Chakravarthy and Dudin [100,101], Li, Ying and Zhao [117], Shang, Liu and Li 
[122].

Retrial queues with unreliable servers have been discussed by some researchers. 
Readers may refer to Kulkarni and Choi [115], Yang and Li [124], Artalejo [95], 
Aissani [93], Aissani and Artalejo [94], Artalejo and Gómez-Corral [97], Wang, 
Cao and Li [123], and Li, Ying and Zhao [117].  

Problems

7.1 Consider an 1M PH  processor sharing queue, where the server is shared 
equally by all customers in the system. Compute the distribution of the sojourn 
time in this system. Further, provide a detailed analysis for a 1MAP PH
processor sharing queue. 
7.2 Consider an M M c  processor sharing queue with each server being shared 
equally by all customers in its working space. Compute the distribution of the 
sojourn time in this system. 
7.3 Consider an infinite capacity buffer where the fluid input and output rates 
are controlled by the idle period and the busy period of a 1MAP G  queue, 
respectively. Provide the stable condition of the fluid queue, and compute the 
stationary distribution of the buffer content. 
7.4 Consider a finite capacity buffer where the fluid input and output rates are 
controlled by the idle period and the busy period of a 1MAP PH  queue, 
respectively. Provide the stable condition of the fluid queue, and compute the 
stationary distribution of the buffer content.   
7.5 Analyze a single-server FCFS queue with two types of independent arrivals, 
positive and negative. Positive arrivals correspond to customers who upon arrival, 
join the queue with the intention of being served and then leaving the system. At 
a negative arrival epoch, the system is affected if and only if customers are 
present. We assume that the arrivals of both positive and negative customers are 
of MAPs with matrix descriptors 1 1( , )C D  and 2 2( , ),C D  respectively, where the 
infinitesimal generators 1 1C D  and 2 2C D  of sizes 1 1m m  and 2 2m m  are 
irreducible and positive recurrent. The service times of the positive arrivals are 
i.i.d. and of phase type with irreducible representation ( , )S  of size n. For each 
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of the following three cases, compute the stationary distribution of the queue 
length.

(1) The arrival of a negative customer removes all the customers in the system.  
(2) The arrival of a negative customer removes the head customer (or the 

serving customer) in the system.  
(3) The arrival of a negative customer removes the final customer in the queue 

line.
7.6 Analyze a single-server FCFS queue with a finite waiting room and two 
types of independent arrivals, positive and negative. Positive arrivals correspond 
to customers who upon arrival, join the queue with the intention of being served 
and then leaving the system. Each negative arrival is not served while it only 
occupies the waiting room until it is full. We assume that the arrivals of both 
positive and negative customers are of MAPs with matrix descriptors 1 1( , )C D
and 2 2( , ),C D  respectively, where the infinitesimal generators 1 1C D  and 2 2C D
of sizes 1 1m m  and 2 2m m  are irreducible and positive recurrent. The service 
times of the positive arrivals are i.i.d. and of phase type with irreducible repre- 
sentation ( , )S  of size n. Compute the transient distribution of the queue length. 
7.7 Consider a 1 1BMAP G G  retrial queue with no waiting space and the 
size of the orbit is infinite. If an arrival, either a primary or a retrial customer, 
finds that there is no customer in the server, then it enters the server immediately 
and receives service. Otherwise it enters the orbit and makes a retrial at a later 
time. Returning customers behave independently of each other and keep making 
retrials until they receive their requested service. Successive inter-retrial times 
are i.i.d. exponentially distributed random variables with retrial rate .  The 
arrivals to the retrial queue are modeled by a BMAP with irreducible matrix 
descriptor { , 0}kD k  of size m; and the service times for the primary and retrial 
customers are assumed to be i.i.d. and have two different distribution functions as 
follows: 

1 10
( ) 1 exp ( )d

t
B t v v

and

2 20
( ) 1 exp ( )d ,

t
B t v v

respectively. Provide the stable condition of the retrial queue, and compute the 
stationary distribution of the queue length. 
7.8 Consider a 1 1GI PH  retrial queue with no waiting space and the size of 
the orbit is infinite. If an arrival, either a primary or a retrial customer, finds that 
there is no customer in the server, then it enters the server immediately and 
receives service. Otherwise it enters the orbit and makes a retrial at a later time. 
Returning customers behave independently of each other and keep making 
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retrials until they receive their requested service. Successive inter-retrial times 
are i.i.d. exponentially distributed random variables with retrial rate .  The arrivals 
to the retrial queue are modeled by a renewal process with interarrival time 
distribution ( );F x  and the service times for the primary and retrial customers are 
assumed to be i.i.d. distributed PH random variables with irreducible representation 
( , )S  of size n. Compute the transient distribution of the queue length. 
7.9 Consider a 1 1GI G  retrial queue with no waiting space and the size of the 
orbit is infinite. If an arrival, either a primary or a retrial customer, finds that 
there is no customer in the server, then it enters the server immediately and 
receives service. Otherwise it enters the orbit and makes a retrial at a later time. 
Returning customers behave independently of each other and keep making retrials 
until they receive their requested service. Successive inter-retrial times are i.i.d. 
exponentially distributed random variables with retrial rate .  The arrivals to the 
retrial queue are modeled by a renewal process with interarrival time distribution 

( );F x  and the service times for the primary and retrial customers are assumed to 
be i.i.d. distributed random variables with service time distribution ( ).G x  Compute 
the transient distribution of the queue length.   
7.10 Consider a 1 1MAP PH  retrial queue with no waiting space and the size 
of the orbit is infinite. If an arrival, either a primary or a retrial customer, finds 
that there is no customer in the server, then it enters the server immediately and 
receives service. Otherwise it enters the orbit and makes a retrial at a later time. 
Returning customers behave independently of each other and keep making 
retrials until they receive their requested service. Successive inter-retrial times 
are i.i.d. PH distributed random variables with irreducible representation ( , )T
of size n. The arrivals to the retrial queue are modeled by a MAP with irreducible 
matrix descriptor ( , )C D  of size m; and the service times for the primary and 
retrial customers are assumed to be i.i.d. PH distributed random variables with 
irreducible representation ( , )S  of size k. Compute the transient distribution of 
the queue length. 
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Abstract In this chapter, we apply the RG-factorizations to provide a 
unified algorithmic framework for dealing with transient solution in stochastic 
models. The transient solution includes the transient probability, the first 
passage time, the sojourn time and time-inhomogeneous Markov chains. 
Based on the first passage time, we extends the PH distribution and the MAP 
to the GPH distribution and the GMAP from finite phases to infinite phases, 
respectively, and also study the time-inhomogeneous PH (PH(t)) distribution 
and the time-inhomogeneous MAP (MAP(t)). Finally, we analyze some 
queueing examples such as GMAP/GPH/1 and MAP(t)/PH(t)/1.
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In this chapter, we apply the RG-factorizations to provide a unified algorithmic 
framework for dealing with transient solution in stochastic models. The transient 
solution includes the transient probability, the first passage time, the sojourn  
time, and performance measures of time-inhomogeneous Markov chains. Note 
that the first passage time has been dealt with in Section 6.7. This chapter extends 
the PH distribution and the MAP to the generalized PH (GPH) distribution and 
the generalized MAP (GMAP) from finite phases to infinite phases, respectively.  
It also studies the time-inhomogeneous PH (PH(t)) distribution and the 
time-inhomogeneous MAP (MAP(t)), both of which are useful in the study of 
time-inhomogeneous stochastic models. 

This chapter is organized as follows. Sections 8.1 studies the transient probability 
of an irreducible Markov chain which is either discrete-time or continuous-time. 
Also, this section and develops two effective algorithms for computing the 
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transient probability. Sections 8.2 analyzes the first passage time of an Markov 
chain. This section gives two effective algorithms for computing the first passage 
time distribution with respect to the discrete-time and continuous-time cases, 
respectively. Based on this, we develop the GPH distribution and the GMAP. 
Sections 8.3 analyzes the sojourn times of an irreducible Markov chain by means 
of the PH distributions and the RG-factorizations. Section 8.4 discusses a 
time-inhomogeneous discrete-time Markov chain, and analyzes the asymptotic 
periodic distribution of a d-period Markov chain. Finally, Section 8.5 summarizes 
notes for the references related to the results of this chapter. 

8.1 Transient Probability 

In this section, we provide an algorithmic framework for computing the transient 
probability of an irreducible Markov chain which is either discrete-time or 
continuous-time. The algorithmic framework is based on the RG-factorizations.

8.1.1 Discrete-Time Markov Chains 

Consider an irreducible M-state Markov chain { , 0}nX n  whose transition 
probability matrix is given by , 1 ,( ) ,i j i j MP p  where M is either finite or 
infinite. Let 1 2( , , , )M  be the initial probability vector of the Markov 
chain, that is, 0{ } kP X k  for 1 .k M  We write ( ) { }k nn P X k  and 

1 2( ) ( ( ), ( ), , ( )).Mn n n n  Thus 

( ) , 0.nn P n  (8.1) 

It is necessary to explain the probabilistic setting for ( )n  with 0n  in terms 
of practical systems. The transient probability (8.1) can always be regarded as a 
forecast method for analyzing many practical issuses. For example, let us 
consider a market percentage prediction for five electric power companies. Due 
to dynamic competition, it is a crucial decision-making process to provide the 
market percentage prediction for each company. To achieve this, we can use the 
transient probability to compute the market percentage. Let ,i jp  be a probability 
that the last periodic customers of the i th electric power company purchase their 
electric power from the jth electric power company, we write the matrix 

, 1 , 5( ) .i j i jP p  The five different electric power companies are denoted as A, B,
C, D and E. Based on statistical analysis, we can obtain the initial market 
percentage vector as 

 (0) (0.20, 0.18, 0.16, 0.24, 0.22)
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and the transition probability matrix P as 

0.60 0.10 0.05 0.15 0.10
0.05 0.70 0.05 0.10 0.10

.0.10 0.20 0.50 0.15 0.05
0.05 0.10 0.05 0.75 0.05
0.10 0.05 0.10 0.10 0.65

A B C D E

A
B
C
D
E

P

Therefore, we can predict the market percentages of the five electric power 
companies in the current year as follows: 

(1) (0) (0.18, 0.22, 0.13, 0.27, 0.20);P

and the market percentages in the next year as follows: 

(2) (1) (0.17, 0.24, 0.12, 0.28, 0.19).P

When the Markov chain P is positive recurrent, we denote by 1 2( , , , )M

its stationary probability vector. In this case, if ,  then ( ) nn P  for 
each 0.n  At the same time, it is clear that lim ( ) ,

n
n  which is independent 

of any initial probability vector .

Let *

0
( ) ( ).n

n
z z n  Then * 1( ) ( ) .z I zP  When 0 1,z  it is clear 

that zP is either stochastic or substochastic. In this case, we can obtain the 
UL-type RG-factorization

[ ( )][ ( )][ ( )],U D LI zP I R z I z I G z

which leads to 

* 1 1 1( ) [ ( )] [ ( )] [ ( )] ;L D Uz I G z I z I R z

and the LU-type RG-factorization

[ ( )][ ( )][ ( )],L D UI zP I R z I U z I G z

which yields 

* 1 1 1( ) [ ( )] [ ( )] [ ( )] .U D Lz I G z I U z I R z

Let Ni be the return number of the Markov chain { , 0}nX n  to state i, and 
write 0[ | ]i iE N X i  and 1 2( , , , ).M  It is easy to check that 
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2 1 2

1
( ) ( ) (1)[( ) ] .

n
n n P I P I P

Therefore,
(1) if the markov chain { , 0}nX n  is transient, then 

1 1 1 2(1)[( ) ( ) ( ) ] ;L D UI G I I R

(2) if ,M  then 

1 1 1 2(1)[( ) ( ) ( ) ] .U D LI G I U I R

8.1.2 An Approximate Algorithm 

We provide an effective algorithm for computing the transient probability ( )n
for 0n  of the Markov chains with infinite states. This algorithm is a key 
element for constructing the other three algorithms in this chapter. 

For the vector  and the matrix P, there always exists a monotonously non- 
decreasing integer sequence { }kN  such that for a sufficiently small 0,  we have 

0 1
j

j N
 (8.2) 

and

, 1
1

, 1 ,
n

i j n
j N

P i N n  (8.3) 

Remark 8.1 It is necessary to provide a detailed interpretation or a concrete 
procedure to determine the integer sequence { }kN  based on the following three 
steps:

Step 1 Since 
1

1, i.e., 1,i
i

e  there exists an integer 0 1N  such that 

0 1
.i

i N

Step 2 Once determining 0 ,N  using ,
1

1,i j
j

p  there exists an integer 

( )
1 0

iN N  such that 
( )
1

,
1i

i j
j N

p  for 01 .i N Let

( )
1 1 0max{ :1 }.iN N i N
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Step 3 When determining kN  for 1,k  using ,
1

1,i j
j

p  there exists an 

integer ( )
1

i
k kN N  such that

( )
1

,
1i

k

i j
j N

p  for 1 .ki N  Let 

( )
1 1max{ :1 }.i

k k kN N i N

Lemma 8.1 Let ( ) for 0.nn P n  Then for each 0,n  we have

1
( ) .

n

j
j N

n

Proof Since ( ) 1nn e P e  for 0.n  we obtain that 
1

( ) 1.j
j

n  Hence, 

we have 

, ,
1 1 1 1 1

1

( ) ( ) ( 1)

( 1) .

n n n

j l l j l l j
j N j N l l j N

l
l

n n p n p

n

This completes the proof. 
For a positive integer N, we write 

1 2 3 1( ) ( ( ), ( ), ( ), , ( ), ( )).N N N N N NN Nn n n n n n

Specifically, 

0 0(0) , 1 ,N j j j N  (8.4) 

and

1

1 ,
1

( ) ( 1) , 1 , 1.
n

n n

N

N Nj i i j n
i

n n p j N n  (8.5) 

Theorem 8.1 For 1 , 1,nj N n

1

10 ( ) ( ) [ ( ) ( )] ( 1) .
2

n

n n

N

N Nj j j j
j

n n n n n n

Proof This proof contains the following three steps. 
Step 1 By induction, we first prove that ( ) ( )

nNj jn n  for 1 ,nj N
1.n
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When n 1,

1 0
0

0

, ,
1 1

,
1

(1) (1) [ (0) (0)] (0)

(0) 0,

N Nj j i i i j i i j
i i N

i i j
i N

p p

p

since
0

(0) (0)Ni i i  for 01 .i N

We assume that when , ( ) ( ) 0.
nNj jn k k k Then for 1,n k

1 , ,
1 1

( 1) ( 1) [ ( ) ( )] ( ) 0.
k

k k
k

N

N Nj j i i i j i i j
i i N

k k k k p k p

Therefore, we obtain that ( ) ( ) 0
nNj jn n  for 1 , 1.nj N n

Step 2 Note that ( ) ( ) 0
nNj jn n  for 1 nj N  and 1,n  it is clear that 

1
( ) ( ) [ ( ) ( )].

n

n n

N

N Nj j j j
j

n n n n

Step 3 We prove that 
1

1[ ( ) ( ) ] ( 1)
2

n

n

N

Nj j
j

n n n n  for 1n  by induction. 

When n 1,

1 1 1

0 0

0 0

, ,
1 1 1 1 1

1 1

[ (1) (1)] (0) (0)

(0) .

n

N N N

Nj j i i j i i j
j j i N i N j

i i
i N i N

p p

We assume that when 
1

1, [ ( ) ( )] ( 1) .
2

k

n

N

Nj j
j

n k k k k k  Then for 1,n k

1 1

, ,
1 1 1 1

1 1

[ ( 1) ( 1)] [ ( ) ( )] ( )

( ) ( )] ( )

1 1( 1) ( 1)( 2) .
2 2

k k k

n n
k

k

n
k

N N N

Nj j i N i i j i i j
j j i i N

N

Ni i i
i i N

k k k k p k p

k k k

k k k k

Therefore, we obtain that 
1

1[ ( ) ( )] ( 1) for 1.
2

n

n

N

Nj j
j

n n n n n
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This completes the proof. 
Note that the sequence { ( )}

nN j n  can be computed effectively based on both 
the vector  and the matrix P, thus ( )

nN j n  can be used to approximate the 
transient probability ( )j n  under a sufficiently small error 0.

Algorithm 8.1 Computation of Transient Probability 
INPUT: The vector , the matrix P, and the error 0.
COMPUTATION: 
Step 1 Generating the integer sequence { }kN  according to (8.2) and (8.3). 
Step 2 Iteratively computing { ( )}

nN j n  according to (8.4) and (8.5). 
OUTPUT: The approximate transient probability { ( )}.

nN j n
As an illustration, we consider a Geom/Geom/1 queue, the customer arrivals 

form a Bernoulli process: During a time interval ( , )n n  there is an arrival with 
probability (0,1)p  while there is no arrival with probability 1 .p p  The 
service time S is geometric with distribution function 1{ } kP S k  for 

(0,1), 1  and 1.k  The customer departure can only occur in the 
time interval ( , ).n n  In this system, there is a single server, the service discipline 
is FCFS, and all the service times and the interarrival times are independent of 
each other. Let nL  be the number of customers in the system at time n  for 

0.n  Then { : 0}nL n  is a discrete-time birth-death process whose transition 
probability matrix is given by 

1 .
1

p p
p p p pP p p p p

For the discrete-time birth-death process, it is easy to compute its transient 
probability ( ) nn P  for 0n  in terms of Algorithm 8.1. 

8.1.3 Continuous-Time Markov Chains 

We consider an irreducible continuous-time M-state Markov chain { , 0}tX t
whose infinitesimal generator is given by , 1 ,( ) .i j i j MQ q  Let 1 2( , , , )M

be the initial probability vector of the Markov chain. We write ( ) { }k th t P X k
and 1 2( ) ( ( ), ( ), , ( )).MH t h t h t h t  It is easy to see that 

d ( ) ( )
d

H t H t Q
t

with the initial condition (0) .H  Thus we obtain 
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 ( ) exp{ }, 0.H t Qt t  (8.6) 

When the Markov chain Q is positive recurrent, we denote by 1 2( , ,..., )M

its stationary probability vector. In this case, if , then ( ) exp{ }H t Qt
for each t 0. At the same time, lim ( ) ,

t
H t  which is independent of any initial 

probability vector .
Remark 8.2 Let T( ) ( )V t H t  for t 0. Then 

d ( ) ( )
d

V t QV t
t

with the initial condition (0)V e ,Where e is a column vector of ones with 
suitable size. Thus we obtain 

( ) exp{ } , 0.V t Qt e t

It is clear that ( ) ( )H t e V t  for each t 0.

Let
0

( ) e ( )d .s tH s H t t  Then 1( ) ( ) .H s sI Q  When s>0, it is clear 

that Q sI  is the infinitesimal generator of a continuous-time Markov chain. In 
this case, we can obtain the UL-type RG-factorization

[ ( )][ ( )][ ( )],U D LsI Q I R s U s I G s

which leads to 
1 1 1( ) [ ( )] [ ( )] [ ( )] ;L D UH s I G s U s I R s

and the LU-type RG-factorization

[ ( )][ ( )][ ( )],L D UsI Q I R s U s I G s

which yields 
1 1 1( ) [ ( )] [ ( )] [ ( )] .U D LH s I G s U s I R s

As an illustrating example, we consider a BMAP/PH(M/PH)/1 queue with a 
repairable server. The customer arrival process is a BMAP with irreducible 
matrix descriptor { , 0,1,2,...}kD k  of size m, the service times are i.i.d. and are 
of phase type with irreducible representation ( , )S  of size n, the life time of the 
server is exponential with mean 1/ 0  and its repair time is of phase type. 
Now, we need to compute the mean of the first failure time  of the server. To 
this end, we denote by N(t), I(t) and J (t) the number of customers in the system 
and the two phases of the arrival and service processes at time t, respectively. At 
the same time, let the set of all the failed states be an absorbing state. Then 
{ ( ), ( ), ( ) : 0}N t I t J t t  is an irreducible continuous-time Markov chain whose 
infinitesimal generator is given by 
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0 1 2 3
0

0 1 2
0

0 1
0

0

.( )
( )

D D D D
I S D S I D D

Q I S D S I D
I S D S I

Note that the Markov chain Q is transient due to 
T T0 T(0, , , ) .e eQ Qe  It 

is easy to see that the first failure time  is of phase type with irreducible 
representation ( , )Q  of infinite size, where  is the initial probability vector. 
For example, we may take ( ,0,0, )  and  is the stationary probability vector 

of the Markov chain 
0

.k
k

D  Let the reliability function ( ) { }.R t P t  Then 

( ) exp{ } .R t Qt e

Thus
1 1 1 1[ ] ( ) ( ) .L D UE Q e I G U I R e

Now, we provide an effective algorithm for computing the transient probability 
vector ( )H t  for t 0 when .M  Our algorithmic analysis is classified into 
the following two cases. 

Case  Bounded diagonal elements 
We now discuss an irreducible infinite-state Markov chain Q with bounded 

diagonal elements, that is, 1 ,sup { } .k k kc q  In this case, we write 

1 .P I Q
c

It is easy to check that P is either stochastic or substochastic. At the same time, P
is irreducible if and only if Q is irreducible. 

Note that ( ) exp{ }H t Qt  and ,Q cP cI  we obtain 

0

( )( ) exp{( ) } e .
!

n
ct n

n

ctH t cP cI t P
n

For the term ,nP  we write 

(0) ,
( ) , 1.nn P n

Obviously, ( ) ( 1)n n P  for n 1. At the same time, for t 0 we have 

0

( )( ) e ( )
!

n
ct

n

ctH t n
n

 (8.7) 
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It is seen from Eq. (8.7) that computations of H(t) for t 0 can be related to 
the approximate computation of ( ) nn P  for n 0.

We write 

0 0(0) , 1 ,N j j j N

and
1

1 ,
1

( ) ( 1) , 1 , 1.
n

n n

N

N Nj i i j n
i

n n p j N n

For a sufficiently large positive integer M, we write 

0

( )( ) e ( ) .
!n

nM
ct

M N
n

ctH t n
n

 (8.8) 

Therefore, the function sequence { ( )}M H t  converges to the transient probability 
H(t) for each t 0, and this convergence is uniform for [0, ].t T

Algorithm 8.2 Computation of Transient Probability 
INPUT: The vector , the matrix Q, the error 0.
COMPUTATION: 
Step 1 Generating the integer sequence { }.kN
Step 2 Iteratively computing { ( )}.

nN n
Step 3 Determining the function sequence { ( )}M H t  according to Eq. (8.8). 
OUTPUT: The approximate transient probability { ( )}.M H t
We consider a BMAP/M/1 processor-sharing queue, where the customer arrivals 

form a BMAP with irreducible matrix descriptor { , 0}kD k  of size m. The service 
times are i.i.d. and are exponential with mean 1/ .  The service discipline is that 
when there are n customers in the system, each customer receives service at rate 
1/ .n  We now compute the sojourn time distribution. To this end, we introduce 
the following description. A randomly chosen customer who finds n customers in 
the system on arrival is called Customer .nC Let nw  denote the sojourn time of 
Customer nC  for n 1. We write ( ) { }.n nW x P w x  Then it is easy to check that 

d ( ) ( )
d n nW x W x Q
x

with the initial condition (0) ,nW  where a is a probability vector and 

0 1 2 3 4

0 1 2 3

0 1 2

0 1

1
2

2 .
3

3
4

D I D D D D

I D I D D D

Q I D I D D

I D I D
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Further, we obtain 

( ) exp{ }nW x a Qx e

and
1 1 1 1

min[ ] ( ) ( ) ( ) .n L D UE w Q e I G U I R e

Let 0, jd  be the jth diagonal element of the matrix 0D  for 1 .j m  It is easy  

to see that 1 0, 1 0,max { } min { } .j m j j m jc d d  Thus we can use 

Algorithm 8.2 for computing the sequence { ( )}M W t  which approximates the 
sojourn time distribution W(t) for each t 0.

Case Unbounded diagonal elements 
For the continuous-time Markov chains, there exist many infinitesimal generators 

whose diagonal elements are unbounded. For example, we consider an M/M/1 
retrial queue, where the input is a Poisson process with rate 0,  the service times 
are i.i.d. and are exponential with mean 1/ 0.When there are n customers in 
the system, the retrial time of each customer in the orbit is exponential with mean 
1/( ) 0.n  Let ( )N t  be the number of customers in the system at time t and 

0, if the server is idle,( )
1, if the server is busy.

I t

Then {( ( ), ( )) : 0}N t I t t  is an irreducible continuous-time level-dependent 
QBD process whose infinitesimal generator is given by 

0,0 0,1

1,0 1,1 1,2

2,1 2,2 2,3

,

A A
A A A

Q
A A A

 (8.9) 

where for 0,k

,

, 1

,

0 0
0

k k

k k

kA

A

and

1,
0 .
0 0k k

kA

It is clear that 
0

sup{ , } .
k

c k



Constructive Computation in Stochastic Models with Applications 

400

When the diagonal elements of the matrix Q are unbounded, we introduce three 
different approximate methods for computing the transient probability ( )H t  for 
each 0.t

(1) The censored technique 
For the state space {1,2,3, },  we take two sets {1,2, , }E N  and 

{ 1, 2, 3, }.cE N N N  Based on the two state sets, the infinitesimal 
generator Q is partitioned as 

c

c

E E
E
E

T VQ
U W

and the initial probability vector  is partitioned as (1) (2)( , ).  Then the 
infinitesimal generator of the censored chain QE to set E is given by 

1
min( )EQ T V W U

and the initial probability vector of the censored chain EQ  is given by 

(1) (2) 1
min( ) .E W U

Thus the transient probability vector of the censored Markov chain EQ  is given 
by 

( ) ( ) exp{ }, 0.C E E
NH t Q t t

In order to show the approximate precision, we introduce a performance measure 

1

1
min

( ) .
( )

E E

N
Q ec
Q e

As the value of cN tends to one, the approximate precision tends to increase. 
(2) The truncated approximation 
We directly truncate the infinitesimal generator Q as the matrix T of size N. Let 

( ) (1)( ) exp{ }, 0.T
NH t Tt t

Then we can use the function ( ) ( )T
NH t  to approximate the transient probability 

( )H t  for each t 0. In order to indicate the approximate precision, we introduce 
a performance measure 

(1) 1

1
min

( ) .
( )N

T et
Q e

As the value of Nc  tends to one, the approximate precision tends to increase. 
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(3) The modified approximation 
A modified approximation is a better idea that when changing some elements 

of the infinitesimal generator Q such that the modified matrix Qnew has the 
bounded diagonal elements, while the modified Markov chain Qnew is suitable to 
Algorithm 8.2. For example, a level-dependent Markov chain of GI/M/1 type 
may be modified as a level-independent Markov chain of GI/M/1 type, and a level- 
dependent Markov chain of M/G/1 type may be modified as a level-independent 
Markov chain of M/G/1 type. For example, we modify the QBD process Q given 
in (8.9) as a level-independent QBD process as follows: 

1 0

2 , , 1

1, , , 1new

1, , , 1

,
K K K K

K K K K K K

K K K K K K

B B
B A A

A A AQ
A A A

where K is a sufficiently large integer, 

0,0 0,1

1,0 1,1 1,2

1

2, 3 2, 2 2, 1

1, 2 1, 1

0 2 1,

1,

,

, ( ).

K K K K K K

K K K K

K K

K K

A A
A A A

B
A A A

A A

B B A

A

8.2 The First Passage Times 

The first passage time for an irreducible discrete-time Markov chain with finite 
states is a discrete-time PH distribution, while the first passage time for an 
irreducible continuous-time Markov chain with finite states is a continuous-time 
PH distribution. Reader may refer to Chapter 2 in Neuts [39] for more details. In 
this section, we analyze the first passage time of an irreducible Markov chain 
with infinite states, which is either discrete-time or continuous-time. Note that 
the first passage time may be regarded as a generalized PH (GPH) distribution, 
which can be easily obtained from the N-state PH distribution as .N  Based 
on this, many useful properties of the N-state PH distribution can be formally 
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extended to the GPH distribution. Also, we provide effective algorithms for 
computing the GPH distribution and its associated moments. Further, we discuss 
the GPH renewal processes and more generally, the generalized Markovian arrival 
processes (GMAPs), which have with infinite-many levels. 

8.2.1 Discrete-Time GPH Distribution 

Consider an irreducible discrete-time Markov chain with state space {0,1,2, }
whose transition probability matrix is given by 

0

0
1 00

E

P
E T T

 (8.10) 

where 0{1,2, ), 0E T  and 0 .Te T e  We assume that state 0 is an absorbing 
state and all the others are transient. 

Let 0( , )  be the initial probability vector of the Markov chain, where 0

1.e  For the Markov chain given in Eq. (8.10), the probability distribution 
{ , 0}kp k  of the number N of state transitions until absorption into the 
absorbing state 0 is called a discrete-time GPH distribution with 
representation ( , ).T  If 0T T  is the transition probability matrix of an 
irreducible Markov chain, then this representation ( , )T  is called an irreducible 
representation. In this case, we have 

0
1 0

, 0,
, 1.k k

k
p

T T k

Let *

0
( ) .k

k
k

P z z p  Then 

* 1 0
0( ) ( ) .P z z I zT T

When 0 1,z  it is clear that zT is substochastic. In this case, we can obtain the 
UL-type RG-factorization

[ ( )][ ( )][ ( )],U D LI zT I R z I z I G z

which leads to 
* 1 1 1

0( ) [ ( )] [ ( )] [ ( )] ;L D UP z z I G z I z I R z

and the LU-type RG-factorization

[ ( )][ ( )][ ( )],L D UI zT I R z I U z I G z
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which yields 
* 1 1 1

0( ) [ ( )] [ ( )] [ ( )] .U D LP z z I G z I U z I R z

Using the generating function * ( ),P z  we can obtain the mean 

1( ) ( )E N I T e

and its factorial moment of order k

1[ ( 1) ( 1)] ! ( ) , 2.k kE N N N k k T I T e k

Note that 

*
| 1

d ( ) [ ( 1) ( 1)].
d

k

zk P z E N N N k
z

It is easy to see that the RG-factorizations can be used to compute the factorial 
moments by using the UL-type RG-factorization

( )( )( )U D LI T I R I I G

or the LU-type RG-factorization

( )( )( ).L D UI T I R I U I G

Now, we list some useful properties for the discrete-time GPH distribution. 
The proofs are easy, thus they are omitted here. 

Property 8.1 Let { }kp  and { }kq  be two discrete-time GPH distributions 
with irreducible representations ( , )T  and 0 0( , ), 1 , 1 .S e e  Then 
the discrete convolution { } { }*k kp q  is a discrete-time GPH distribution with 
irreducible representations ( , ),L  where 

0 0 0 0

00
0 0

0

( , ), ,

, .TT TL L
S S

Property 8.2 Let { }kp  be a discrete-time GPH distribution with irreducible 
representations ( , )T  and mean .  The residual distribution 

1

1 , 0,k k
j k

q p k

is a discrete-time GPH distribution with irreducible representations ( , ),T  where 

1
0 0

1 1( ) , (1 ).I T T
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Property 8.3 Let { }kp  and { }kq  be two discrete-time GPH distributions 

with irreducible representations ( , )T  and ( , ).S  Then the mixture *

0
( )v

v k
v

p q

is of generalized phase type with irreducible representations ( , ),L  where 

1
0

1 0
0 0 0 0

0 1
0

0 0 1 0
0

( ) ,

( ) ;

( ) [( ) ],

[( ) ].

I S

I S S

L T I T I S S

L T I S S

Property 8.4 Let 

(1 ) , 0.k n k
k n

n k

ng p p p k
k

If { }kp  is a discrete-time GPH distribution with irreducible representations 
( , ),T  then { }kg  is also of generalized phase type with irreducible representations 
( , ),L  where 

1

1 0
0 0

1

0 1 0

[ (1 ) ] ,
(1 )[ (1 ) ] ;

[ (1 ) ] ,
[ (1 ) ] .

p I p T
p I p T T

L pT I p T
L I p T T

In what follows we provide an approximate algorithm for computing the 
probabilities kp  for k 0.

For the vector  and the matrix ,( ),i jT T  there always exists a monotonously 
non-decreasing integer sequence { }kN  such that for a sufficiently small 0,
we have 

0 1
j

j N

and

, 1
1

, 1 , 1.
n

i j n
j N

T i N n

Let ( ) nn T  for 0.n  Then (0)  and ( ) ( 1)n n T  for 1.n  It 
is clear that 0( ) for 0.np n T n

We write 

0 0(0) , 1 ,N j j j N
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and
1

1 ,
1

( ) ( 1) , 1 , 1.
n

n n

N

N j N i i j n
i

n n T j N n

It is clear that the sequence { ( ), 0}
nN j n n  is used to approximate the value 

( ).j n  Based on this, we write 

0

1
( ) ( 1) .

n

n n

N

N N i i
i

p n n T  (8.11) 

It is easy to check that the sequence { ( )}
nN p n  can effectively approximate the 

probability np  at time n for 0.n
Algorithm 8.3 Computation of the GPH Distribution 
INPUT: The vector , 0 ,T  the matrix T, the error 0.
COMPUTATION: 
Step 1 Generating the integer sequence { }.kN
Step 2 Iteratively computing { ( )}.

nN n
Step 3 Determining the function sequence { ( )}

nN p n  according to Eq. (8.11). 
OUTPUT: The approximate transient probability { ( )}.

nN p n
We consider a Geom/Geom/c queue. The customer arrivals form a Bernoulli 

process during a time interval ( , ),n n  there is an arrival with probability 
(0,1),p  while there is no arrival with probability 1 .p p  The service time S

is geometric with distribution function 1{ } kP S k  for (0,1), 1
and k 1. The customer departure can only occur in the time interval ( , ).n n  In 
this system, there are c identical servers, the service discipline is FCFS, and all 
the service times and the interarrival times are independent of each other. Let nL
be the number of customers in the system at time n  for n 0. We define 

inf{ : }.nn L c

Then it is clear that the random variable  is the busy period of the system. It is 
easy to check that the busy period  is of generalized phase type with irreducible 
representation ( , ),T  where 

1 2 3

1 1 1 0

1 2 1 0

1 3 2 1 0

( , , , ),c c c

c c c

c c

c

t t t t t
t t t t tT

t t t t t

and for 0 1,k c

1 1 .
1

k c k k c k
k

c ct p p
k k
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For the discrete-time Markov chain T, it is easy to compute the GPH distribution 
n

p  for n 0 in terms of Algorithm 8.3. 

8.2.2 Continuous-Time GPH Distribution 

We consider an irreducible continuous-time Markov chain with state space 
{0,1,2,...}  whose infinitesimal generator is given by 

0

0
0 00

E

Q
E T T

 (8.12) 

where 0{1,2, }, 0E T  and 0 0.Te T  We assume that state 0 is an 
absorbing state and all the others are transient. Let 0( , )  be the initial probability 
vector of the Markov chain, where 0 1.e  For the Markov chain given in 
Eq. (8.12), the probability distribution F(x) of the time X until absorption into the 
absorbing state 0 is called a continuous-time GPH distribution with representation 
( , ).T  If 0T T  is the infinitesimal generator of an irreducible Markov chain, 
then this representation ( , )T  is called an irreducible representation. In this case, 
it is easy to check that 

( ) 1 exp{ }F x Tx e

or

( ) exp{ } .F x Tx e

Let the Laplace-Stieljes transform of F(x) be *

0
( ) exp{ }d ( ).f s sx F x Then

* 1 0( ) ( )f s sI T T

for 0.s  It is clear that T sI  is the infinitesimal generator of a Markov chain. 
In this case, we can obtain the UL-type RG-factorization

[ ( )][ ( )][ ( )],U D LsI T I R s U s I G s

which leads to 

* 1 1 1 0( ) [ ( )] [ ( )] [ ( )] ;L D Uf s I G s U s I R s T

and the LU-type RG-factorization

[ ( )][ ( )][ ( )],L D UsI T I R s U s I G s
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which yields 

* 1 1 1 0( ) [ ( )] [ ( )] [ ( )] .U D Lf s I G s U s I R s T

It is clear that the noncentral moment of order i

[ ] !( 1) , 1.i i iE X i T e i

Note that we can use the RG-factorizations to compute the moments by using the 
UL-type RG-factorization

( ) ( )U D LT I R I G

or the LU-type RG-factorization

( ) ( ).L D UT I R U I G

Now, we list some useful properties for the continuous-time GPH distribution. 
Note that Properties 1.5 to 1.12 in Chapter 1 can directly be extended here, we 
only choose some of them under a new different notation. Note that the proofs of 
the properties are easy, and thus are omitted here. 

Property 8.5 If X~GPH ( , )T  and Y~GPH ( , ),S  then ~X Y PH ( , ),L
where 0( , )  and 

0

.
0
T TL

S

Property 8.6 If ~ GPH( , )X T  and ~ GPH( , ),Y S  then min { , } ~X Y
PH( , ),T S  and max { , } ~X Y PH ( , ),L where

0 0( , , ),

0 0

0 0 .
0 0

T S I S T I
L T

S

Property 8.7 If { } ~ks GPH ( , )S  and ( ) ~F x GPH ( , ),T  then the infinite 

mixture *

0

( ) ( ) ~k
k

k
G x s F x GPH ( , ),L  where 

1
0

0 1
0 0

( ) ,

(1 ) ( ) .

I S

L T I T I S S

Now, we provide an approximate algorithm for computing the function ( )F x
exp{ }Tx e  for 0.x
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Let ( ) nn T  for 0.n  Then (0)  and ( ) ( 1)n n T  for 1.n
Thus we obtain 

0 0

( ) ( ) .
! !

n n
n

k n

x xF x T e n e
n n

We write 

0 0(0) , 1 ,N j j j N

and
1

1 ,
1

( ) ( 1) , 1 , 1.
n

n n

N

N Nj i i j n
i

n n T j N n

It is clear that the sequence { ( )}
nN j n  is used to approximate the value ( ).j n

For a sufficiently large positive integer M, we write 

0

( ) ( ) .
!n

nM

M N
n

xF x n
n

 (8.13) 

It is easy to check that the sequence { ( )}M F x  converges to the transient solution 
( )F x  for each 0,x  and this convergence is uniform for [0, ].x T
Algorithm 8.4 Computation of the GPH Distribution 
INPUT: The vector 0, ,T the matrix T, the error 0.
COMPUTATION: 
Step 1 Generating the integer sequence { }.kN
Step 2 Iteratively computing { ( )}.

nN n
Step 3 Determining the function sequence { ( )}M F x  according to Eq. (8.13). 
OUTPUT: The approximate transient probability { ( )}M F x .
We now compute the busy period distribution of a PH/PHX/1 queue, where the 

interarrival and service times are all of phase type with irreducible representations 
( , )T  of size m and ( , )S  of size n, respectively. The service batch size has the 
discrete probability distribution { }.np  It is clear that the busy period  is of 
generalized phase type with irreducible representations W , where 

,0,0,

and

1 0

2 1 0

3 2 1 0

0 0
0 1

,

( ) , , ( ), 2.k k

A A
A A A

W
A A A A

A T I A I S A p I S k
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Let
( ) .B x P x

Then using Algorithm 8.4 we can approximate ( )B x  in terms of the sequence 
{ ( )}MB x  for [0, ].x a

8.2.3 GMAPs  

Similar to Section 5.1 we can provide a GPH renewal process based on the GPH 
distribution. Now, we consider a GMAP with irreducible matrix descriptor ( , )C D
of infinite size. Note the GMAP is a special case of the CMAP given in Section 5.7. 

We write 1( ; ) ( ( ; )) ,j j j jP k t P k t where , ( ; )j jP k t  is a conditional probability 
that the Markov chain C D  is in the phase j  at time t  and that k  renewals 
occur in [0, ),t  given that the Markov chain starts in the phase j  at time 0.  The 
matrix sequence { ( ; )}P k t  satisfies the forward Chapman-Kolmogorov differential 
equations

(0; ) (0; ) ,
( ; ) ( ; ) ( 1; ) , 1;

P t P t C
P k t P k t C P k t D k

or the backward Chapman-Kolmogorov differential equations 

(0; ) (0; ),
( ; ) ( ; ) ( 1; ), 1.

P t CP t
P k t CP k t DP k t k

At the same time, the initial condition is given by 

, 0,
( ,0)

0, 1.
I k

P k
k

Let *

0

( ; ) ( ; ).k

k
P z t z P k t  Then it is easy to see that 

* ( ; ) exp{( ) }.P z t C zD t

If the Markov chain C D  is irreducible and positive recurrent, we denote by 
 the stationary probability vector of the Markov chain C D . The stationary 

arrival rate of the GMAP is given by .De
In what follows we discuss the inter-dependent structure of the GMAP. To do 

this, we assume that an arrival occurs at time 0.  Let k  be the kth arrival epoch 
of the GMAP for 0,k  where 0 0.  Let 1.n n nX  Then nX  is the nth 
interarrival time of the GMAP for 1.n  In general, these random variables 

nX  for 1n  are not independent but they are identically distributed with 
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marginal densities given by 

( ) exp{ } .f t Ct De

Define the matrix ( )W t  with the ( , )i j th element ( )i jW t  which is a conditional 
probability density for an interarrival time [0, )t , terminating at phase j  and 
beginning at the initial phase i. It is easy to check that ( ) exp{ } .W t Ct D  When 
the environment stochastic process { ( ); 0}J t t  evolves from one arrival epoch 
to the next one, the transition probability matrix of the GMAP is given by 

1
max0

exp{ } d ,W Ct D t C D

where
111 1

max ( ) .( ) D ULC U I RI G

It is clear that .W  The joint probability density of the two random variables 
lX  and l kX  is given by 

1( , ) exp{ } exp{ } .k
k lf x y Ct DW Ct De

Therefore, we obtain 

1 1
max max0 0

[ ] ( , )d d ,k
l l k k lE X X xyf x y x y C W C e

Note that 
1 2 1 1

max max max[ ] [ ] ( ) ,k
l l kE X E X C e C e W C e

the correlation between the two random variables lX  and l kX  is given by 

1 1
max max

1 1
max max

( )
.

(2 )

k

k
C I e W C e
C I e C e

8.2.4 Time-Inhomogeneous PH(t) Distribution  

We consider a time-inhomogeneous continuous-time Markov chain with state 
space {1,2, , , 1}m m  whose infinitesimal generator is given by 

0

(1, 2, , ) 1

(1, 2, , )
1

( ) ( )
,

0 0

m m

m
m

T t T t
Q
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where 0 ( ) 0T t  and 0( ) ( ) 0.T t e T t  It is clear that state 1m  is an absorbing 
state and all the others are transient. Let 1( , )m  be the initial probability vector 
of the Markov chain, where 1 1.me  For the time-inhomogeneous Markov 
chain, the distribution ( )F x  of the time X  until absorption into the absorbing 
state 1m  is called a time-inhomogeneous PH distribution (PH ( ))t  with 
representation ( , ( )).T t  If 0( ) ( )T t T t  is the infinitesimal generator of an 
irreducible Markov chain, then this representation ( , ( ))T t  is called an irreducible 
representation. In this case, we have 

0
( ) 1 exp ( )d .

x
F x T t t e

8.2.5 Time-Inhomogeneous MAP (t)

we consider a MAP ( )t  with irreducible matrix descriptor ( ( ), ( )).C t D t  We write 
1

( ( ; ))( ; ) j j j j
P k tP k t , where ( ; )j jP k t  is a conditional probability that the 

Markov chain ( ) ( )C t D t  is in the phase j  at time t  and that k  renewals 
occur in [0, )t , given that the Markov chain starts in the phase j at time 0. The 
matrix sequence { ( ; )}P k t  satisfies the forward Chapman-Kolmogorov differential 
equations

(0; ) (0; ) ( ),
( ; ) ( ; ) ( ) ( 1; ) ( ), 1;

P t P t C t
P k t P k t C t P k t D t k

or the backward Chapman-Kolmogorov differential equations 

(0; ) ( ) (0; ),
( ; ) ( ) ( ; ) ( ) ( 1; ), 1.

P t C t P t
P k t C t P k t D t P k t k

At the same time, the initial condition is given by 

, 0,
( ,0)

0, 1.
I k

P k
k

Let *

0
( ; ) ( ; ).k

k
P z t z P k t  Then it is easy to see that 

*

0
( ; ) exp ( ) ( ) d .

t
P z t C u zD u u

8.2.6 A Time-Inhomogeneous MAP(t)/PH(t)/1 Queue  

We consider a time-inhomogeneous MAP( ) PH( ) 1t t  queue, where the arrival 
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process is a MAP ( )t  with irreducible matrix descriptor ( ( ), ( ))C t D t  and the 
service time distribution is of phase type with irreducible representation ( , ( )).T t
The corresponding time-inhomogeneous QBD process is given by 

0

0

( ) ( )
[ ( ) ] ( ) ( ) ( )

( ) .
[ ( ) ] ( ) ( ) ( )

C t I D t I
I T t C t T t D t I

Q t
I T t C t T t D t I

The transient probability vector of the QBD process is given by 

0
( ) (0)exp ( )d .

t
t Q u u

8.3 The Sojourn Times

In this section, we study the sojourn times of an irreducible M-state Markov 
chain which is either discrete-time or continuous-time, and derive expressions for 
the probability distributions of the sojourn times. Note that M may be either finite 
or infinite.  

8.3.1 Discrete-Time Markov Chains  

Consider an irreducible discrete-time M-state Markov chain { }nX  whose transition 
probability matrix 1( ) .i j i j MP p  Let 1 2( , ,..., ),M  where 0{ }i P X i
for 1 .i M  Let {1,2,..., }E K  and { 1, 2,..., }.cE K K M Then according 
to the two sets E  and ,cE  and P  are partitioned as 

(1) (2)( , )

and

1 1 1 2

2 1 2 2
,

P P
P P P

respectively. It is easy to see that the order of the matrix 2,2P  is finite if M
or is infinite if .M  Since the Markov chain is irreducible, the two matrices 

1,1I P  and 2 2I P  are both invertible. Specifically, this section only uses the 
minimal nonnegative inverse 1

2 2 min( )I P  when .M  For simplicity of 
description, we still use the notation 1

2 2( )I P  for the minimal nonnegative 
inverse 1

2 2 min( ) .I P
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Let
1 1

1 1,2 2 12 2 1 1( ) ( )P PI P I P

and
11

2 2 1 1 2 2 21 1 ( ) .( )P P I PI P

Lemma 8.2 If the Markov chain P  is positive recurrent and (1) (2)( , )  is 
its stationary probability vector, then (1) (1)

1  and (2) (2)
2 .

Proof Note that (1)  is the stationary probability vector of the censored chain 
1

1 1 1 1 2 2 12 2( )P P PI P  to set E , we obtain that (1) (1)
1 ,  that is  

(1) 1 (1)
1 1 1 2 2 2 2 1( ) ,P P I P P

which leads to (1) (1)
1 .  Similarly, we can yield (2) (2)

2 .  This completes 
the proof. 

A sojourn of the Markov chain { }nX  in set E  is the state sequence mX
1,...,mX m kX  for 1,k  where 1, ,...,m mX X 1 ,m kX E while 1,m m kX X .E

This sojourn lasts k  time units, and begins at time m  and finishes at time m k .
Let kV  be a random variable representing the kth sojourn of the Markov 

chain { }nX , 1.k  It is clear that the irreducibility of the Markov chain assures 
the existence of infinite sojourns in E with probability 1. For each 1,k  we 
write 

( ) { },
( (1), (2), , ( )), {1,2, , }.

k k

k k k k

v i P V i
v v v v K E k

The following theorem provides expression for the vector kv  for 1.k
Theorem 8.2 (1) 

(1) (2) 1
1 2 2 2 1( ) .v I P P

(2) For 2,k
1

1 ,k
kv v L

where 
1 1

1 2 2 11 1 2 2

1
1 111 1

( ) ( )

( ) .( )

L P PI P I P

I PI P

Proof (1) For ci E  and ,j E  we write 

1 0{ }i jh P V j X i
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and 1
( ) .i j i j K
hH  It is easy to see that H  is the matrix of absorption 

probabilities from cE  to ,E  thus we obtain 

1
2 2 2 1( ) .H I P P

Therefore,
(1)

1 0{ } { } .
c

j i j
i E

P V j P X i h

This gives, in matrix notation, 

(1) (2) 1
1 2 2 2 1( ) .v I P P

(2) Let 1
cV  be a random variable representing the state of cE  in which the first 

sojourn of the Markov chain { }nX  begins. We write 

1 0{ | }, , ,c c
i jw P V j X i i E j E

and ( ) .ci j i E j EW w  Then 

1
1 1 1 2( ) .W I P P

Let

2 0{ }, , ,i jl P V j X i i E j E

and 1( )i j i j KL l . Then 

1 0 2 1 0

1 0 2 1

{ } { }

{ } { }

,

c

c

c

c c
i j

k E
c c

k E

i k k j
k E

l P V k X i P V j V k X i

P V k X i P V j V k

w h

thus we obtain 

.L WH

Note that 

1 1

( 1)

{ } { } { }

, 2,

k k
i E

k
i i j

i E

P V j P V i P V j V i

v l k

hence we can obtain, in matrix notation, 
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1
1 , 2.k

kv v L k

This completes the proof.  
Remark 8.3 When the size of the set E  or cE  is large or infinite, we may use 

the RG-factorizations to compute the matrix L. We write 

(1) (1) (1)
1 1 U D LI P I R I I G

and
(2) (2) (2)

2 2 .U D LI P I R I I G

Then
1 1 1(1) (1) (1)

1 2

1 1 1(2) (2) (2)
2 1.

L D U

L D U

L I G I I R P

I G I I R P

Now, we further simplify the two important matrices L  and H  according to 
the structure of the Markov chain P . Let 

1 { : 0 }.c
i jE j E p i E

Then 1E  is the state set of E  directly accessible from cE  in one-step transition. 
We write 2 1.E E E  Then according to the two sets 1E  and 2 ,E  the two 
matrices L  and H  are partitioned as 

1 2

1

2

1

2

0
0

E E

E

E

L
L

L

and

1 2

1( 0).c

E E
EH H

At the same time, the matrix P  is partitioned as 

1 2

1

2

1 1 1 2 1 3

2 1 2 2 2 3

3 33 1

.

0

c

c

E E E

E

E

E

T T T
P T T T

T T

The following theorem provides expressions for the matrices 1L , 2L  and 1H
in terms of the matrices i jT  for 1 , 3i j .
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Theorem 8.3 Based on the sets 1E , 2E  and ,cE  we have 

11
1 1 1 1 2 2 2 2 1

1 1
1 3 1 2 2 2 2 3 3 3 3,1

1
1 3 3 3 1 1

[ ( ) ]

[ ( ) ]( ) ,

( )

L I T T I T T
T T I T T I T T

H I T T L

and
1 1

2 2 2 2 1 1 2 2 2 3 1( ) ( ) .L I T T L I T T H

Proof Note that 
1

1 1 1 3( ) ,L WH I P P H

we obtain 

1 1 1 3( ) ,I P L P H

that is, in block-structured notation, 

1 1 1 1 1 2 2 1 3 1

2 2 1 1 2 2 2 2 3 1

1 3 1 1 3 3 1

,
,

,

L T L T L T H
L T L T L T H
H T L T H

simple computation leads to the desired results. This completes the proof. 
We denote by E rN  the time units spent in the r th sojourn of the Markov 

chain { }nX  in the set .E
Theorem 8.4 The random variable E rN  is of phase type with irreducible 

representation 1 1( , )rv P  for 1.r
Proof First, we derive the distribution of the random variable 1EN .
For ,i E  we write 

1 1( ) { }k Ei P N k V i

and
( (1), (2), , ( )).k k k k K

Then

1( )
c

i j
j E

i p

and for 2,k

1 2( ) { }.k i l E
l E

i p P N k V l
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Hence, we obtain, in matrix notation, 

1 1 2 1 1( )P e I P e

and for 2,k
1 1

1 1 1 1 1 1 1 1 1 1( ) .k k
k kP P P I P e

Therefore,

1 1 1 1

1
1 1 1 1 1

{ } { } { }

( ) ,

E E
i E

k

P N k P V i P N k V i

v P I P e

which indicates that the random variable 1EN  is of phase type with irreducible 
representation 1 1 1( , )v P .

Now, we derive the distribution of the random variable E rN  for 2.r  With 
similar analysis to that for 1EN , we obtain 

1
1 1 1 1

{ } { } { }

( ) ,

E r r E r r
i E

k
r

P N k P V i P N k V i

v P I P e

which indicates that the random variable E rN  is of phase type with irreducible 
representation 1 1( ).rv P

This completes the proof. 
Using the moments of the discrete-time PH distribution, we have 

1
1 1 1 1( ) , 1.m m m

E r rE N v m P I P e m

Remark 8.4 The random vector 1 2( , , , )E E E rN N N  is of r-dimensional 
phase type with the r-dimensional distribution function 

1

1 1 2 2

111
2 2 2 1 1 1 1 21 1 21 1

2

{ , , , }

( ) i

E E E r r
r

nn

i

P N n N n N n

v P P I P P P P e

for 1 2, , , 1.rn n n

8.3.2 Continuous-Time Markov Chains  

This analysis is similar to that for the discrete-time case. Therefore, only a simple 
description for the sojourn times of a continuous-time Markov chain is provided.  

Consider an irreducible continuous-time M-state Markov chain { , 0}tX t
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whose infinitesimal generator 1( ) .i j i j MQ q  Let {1,2, , }E K  and cE
{ 1, 2, , }K K M . Then the matrix Q is partitioned as 

1 1 1 2

2 1 2 2

c

c

E E

E

E

Q QQ
Q Q

A sojourn of the Markov chain { , 0}tX t  in the state set E  is a sequence 

1
, ,...,

m m m kt t tX X X  for 1,k  where it  is an instant of the ith state transition; ,
mt

X

1 1 1
,..., , , .

m m k m m kt t t tX X E X X E  This sojourn lasts a time length ,
m k mt tX X

and begins at time 
mt

X  and finishes at time .
m ktX

Let kV  be the state of E  in which the kth sojourn of the Markov chain 
{ 0}tX t  begins. We write 

( ) { }k kv i P V i

and

( (1), (2), , ( )).k k k kv v v v K

Then we obtain 
(1) (2) 1

1 2 2 2 1( )v Q Q

and for 2,k
1

1 ,k
kv v L

where
1 1

1 1 1 2 2 2 2 1( ) ( ) .L Q Q Q Q

We denote by E kT  the time length spent during the kth sojourn of the Markov 
chain { , 0}tX t  in the state set .E  Then for 1,k  the random variable E kT  is 
of phase type with irreducible representation 1 1( , ),kv Q  and 

1 1! .( )m m
E k kE T v m eQ

Remark 8.5 When the size of the set E  or cE  is large or infinite, we may 
use the RG-factorizations to compute the matrix L  and the mean [ ].E kE T  We 
write

(1) (1) (1)
1 1 U D LQ I R U I G
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and
(2) (2) (2)

2 2 .U D LQ I R U I G

Then
1 1 1(1) (1) (1)

1 1 1(2) (2) (2)
1,2 2,1

L D U

L D U

L I G U I R

Q I G U I R Q

and
1 11(1) (1)(1) .E k k L UDE T v I G I R eU

The random vector 1 2( , , , )E E E kT T T  is of k-dimensional phase type with the 
m-dimensional distribution function 

1
1 1 2 2 1 1 1 1 1 1 1 2

11
2 1 1 1 1 1 1 22 2

2

{ , , , } ( ) exp{ }

( ) exp{ } .( )

E E E k k

k

i
i

P T t T t T t v Q I Q t Q

Q Q I Q t Q eQ

Now, we analyze a MAP PH 1  queue, where the customer arrivals are a 
MAP with irreducible matrix descriptor 0 1( , )D D  of size m  and the service times 
are of phase type with irreducible representation ( , )S  of size n . Let ( ),N t  ( )I t
and ( )J t  be the number of customers in the system, the phases of the arrival and 
service processes at time t , respectively. Then {( ( ), ( ), ( )) : 0}N t I t J t t  is a 
level-independent QBD process whose infinitesimal generator is given by 

0 1
0

10
0

0 1
0

0 1

.( )
( )

D D
I S D S D I

Q I S D S D I
I S D S D I

We consider the following two cases:  
Case {Level 0 Level1}E  and 0 1( , , ).  Then 

1
1 0 1 2 3 2 2 2 1( , ) ( , , )( )v Q Q

and
11 1

1 1 1 1 2 2 2 2 1( ) ( ) , 2.
k

kv v Q Q Q Q k

Case {Level1,Level 2}E  and 0 1 2( , , , ).  We take 1 {Level 0}cE
and 2 {Level 3,Level 4, }cE . Then the matrix Q  is partitioned as 
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1 2

1

2

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

.

c c

c

c

E E E

E

E
E

Q Q Q
Q

Q Q Q
Q Q Q

In this case, we write 

2

1

1

2

2 2 2 1 2 3

1 2 1 1 1 3

3 2 3 1 3 3

.

c

c

c

c

E E E

E

E
E

Q Q Q
Q Q Q Q

Q Q Q

Hence, we obtain 
1

1 1 1 21 3
1 1 2 0 3 4

3 1 3 3 3 2

( , ) ( , , , )
Q Q Q

v
Q Q Q

and for 2k
11

1 1 1 21 31
1 2 2 2 1 2 3

3 1 3 3 3 2

( ) ( )

k

k

Q Q Q
v v Q Q Q

Q Q Q

8.4 Time-Inhomogeneous Discrete-Time Models

In this section, we discuss an irreducible time-inhomogeneous discrete-time 
Markov chain, and provide expression for its transient probability. Further, when 
the Markov chain is periodic, we obtain a new expression for the asymptotic 
periodic distribution.  

Consider an irreducible time-inhomogeneous discrete-time Markov chain 
{( , ) : 0}n nX J n  whose transition probability matrix is given by 

( ) ( ) ( )
0 0 0 1 0 2
( ) ( ) ( )

1 0 1 1 1 2
( ) ( ) ( )

2 0 2 1 2 2

( ) , 0,

n n n

n n n

n n n

P P P
P P P

P n n
P P P

where ( )n
k kP  is a matrix of size km  for 0,k  the sizes of all the other matrices 

can be determined accordingly. The ( , )i j th entry of the matrix ( )n
l kP  is given by 

( )
1 1,

{ , , }n
l k n n n ni j

P P X k J j X l J i
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which depends on the time n  for 0.n

8.4.1 The Transient Probability Vector  

We write 

1 2

0 1 2

( ) { , },
( ( ), ( ), , ( )),( )

( ) ( ( ), ( ), ( ), ), 0.
k

k j n n

k k k k m

n P X k J j
n n nn

n n n n n

It is clear that if  is the initial probability vector, then 

(0)P

and for 1,n

 ( ) ( 1) ( 1).n n P n  (8.14) 

Hence we obtain that for 1 m n

 ( ) ( ) ( ) ( 1) ( 1),n n m P n m P n m P n  (8.15) 

we have 

 ( ) (0) (1) (2) ( 1), 1.n P P P P n n  (8.16) 

Based on (8.15), we introduce a notation 

 ( , ) ( ) ( 1) ( 1) ( ), 1 .m n P n m P n m P n P n m n  (8.17) 

Then

 ( ) ( ) ( , 1), 1 .n n m m n m n  (8.18) 

The following two propositions provide some closure properties for the matrix 
( , )m n  for 1 .m n
Proposition 8.1 For 1 ,m n  we have  
(1) if ( )P n  is stochastic for each 1,n  then ( , )m n  is also stochastic;  
(2) if ( )P n  is irreducible for each 1,n  then ( , )m n  is also irreducible.  
Proposition 8.2 For 1 ,m n  we have 
(1) If the Markov chain ( )P n  is recurrent for each 1,n  then the Markov 

chain ( , )m n  is also recurrent.  
(2) If the Markov chain ( )P n  is positive recurrent for each 1,n  then the 

Markov chain ( , )m n  is also positive recurrent.  
(3) If the Markov chain ( )P n  is recurrent for each 1,n  and there exists a 

Markov chain ( )P n k  which is null recurrent for 0 ,k m  then the Markov 
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chain ( , )m n  is null recurrent.  
(4) If there exists a Markov chain ( )P n k  which is transient for 0 ,k m

then the Markov chain ( , )m n  is transient.  
In what follows we analyze the block structure for the matrix ( , )m n  with 

respect to some special Markov chains such as the QBD processes, the Markov 
chains of 1GI M  type and the Markov chains of 1M G  type.  

(1) The QBD processes 
If the Markov chain ( )P n  is a QBD process for each 1n , then the Markov 

chain ( , )m n  is also a QBD process for 1 .m n
We provide a computational illustration. Let 

( ) ( )
0 0 0 1
( ) ( ) ( )
1 0 1 1 1 2

( ) ( ) ( )
2 1 2 2 2 3

( ) , 1.

n n

n n n

n n n

A A
A A A

P n n
A A A

Then

( 1) ( ) ,P n P n

where  represents a non-zero block which can be obtained easily.  
(2) Markov chains of 1GI M  type  
If the Markov chain ( )P n  is a Markov chain of 1GI M  type for each 0,n

then the Markov chain ( , )m n  is also a Markov chain of 1GI M  type for 
1 .m n

(3) Markov chains of 1M G  type  
If the Markov chain ( )P n  is a Markov chain of 1M G  type for each 0,n

then the Markov chain ( , )m n  is also a Markov chain of 1M G  type for 
1 .m n

8.4.2 The Asymptotic Periodic Distribution  

We assume that the irreducible time-inhomogeneous discrete-time Markov chain 
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{( , ) : 0}n nX J n  is d -periodic, that is, 

( ) ( ), 1,0 1.P n P n kd k n d

In this case, if m n kd  for 1k  and 0 1,n d  then 

( ) ( ).P m P n

This indicates that the dynamical behavior of the Markov chain {( , ) :n nX J
0}n  is completely determined by the d matrices (0), (1), , ( 1).P P P d

Let m n kd  for 1k  and 0 1.n d  Then 

( ) ( 1) ( 1)
( ) ( ) ( 1) ( 1)
( ) ( 1) ( 2 1)

( ( 1) ) ( ( 1) 1) ( 1)
( )[ ( ) ( 1) ( 1)] .k

m m P m
n P n P n P n d

P n d P n d P n d

P n k d P n k d P n kd
n P n P n P n d

Hence, we obtain 

( ) (0) (1) (2) ( 1) ( ) ( 1) ( 1) .km P P P P n P n P n P n d  (8.19) 

Let

( , ) lim .
k

n d n kd

If ( )P k  is stochastic for each 1,k  then 

( , 1) ( ) ( 1) ( 1)n n d P n P n P n d

is also stochastic. Under the stochastic condition, the Cesaro limit 

*

0

1( , 1) lim [ ( , 1)]
1

N
l

N l
n n d n n d

N

always exists. Thus, we obtain 

*

*

( , ) ( ) ( , 1)
(0) (1) (2) ( 1) ( , 1).

n d n n n d
P P P P n n n d (8.20)

Specifically, if the Markov chain ( , 1)n n d  is positive recurrent, then 

( , ) ( , 1) ( , )n d P n n d n d

and ( , ) 1.n d e  Hence we have 
*( , 1) ( , ).n n d e n d
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In this case, it is clear that 

 ( , ) (0) (1) (2) ( 1) ( , ) ( , ).n d P P P P n e n d n d  (8.21) 

This shows that ( , )n d  can be expressed by the stationary probability vector 
( , )n d  of the Markov chain ( , 1)n n d .
For the limit ( , )n d  for 0 1,n d  Eq. (8.20) provides expression of 

( , )n d  under a weaker condition in which the matrix ( )P k  is stochastic for 
each 1;k  while Eq. (8.21) provides expression of ( , )n d  under a stronger 
condition under which the Markov chain ( , 1)n n d  is positive recurrent. 
Therefore, it is necessary that we discuss the conditions under which the Markov 
chain ( , 1)n n d  is positive recurrent, and provide effective algorithms for 
computing the stationary probability vector ( , ).n d  Here, we only discuss the 
Markov chain of 1GI M  type. The other Markov chains can be similarly dealt 
with by the results of Chapter 2.  

If the Markov chain ( )P n  is a level-independent Markov chain of 1GI M
type for each 1,n  then the Markov chain ( , )m n  is also a level-independent 
Markov chain of 1GI M  type for 1 .m n  Let 

( ) ( )
1 0
( ) ( ) ( )
2 1 0
( ) ( ) ( ) ( )
3 2 1 0

( ) , 1.

n n

n n n

n n n n

B B
B A A

P n n
B A A A

Then

( 1) ( ) .P n P n

The state space of the Markov chain (1, ) ( 1) ( ),n P n P n  in 1GI M  type, is 
given by 

( 1) 2 1

2

( 1 to ) (Level ) : 0,1,2, .
k

i k

n n i k

By induction, the state space of the Markov chain 

( , ) ( ) ( 1) ( ),P m n P n m P n m P n
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in 1GI M  type, is given by 

( 1) 2 1

2

( to ) (Level ) : 0,1,2, , 1 .
m

m

k

i k

n m n i k m n

That is, for the level-independent Markov chain ( , )m n  of 1GI M  type, the 
new kth level of ( to )n m n  is given by 

( 1) 2 1

2

Level (Level ).
m

m

k

i k

k i

In this case, we have 

( , ) ( , )
1 0
( , ) ( , ) ( , )
2 1 0
( , ) ( , ) ( , ) ( , )
3 2 1 0

( , ) , 1 .

m n m n

m n m n m n

m n m n m n m n

B B
B A A

P m n m n
B A A A

When the Markov chain ( )P k  is d-periodic for each 0,k  we are interested 
in the matrix 

( , 1) ( ) ( 1) ( 1), 0 1.n n d P n P n P n d n d

We assume that the Markov chain ( , 1)n n d  is irreducible and positive 
recurrent. Let ( , 1)n n d  be the stationary probability vector of the Markov 
chain. Then 

0 1 2( , 1) ( ( , 1), ( , 1), ( , 1), )n n d n n d n n d n n d

partitioned according to Level k  for 0,k  and ( , 1)n n d  its stationary 
probability vector 

0 1 2( , 1) ( ( , 1), ( , 1), ( , 1), )n n d n n d n n d n n d

partitioned according to Level k  for 0.k  Obviously, ( , 1) ( ,n n d n
1).n d  Let 12 .d  Then for 0,k

1

1 1

( , 1) ( ( , 1), ( , 1),
, ( 1)).

k k k

k

n n d n n d n n d
n n d

Let ( , 1)R n n d  be the minimal nonnegative solution to the matrix equation 

( , 1)

0
( , 1) [ ( , 1)] .k n n d

k
k

R n n d R n n d A
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Then

0( , 1) ( , 1)[ ( , 1)] , 1,k
k n n d n n d R n n d k

where 0 ( , 1)n n d  is the stationary probability vector of the censored chain 

( , 1)
0 1

0
( , 1) [ ( , 1)]k n n d

k
k

U n n d R n n d B

to Level 0 . In this case, we have 

( , ) ( , 1), 0 1.n d n n d n d

8.5 Notes in the Literature

Transient solution is always useful in the study of stochastic models such as the 
first passage time, the sojourn time and the fundamental period. The exact 
transient solution for the queue length and the busy period in an 1M M  queue 
was studied in terms of the modified Bessel functions, e.g., see, Lederman and 
Reuter [30], Champernowne [13], Clarke [15], Grassmann [19], Massey [36], 
Massey and Whitt [37,38], Abate and Whitt [1 2], Parthasarathy [42], Baccelli 
and Massey [5], and Zhang and Coyle [55]. Griffiths, Leonenko and Williams [20] 
considered the transient solution to the 1kM E  queue. Lucantoni, Choudhury 
and Whitt [32] analyzed the transient performance measures of the 1BMAP G
queue. Choudhury, Lucantoni and Whitt [14] analyzed the 1t tM G  queue. Taaffe 
and Ong [53] discussed a nonstationary ( ) ( )PH t M t s c  queue, and Ong and 
Taaffe [41] analyzed the ( ) ( ) 1PH t PH t c  queue. Dormuth and Alfa [17] discussed 
the ( ) ( ) 1MAP t PH t K  queue.  

Hsu and He [22] analyzed the distribution of the first passage time for Markov 
chains of 1GI M  type. Hsu and Yuan [23] studied the transient solution of 
denumerable Markov chains. Hsu and Yuan [24] discussed the first passage times 
of Markov chains and the associated algorithms. Hsu, Yuan and Li [25] discussed 
the first passage time of Markov renewal processes.  

Aggregated Markov chains provide natural models of partially observable 
stochastic models, e.g., see Kemeny and Snell [28], Stewart [51], Fredkin and 
Rice [18], Ball and Sansom [9], Sumita and Rieders [52], Iordache, Bucurescu 
and Pascu [26], Ball [6], Ball, Milne and Yeo [7], Rubino and Sericola [45,47], 
Jalali and Hawkes [27], Ball and Yeo [10], Rydén [48], Ball, Milne, Tame and 
Yeo [8], Larget [29], and Stadje [50]. Based on the block-structured analysis, the 
sojourn times of Markov chains were discussed in, such as, Rubino and Sericola 
[46], Sericola [49] and Csenki [16].  

Harrison and Lemoine [21] first studied the limits of the periodic queues. Readers 
may further refer to Asmussen and Thorisson [4], Bambos and Walrand [11], 
Lemoine [31], Rolski [43,44], Whillie [54], Breuer [12], and Alfa and Margolius [3]. 
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Baccelli and Massey [5] and Margolius [33] provided a sample path analysis 
for the 1t tM M  queue. Margolius [34] analyzed transient and periodic solution 
to the time-inhomogeneous continuous-time QBD processes, and Margolius [35] 
further introduced the two crucial matrices ( , )R s t  and ( , )R s t  to express the 
transient and periodic solution.  

This chapter is based on Hsu and Yuan [23,24], Hsu, Yuan and Li [25], Rubino 
and Sericola [46], Sericola [49], Csenki [16] and Alfa and Margolius [3].  

Problems

8.1 Consider the classical 1M M  queue with arrival rate  and service rate 
,  compute the following transient performance measures:  
(1) The queue length distribution,  
(2) the waiting time distribution, and  
(3) the busy period distribution. 

8.2 Consider the classical 1M M  queue with arrival rate  and service rate 
. Let / .  For the three cases: 1, 1  and 1,  apply the censoring 

technique to compute the following transient performance measures:  
(1) The queue length distribution, and  
(2) the busy period distribution. 

8.3 Consider the classical 1M M  queue with arrival rate  and service rate 
.  Let / .  For the three cases: 1, 1  and 1,  apply the directed 

truncation to compute the busy period distribution.   
8.4 Consider the classical / /1XM M  queue with arrival rate  service rate 

and the service batch size distribution { }ka  with 
1

.k
k

a ka  Let /( ).a

For the three cases: 1, 1  and 1,  apply the censoring technique to 
compute the busy period distribution under each following condition:  

(1) 1(1 )k
ka p p  for 1k  and 0 1p .

(2) 2ka
k

 for 1k  and 2
1

1 .
k k

8.5 Consider an irreducible continuous-time birth-death process { , 0}tX t
whose infinitesimal generator is given by 

( )
.

( )
Q
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Let 0 1 2( , , , )  with 0{ }i P X i  for 0,i  and ( ) { }B x P x
where inf{ 0}.tX  Numerically compute the function ( )B x  under each 
following condition:  

(1) ,1k k  for 0.k

(2) 1(1 )k
k p p  for 1k  and 0 1.p

(3) 2ka
k

 for 1k  and 2
1

1 .
k k

8.6 Consider the classical MAP PH 1  queue with the MAP irreducible matrix 
descriptor ( , )C D  of size m  and the PH irreducible representation ( , )S  of 
size n . Let  be the stationary probability vector of the Markov chain C D .
We write 1( ) /( ).De S e  For the three cases: 1, 1  and 1,
analyze the departure process of this queue by means of the GMAP. 
8.7 Consider the classical 1X XM M  queue with the arrival rate , the arrival 

batch size distribution { }ka  with 
1

,k
k

a ka  the service rate ,  and the 

service batch size distribution { }kb  with 
1

.k
k

b kb Let ( ) ( )a b .

For the three cases: 1, 1  and 1,  compute the probability vectors 1v
of the first sojourn of this queue in the state set {2,3,4}.E
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Abstract In this chapter, we study quasi-stationary distributions for block- 
structured Markov chains with either finitely-many levels or infinitely-many 
levels. We derive the RG-factorizations for the -discounted block-structured 
transition matrix. We provide conditions for the state -classification, and 
derive two sets of expressions for the quasi-stationary distribution. As important 
examples, we analyze Markov chains of M/G/1 type, Markov chains of GI/M/1
type, Markov chains of GI/G/1 type and level-dependent QBD processes. 

Keywords Stochastic models, RG-factorization, quasi-stationary distribution, 
-discounted block-structured transition matrix, state -classification, decay 

parameter. 

In this chapter, we study quasi-stationary distributions for block-structured Markov 
chains with either finitely-many levels or infinitely-many levels. To achieve this, 
we give a detailed analysis for -discounted block-structured transition matrices 
in terms of the RG-factorizations. We provide conditions for the state -classification, 
and derive two sets of expressions for the quasi-stationary distribution based on 
the UL-type RG-factorization. As important examples, we analyze Markov chains 
of M/G/1 type, Markov chains of GI/M/1 type, Markov chains of GI/G/1 type 
and level-dependent QBD processes. It is worthwhile to note that this chapter 
provides a new theoretical interpretation for the matrix-geometric solution for 
Markov chains of GI/M/1 type and the matrix-iterative solution for Markov 
chains of M/G/1 type, e.g., see Neuts [21,22]. Also, this chapter extends the 
RG-factorizations to a more general class: The -discounted transition matrices. 
The results of this chapter are useful in many applied areas such as Markov 
reward processes, Markov decision processes, and stochastic game theory. 

This chapter is organized as follows. Section 9.1 uses the Perron-Frobenius 
theorem to compute the quasi-stationary distributions for a block-structured Markov 
chain with finitely-many levels. Based on the RG-factorizations, Section 9.2 
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provides conditions for the state -classification and expressions for the quasi- 
stationary distributions of a block-structured Markov chain with infinitely-many 
levels. Sections 9.3 to 9.6 discuss Markov chains of M/G/1 type, Markov chains 
of GI/M/1 type, Markov chains of GI/G/1 type, and level-dependent QBD processes, 
respectively. Sections 9.7 analyzes the quasi-stationary distributions of continuous- 
time Markov chains. Sections 9.8 and 9.9 provide two important applications: 
Determining the decay parameter for the GPH distribution, and tailed analysis for 
the QBD processes with infinitely-many phases. Finally, Section 9.10 summarizes 
notes for the references related to the results of this chapter. 

Throughout this chapter, the block-structured transition probability matrix 
( , ),( , )( ),i r j spP  given in Eq. (2.1), is assumed to be irreducible. Let  be the 

radius of convergence for the matrix P. Then 

( )
( , ),( , )sup ,n n
i r j s

n
z z p

where ( )
( , ),( , )

n
i r j sp  is the n-step transition probability of the Markov chain P from 

state (i,r) to state ( j,s). Note that the radius  of convergence is independent of 
states (i,r) and ( j,s). It is clear that 1  if P is recurrent, while >1 if P is 
transient.

When P is transient, the states of P can be further classified as -recurrent or 

-transient according to that 
0

k k

k
P P  is infinite or finite, respectively. The 

matrix 
0
( )k

k
P P  is referred as the fundamental matrix of P. If P is -

recurrent, either ( )
( , ),( , )lim 0n n
i r j sn

p  for all states (i,r) and ( j,s), or ( )
( , ),( , )lim 0n n
i r j sn

p

for all states (i,r) and ( j,s). In the former case, P is called -positive recurrent 
and in the latter case, -null recurrent. 

For 1< , a nonnegative non-zero row vector  is said to be the 
quasi-stationary distribution of P if ( ) P  and e 1, where e is a 
column vector of ones with suitable size. This chapter focuses on the following 
three issues: 

(1) How to determine the radius  of convergence,  
(2) how to provide conditions for the state -classification if >1, and  
(3) how to express the quasi-stationary distribution  for 1< .

9.1 Finitely-Many Levels 

In this section, we consider an irreducible block-structured Markov chain with 
finitely-many levels, provide conditions for the state -classification and give 
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expression for the quasi-stationary distribution in terms of the RG-factorizations.
We consider an irreducible block-structured Markov chain with finitely-many 

levels whose transition probability matrix is given by 

0,0 0,1 0,

1,0 1,1 1,

,0 ,1 ,

M

M

M M M M

P P P
P P P

P

P P P

Then the -discounted transition matrix P is given by 

0,0 0,1 0,

1,0 1,1 1,

,0 ,1 ,

M

M

M M M M

P P P
P P P

P

P P P

 (9.1) 

Similar to the analysis in Section 2.6, for the discounted transition matrix P
we can define the R-, U- and G-measures which lead to the RG-factorizations.

9.1.1 The UL-Type RG-Factorization 

For 0 i, j k and 0 k M, it is clear from Section 2.6 that 

[ ] [ ] [ ] 1 [ ]
, , , , ,

1

( ) ( ){ ( )} ( ).
M

k n n n
i j i j i n n n n j

n k
P P P I P P

Note that [ ] [ 0] [0]
, , , ,( ) and ( ) ( ).M

i j i j i j i jP P P P

Let

[ ]
,

[ ] 1
, ,

( ) ( ), 0 ,

( ) ( )[ ( )] , 0

n
n n n

j
i j i j j

P n M

R P I i j M

and

1 [ ]
, ,( ) [ ( )] ( ), 0i

i j i i jG I P j i M.

Then the UL-type RG-factorization is given by 

[ ( )][ ( )][ ( )],U D LI P I R I I G

where
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0,1 0,2 0,3 0, 1 0,

1,2 1,3 1, 1 1,

2,3 2, 1 2,

2, 1 2,

1,

0 ( ) ( ) ( ) ( ) ( )
0 ( ) ( ) ( ) ( )

0 ( ) ( ) ( )
( ) ,

0 ( ) ( )
0 ( )

0

M M

M M

M M

U

M M M M

M M

R R R R R
R R R R

R R R
R

R R
R

0 1 2 3 1( ) diag( ( ), ( ), ( ), ( ), , ( ), ( ))D M M

and

1,0

2,0 2,1

3,0 3,1 3,2

4,0 4,1 4,2 4,3

,0 ,1 ,2 ,3 , 1

0
( ) 0
( ) ( ) 0
( ) ( ) ( ) 0( ) .
( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) 0

L

M M M M M M

G
G G
G G GG
G G G G

G G G G G

For the UL-type RG-factorization, the following proposition provides properties 
for the diagonal block matrix ( )D . The proof is clear, and thus is omitted here. 

Proposition 9.1 (1) If 1 < , then ( )iI  is invertible for 0 i M.
(2) If P is -transient, then ( )iI  is invertible for 0 i M.
(3) If P is -recurrent, then ( )iI  is invertible for 1 i M but 

0 ( )I  is singular. 
Now, we provive a new expression for the radius  of convergence. Let 

2 [ 1] 1
0 0,0 0,1 0,2 0,

T T T T
1,0 2,0 ,0

( ) ( , , , )[ ]

( , , , )
M

M

P P P P I P

P P P

Then

0sup{ 1: det( ( )) 0}.I

9.1.2 The LU-Type RG-Factorization 

For k i, j M and 0 k M, it is clear from Section 2.6 that 

[ 1] [ ] [ ] 1 [ ]
, , , , ,

0
( ) ( ){ ( )} ( ).

k
k n n n

i j i j i n n n n j
n

P P P I P P
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Note that [ ] [ ] [ 0]
, , , ,( ) ( ) and ( ) .M M

i j i j i j i jP P P P
Let

[ ]
,

[ ] 1
, ,

( ) ( ), 0 ,

( ) ( )[ ( )] , 0 ,

n
n n n

j
i j i j j

P n M

R P I j i M

and
1 [ ]

, ,( ) [ ( )] ( ), 0 .i
i j i i jG I P i j M

Then the LU-type RG-factorization is given by 

[ ( )][ ( )][ ( )],L D UI P I R I I G

where

1,0

2,0 2,1

3,0 3,1 3,2

4,0 4,1 4,2 4,3

,0 ,1 ,2 ,3 , 1

0
( ) 0
( ) ( ) 0
( ) ( ) ( ) 0( ) ,
( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) 0

L

M M M M M M

R
R R
R R RR
R R R R

R R R R R

0 1 2 3 1( ) diag( ( ), ( ), ( ), ( ), , ( ), ( ))D M M

and

0,1 0,2 0,3 0, 1 0,

1,2 1,3 1, 1 1,

2,3 2, 1 2,

2, 1 2,

1,

0 ( ) ( ) ( ) ( ) ( )
0 ( ) ( ) ( ) ( )

0 ( ) ( ) ( )
( ) .

0 ( ) ( )
0 ( )

0

M M

M M

M M

U

M M M M

M M

G G G G G
G G G G

G G G
G

G G
G

For the LU-type RG-factorization, the following proposition provides properties 
for the diagonal block matrix ( ).D  The proof is clear and is omitted here. 

Proposition 9.2 (1) If 1 < , then ( )iI  is invertible for 0 i M.
(2) If P is -transient, then ( )iI  is invertible for 0 i M.
(3) If P is -recurrent, then ( )iI  is invertible for 0 i M 1 but 
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( )MI  is singular. 
Let

2 [ 1] 1
, ,0 ,1 , 1

T T T T
0, 1, 1,

( ) ( , , , )[ ]

( , , , ) .

M
M M M M M M M

M M M M

P P P P I P

P P P

Then
sup{ 1: det( ( )) 0}.MI

The following corollary provides conditions for the state -classification of 
the Markov chain P. The proof is clear, and thus is omitted here. 

Corollary 9.1 (1) P is -recurrent if and only if det 0( ( )) 0,I  and if 
and only if det ( ( )) 0.MI

(2) P is -transient if and only if det 0( ( )) 0,I and if and only if 
det ( ( )) 0.MI

Since the Markov chain P is irreducible and finite-state, the condition under 
which P is -recurrent indicates that P is -positive recurrent. This is due to the 
fact that there does not exist the -null recurrence for any finite-state, irreducible 
and -recurrent Markov chain. 

9.1.3 State -Classification and Quasi-stationary Distribution 

When ( )  is the quasi-stationary distribution of the Markov chain P, then 

( )( ) 0.I P

Using the UL-type RG-factorization, we obtain 

( )[ ( )][ ( )][ ( )] 0.U D LI R I I G

Note that the Markov chain P is either -positive recurrent or -transient, we 
need to consider the following two cases: 

Case  1 or  under which P is -transient. In this case, the 
three matrices ( ), ( ) and ( )U D LI R I I G  are all invertible, hence 

( ) 0.  That is, the quasi-stationary distribution of P does not exist. 
Case  under which P is -positive recurrent. In this case, we write 

the quasi-stationary distribution 0 1( ) ( ( ), ( ), , ( )).M

Using the UL-type RG-factorization, we obtain 

0 0

1

,
0

( ) ( ),

( ) ( ) ( ), 1 ,
k

k i i k
i

x

R k M
 (9.2) 
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where 0 ( )x  is the left Perron-Frobenius eigenvector of the matrix 0 ( )  and 

the scalar  is uniquely determined by 
0

( ) 1.
M

k
k

e

By means of the LU-type RG-factorization, we obtain 

,
1

( ) ( ),

( ) ( ) ( ), 0 1,

M M
M

k i i k
i k

x

R k M

where ( )Mx  is the left Perron-Frobenius eigenvector of the matrix ( )M  and 

the scalar  is uniquely determined by 
0

( ) 1.
M

k
k

e

Remark 9.1 If P is -positive recurrent and ( )  is the quasi-stationary 
distribution of P, then ( ) .P  Thus we obtain. 

( ) ( ) ,P

where 1  which is called the decay parameter of the Markov chain P. Since 
0< < 1 if >1 and ( ) ( )n nP  for all n 1, the decay parameter 
showes the convergence velocity of the matrix 0, as .nP n

In the rest of this chapter, we shall analyze the quasi-stationary distributions of 
Markov chains with infinitely-many levels, which are different from those in this 
section.

9.2 Infinitely-Many Levels 

In this section, we consider an irreducible block-structured Markov chain with 
infinitely-many levels, provide conditions for the state -classification, and give 
expressions for the quasi-stationary distributions based on the state -classification 
and the RG-factorizations.

We consider a -discounted transition matrix as follows: 

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

,

P P P
P P P

P
P P P

 (9.3) 

where the transition probability matrix P is given in Eq. (2.1). 
Let E be a subset of the state space , and cE  According to the 

subsets E and Ec, the -discounted transition matrix P  is partitioned as 
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c

c

E E
E

E

T U
P

V W
 (9.4) 

The censored -discounted transition matrix ( )EP  to the censored set E is 
given by 

( ) ( ) ,EP T UW V  (9.5) 

where 1

0
( ) ( ) ( ) .k

k
W W I W Similarly, we also have 

1( ) ( ) .
cEP W V I T U  (9.6) 

By using the two different censored -discounted transition matrices ( )EP  and 
( ),

cEP we can organize the UL-and LU-types RG-factorizations, respectively, 
both of which are described by means of the censoring invariance.  

9.2.1 The UL-Type RG-Factorization 

Let

( ) ( ) ( )
0,0 0,1 0,
( ) ( ) ( )

1,0 1,1 1,[ ]

( ) ( ) ( )
,0 ,1 ,

( ) ( ) ( )
( ) ( ) ( )

( ) ,

( ) ( ) ( )

n n n
n

n n n
nn

n n n
n n n n

P n

Then for n 0,0 i,j n,

( ) ( ) ( ) ( )
, , , , ,

1 0
( ) ( ) [ ( )] ( ).n k k l k

i j i j i k k k k j
k n l

P

We write 
( )
,

( ) ( )
, , ,

0

( ) ( ), 0,

( ) ( ) [ ( )] , 0 ,

n
n n n

j j l
i j i j j j

l

n

R i j

and

( ) ( )
, , ,

0
( ) [ ( )] ( ), 0 .i l i

i j i i i j
l

G j i
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Thus we obtain 

( ) 1
, ,

1 ( )
, ,

( ) ( )[ ( )] , 0 ,

( ) [ ( )] ( ), 0 .

j
i j i j j

i
i j i i j

R I i j

G I j i

The UL-type RG-factorization is given by 

 [ ( )][ ( )][ ( )],U D LI P I R I I G  (9.7) 

where

0,1 0,2 0,3

1,2 1,3

2,3

0 ( ) ( ) ( )
0 ( ) ( )

( ) ,0 ( )
0

U

R R R
R R

R R

0 1 2 3( ) diag ( ( ), ( ), ( ), ( ), )D

and

1,0

2,0 2,1

3,0 3,1 3,2

0
( ) 0

( ) .( ) ( ) 0
( ) ( ) ( ) 0

L

G
G G G

G G G

From the UL-type RG-factorization, the following proposition provides properties 
for the matrix ( ).D  The proof is clear, and thus is omitted here. 

Proposition 9.3 (1) If 1 < , then ( )iI  is invertible for i 0.
(2) If P is -transient, then ( )iI  is invertible for i 0.
(3) If P is -recurrent, then ( )iI  is invertible for i 1 but 0 ( )I  is 

singular.
Using Proposition 9.3, the following corollary for the state -classification

can be obtained. 
Corollary 9.2 (1) P is -recurrent if and only if det 0( ( )) 0.I
(2) P is -transient if and only if det 0( ( )) 0.I

9.2.2 Two Sets of Expressions 

In the RG-factorization Eq. (9.7), the three matrices, [ ( )],UI R [ ( )]DI
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and [ ( )]LI G  are associative. Corollary 1 9 of Kemeny, Snell and Knapp [13] 
indicates that they are associative with any nonnegative row vector ,  which 
will lead to solutions for the -invariant measure. 

Lemma 9.1 Let  be any nonnegative row vector. Then

( ) { [ ( )]}{[ ( )][ ( )]}
{ [ ( )][ ( )]}[ ( )].

U D L

U D L

I P I R I I G
I R I I G

According to the two different cases for the -recurrent and the -transient, we 
derive two sets of expressions for the quasi-stationary distribution of the Markov 
chain P.

The first set:  under which the Markov chain P is -recurrent.
In this case, det 0( ( )) 0.I  Thus, the system of linear equations  

0 0( )[ ( )] 0x I  and 0 ( ) 1x e  must exist a nonnegative non-zero solution 
based on the left Perron-Frobeniusthe vector of the matrix 0 ( ).  The following 
theorem expresses the quasi-stationary distribution of the Markov chain P. The 
proof is clear by the RG-factorization.

Theorem 9.1 If the Markov chain P is -recurrent, then the quasi-stationary 
distribution 0 1( ) ( ( ), ( ),...)  is given by 

0 0
1

,
0

( ) ( ),

( ) ( ) ( ), 1,
k

k i i k
i

x

R k

where 0 ( )x  is the left Perron-Frobeniusthe vector of the matrix 0 ( )  and the 

scalar  is uniquely determined by 
0

( ) 1.k
k

e

When the Markov chain P is -recurrent, Theorem 9.1 provides a general 
expression for the quasi-stationary distribution for . However, if 1
or  under which the Markov chain P is -transient, the study of the quasi- 
stationary distribution is different. In what follows we provide a detailed analysis 
for the second case. 

The second set:1 or  under which the Markov chain P is -transient.
In this case, det 0( ( )) 0.I  Obviously, the system of linear equations  

0 0( )[ ( )] 0x I  and 0 ( ) 1x e  exists only a zero solution. Therefore, 
expression for the quasi-stationary distribution can not be derived by means of a 
similar method to Theorem 9.1. 

To derive expression of the quasi-stationary distribution, we first need to solve 
the linear equation ( )[ ( )] 0,Ly I G  that is 
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1,0

0 1 2,0 2,1

3,0 3,1 3,2

( )
( ( ), ( ),...) 0.( ) ( )

( ) ( ) ( )

I
G I

y y G G I
G G G I

 (9.8) 

In general, it is not easy to provide an effective method to solve Eq. (9.8). For 
this reason, finding a nonnegative non-zero solution to Eq. (9.8) should be a key 
for expressing the quasi-stationary distribution. 

As illustration, we consider some special cases such as Markov chains of 
M/G/1 type, Markov chains of GI/M/1 type, Markov chains of GI/G/1 type and 
level-dependent QBD processes. Note that Sections 9.3 to 9.6 will organize how 
to solve Eq. (9.8) for the special cases. 

Suppose a nonnegative non-zero solution to Eq. (9.8) has been obtained. The 
following theorem provides the quasi-stationary distribution of the Markov chain. 

Theorem 9.2 For 1 or  under which P is -transient, if the 
linear equation ( )[ ( )] 0Ly I G  exists a nonnegative non-zero solution ( )y

0 1( ( ), ( ),...),y y then the quasi-stationary distribution ( ) 0 1( ( ), ( ),...)
is given by 

1
0 0 0

1
1

,
0

( ) ( )[ ( )] ,

( ) ( )[ ( )] ( ) ( ), 1,
k

k k k i i k
i

y I

y I R k

where the scalar  is uniquely determined by 
0

( ) 1.k
k

e

Proof Since 

( )[ ( )][ ( )][ ( )] 0U D LI R I I G

and
( )[ ( )] 0,Ly I G

we only need to solve the equation 

0 1 0 1( ( ), ( ), )[ ( )][ ( )] ( ( ), ( ), )U DI R I y y

which leads to 

1
0 1 0 1( ( ), ( ), )[ ( )] ( ( ), ( ), )[ ( )] .U DI R y y I

Some simple computations can yield the desired result. 
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9.2.3 The LU-Type RG-Factorization 

Let
( ) ( ) ( )
, , 1 , 2

( ) ( ) ( )
[ ] 1, 1, 1 1, 2

( ) ( ) ( )
2, 2, 1 2, 2

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( ) ( )

n n n
n n n n n n
n n n

n n n n n n n
n n n

n n n n n n

P

Then for 0, , 1,n i j n

( 1) ( ) ( ) 1 ( )
, , , , ,

0

( ) ( )[ ( )] ( ).
n

n k k k
i j i j i k k k k j

k
P I

We write 
( )
,

( ) ( ) 1
, , ,

( ) ( ), 0,

( ) ( )[ ( )] , 0 ,

n
n n n

j j
i j i j j j

n

R I j i

and
( ) 1 ( )

, , ,( ) [ ( )] ( ), 0 .i i
i j i i i jG I i j

The LU-type RG-factorization is given by 

( ) [ ( )][ ( )][ ( )],L D UI P I R I I G  (9.9) 

where

1,0

2,0 2,1

3,0 3,1 3,2

0
( ) 0

( ) ,( ) ( ) 0
( ) ( ) ( ) 0

L

R
R R R

R R R

0 1 2 3( ) diag( ( ), ( ), ( ), ( ), )D

and

0,1 0,2 0,3

1,2 1,3

2,3

0 ( ) ( ) ( )
0 ( ) ( )

( ) .0 ( )
0

U

G G G
G G

G G
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From the LU-type RG-factorization, the following proposition provides an 
important property for the matrix ( )D  which is a key to understand the 
LU-type RG-factorization.

Proposition 9.4 If 1 ,  then ( )iI  is invertible for i 0.
It is interesting to express the quasi-stationary distribution 0( ) ( ( ),

1( ), ) by means of the LU-type RG-factorization. Since ( )iI  is invertible 
for 1  and i 0, it is easy to check that the equation ( )( ( ))Dz I
( ( )) 0UI G  only exists a zero solution: ( ) 0.z  Therefore, in order to 
express the quasi-stationary distribution, we have to solve the equation 

( )[ ( )] 0.LI R  That is, 

1,0

0 1 2,0 2,1

3,0 3,1 3,2

( )
( ( ), ( ), ) 0.( ) ( )

( ) ( ) ( )

I
R I
R R I
R R R I

 (9.10) 

It is complicated to provide an effective method to solve Eq. (9.10). Therefore, 
the challenge is to find a nonnegative non-zero solution for Eq. (9.10) to obtain 
the quasi-stationary distribution. To achieve this, we consider a special case: A 
level-dependent Markov chain of M/G/1 type, it is easy to check that 

, ( ) 0, for 2.i jR i j

In this case, Eq. (9.10) becomes a special case as follows: 

1,0

0 1 2,1

3,2

( )
( ( ), ( ), ) 0,( )

( )

I
R I

R I
R I

 (9.11) 

which yields 

1 1,( ) ( ) ( ), 0.k k k kR k  (9.12) 

It is worthwhile to note that the solution structure of Eq. (9.11) or Eq. (9.12) is 
important in the study of the quasi-stationary distribution of an irreducible 
Markov chain with infinitely-many levels. 

Lemma 9.2 If the level-dependent Markov chain of M/G/1 type is irreducible, 
then for the R-measure: , 1( ) ( )k k kR R  for k 1, there exists a sequence of 
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probability vectors { ( ), 0}ky k  and a sequence of positive scalars { , 0}k k
such that 

1 1( ) ( ) ( ).k k k ky R y

Proof Let , ( )N Ny  be an arbitrary probability vector on level N 1. Since 
the QBD process P is irreducible, each state on level k has a path to level k 1,
which shows that each row of the matrix ( )kR  is non-zero and nonnegative. 
Hence , ( ) ( )N N Ny R  is a convex combination of the rows of ( ).NR  We take 

1 , 1 ,( ) ( ) ( ) .N N N N N Ny y R e

Then 1 0N  and 

, 1 ,
1

1( ) ( ) ( )N N N N N
N

y y R

is a probability vector on level N 1. Proceeding inductively, we can obtain a 
sequence of probability vector ,{ ( ),0 1}N ky k N and a sequence of positive 
scalars ,{ ,0 1}N k k N  such that for 0 1,k N

, 1 1 , ,( ) ( ) ( ).N k k N k N ky R y

By repeating the above procedure, for each k 0 we can obtain a sequence of 
probability vector ,{ ( ), }.N ky N k  Since , ( ) 1N ky e  for N k, there exists a 
subsequence , ( )

rN ky  such that this limit: ,lim ( ) ( ),
rN k kr

y y  exists and is a 

probability vector. Fix k k*, we can obtain a sequence of stochastic vectors 
*{ ( ),0 }ky k k  and a sequence of positive numbers *{ ,0 }k k k  such that 

1 1( ) ( ) ( ).k k k ky R y

Again by the compactness of the probability vector set, there exists a 
subsequence { } of { }r rN N  such that this limit: * *, 1 1

lim ( ) ( ),
rN k kr

y y and we 

have * * *1 1
( ) ( ) .

k k k
y R e  Therefore, by induction the desired result follows 

by repeating this argument infinitely-many times, which can be done by means of 
the Axiom of Choice. This completes the proof. 

The following theorem provides expression for the quasi-stationary distribution 
of the level-dependent Markov chain of M/G/1 type. 

Theorem 9.3 If 1

0 0 1 1

,k

k k

 then the quasi-stationary distribution 

for 1  is given by

0 0( ) ( )y
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and for k 1,

0 1 1

( ) ( ),k k
k

y

where 

2

0 0 1

1 .
k

k k

Proof Note that for k 0

1 1( ) ( ) ( ),k k k ky R y

we obtain 

0 1 1
0

( ) ( ) ( ),y y R

which leads to 

0 1 1

1 2 2
0 0 1

( ) ( ) ( );

( ) ( ) ( ),

R

y y R

which leads to 

1 2 2( ) ( ) ( ).R

We assume that when n k, we have 1 1( ) ( ) ( ).k k kR  Then when 
n k 1, we have 

1 1
0 1

2 2
0 1 1

2 2

( ) ( )

( ) ( )

( ) ( ).

k k
k

k k
k k

k k

y

y R

R

Therefore, by induction it is easy to see that for any nonnegative integer n we have 

1 1( ) ( ) ( ),n n nR

which leads to 

1,0

0 1 2,1

3,2

( )
( ( ), ( ), ) 0.( )

( )

I
R I

R I
R I
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Thus we obtain 

( )[ ( )][ ( )][ ( )] 0L D UI R I I G

or
( )( ) 0.I P

Since

0 1 2
0 0 1

( ) ( ), ( ), ( ), 1,e y y y e

it is clear that 0 1 2
0 0 1

( ) ( ), ( ), ( ),y y y  is the quasi-stationary 

distribution of the level-dependent Markov chain of M/G/1 type. This completes 
the proof. 

9.3 Markov Chains of M/G/1 Type 

In this section, we consider the quasi-stationary distribution of an irreducible 
Markov chain of M/G/1 type. The conditions for the state -classification and 
the expressions for the quasi-stationary distribution are derived in detail. 

We consider an irreducible aperiodic Markov chain of M/G/1 type whose 
transition matrix P is given by 

1 2 3 4

0 1 2 3

0 1 2

0 1

,

D D D D
D A A A

P A A A
A A

 (9.13) 

where D1 is a matrix of size m0 m0, all Ai are square matrices of finite size m, the 
sizes of the other block-entries are determined accordingly and all empty entries 
are zero. 

9.3.1 The UL-Type RG-Factorization 

We write 

1 2 3 4

0 1 2 3

0 1 2

0 1

.

A A A A
A A A A

Q A A A
A A
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Let the fundamental matrix ,,
0
( ) ( ( ))n

i ji j
n

Q Q Q  and ( )N 1,1( ).Q

We first define the G-measure: The matrices ( )G  and 1,0 ( ).G  It is clear from 
Eq. (2.29) that 

0( ) ( ) .G N A  (9.14) 

The (r,s)th entry of ( )G  can be interpreted as the total expected discounted 
reward with rate  induced by hitting state (i,s) upon the process entering iL
for the first time, given that the process starts in state (i 1,r).

The following lemma expresses the matrices ,1( )jQ  for j 1, which are key 
to define the R-, U- and G-measures later. 

Lemma 9.3
1

,1( ) ( ) ( ), 1.j
jQ G N j

Proof It follows from the skip-free-to-left property of the transition matrix 
Q  that 

T T T T T T T
02,1 3,1 2,1( ( ) , ( ) , ) ( ( ) , ( ) , ) [ ( )] .Q Q N Q A N

Using the recursive expressions and 0( ) ( )N A G  repeatedly, we can obtain 
the desired result. 

Though the matrix ( )G  is defined as the product of ( )N  and 0 ,A  we 
usually first compute ( )G  and then determine ( )N  in terms of ( ).G  The 
following theorem expresses ( )N  in terms of ( )G  and 0 ( ),N  the (1,1)st 

block-entry of the matrix 
0
( ) ,k

k
P P  in terms of ( ).N

Theorem 9.4 For the transition matrix P of M/G/1 type, we have  
(1) the matrix ( )N  can be expressed as 

1
1

1

( ) ( ) ,k
k

k
N I A G  (9.15) 

or ( )N  is the fundamental matrix for 1

1

( ) ( ) ;k
k

k
A G

(2) the matrix 0 ( )N  can be expressed as  
1

0 0( ) [ ( )] ,N I  (9.16) 

where 

1
0 1 1 0

1
( ) ( ) ( ) ,k

k
k

D D G N D  (9.17) 
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or 0 ( )N  is the fundamental matrix for 0 ( ).
Proof We only prove (1), while (2) can be proved similarly. 
Let

,
T H
L Q

where
T T

1 2, 3 4 0, ( , , ), ( ,0,0, ) .T A H A A A L A

Then it is clear from ,Q  hence 1,1( ) ( )N Q  is the fundamental matrix 

for .T H Q L  Thus we have 

T
1 01,1 2,1

1 01,1
2

( ( ), ( ), )

( ) .k k
k

T H Q L A H Q Q A

A A Q A

Note that 0( ) ( )N A G  and using Lemma 9.3, this easily completes the proof. 
It follows from Eq. (9.15) that the matrix ( )G  satisfies the following nonlinear 

matrix equation: 

0

( ) ( ) .k
k

k
G A G  (9.18) 

At the same time, ( )G  is the minimal nonnegative solution to Eq. (9.18). 
The G-measure for the matrix P  of M/G/1 type consists of two matrices, 
( )G  defined in Eq. (9.15) and 1,0 ( )G  defined by 

1,0 0 01,1( ) ( ) ( ) .G Q D N D  (9.19) 

The (r, s)th entry of 1,0 ( )G  can be interpreted as the total expected discounted 
reward with rate  induced by hitting state (0, s) upon the process entering level 
0 for the first time, given that the process starts in state (1, r).

Consider the fundamental matrix Q  of .Q  Let the first block-column of 

Q  be T T T
1,1 2,1( ( ) , ( ) , ) .Q Q  The R-measure for the matrix P  in Eq. (9.13) 

consists of two sequences of matrices 0, ( )kR  and ( )kR  for k 1, defined by 

0, ,1
1

( ) ( )k k l l
l

R D Q  (9.20) 

and

,1
1

( ) ( ).k k l l
l

R A Q  (9.21) 
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Applying Lemma 9.3 to Eq. (9.20) and Eq. (9.21), the R-measure can then be 
expressed as for k 1,

1
0,

1

( ) ( ) ( )i
k k i

i
R D G N  (9.22) 

and

1

1

( ) ( ) ( ).i
k k i

i
R A G N  (9.23) 

For the transition matrix P of M/G/1 type in Eq. (9.13), the UL-type 
RG-factorization is given by 

 [ ( )][ ( )][ ( )],U D LI P I R I I G  (9.24) 

where

0,1 0,2 0,3

1 2

1

( ) ( ) ( )
( ) ( )

[ ( )] ,( )U

I R R R
I R R

I R I R
I

0( ) diag( ( ), ( ), ( ), )D

and

1,0 ( )
[ ( )] .( )

( )
L

I
G I

I G G I
G I

9.3.2 The State -Classification

For the Markov chain of M/G/1 type, the determination of the radius  of conver- 
gence and the conditions on the state -classification are based on the combination 
of the state -classification for the corresponding matrix without boundaries and 
the special treatment of the boundary. For convenience of description, here we 
state two results in Kijima [14] again. 

Let

*
0

0

( ) , 0 .k
k

k
A z A z z z  (9.25) 
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We denote by ( )z  the Perron-Frobenius eigenvalue of the nonnegative matrix 
*( )A z  for 0 z<z0.
Lemma 9.4 If z0>1, then there always exists the unique  such that ( )z z

for all 0< z< z0 , and there exists some  with 00 z  such that ( ) .
If 0 ,z  then 0 0( ) / .z z  Otherwise,  and  can be determined by solving 
the system of equations 

( ) ,
( ) .

 (9.26) 

By using this lemma, Kijima [14] was able to show the following result.  
Theorem 9.5 For the transition matrix P of M/G/1 type without boundaries 

(Dk Ak for all k 0), if  is determined in Lemma 9.4, then the radius  of 
convergence of P satisfies 1/  and P is -transient.

In fact,  is the maximal eigenvalue of the matrix G( ). The transition matrix 
of M/G/1 type without boundaries is always -transient, However, the transition 
matrix of M/G/1 type with boundaries can be either -transient, -positive 
recurrent or -null recurrent. 

For the transition matrix P of M/G/1 type given in Eq. (9.13) with boundaries, 
we can perform spectral analysis on the censored matrix 0 ( )  to level 0 to obtain 
conditions on the state -classifications and a determination of the radius of 
convergence. However, it seems more convenient to reach this goal by considering 
the relationship between the censored matrix 0 ( ) and its fundamental matrix 

0 ( )N .
Let 0 ( )u  and 0 ( )n  be the maximal eigenvalues of the censored matrix 

0 ( )  and its fundamental matrix 0 ( ),N  respectively. Then 0 0( ) 1/[1 ( )].n u
It follows from results of linear algebra that the first two statements of the 
following lemma are true, for example, Seneta [32], and the other two follow 
from the definitions of the radius of convergence and 0 ( ).N

Lemma 9.5 Let  and  be the radiu of convergence of Q and P, respec- 
tively. In (1) and (2), assume 0 .

(1) Both 0 ( )u  and 0 ( )n  are strictly increasing in ,  and 
(2) 0 ( )u <1 if and only if 0 ( ) .N
(3) 0 ( )N if < and 0 ( )N if .
(4) .
The state -classification is characterized by the following conditions. 
Theorem 9.6 
(1) If for all 00 , ( ) 1,u  then 0 ( )N  and .  Therefore, P is 
-transient;
(2) If there exists a *  with *0  such that *

0 ( ) 1,u  then *
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and 0 ( ) .N  Therefore, P is -recurrent.
Proof Based on the facts: 0 0( ) 1/[1 ( )]n u  and 0 ( )n  if and only if 

0 ( ) ,N  we discuss the following two cases: 
Case  There exists no solution to 01 ( ) 0u  for 0 .  In this case, 

0 ( ) .n  Hence 0 ( ) .N  Therefore, . This, together with (4) of 
Lemma 9.5, implies .  Hence, P is -transient.

Case  There exists a solution *  to 01 ( ) 0u  for *0 .  In this 
case, *

0 ( ) ,n  hence there exists at least one infinite entry of 0 ( ).N  This 
leads to * .  Therefore, P is -recurrent. This completes the proof. 

9.3.3 Two Sets of Expressions 

Now, we use the UL-type RG-factorization to express the quasi-stationary 
distributions for the transition matrix P of M/G/1 type with boundary. We present 
two sets of expressions, one for an -recurrent matrix with  and the other 
for all the other cases. 

Case  under which P is -recurrent.
In this case, the quasi-stationary distribution is expressed in the following 

theorem. 
Theorem 9.7 If P is -recurrent, then the quasi-stationary distribution is 

given by

0 0( ) x
and

1

0 0,
1

( ) ( ) ( ) ( ) ( ), 1,
k

k k i k i
i

R R k

where 0x  is the left Perron-Frobeniusthe vector of the matrix 0 ( )  and the 

constant  satisfies
0

( ) 1.k
k

e

Proof We solve ( )( ) 0I P  by two steps. In the first step, we write 

 ( )[ ( )].Ux I R  (9.27) 

Then
 [ ( )][ ( )] 0,D Lx I I G  (9.28) 

which is equivalent to 

0 0 1 1,0

1

[ ( )] [ ( )] ( ) 0,
[ ( )] [ ( )] ( ) 0, 1.k k

x I x I G
x I x I G k
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Since P is -recurrent, it follows from Theorem 9.6 that the maximal eigenvalue 
of 0 ( )  is 0 ( ) 1.u  Therefore, for the censored discounted transition matrix 

0 ( ) , there exists a nonnegative non-zero 0x  such that 

0 0[ ( )] 0.x I

Hence, 0( ,0,0, )x  is a solution to Eq. (9.28). 
It follows from Eq. (9.27) that 

0 0

1

0 0,
1

( ),

( ) ( ) ( ) ( ) ( ) 0, 1.
k

k i k i k
i

x

R R k

Some simple computations lead to the desired results. This completes the proof.  
Case  for the -recurrent or  for the -transient.
In this case, we need to construct a nonnegative non-zero solution y to 

[ ( )] 0,Ly I G  which is described as the following lemma. 
Lemma 9.6 For every 0  there exist a 0  and a nonnegative 

non-zero vector z such that

( ) .zG z

Proof Since ( ) 0,G  the maximal eigenvalue  of ( )G  is nonnegative. 
If 0,  then the lemma is proved by choosing z as the left eigenvector 
of ( )G  associated with .

It follows from Neuts [22], by using the irreducibility of the Markov chain P , 
that 1 0.  Therefore, 1 0  for all 1  since ( )G  is increasing in .

For 0 1,  the proof also relies on the irreducibility of P. Suppose that 
there were an s with 0 < s< 1 such that 0.s  Then, 0  for all 0 .s
Therefore, all the eigenvalues of ( ),G  when 0 ,s  would be zero according 
to the Perron-Frobenius theorem for nonnegative matrices. It follows from the 
Cayley-Hamilton theorem that 

( ) 0, 0 ,mG s  (9.29) 

where m is the size of matrix ( ).G On the other hand, according to the 
probabilistic interpretation of ( )mG  and the assumption of irreducibility on P,

( ) 0,mG  which contradicts (9.29). This completes the proof. 
Let

 ( )[ ( )][ ( )].U Dy I R I  (9.30) 

This is equivalent to 
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0 0 0

1 0 0,1 1

1

0 0,
1

[ ( )],

[ ( ) ][ ( )],

( ) ( ) [ ( )], 2.
k

k k i k i k
i

y I

y R I

y R R I k

Since both 0[ ( )]I  and [ ( )]I  are invertible in this case, we can express 
k  in terms of yk as follows: 

1
0 0 0[ ( )] ,y I  (9.31) 

1
1 0 0,1 1( ) [ ( )] ,R y I  (9.32) 

1
1

0 0,
1

( ) ( ) [ ( )] , 2.
k

k k i k i k
i

R R I k  (9.33) 

Now, we solve 
 [ ( )] 0Ly I G  (9.34) 

for nonnegative non-zero y. If such a solution exists, then  calculated by 
Eq. (9.31), Eq. (9.32) and Eq. (9.33) is nonnegative and non-zero. Equation (9.34) 
is equivalent to 

0 1 1,0

1

( ) 0,
( ) 0, 1.k k

y y G
y y G k

By using Lemma 9.6 and letting 0 1,0 ( ),y zG  we can easily check that y
2

0( , , / , / ,...)y z z z  is a nonnegative non-zero solution to Eq. (9.34). Substituting 
y into Eq. (9.31), Eq. (9.32) and Eq. (9.33), the quasi-stationary distribution is 
given in the following theorem. 

Theorem 9.8 For 1< < or  under which P is -transient, the quasi- 
stationary distribution of P is given by 

0 0 0 ( )y N

and for k 1,

1 2
1

1 2 1
1

1

1
1 0

1
1,0 0 0,

1 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

i

t t

k
k i

t t

k
i

j j jk k
i j j i

j i

k
k

i j j j
i j j k i

j k i

z N G N R R R

G G N R R R R

where 0 ( ) .R I
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9.3.4 Conditions for -Positive Recurrence 

The expressions for the quasi-stationary distribution are only based on the 
-recurrence and the -transience. However, it is necessary to classify the 
-recurrence as the -positive recurrence or the -null recurrence. Now, we 

provide conditions for classifying the -recurrence as either an -positive recur- 
rence or an -null recurrence. 

For simplicity of description, we assume that the matrix A*(1) is irreducible and 
stochastic. Besides the quasi-stationary distribution  provided in Theorem 9.7, 
we also need to similarly express the -invariant vector v according to the system 
of equations [ ] 0I P v  and 1.v  It is easy to check by the RG-factorization 
that

1
0 0 1,0 0, ( ) ( ) , 1,k

kv w v G G w k  (9.35) 

where 0w  is the unique, up to a multiplication of a positive constant, solution of 

0 0[ ( )] 0.I w
It follows from Theorem 9.7 that 

* * * 1 * *
0 0 0 0

0
( ) ( )[ ( )] ( ) [ ( )] ,n

n
z x R z I R z x R z R z

which gives 

0 0,
0

( ) ( ) , 1.n
k k k

n
x R R k  (9.36) 

It follows from Eq. (9.35) and Eq. (9.36) that 

1*
0 0 0 0, 1,0 0

0 1 0
( ) ( ) ( ) ( ) .*

n k
i i k k

i k n
v x v x R R G G v  (9.37) 

Clearly, 
0

i i
i

v  if and only if 

1*
0,

1 0
( ) ( ) ( ) .*

n k
k k

k n
R R G  (9.38) 

Let g  and ( )H  be the maximal eigenvalue and the associated right eigenvector 
of ( ),G  respectively. Since A*(1) is irreducible, we have ( )H >0. It follows 
from Eq. (9.38) that 

1 * **
0, 0

1 0 0

1( ) ( ) ( ) ( ) ( ) [ ( )] ( ).*
n k n

k k
k n n

R R G H R g R g H
g
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Then, Eq. (9.38) is true if and only if, (1) *
0 ( ) ,R g  (2) * ( ) ,R g  and (3) the 

matrix *( )I R g  is invertible. 
The following lemma provides the conditions under which, (1) *

0 ( )R g
and (2) * ( ) .R g

Lemma 9.7 (1) *
0 ( )R g if and only if 1

1
( ) .k

k
k

kD G

(2) * ( )R g if and only if 1

1
( ) .k

k
k

kA G

Proof We only prove (1), while (2) can be proved similarly. 
It is clear that 

* 1
0 0,

1 1 1
( ) ( ) ( ) ( ).k k i

k k i
k k i

R g g R g D G N

Hence we obtain 

* 1 1 1
0

1 1 1
( ) ( ) ( ) ( ) ( ) ( ),k i k

k i k
k i k

R g N H g D H kg D H

which illustrates that *
0 ( )R g  if and only if 1

1
( ) ,k

k
k

kg D and if and 

only if 1

1
( ) .k

k
k

kD G  This completes the proof. 

In what follows we provide a condition under which the matrix *( )I R g  is 
invertible. To this end, we need to use the RG-factorization for the repeated row 
as follows: 

* *( ) [ ( )][ ( )][ ( )].zI A z I R z I zI G  (9.39) 

Let ( )z  be the maximal eigenvalue of the matrix A*(z) for z>0. It is clear 
that property 7 about ( )z  in Bean, Pollett and Taylor [3] (p. 393 394) also 
holds for the transition matrix of M/G/1 type. Note that the matrix A*(1) is 
irreducible and stochastic, then the equation ( )z z  has two different roots in 
(0,z0) if 1 ,  and one root repeated twice in (0,z0) if ,  where z0 is the 
radius of convergence of A*(z). Furthermore, the equation det *( ( )) 0zI A z
has two different roots in (0,z0) if 1 ,  and one root repeated twice in (0,z0)
if .

Lemma 9.8 (1) If ,  then the matrix * ( )I R g  is invertible. 
(2) If ,  then the matrix * ( )I R g  is singular. 
Proof (1) If ,  then the equation det *( ( )) 0zI A z  has two 

different roots in (0,z0). Since 
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* *
0 0

0

{0 : det ( ( )) 0} {0 : det ( ( )) 0}
{0 : det ( ( )) 0}

z z zI A z z z I R z
z z zI G

and z g  is a positive root to the equation det ( ( )) 0,zI G  it is not a 
positive root to the equation det *( ( )) 0.I R z  Thus, * ( )aI R g  is invertible. 

(2) If ,  then the equation det *( ( )) 0zI A z  has one root repeated 
twice in (0,z0). Since z g  is a positive and simple root to the equation det 
( ( )) 0,zI G  it must be a positive and simple root to the equation det 

*( ( )) 0.I R z  Thus, * ( )I R g  is singular.  
This completes the proof. 
In the proof of Theorem 9.9, we need a result in Theorem 6.4 of Seneta (1981), 

which is restated in the following lemma in the block-partitioned form. 
Lemma 9.9 Suppose 0 1 2( , , , ) is a -invariant measure and v

T
0( ,v T T T

1 2, , )v v  is a -invariant vector of the transition matrix P, partitioned 

according to levels. Then, P is -positive recurrent if 
0

,i i
k

v v in which 

case ,  is (a multiple of ) the unique -invariant measure of P and v is (a
multiple of ) the unique -invariant vector of P. Conversely, if P is -positive 
recurrent, and  and v are respectively an invariant measure and vector, then 

.v
For an -recurrent P, the following theorem further provides conditions under 

which P is -positive recurrent or -null recurrent. The proof follows the above 
discussions.

Theorem 9.9 If 1 1

1 1
( ) , ( ) and ,k k

k k
k k

kD G kA G then the 

-recurrent Markov chain is -positive recurrent; otherwise, it is -null recurrent. 
Remark 9.2 If 1 and 1,  then the three conditions in Theorem 9.9 are 

the same conditions as those in Remark b of Neuts [22] (p. 140 141). This is 

because in this situation, G(1) is stochastic. Therefore, (1) 1

1
(1)k

k
k

kD G  if 

and only if 
1

;k
k

kD (2) 1

1
(1)k

k
k

kA G  if and only if 
1

;k
k

kA  and (3)

for the recurrent matrix,  if and only if * (1)I R  is invertible, which is 
equivalent to 1.

9.4 Markov Chains of GI/M/1 Type 

In this section, we consider the quasi-stationary distribution of an irreducible 
Markov chain of GI/G/1 type, and derive conditions for the state -classification
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and expressions for the quasi-stationary distribution. 
We consider an irreducible Markov chain of GI/M/1 type whose transition 

matrix is given by 

1 0

2 1 0

3 2 1 0

,

D D
D A A

P
D A A A

 (9.40) 

where 1D  is a square matrix of finite size m0, all Ai are square matrices of finite 
size m, the sizes of the other block-entries are determined accordingly and all 
empty entries are zero. 

Let
0

k
k

A A  and 

1 0

2 1 0

3 2 1 0

.

A A
A A A

Q
A A A A

 (9.41) 

Let  be the radius of convergence of Q. It is clear that .
Let , 1,( ( ))i ji jQ Q  be the fundamental matrix for the matrix Q and write 

1,1( ) ( ).N Q  Also, write the (1,1)st block-entry in P  as 0 ( ).N
The R-measure for P of GI/M/1 type consists of two matrices, ( )R  and 

0,1( )R  defined by 

0( ) ( )R A N  (9.42) 

and

0,1 0( ) ( ).R D N  (9.43) 

Clearly, R( ) and 0,1( )R  are matrices of size m m and m0 m, respectively. 
The G-measure for the matrix P consists of two sequences of matrices ,0 ( )kG

and ( )kG  for k 1,2,…, which are of size m m0 and m m respectively, and is 
defined by  

,0 1,
1

( ) ( )k k ii
i

G Q D  (9.44) 

and

1,
1

( ) ( ) .k k ii
i

G Q A  (9.45) 
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The following lemma says that all the block-entries in the first block-row in 
Q  can be explicitly expressed in terms of the two matrices R( ) and N( ).
Lemma 9.10

1
1, ( ) ( ) ( ) , 1.j

jQ N R j  (9.46) 

Proof It is clear that 

1,2 1,3( ( ), ( ), ) ( ) ,Q Q N H Q

where H 0( ,0,0, ).A The repeating structure and the property of skip- 
free-to-right of the transition matrix Q lead to 

01,2 1,3 1,2 1,3( ( ), ( ), ) ( ) ( ( ), ( ), ( ), ).Q Q N A N Q Q

The proof is completed by the above recursive expression and repeatedly using 
0 ( ) ( ).A N R

It follows from the definition Eq. (9.44) and Eq. (9.45) of the G-measure and 
Lemma 9.10 that for k 1,2,…,

1
,0

1
( ) ( ) ( )i

k k i
i

G N R D  (9.47) 

and

1

1
( ) ( ) ( ) .i

k k i
i

G N R A  (9.48) 

The following theorem says that both N( ) and N0( ) can be expressed in 
terms of the matrix R( ).

Theorem 9.10 For the transition matrix of GI/M/1 type, the matrix N( ) is 
expressed as 

1( ) [ ( )] ,N I  (9.49) 

where 

1

1
( ) ( ) .k

k
k

R A  (9.50) 

The matrix N0( ) is expressed as 
1

0 0( ) [ ( )] ,N I  (9.51) 

where 

1
0 1 0 1

1
( ) ( ) ( ) .k

k
k

D D N R D  (9.52) 
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Proof We only prove Eq. (9.49) and Eq. (9.50), while Eq. (9.51) and Eq. (9.52) 
can be proved similarly. 

Let

,T H
L Q

where
T T T T

1 0 2 3 4, ( ,0,0, ), ( , , , ) .T A H A L A A A

It is clear that 

1
1,1( ) ( ) [ ( )] ,N Q I

where for Q  and T A1,

1 0 1, 1
2

1

1

( ) ( )

( ) .

kk
k

k
k

k

T H Q L A A Q A

R A

The last equation follows from 0 ( ) ( )A N R  by using Lemma 9.10. 
It follows from Eq. (9.42) and Eq. (9.49) that R( ) satisfies the matrix 

equation

0
( ) ( ) .k

k
k

R R A  (9.53) 

It is clear that R ( )  is the minimal nonnegative solution to Eq. (9.53). 
For the matrix P of GI/M/1 type, the UL-type RG-factorization is given by 

 [ ( )][ ( )][ ( )],U D LI P I R I I G  (9.54) 

where

0,1( )
( )

[ ( )] ,( )U

I R
I R

I R I R

0( ) diag( ( ), ( ), ( ), )D

and
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1,0

2,0 1

3,0 2 1

( )
( ) ( )[ ( )] .
( ) ( ) ( )

L

I
G I
G G II G
G G G I

9.4.1 Spectral Analysis 

Now, we provide spectral analysis for the R-and G-measures. The spectral analysis 
is a key for expressing the quasi-stationary distribution for the Markov chain of 
GI/M/1 type. 

For convenience of description, we first assume that the matrix A is stochastic, 
and then extend our discussions to the strictly substochastic case. Let ,

where
1

k
k

kA e  and  is the stationary probability vector of the matrix A.

Let
*

0
0

( ) , 0 ,k
k

k
A z A z z z  (9.55) 

where z0 is the radius of convergence of function * ( ).A z Let ( )z , u(z) and v(z)
be the maximal eigenvalue and the corresponding Perron-Frobenius left and right 
eigenvectors of the matrix * ( ),A z  respectively, and r( ), l( ) and h ( ) the 
maximal eigenvalue and the corresponding Perron-Frobenius left and right 
eigenvectors of the matrix R( ), respectively. Using the same proof as in Lemma 
1.3.2 of Neuts [21], we can show from Eq. (9.53) that ( ) ( ( ))r r  and 
l( ) cu (r( )), where c is a non-zero constant. Without loss of generality, we set 
c 1. It means that z r( ) is a positive solution of ( ).z z  Actually, based on 
the discussion in Bean, Pollett and Taylor [3], we know from the irreducibility of 
the matrix A that for the equation ( ),z z  there exist exactly two different 
positive solutions if 0  or only one (repeated twice) if .  We denote 
the two solutions by  and  and assume that 0 .  The following facts 
are a simple summarization on  and  based on Lemma 2.1 in Kijima [14]. 

We now consider the following three cases: 
(1) Assume >1 and > 1. In this case, 1.  In fact, for 1< < ,

1 10 1;

and for 0 < <1,

1 1 00 1 .z
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(2) Assume < 1 and > 1. In this case, >1. In fact, for 1< < ,

1 1 01 ;z

and for 0 < < 1, 

1 1 00 1 .z

(3) Assume 1.  In this case, 1.  Note that ( ), we obtain that 
1 1,
(1)

 since the matrix A is stochastic. For 0< <1,

00 1 .z

Figure 9.1 and Fig. 9.2 intuitively depict the above three cases, respectively.  
Let

*

1
( ) ( ).k

k
k

G z z G

Figure 9.1 The case with 1

Lemma 9.11 For 0 ,

* *( ) [ ( )][ ( )][ ( )].zI A z zI R I I G z  (9.56) 

In what follows we show that  is the maximal eigenvalue of the matrix Rmax ( )

defined in Eq. (9.57), which is another nonnegative solution to the matrix 

equation
0

.k
k

k
X X A  We show ( ).r  We define 

max ( ) ( ) ( ) ( ) [ ( )],R R h u I R  (9.57) 

where ( )u  and h( ) are selected such that ( ) ( ) 1,u h  since ( )u >0 
according to the irreducibility of the matrix A.
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Figure 9.2 (a) The case with 1 ; (b) The case with 1

Lemma 9.12 (1) is the maximal eigenvalue of max ( )R , and u( ) and 
h( ) are the associated left and right eigenvectors of max ( )R , respectively. 

(2) max ( )R  is a solution to the equation 
0

k
k

k
X X A  for 0 .

(3) max ( )R  is nonnegative for satisfying max ( ) ( )R R  for 0  and 
max ( ) ( ).R R
Proof (1) This can be directly verified. 
(2) By induction, we can obtain that for all k 0,

max ( ) ( ) ( ) ( ) [ ( ) ].k k k kR R h u I R

Note that ( ) ,  we have 
0

( ) ( ).k
k

k
u A u  Therefore, 

max
0 0 0 0

max

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) [ ( )] ( ).

k k k k
k k k k

k k k k
R A R A h u A R A

R h u I R R

(3) Since h( ) 0 and ( )u  it follows from Eq. (9.57) that in order to 
prove that max ( ) ( ),R R  we only need to check that ( ) ( ) ( ).u R u
To do this, we write 

0 ( ) 0R
and

1
0

( ) ( ) ,k
N N k

k
R R A N

It is clear that 

0( ) ( ) 0 ( ).u R u
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In what follows we assume that for any given N l,

( ) ( ) ( ),lu R u

then for 1N l  we obtain 

1
0 0

( ) ( ) ( ) ( ) ( ) ( ).k k
l l k k

k k
u R u R A u A u

Therefore, by induction we know that for all N 0 we have 

 ( ) ( ) ( ).Nu R u  (9.58) 

Similar analysis to Lemma 1.2.3 in Neuts [21] leads to 

( ) lim ( ),NN
R R

it follows from Eq. (9.58) that ( ) ( ) ( ).u R u

For 0< < , since 

( ) ( ) [ ( )] ( ) ( )[ ( )] 0,h u I R h h r

we obtain 

 ( ) ( ) [ ( )] 0,h u I R

hence max ( ) ( ).R R
For ,  since the equation ( )z z  has only one solution, we obtain 

( )r  and ( ) ( )u Al  is also a left eigenvector of the matrix R( ). Clearly, 

( ) ( ) [ ( )] 0.h u I R

Thus, max ( ) ( ).R R  This completes the proof. 
The following corollary follows from the proof of the above result. 
Corollary 9.3 For 0 , ( ) ( ).r
Further, we show that the larger solution  to the equation ( )z z  is also 

a solution to the equation det *( ( )) 0.I G z
Theorem 9.11 For all 0 , z  is a positive solution to equation  

det *( ( )) 0.I G z
Proof Since the matrix ( )I  is invertible for 0 ,  it follows 

from Lemma 9.11 that 
*

*

{ 0 : det ( ( )) 0} { 0 : det ( ( )) 0}
{ 0 : det ( ( )) 0}.

z zI A z z zI R
z I G z
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Since for 0 , ( )r  and r( ) is the maximal eigenvalue of R ( ), we 
obtain that det ( ( )) 0I R  Note that det *( ( )) 0,I A  we obtain 
that z  must be a positive solution to equation det *( ( )) 0.I G z  Finally, 
since ( )f det *( ( ))I G  is left-continuous at ,  det *( ( ))I G
lim ( ) 0.f

Lemma 9.13 For all 0 ,  the maximal eigenvalue of the nonnegative 
matrix * ( )G  is equal to one. 

Proof Let g(z) be the maximal eigenvalue of the nonnegative matrix * ( )G z
for 0[0, ),z z  where z0 is the radius of convergence of the matrix * ( ).A z  When  

,z  we write ( ).g  Therefore, 1 ( ) 1.g  Suppose that 1.  Noting  

that g (z) is an increasing and continuous function for 0[0, ), (0) 0z z g  and 
( ) 1,g  there must exist at least one point *( ) (0, )  such that 

*( ( )) 1g  according to the Mean Value Theorem for continuous functions. 
Thus, det * *( ( ( ))) 0,I G  and so det * * *( ( ) ( ( ))) 0.I A  Therefore, 

* ( )z  is a positive solution to the equation ( ).z z  As shown earlier in 
this section, the equation ( )z z  has two different positive solutions  and 
( )r  for 0 .  For 0 ,  it follows from Theorem 9.11 that det 

*( ( ( ))) 0.I G r  Therefore, * ( ) ( ).r  Based on this, * ( )z  is a third 
positive solution to the equation ( ),z z  which is a contradiction. For 

, ( )z r  is the unique positive solution to the equation ( ).z z
This contradicts that * ( )  is also a positive solution to the equation 

( ).z z  This completes the proof. 
The conclusion given below will be used in constructing a solution for the 

quasi-stationary distribution. This conclusion is a direct consequence of Theorem 
9.11 and Lemma 9.13. 

Corollary 9.4 For 0 ,  there always exists a nonnegative non-zero 
row vector 1x  such that *

1 1 ( ),x x G  that is, 

1 1
1

( ).i
i

i
x x G  (9.59) 

In what follows we first construct a formal solution for the quasi-stationary 
distribution { }.k  To guarantee k  for each k 0 is finite, we need to know 

whether or not 1
,0

1
( )i

i
i

G  is finite, which is discussed in the following 

theorem. 
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Theorem 9.12 Suppose that the matrix A is stochastic. For 0 ,

(1) if 1, then 1
,0

1
( )i

i
i

G  is finite 

(2) if 1  and 2

1
i

i
i A  is finite, then 1

,0
1

( )i
i

i
G  is finite 

Proof It follows from Eq. (9.47) that 

1 1 1
,0

1 1 1

1
1

1
1 0

( ) ( ) ( )

( ) ( ) .

k k i
k k i

k k i
k

i k i
k

k i

G N R D

N R D

Since ( ) 0,u  the convergence of the above sum is equivalent to the 
convergence of 

1
1 1 1

,0 1
1 1 0

( ) ( ) ( ) ( ) ( ) 0.
k

k i k i
k k

k k i
u N G u R D

Notice that ( ) ( ) ( ),u R u  we obtain 

1 1
1 1

1 1
1 0 1 0

1
1

1

( ) ( ) ( )

( ) .

k k
i k i k

k k
k i k i

k
k

k

u R D u D

u k D

Since  is strictly increasing for 0  according to the irreducibility of 
the matrix A,

1 1
1 1

1 1
.k k

k k
k k

k D k D

Therefore, the convergence of 1
1

1

k
k

k
k D  is a sufficient condition for the 

convergence of 1
,0

1
( ) for 0 .k

k
k

G

Since P is either stochastic or strictly substochastic and the matrix A is 
stochastic, we obtain 

1
0 1

,
k

k i i
i i k

D e e A e A e

which means that 
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1
1 1 1

1
1 1 1 2 1

.
i

k k k
k i i

k k i k i k
k D e k A e k A e  (9.60) 

Consider the following two cases. 
Case  1.  In this case, 1 by Lemma 2.1 in Kijima [14]. Hence, 

11
1

2
1

1 ( 1)
(1 )

i ii
k

k

i i
k  (9.61) 

It is clear from Eq. (9.60) and Eq. (9.61) that if 1

1

i
i

i
i A e  is finite, then 

1
,0

1
( )i

i
i

G  is finite. Notice that the matrix function A*(z) is analytic at 

0(0, ),z  we obtain 

1 *
|

1

d ( )
d

i
i z

i
i A A z

z

is finite. Therefore, 1

1

i
i

i
i A e  is finite.  

Case  1.  In this case, 1 according to Lemma 2.1 in Kijima [14]. 
Therefore,

1 1
1

1 1

( 1) .
2

i i
k

k k

i ik k

The rest of the proof is obvious now. 
Remark 9.3 When the matrix A is irreducible and strictly substochastic, the 

equation ( )z z  still has two positive solutions if 0  or only one 

solution (repeated twice) if .  However, the series 1
,0

1
( )i

i
i

G  may be 

infinite even under the assumption 2

1
.i

i
i A  For example, let ,k

kA b

0 1,0 1 , 0,b b k  and 1 for 2.
2(1 )l

bD l
b

 We can obtain that 

1
4b

 and 1 .
2b

 It follows from Eq. (9.47) that 

1
1

,0
1 1

1 1( ) ( )
2(1 ) 2

k
k

k
k k

bG N k
b b
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whenever 10 .
2

b

Remark 9.4 Let

1
,0

1

sup 1: ( ) .i
i

i
G

Then . If 1
,0

1
( ) ,k

k
k

G  then P is -transient; if 1
,0

1

( )k
k

k
G

is infinite, then P is -recurrent. It is clear that if 0 ,  then 1
,0

1

( ) ;i
i

i
G

otherwise 1
,0

1
( )i

i
i

G  is infinite. 

Now, we discuss the state -classification of the Markov chain. To do this, let 
0 ( )u  and 0 ( )n  be the maximal eigenvalues of the censored matrix 0 ( )

and its fundamental matrix 0 ( ),N  respectively. Then 0 0( ) 1/[1 ( )].n u
Theorem 9.13 (1) If for all 00 , ( ) 1,u  then 0 ( )N  and 

.  In this case, P is -transient.
(2) If there exists a *  with *0  such that *

0 ( ) 1,u  then *

and 0 ( )N  is infinite. In this case, P is -recurrent. 
Proof Based on the facts: 0 0( ) 1/[1 ( )]n u  and 0 ( )n  if and only if 

0 ( ) ,N  we discuss the following two cases: 
Case  There exists no solution to 01 ( ) 0u  for 0 .  In this case, 

0 ( ) ,n  Hence 0 ( ) .N  Therefore, .  This, together with the fact 
,  implies .  Hence, P is -transient.

Case  There exists a solution *  to 01 ( ) 0u  for *0 .  In this 
case, *

0 ( ) ,n  hence there exists at least one infinite entry of 0 ( ).N  This 
leads to *  Therefore, P is -recurrent.

This completes the proof. 

9.4.2 Two Sets of Expressions 

We use the UL-type RG-factorization to express the quasi-stationary distribution 
0 1 2( ) { ( ), ( ), ( ), }  for 1 .  We present two sets of expressions: 

One for an -recurrent matrix with  and another for all the other cases. 
To compute the quasi-stationary distribution, we need to verify ,P that is, 

(1) 0 1
0

,k k
k

D
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(2) 1 0 0
1

,k k
k

D A  and 

(3) 1
0

for 2.l k l k
k

A l

The first set: -recurrent with 
In this case, we solve ( ) 0I P  according to Eq. (9.54) by two steps. Let  

 [ ( )].Ux I R  (9.62) 

Then

 [ ( )][ ( )] 0.D Lx I I G  (9.63) 

In the first step, if 0 1( , , )x x x  and 0 1( , , )  are partitioned according 
to levels, then Eq. (9.63) is equivalent to 

0 0 ,0
1

[ ( )] [ ( )] ( ) 0,i i
i

x I x I G

1
[ ( )] [ ( )] ( ) 0, 1.k i i k

i k
x I x I G k

Since P is -recurrent, it follows from (2) in Theorem 9.13 that the maximal 
eigenvalue of 0 ( )  is 0 ( ) 1.u  Therefore, for the nonnegative and irreducible 

0 ( ),  there exists a positive 0x  such that 

0 0[ ( )] 0.x I

Hence, 0( ,0,0, )x  is a solution to Eq. (9.63). 
In the second step, to express k  in terms of kx  we solve Eq. (9.62) and obtain 

0 0x

and
1

0 0,1( ) ( ), 1.k
k R R k

We prove the following theorem. 
Theorem 9.14 If P is -recurrent, then the quasi-stationary distribution for 

 is given by 

0 0x  (9.64) 

and
1

0 0,1( ) ( ), 1,k
k R R k  (9.65) 
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where 0x  is the left Perron-Frobeniusthe vector of the matrix 0 ( ),  and the 

constant  makes 
0

1.k
k

e

Proof We show that k for k 0 given in Theorem 9.14 satisfy equations (1), 
(2) and (3). 

Equation (3) holds because of Eq. (9.53), 

2
1 0 0,1

0 0
1

0 0 1

( ) ( ) ( )

.

l k
k l k k

k k
l

l

A R R R A

R R

To see that (1) holds, we use Eq. (9.52) and the fact 0 0 0( ) ,

1
1 0 1 0,1 1 0 0 0

0 1

( ) ( ) ( ) .k
k k k

k k
D D R R D

Finally, (2) holds by noticing 0,1 0( ) ( )R D N  and 1( ) ( ( )) ,N I  and 
using Eq. (9.50), 

1
0 0 0 0 0,1

1 1

0 0 0 0,1 1

( ) ( )

[ ( ) ( )] ( ) .

k
k k k

k k
D A D R R A

D I N R

Therefore, the expression in Theorem 9.14 is unique, up to multiplication by a 
positive constant, -invariant measure. This completes the proof. 

The second set: -recurrent with  or -transient with .
In this case, we need to proceed in two steps. Let 

 [ ( )][ ( )].U Dy I R I  (9.66) 

Then
 [ ( )] 0.Ly I G  (9.67) 

In the first step, we need to solve the Eq. (9.67) for a nonnegative non-zero 
row vector y. If such a solution exists, then  can be calculated by y. Equation 
(9.67) is equivalent to 

0 ,0
1

( )i i
i

y y G  (9.68) 

and

1
( ), 1.k k i i

i
y y G k  (9.69) 
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We first consider a special solution to Eq. (9.69) and Eq. (9.68). Let 

1
1, 1,k

ky x k  (9.70) 

where 1x  is determined as the unique, up to constant multiplications, nonnegative 

solution of the equation 1 1
1

( ).i
i

i
x x G  Then it follows from Eq. (9.69) and 

Eq. (9.68) that 

1
0 1 ,0

1
( )i

i
i

y x G  (9.71) 

and from Eq. (9.69) and Eq. (9.70) that 

1 1
1

( ),i
i

i
x x G

which is the same as Eq. (9.59) and it follows from Theorem 9.12 that y0 is finite. 
Therefore, Eq. (9.71) and Eq. (9.70) are a nonnegative non-zero solution to 
Eq. (9.68) and Eq. (9.69), or Eq. (9.67). 

In the second step, solving [ ( )][ ( )]U Dy I R I  in Eq. (9.66) we obtain 

0 0 0

1 0 0,1 1

1

[ ( )],
[ ( ) ][ ( )],
[ ( ) ][ ( )], 2k k k

y I
y R I
y R I k

Since both 0[ ( )]I  and [ ( )]I  are invertible in this case, we can express 
k  in terms of :ky

0 0 0 ( ),y N  (9.72) 

1 0 0,1 1( ) ( )R y N  (9.73) 

and

1 ( ) ( ), 2.k k kR y N k  (9.74) 

Based on Eq. (9.72), Eq. (9.73), Eq. (9.74), Eq. (9.70) and Eq. (9.71), we can 
construct a formal solution for the -invariant measure: The construction of 0

is obvious. For the case of 0  with 1,k  we have 

1 1
1 ,0 0 0,1

1

1
1

0, 0

( ) ( ) ( ) ( )

( ) ( ).

i k
k i

i
i j

i j k
i j

x G N R R

x N R (9.75)
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Note that the matrix ( )I R  is invertible for 0  and singular for 
,  the expression for  is slightly different from the case for 

0 , so we need to present them separately. 
When 0 ,

1

1
0, 0

( ) [ ( )] [ ( )],i j k k

i j k
i j

R I R I R

since ( )I R  is invertible. Therefore we give the following theorem.  
Theorem 9.15 For 0 ,  the quasi-stationary distribution of P is given by 

1
0 1 ,0 0

1
( ) ( )i

i
i

x G N  (9.76) 

and

 ( ) ( ), 1,k k kV W k  (9.77) 

where 
1

1( ) ( )[ ( )] k
kV x N I R

and

1 1 1
1 ,0 0 0,1

1

( ) ( ) ( ) ( ) ( )[ ( )] ( ) ( ).i k
k i

i
W x G N R N I R R R

Proof Let 
1

1 1( ) ( )[ ( )] .g x N I R

It follows from Eq. (9.56) that 

0 1

[ ( )][ ( )] ( ) ,k i
k i

k i
I A I R I I G

we obtain 

1 1
0 1

( ) ( ) 0,k i
k i

k i
g I A x I G

that is 

1 1
0

( ) ( ).k
k

k
g A g

Hence, we obtain 1( ) ( ),g u  where  is a positive constant. We set 1.
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Let

1 1
2 1 ,0 0 0,1

1

( ) ( )[ ( )] ( ) ( ) ( ) ( ) .i
i

i
g x N I R R G N R

Then it follows from Eq. (9.77) that 

1 1
1 2( ) ( ) ( ) , 1.k k

k g g R k

We first check (3) as follows: 

2 2
1 1 2

0 0 0
1 1

1 2

( ) ( ) ( )

( ) ( ) ( ) .

k l k l
k l k k k

k k k
l l

l

A g A g R A

g g R

Then we check (1) as follows: 

1
1 1 ,0 0 1 1 1

0 1 1

1 1
1 ,0 0 0,1 1

1 1

( ) ( ) ( ) [ ( ) ]

( ) ( ) ( ) ( ) ,

i k k
k k i k

k i k

i k
i k

i k

D x G N D g R D

x G N R R D

note that 

0,1 0 0 0 0

1
0 1 0 1

1

( ) ( ), ( ) ( ) ( ),

( ) ( ) ( ) ,k
k

k

R D N N I N

D D N R D

we obtain 
1

1
1 0 1 1

0 1 0

1 1
1

1 1

( ) ( )

( ) ( ) .

k
i k i

k k k
k k i

i k
k i

i k

D x N R D

x N R D

It is easy to check that 

1
1 1 1

1
1 0 1 1

( ) ( ) .
k

i k i i k
k k i

k i i k
R D R D

Hence (1) is correct. Finally, we prove (2). To do this, we compute 

1
0 0 1 ,0 0 0

1 1

1
1 2

1 1

( ) ( )

( ) ( ) ( ) ,

i
k k i

k i

k k
k k

k k

D A x G N D

g A g R A
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note that 

1 1 1 0
1

( ) ( ) ( )k
k

k
g A g g A

and

1
2 2 1 1 0

1

1
1 ,0 0 0,1

1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),

k
k

k

i
i

i

g R A g g R g A

x G N R

we obtain 

1
0 0 1 1 ,0 0 0,1

1 1

1 2 1

( )[ ( )] ( ) ( ) ( )

( ) ( ) .

i
k k i

k i
D A g I R x G N R

g g

This implies that the expression in Theorem 9.97 is a solution for the -invariant
measure. This completes the proof. 

When P is -transient with  (in this case, ),  a similar proof to that 
in Theorem 9.15 leads to that a nonnegative non-zero -invariant measure of P
is given by 

1
0 1 ,0 0

1
( ) ( )i

i
i

x G N

and
( ) ( ), 1,k k kV W k

where

1
1

0, 0

( ) ( ) ( )i j
k

i j k
i j

V x N R  (9.78) 

and

1 1
1 ,0 0 0,1

1
( ) ( ) ( ) ( ) ( ).i k

k i
i

W x G N R R

Under the assumption of the irreducibility of the matrix A, the maximal eigenvalue 
 of the matrix ( )R  is simple. Let ( ) diag ( , ( ))J  be the Jordan’s 

normal form of ( ).R  Then the real part of each diagonal entry of ( )  is strictly 
less than ,  and there always exists an invertible matrix ( )T  such that 

1( ) ( ) ( ) ( ) diag( , ( )).T R T J
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We write 

1 11 12

21 22

( ) ( )( ) ,( ) ( )
t TT T T

where 11 12 21 22( ), ( ), ( ) and ( )t T T T  are a scalar, row and column vectors of 
size (m 1) and a matrix of size (m 1) (m 1), respectively. 

Lemma 9.14 For all k 0,

21 22 21 22( ) ( ( ), ( )) ( ( ), ( )) ( ) .k kT T T T R

Proof Simple matrix computation can lead to that for all k 0,

1 11 12

21 22

( ( ), ( ))diag( , ( ) ) ( )
( ) ( ( ), ( ))

k
k k

k

t TT
T T

and

1 11 12

21 22

( ( ), ( )) ( )( ) ( ) .
( ( ), ( )) ( )

k
k

k

t T RT R
T T R

Since 1 1( ) ( ) diag( , ( ) ) ( ),k k kT R T  we obtain that for all k 0,

21 22 21 22( ) ( ( ), ( )) ( ( ), ( )) ( ) .k kT T T T R

This completes the proof. 
Let

1
1

1
0

( ) ( ) ( )
k

i k i
k

i
V x N R

and

1 ( ) ( ) ( , ).x N T

Then

1
1

1
0

1
11 12

1
21 22

1 1
11 12 21 22

1
11 12

( ) ( ) ( )

0 ( ) ( )( , )
( ) ( )0 [ ( )] [ ( ) ]

( ( ), ( )) [ ( )] [ ( ) ]( ( ), ( ))

( ( ), ( )) [

k
i k i

k
i

k

k k

k k k

k k

V x N R

k t T
T TI I

k t T I I T T

k t T 1
21 22

1
21 22

( )] ( ( ), ( ))

[ ( )] ( ( ), ( )) ( ) .k

I T T

I T T R
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Therefore, we obtain 

1 1
11 12 21 22

1
21 22

1 1
1 ,0 0 0,1

1

( ) ( )

( ( ), ( )) [ ( )] ( ( ), ( ))

{ [ ( )] ( ( ), ( )) ( )

( ) ( ) ( )} ( ) .

k k k
k k

i k
i

i

W V

k t T I T T

I T T R

x G N R R

We summarize the above result in the following theorem. 
Theorem 9.16 If P is -transient and ,  then the quasi-stationary 

distribution is given by 

1
0 1 ,0 0

1
( ) ( )i

i
i

x G N

and for k 1,
1 1

11 12 21 22

1
21 22

1 1
1 ,0 0 0,1

1

( ( ), ( )) [ ( )] ( ( ), ( ))

{ [ ( )] ( ( ), ( )) ( )

( ) ( ) ( )} ( ) .

k k
k

i k
i

i

k t T I T T

I T T R

x G N R R (9.79)

Now, we consider the special case where i iD A  for all i 0, which shows the 
transition matrix without the boundary. In this case, 

0 0,1 ,0( ) ( ), ( ) ( ), ( ) ( ),i iN N R R G G i

Let 0 for 0.k
ky y k  Then 0 0

1
( )i

i
i

y y G  and 0 1 / .y x  Hence, 

1 1
1 ,0 0 0,1

1

1
0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i k
k i

i

k k

W x G N R R

x N R y N R

and
1 1

1 1 1
1 0

0 0
( ) ( ) ( ) ( ) ( ) .

k k
i k i i k i

k
i i

V x N R y N R

Therefore, we obtain 

0
0

( ) ( ) ( ) ( ) .
k

i k i
k k k

i
W V y N R  (9.80) 
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Corollary 9.5 For the transition matrix P of GI/M/1 type without the boundary, 
(1) if 0 ,

1
0 ( )[ ( )] [ ( ) ], 1;k k

k y N I R I R k  (9.81) 

(2) if ,

1 1
11 12 21 22

1
21 22

( ( ), ( )) [ ( )] ( ( ), ( ))

[ ( )] ( ( ), ( )) ( ) , 1.

k k
k

k

k t T I T T

I T T R k (9.82)

For an irreducible level-independent QBD process, we have provided two different 
types of expressions from Markov chains of M/G/1 type and Markov chains of 
GI/M/1 type. It is necessary to indicate that the two expressions are identical. For 
simplicity of interpretation, we only consider the QBD process without the boundary, 
and can directly obtain the other from either of the two expressions. 

Lemma 9.15 For a QBD process without the boundary, let and  be the 
maximal eigenvalues of the matrices G( ) and R( ), respectively. Then 1/ .

Proof For the QBD process and 0,z  we denote by ( )z  and ( )z  the 
maximal eigenvalues of the matrices 2

0 1 2A zA z A  and 2
0 1 2 ,z A zA A  res- 

pectively. Since 

2
2 2

0 1 2 0 1 2
1 1 ,z A zA A z A A A
z z

we obtain 

2 1( ) .z z
z

 (9.83) 

Noting that  is the unique positive solution (repeated twice) to the equation 
( ),z z  it follows from Eq. (9.83) that  is a positive solution to the equation 

1/ (1/ ),z z  that is, 1/  is a positive solution to the equation ( ).z z  Since 
 is the unique positive solution (repeated twice) to the equation ( ),z z  we 

obtain that 1/ .  This completes the proof. 
Using the Markov chain of M/G/1 type, we have 

1

1
0

( ) ( ) ( ) ,
k

i i
k k

i

z G N R  (9.84) 

where z is the nonnegative non-zero left eigenvector of the matrix ( ).G  Noting 
that 0 01/ , ( )y y G  and ( ),z zG  we have 0 .y Az Without loss 
of generality, we set c 1, i.e., z y0. Thus, it follows from Eq. (9.84) that 
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1
1

0
0

( ) ( ) ,
k

k i i
k

i
y N R

which is the same as Eq. (9.80). Therefore, it follows from  that 

1 1
11 12 21 22

1
21 22

( ( ), ( )) [ ( )] ( ( ), ( ))

[ ( )] ( ( ), ( )) ( ) , 1.

k k
k

k

k t T I T T

I T T R k

This leads to the explicit expression Eq. (9.82) based on the Markov chain of 
GI/M/1 type. 

9.4.3 Conditions for -Positive Recurrence 

We now provide conditions under which the Markov chain P of GI/M/1 type is 
either -positive recurrent or -null recurrent. 

When the matrix P of GI/M/1 type is -recurrent, the quasi-stationary distribution 
is matrix-geometric, as shown in Theorem 9.14. At the same time, the -invariant 
vector, which is a nonnegative non-zero column vector v such that ,v Pv  can 
be expressed as 

0 0 ,v w  (9.85) 

1

,0 0
1

( ) ( ) , 1,
k

k k k i i
i

v G v G v k  (9.86) 

where 0w  is the unique, up to multiplication of a positive constant, solution of 
0 0[ ( )] 0.I w  The expression does not rely on whether or not the matrix A is 

stochastic. Moreover, when the matrix A is strictly substochastic, the equation 
( )z z  has still two positive solutions if 0  or only one positive 

solution (repeated twice) if .  Based on the fact, the following lemma provides 
conditions for classifying the -positive recurrent and the -null recurrent. 

For simplicity of description, we assume that the matrix A*(1) is irreducible and 
stochastic.

Lemma 9.16 If 1 1

1 1
( ) , ( )k k

k k
k k

kR D kR A  and ,  then an 

-recurrent Markov chain P is -positive recurrent; otherwise, it is -null recurrent. 
Proof According to Lemma 9.9, both expressions for the -invariant measure 

and the -invariant vector v are needed. Let * *

1 1

( ) , ( ) ( )k k
k k

k k
V z z v G z z G  and 

*
0 ,0

1

( ) ( ).k
k

k
G z z G  For convenience of description, we express the -invariant
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vector in the following way. It follows from Eq. (9.85) and Eq. (9.86) that 

* * 1 * * *
0 0 0 0

0
( ) [ ( )] ( ) [ ( )] ( ) ,n

n
V z I G z G z v G z G z v

which gives 

,0 0
0

( ) ( ) , 1.n
k k k

n
v G G v k  (9.87) 

It follows from Theorem 9.14 and Eq. (9.87) that 

1
0 0 0 0,1 ,0 0

0 1 0

( ) ( ) ( ) ( ) .k n
i i k k

i k n
v x v x R R G G v  (9.88) 

Note that the matrix 0 ( )  is nonnegative and irreducible, the invariant measure 

0x  and vector 0v  are all positive. Since each column of the nonnegative matrix 

0,1( )R  is non-zero, it is clear that 0 0,1( ) 0.x R  Therefore, 
0

i i
i

v  if and 

only if 
1

,0
1 0

( ) ( ) ( ) .k n
k k

k n
R G G  (9.89) 

It is known that ( )r  and ( )l  are the maximal eigenvalue of ( )R  and the 
associated left eigenvector, respectively. Since A*(1) is irreducible, ( )l >0. It 
follows from Eq. (9.89) that 

1 * *
,0 0

1 0 0

1( ) ( ) ( ) ( ) ( ) [ ( ( ))] ( ( )).
( )

k n n
k k

k n n
l R G G l G r G r

r

Clearly, Eq. (9.89) is true if and only if, (1) *
0 ( ( )) ,G r  (2) * ( ( )) ,G r  and 

(3) the matrix * ( ( ))I G r  is invertible. 
We first analyze the condition in (3). Note that the equation ( )z z  has 

exactly two different positive solutions ( )z r  and z  if 0  or only 
one solution ( )z r  (repeated twice) if ,  also noting that z  is 
the unique positive solution of the equation det *( ( )) 0,I G z  we obtain that if 

,  then the matrix * ( ( ))I G r  is invertible; and if ,  then the matrix 
* ( ( ))I G r  is singular. Therefore, the matrix * ( ( ))I G r  is invertible if 
.

We then analyze the conditions in (1) and (2). We show that (1) *
0 ( ( ))G r  if 

and only if 1

1
( ) ;k

k
k

kr D  and (2) *( ( ))G r  if and only if 1

1
( ) .k

k
k

kr A

We only provide details for (1), while (2) can be discussed similarly. 
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It follows from Eq. (9.44) that 

* 1
0 ,0

1 1 1
( )) ( ) ( ) ( ) ( ) ( ) .k k i

k k i
k k i

G r r G r N R D

Hence,

1 * 1 1
0

1 1 1
( ) ( ) ( ( )) ( ) ( ) ( ) ,k i k

k i k
k i k

l N G r l r D l kr D

which means that *
0 ( ( ))G r  if and only if 1

1
( ) .k

k
k

kr D  This completes 

the proof. 
The following theorem and corollary provide simple conditions for classifying 

the -positive recurrent and -null recurrent for the Markov chain of GI/M/1 
type. At the same time, the proof is not difficult according to Lemma 9.16 and is 
omitted here. 

Theorem 9.17 Suppose the Markov chain P of GI/M/1 type is -recurrent and 
the matrix A is stochastic or strictly substochastic. P is -positive if and only if  

(1) when ( ) 1;r

(2) 1

1
, ( )k

k
k

kr A and 1

1
( )k

k
k

kr D  when ( ) 1;r  or 

(3) and
1

k
k

kA  and 
1

k
k

kD  when ( ) 1.r

When the matrix A is stochastic, the conditions in the above theorem for the cases 
of ( ) 1r  and ( ) 1r  can be further simplified as in the following corollary. 

Corollary 9.6 Suppose the Markov chain P of GI/M/1 type is -recurrent 
and the matrix A is stochastic. 

(1) If ( ) 1,r  P is -positive if and only if  and 1

1
( ) .k

k
k

kr A

(2) If ( ) 1,r  P is -positive if  and 2

1
.k

k
k A

Proof If the matrix A is stochastic, then k i
i k

D e A e  for all 2.k Therefore,

1 1 1

2 2 2 2

2

2
2 1

2
2

( ) ( ) ( )

2 , if ( ) 1,
2

2 ( ) ( ) ( 1) ( ) ( ) , if ( ) 1.
(1 ( ))

i
k k k

k i i
k k i k i k

i
i

i i

i
i

kr D e kr A e kr A e

i i A e r

r r i r ir A e r
r
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The rest of this proof is clear. 
If the matrix A is stochastic, then Corollary 9.6 and (1) of Theorem 9.17 imply 

that the state -classification of P is independent of the boundary matrices kD
for k 0. This is similar to Theorem 1.3.2 in Neuts [21]. 

9.5 Markov Chains of GI/G/1 Type 

In this section, we consider the quasi-stationary distribution of an irreducible Markov 
chain of GI/G/1 type, and provide conditions for the state -classification and 
expressions for the quasi-stationary distribution. 

From Eq. (3.1), the -discounted transition matrix of GI/G/1 type is written as 

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

.

D D D D
D A A A

P D A A A
D A A A

 (9.90) 

For the UL-type measures, we write that for 1 , ,i j n

[ ]
0 ,

[ ]
,

[ ]
,

( ) ( ),

( ) ( ),

( ) ( ),

n
n n

n
i n i n

n
j n n j

P

P

P

which are independent of the number n 1 according to the censoring invariance. 
We define the R-measure 

[ ] 1
0, 0, 0

1
0

( ) ( )[ ( )] ,

( ) ( )[ ( )] , 1;

i
i i

i i

R P I

R I i (9.91)

the G-measure 
1 [ ]

,0 0 ,0

1
0

( ) [ ( )] ( ),

( ) [ ( )] ( ), 1;

j
j j

j j

G I P

G I j (9.92)

and the U-measure 

0 0 0, 0 ,0
1

( ) ( )[ ( )] ( )k k
k

D R I G

and

0 0 0
1

( ) ( )[ ( )] ( ).k k
k

A R I G
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For the Markov chain of GI/G/1 type, the UL-type RG-factorization can be 
simplified as 

 [ ( )][ ( )][ ( )],U D LI P I R I I G  (9.93) 

where

0,1 0,2 0,3

1 2

1

0 ( ) ( ) ( )
0 ( ) ( )

( ) ,0 ( )
0

U

R R R
R R

R R

0 0 0 0( ) diag( ( ), ( ), ( ), ( ), )D

and

1,0

2,0 1

3,0 2 1

0
( ) 0
( ) ( ) 0( ) .
( ) ( ) ( ) 0

L

G
G GG
G G G

Let

* *

*

1

*

1

( , ) ( ),

( , ) ( ),

( , ) ( ).

i
i

i

i
i

i

j
j

j

A z z A A z

R z z R

G z z G

Using a similar analysis to that in Theorem 3.5, the RG-facorization for the 
repeated row is given by 

* * *
0( , ) [ ( , )][ ( )][ ( , )].I A z I R z I I G z  (9.94) 

Suppose k
k

A A  is irreducible and stochastic. Let  be the stationary 

probability vector of the Markov chain A, and  

1

1

.
k

k

k
k

kA e

kA e
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Now, we provide some useful properties for the positive root ( )z  to equation 
det *( ( , )) 0.I A z

Let 1( )z  and 2 ( )z  be the positive solutions to the equations det (I
*( , )) 0R z  and det *( ( , )) 0,I G z  respectively. It is clear that 1 2( ) ( )z z

based on the definitions of * ( , )R z  and *( , ).G z  Note that 

* *

*

{ ( ) : det ( ( , )) 0} { ( )) : det ( ( , ( )) 0}
{ ( ) : det ( ( , ( )) 0}

z I A z z I R z
z I G z (9.95)

thus 1( )z  and 2 ( )z  must be two positive solutions to the equations det 
*( ( , )) 0.I A z

Let ( , )r z  and ( , )g z  be the maximal eigenvalues of the matrices * ( , )R z
and * ( , ),G z  respectively. It follows from Eq. (9.95) that 

{ ( ) : ( ) 1} { ( ) : ( , ) 1} ( ( ) : ( , ) 1}.z z z r z z g z

Thus, it is easy to see that 1( )z  and 2 ( )z  are the positive solutions to 
equations ( , ) 1r z  and ( , ) 1,g z  respectively. 

Lemma 9.17 For 10 , ( )z  is strictly decreasing, while 2 ( )z  is 
strictly increasing. Specifically, 1 2( ) ( ).z z

Proof Note that *

1

( , ) ( )i
i

i
R z z R  and 

0
0

( ) ( ) [ ( )] ,n
i i

n
R

it is easy to see that ( )iR  is monotonely increasing in 0  for each 1,i
and so is * ( , ).R z  Hence ( , )r z  is monotonely increasing in 0.  It is easy to 
check that the equation ( , ) 1r z  in dicates that 1( )z  is monotonely decreasing 
in 0.  Similarly, 2 ( )z  is monotonely increasing in 0.  Based on this, 
we can obtain that for 0 ,

1 1 2 2( ) ( ) ( ) ( ).z z z z

Since there is the unique positive solution ( )z  to det *( ( , )) 0,I A z we 
have that 1 2( ) ( ) ( ).z z z  This completes the proof. 

Theorem 9.18 (1) If 1,  then 1 2( ) ( ) 1z z  for 1 ,  while 

2 ( )z 11 ( )z  for 0 1.
(2) If 1,  then 2 1( ) ( ) 1z z  for 1 ,  while 2 2( ) ( )z z

11 ( )z  for 0 1.



Constructive Computation in Stochastic Models with Applications 

484

(3) If 1,  then 1  and 1 2 2 1( ) ( ) 1, ( ) 1 ( )z z z z  for 0 .
Proof We only prove (1), while (2) and (3) can be proved similarly. 
We construct a Markov chain of GI/G/1 type whose transition matrix is given by 

0
1

1 0 1 2

2 1 0 1

3 2 1 0

0 0

.

i
i

D D

D A A AP
D A A A
D A A A

If <1, then it is easy to see from the special boundary that P is positive recurrent, 
hence sp(R)<1 and sp(G) 1 by Theorem 3.17. Applying Lemma 9.17, we obtain 
that for 1 ,

1 1 2 2 2( ) ( ) ( ) ( ) (1) ( ) 1,z z z z z sp G

and for 1 1,

1 1 2( ) ( ) (1) ( ) 1z z z sp G

and

2 2( ) (1) ( ) 1.z z sp G

This completes the proof. 
For intuitively understanding Lemma 9.17 and Theorem 9.18, Fig. 9.3 to 

Fig. 9.5 describe the structure of 1( )z  and 2 ( )z  for 0 ,  which are 
related to each of the three cases: 0 1, 1 and 1,  respectively. 

Figure 9.3 The case with 0 1
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Figure 9.4 The case with 1

Applying Lemma 9.17 and Theorem 9.18, the following three corollaries are 
easy to be deriven. Note that the last one is the main drift result for Markov 
chains of GI/G/1 type. 

Corollary 9.7 (1) 1 if and only if 1 2( ) ( ) 1.z z
(2) 1 if and only if 1 2( ) ( ) 1.z z
(3) 1 if and only if 1 2( ) ( ) 1.z z

Figure 9.5 The case with 1

Corollary 9.8 The radius  of convergence of the Markov chain of GI/G/1
type is the minimal positive solution to the equation 1 2( ) ( )z x z x  for 0.x

Corollary 9.9 For 1, we have 
(1) 1  if and only if 1(1) 1z  and 2 (1) 1.z
(2) 1  if and only if 1(1) 1z  and 2 (1) 1.z
(3) 1  if and only if 1 2(1) (1) 1.z z
We write 

2 1 T T T T
0 1 2 3 min 1 2 3( ) ( , , , )( ) ( , , , ) .D D D D I W D D D
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Let ( )  be the maximal eigenvalue of the censored -discounted transition 
matrix 0 ( )  to level 0. Then the solution to the eigenvalue equation ( ) 1
can determine the state -classification of the Markov chain of GI/G/1 type. The 
following theorem provides conditions for the state -classification.

Theorem 9.19 (1) If there exists a minimal positive solution  to the 
equation ( ) 1  for 0,  then  and the Markov chain P is 

-recurrent. 
(2) If there does not exist any positive solution to the equation ( ) 1 for 

0,  then the Markov chain P is -transient.
Proof We first prove (1) 
Let

0,0 0,1 0,2

1,0 1,1 1,2

02,0 2,1 2,2

( ) ( ) ( )
( ) ( ) ( )

( ) .
( ) ( ) ( )

k

k

N N N
N N N

P
N N N

Then
1

0,0 0( ) [ ( )] .N I

Let ( )  be the the maximal eigenvalue of the matrix 0,0 ( ).N  Then 

1( ) , 0.
1 ( )

If ( ) 1,  then 

1( ) ,
1 ( )

 (9.96) 

while

1( ) , 0 .
1 ( )

 (9.97) 

Note that 

0 0

0 0
0,0 , 0,0 ,1 11 1

min [ ( )] ( ) max [ ( )] .
m m

i j i ji m i mj j
N N  (9.98) 

By using Eq. (9.96) and Eq. (9.97), the right inequation of Eq. (9.98) indicates 
that there exists at least a pair 0 0( , )i j  such that 

0 00,0 ,[ ( )]i jN

while the left inequality of Eq. (9.98) indicates that for any pair ( , ),i j
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0,0 ,[ ( )] , 0 .i jN

Based on the definition of the state -classification, it is seen that  and the 
Markov chain P is -recurrent.

Now, we prove (2). 
If there does not exist any positive solution to the equation ( ) 1  for 

0 ,  then 

0,0 ,[ ( )] , 0 ,i jN

and

0,0 ,[ ( )] , for any 0.i jN

Based on the definition of the state -classification, it is seen that the Markov 
chain P is -transient. This completes the proof. 

Let

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

.

A A A A
A A A A

W A A A A
A A A A

The following corollary provides the state -classification for the Markov 
chain W. Note that it is a generalization of the state -classification for Markov 
chains of M/G/1 type or GI/M/1 type by Kijima [14]. 

Corollary 9.10 The Markov chain W is always -transient.
Proof Let 

2 1 T T T T
0 0 1 2 3 min 1 2 3( ) ( , , , )( ) ( , , , ) .A A A A I W A A A

Then it is clear that ( ) 1 for all 0.  Hence the Markov chain W is always 
-transient.
In what follows, we provide expressions for the quasi-stationary distribution.  
Applying the RG-factorization Eq. (9.93), the following theorem expresses the 

quasi-stationary distribution of the Markov chain P of GI/G/1 type which is 
-recurrent. The proof is clear, and thus is omitted here. 
Theorem 9.20 If the Markov chain P of GI/G/1 type is -recurrent, then the 

quasi-stationary distribution 0 1 2( ) ( ( ), ( ), ( ), )  is given by 

0 0
1

0 0,
1

( ) ( ),

( ) ( ) ( ) ( ) ( ), 1,
k

k k i k i
i

x

R R k
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where 0 ( )x  is the left Perron-Frobeniusthe vector of the matrix 0 ( )  and the 

scalar  is uniquely determined by 
0

( ) 1.
M

k
k

e

Now, we consider 1 or  under which P is -transient. In this case, 
it is a key to solve the equation 

1,0

2,0 10 1 2

3,0 2 1

( )
( ) ( )( ( ), ( ), ( ), ) (0,0,0, ),
( ) ( ) ( )

I
G I
G G Iy y y
G G G I

which leads to 

0 ,0
1

1

( ) ( ) ( ) 0,

( ) ( ) ( ) 0, 1.

k k
k

k i i k
i k

y y G

y y G k
 (9.99) 

The following lemma provides a spectral property for the matrices * ( , )G z

and *
0 ,0

1

( , ) ( ).j
j

j
G z z G Thus, the quasi-stationary distribution can be 

directly expressed by means of the eigenvalues and eigenvectors of the matrices 
* ( , )G z  and *

0 ( , ).G z
Lemma 9.18 There exists a constant 0,  and two nonnegative non-zero 

row vectors y and 0y  such that 

1

0 ,0
1

( ),

( ).

k
k

k

k
k

k

y y G

y y G
 (9.100) 

Proof For the equation det *( ( , )) 0,I G z  there exists a positive root 
2 ( ).z  That is, det *( ( , )) 0.I G  In this case, there must exist a nonnegative  

non-zero row vector y such that * ( , ),y yG  i.e., 
1

( ).k
k

k
y y G  Once 

and y are given, we write 

0 ,0
1

( ).k
k

k
y y G

by means of the first equality of Eq. (9.100). This completes the proof. 
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The following lemma provides a nonnegative non-zero solution to the equation 
Eq. (9.99). Such a solution is a key for expressing the quasi-stationary distribution. 

Lemma 9.19 The row vector 1 2 3
0( , , , , )Y y y y y  is a nonnegative 

non-zero solution to the equation Eq. (9.99).
Proof Let 0 0( )y y  and ( ) k

ky y  for 1.k  It is easy to see that 

0 ,0 0 ,0
1 1

( ) ( ) ( ) ( ) 0k
k k k

k k
y y G y y G

in terms of the second equality of Eq. (9.100). At the same time, for 1k  we have 

1 1

1

( ) ( ) ( ) ( )

( )

0

k i
k i i k i k

i k i k

k k
k

k

y y G y y G

y y G

in terms of the first equality of Eq. (9.100). This completes the proof. 
Theorem 9.21 If 1  or  under which P is -transient, then the 

quasi-stationary distribution 0 1 2( ) ( ( ), ( ), ( ), )  is given by 

0 0 0

0 0,
1

( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ), 1,
k

k
k k i k i

i

y N

yN R R k

where 1 1
0 0 0( ) [ ( )] , ( ) [ ( )]N I N I  and the positive constant 

satisfies
0

( ) 1.k
k

e

Proof Since ( )( ) 0,I P  it is clear from the UL-type RG-factorization 
that

( )[ ( )][ ( )][ ( )] 0.U D LI R I I G

Let
 ( )[ ( )][ ( )].U DY I R I  (9.101) 

Then
[ ( )] 0,LY I G

which leads to 1 2 3
0( , , , , )Y y y y y  in terms of Lemma 9.19. It follows 

from Eq. (9.101) that 
1 2 3

0( )[ ( )][ ( )] ( , , , , ).U DI R I y y y y
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Thus, we obtain 

1 2 3 1
0

1 2 3
0 0

( )[ ( )] ( , , , , )[ ( )]

( ( ), ( ), ( ), ( ), ).
U DI R y y y y I

y N yN yN yN

Some simple computations lead to the desired result. 

9.6 Level-Dependent QBD Processes 

In this section, we consider the quasi-stationary distribution of an irreducible level- 
dependent QBD process, and provide conditions for the state -classification and 
expressions for the quasi-stationary distribution. 

Consider an irreducible discrete-time QBD process whose transition probability 
matrix is given by 

(0) (0)
1 0
(1) (1) (1)
2 1 0

(2) (2) (2)
2 1 0

(3) (3) (3)
2 1 0

.

A A
A A A

P A A A
A A A

Let  be the radius of convergence of the matrix P. It is clear that 1.
We write 

( ) ( )

( ) ( ) , 0,
k k

k k

T VP k
U Q

where
( ) ( )
1 0

( 1) ( 1) ( 1)
2 1 0

( ) ( 2) ( 2) ( 2)
2 1 0

( 3) ( 3) ( 3)
2 1 0

,

k k

k k k

k k k k

k k k

A A
A A A

Q A A A
A A A

the other matrices can be determined accordingly. Obviously, (0) .Q P  We further 
assume that the Markov chain ( )kQ  is irreducible for each 0.k  Let k  be the 
radius of convergence of the matrix ( )kQ  for 0.k  Since 

( )
( , ),( , )

0

sup 1: , , 0n n
i r j s

n
z z p i j
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and

( )
( , ),( , )

0

sup 1: , , 1 ,n n
k i r j s

n
z z p i j k

we obtain for 1.k k

9.6.1 The UL-Type RG-Factorization 

Now, we provide the UL-type R-, U- and G-measures for the matrix P  for 
0 .

(1) The R-measure  
The R-measure: ( )kR  for 0,k  is the minimal nonnegative solution to the 

system of equations 

( ) ( 1) ( 2)
0 1 1 2( ) ( ) ( ) ( ), 0,k k k

k k k kA R A R R A R k

or

( ) ( 1) ( 2)
0 1 1 2

1( ) ( ) ( ) ( ), 0.k k k
k k k kA R A R R A R k

Specifically, since 1/  is the decay parameter of the Markov chain P, we 
have

( ) ( 1) ( 2)
0 1 1 2( ) ( ) ( ) ( ), 0.k k k

k k k kA R A R R A R k

(2) The G-measure 
The G-measure: ( )lG  for 1,l  is the minimal nonnegative solution to the 

system of equations 

( ) ( ) ( )
0 1 1 2( ) ( ) ( ) ( ),l l l

l l l lA G G A G A G l

or

( ) ( ) ( )
0 1 1 2

1( ) ( ) ( ) ( ),l l l
l l l lA G G A G A G l

Specifically, for the decay parameter  we have 

( ) ( ) ( )
0 1 1 2( ) ( ) ( ) ( ),l l l

l l l lA G G A G A G l

(3) The U-measure 
The U-measure: ( )k  for 0,k  is given by 

( ) ( 1)
1 2( ) ( )k k

k kA R A
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or
( ) ( )
1 0 1( ) ( ).k k

k kA A G

The following theorem provides useful properties for the U-measure: ( )k

for 0.k
Theorem 9.22 (1) For 1,k  the matrices ( )kI  are all invertible for 

0 .
(2) the matrix 0 ( )I  is invertible for 0 .  The matrix 0 ( )I  is 

invertible if the Markov chain P is -transient; while 0 ( )I  is singular if 
the Markov chain P is -recurrent. 

Proof (1) According to the censoring technique, it is easy to see that for 1,k
the Markov chains ( )k  are all -transient. Thus, the matrices ( )kI  for 

1k  are all invertible for 0 .
(2) Based on the censoring technique, it is clear that if the Markov chain P is 
-transient, then the Markov chain 0 ( )  is -transient. Hence, the matrix 

0 ( )I  is invertible; if the Markov chain P is -recurrent, then the Markov 
chain 0 ( )  is -recurrent, hence the matrix 0 ( )I  is singular. 

This completes the proof. 
Note that the Markov chain P always has some related properties to the 

censored Markov chain 0 ( )  to level 0, it is necessary to provide a detailed 
analysis for the matrix 0 ( )  for 0 .  Let 

0 0
0

( ) [ ( )] .n

n
N

Then
1

0 0( ) [ ( )] .N I

Based on (2) in Theorem 9.22, it is easy to see that 

0sup{ 1: ( ) }N

or

0sup{ 1: det ( ( )) 0}.I

The following theorem provides conditions for the state -classification of 
the QBD process P. The proof is clear, and thus is omitted here. 

Theorem 9.23 (1) If the matrix 0 ( )N  is finite, then P is -transient.
(2) If the matrix 0 ( )N  is infinite, then P is -recurrent. 
Based on Theorem 9.23, we provide other conditions for the state -classification 

of the QBD process P as follows: 
(1) If det 0( ( )) 0,I  then P is -transient.
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(2) If det 0( ( )) 0,I  then P is -recurrent.
(3) Let 0 ( )u  be the maximal eigenvalue of the matrix 0 ( ).  If there does not 

exist a positive solution to the equation 0 ( ) 1u  for 1,  then P is -transient.
(4) If there exists a positive solution  to the equation 0 ( ) 1u  for 1,

then P is -recurrent.
Based on the R-, U- and G-measures, the UL-type RG-factorization is given by 

[ ( )][ ( )][ ( )],U D LI P I R I I G

where

0

1

2

0 1 2

0 ( )
0 ( )( ) ,

0 ( )

( ) diag ( ( ), ( ), ( ), )

U

D

R
RR

R

and

1

2

3

0
( ) 0

( ) .( ) 0
( ) 0

L

G
G G

G

Now, we provide expressions for the quasi-stationary distribution of the level- 
dependent QBD process. Our analysis is classified in two sets of expressions: 

-recurrent with ,  and -recurrent with  or -transient with .
The first set: -recurrent with 
Note that ( )[ ] 0,I P  we have 

( )[ ( )][ ( )][ ( )] 0.U D LI R I I G

Let ( ) ( )[ ( )].Ux I R  Then 

( )[ ( )][ ( )] 0.D Lx I I G

Since the QBD process P is -recurrent, we can obtain 

0( ) ( ( ),0,0, ),x x

where 0 ( )x  is the left Perron-Frobeniusthe vector of the matrix 0 ( ).  Therefore, 

0( )[ ( )] ( ( ),0,0,...),UI R x

which leads to the quasi-stationary distribution of the QBD process P as follows: 

0 0( ) ( ),x  (9.102) 



Constructive Computation in Stochastic Models with Applications 

494

0 0 1 1( ) ( ) ( ) ( ) ( ), 1,k kR R R k  (9.103) 

where the constant  makes 
0

( ) 1.k
k

e

The second set: -recurrent with  or -transient with 
For  under which P is -transient or  under which P is -recurrent, 

it is clear that the matrix 0 ( )I  is invertible. In this case, we need to use the 
following lemma to compute the quasi-stationary distribution. 

Lemma 9.20 For the G-measure: ( )lG  for 1,l  there exists a sequence of 
stochastic vectors { ( ), 0}kz k  and a sequence of positive numbers { , 0}k k
such that 

1 1( ) ( ) ( ), 0.k k k kz G z k

Proof Let , ( )N Nz  be an arbitrary probability vector on level 1.N  Since 
the QBD process P is irreducible, each state on level k has a path to level k 1,
which shows that each row of the matrix ( )kG  is non-zero and nonnegative. 
Hence , ( ) ( )N N Nz G  is a convex combination of the rows of ( )kG . We take 

1 , 1 ,( ) ( ) ( ) .N N N N N Nz z G e

Then 1 0N  and 

, 1 ,
1

1( ) ( ) ( )N N N N N
N

z z G

is a probability vector on level N 1. Proceeding inductively, we can obtain a 
sequence of probability vector ,{ ( ),0 1}N kz k N  and a sequence of positive 
scalars ,{ ,0 1}N k k N  such that for 0 1,k N

, 1 1 , ,( ) ( ) ( ).N k k N k N kz G z

By repeating the above procedure, for each 0k  we can obtain a sequence of 
probability vector ,{ ( ), }.N kz N k  Since , ( ) 1N kz e  for ,N k  there exists 
a subsequence ,{ ( ), 1}

rN kz r  such that ,lim ( ) ( ),
rN k kr

z z  and ( )kz  is a 

probability vector. * ,k k  we can obtain a sequence of stochastic vectors { ( ),kz
*0 }k k  and a sequence of positive numbers *{ , 0 }k k k  such that 

1 1( ) ( ) ( ).k k k kz G z

Again by the compactness of the probability vector set, there exists a subsequence 
{ }rN  of { }rN  such that * *, 1 1

lim ( ) ( ),
rN k kr

z z  and * * *1 1
( ) ( ) .

k k k
z G e
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Therefore, by induction the desired result follows by repeating this argument 
infinitely-many times, which can be done by means of the Axiom of Choice. This 
completes the proof. 

From ( )[ ] 0,I P  we have 

( )[ ( )][ ( )][ ( )] 0.U D LI R I I G

Let ( ) ( )[ ( )][ ( )].U Dx I R I  Then 

( )[ ( )] 0,Ux I G

which is, in block entries, 

1 1( ) ( ) ( ), 0.k k k kx x G

Using Lemma 9.20, we write 

0 0

0 1 1

( ) ( )
1( ) ( ), 1.k k

k

x z

x z k

It is easy to check that 

0 0 1 1 1 1
0

1 1 2 2 2 2
0 0 1

1( ) ( ) ( ) ( ) ( ) ( ),

1 1( ) ( ) ( ) ( ) ( ) ( ),

x z z G x G

x z z G x G

we assume that for n k we have 

1 1
0 1 1 0 1 1

1 1

1 1( ) ( ) ( ) ( )

( ) ( ),

k k k k
k k k

k k

x z z G

x G

then for 1n k  we obtain 

1 1 2 2
0 1 0 1 1

2 2

1 1( ) ( ) ( ) ( )

( ) ( ).

k k k k
k k k

k k

x z z G

x G

Therefore, by induction, for any nonnegative integer n we can obtain 

1 1
0 1 1

1( ) ( ) ( ) ( ).n n n n
n

x z x G
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It is clear that the vector 

0 1 2
0 0 1

1 1( ) ( ), ( ), ( ),x z z z

is a non-zero nonnegative solution to the equation ( )[ ( )] 0.Lx I G  Thus, we 
have

 ( )[ ( )][ ( )] ( ),U DI R I x

which leads to 
1 1( ) ( )[ ( )] [ ( )] .D Ux I I R

Let
1( ) [ ( )]l lN I

and
( )

1 1( ) ( ) ( ) ( ), 1, 0.l
k l l l kX R R R k l

Then
1

0 1 2[ ( )] diag( ( ), ( ), ( ), )DI N N N

and
(0) (0) (0)
1 2 3

(1) (1)
1 1 2

(2)
1

( ) ( ) ( )
( ) ( )[ ( )] .

( )U

I X X X
I X XI R

I X

Therefore, we obtain 

0 0 0 0 0( ) ( ) ( ) ( ) ( )x N z N  (9.104) 

and for 1k ,
1

( )

0

1

00 1 1 0 1 1

1 1

( ) ( ) ( ) ( ) ( ) ( )

1 1( ) ( ) ( ) ( )

( ) ( ) ( ).

k
l

k k k l l k l
l

k

k k l l
lk l

l l k

x N x N X

z N z N

R R R (9.105)

Based on Eq. (9.102) to Eq. (9.105), we summarize the expressions for the 
quasi-stationary distribution of the level-dependent QBD process as the following 
theorem. 
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Theorem 9.24 (1) For  under which P is -recurrent, the quasi- 
stationary distribution of the level-dependent QBD process is given by 

0 0

0 0 1 1

( ) ( ),
( ) ( ) ( ) ( ) ( ), 1,k k

x
R R R k

where 0 ( )x  is the left Perron-Frobeniusthe vector of the matrix 0 ( )  and the 

constant  makes 
0

( ) 1.k
k

e

(2) For  under which P is -transient or  under which P is 
-recurrent, the quasi-stationary distribution of the level-dependent QBD process 

is given by 

0 0 0 0 0( ) ( ) ( ) ( ) ( )x N z N

and for 1k ,

0 1 1

1

1 1
0 0 1 1

1( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ).

k k k
k

k

l l l l k
l l

z N

z N R R R

Remark 9.5 Since for 0l

1 1

2 1
1 1

1( ) ( ) ( )

1 ( ) ( ) ( ) ( ),

l l l
l

k k l l
l l k

z z G

z G G G

we obtain 

1

2 1
00 1 1

1 1

1( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .

k

k k k k l l l
lk

l l k

z N G G G N

R R R  (9.106)

9.6.2 Conditions for -Positive Recurrence 

Now, we provide a condition under which the QBD process P is -positive 
recurrent. Let 

0

( ) ( )k

k
N P
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and , ( )i jN  the ( , )i j th block-entry of the matrix ( ).N  It is clear that 

0,0 0
0

( ) ( )k

k
N

and

1,1 1
0

( ) ( ),k

k
N

where
(0) 2 (0) (1)

0 1 0 1,1 2( ) ( ) .A A N A

The following theorem provides a condition under which the QBD process P
is -positive recurrent. 

Theorem 9.25 Suppose the QBD process P is -recurrent. 

(1) If the matrix 1,1
d ( )

d
N  is finite, then P is -positive recurrent. 

(2) If the matrix 1,1
d ( )

d
N  is infinite, then P is -null recurrent. 

Proof We only prove (1), while (2) can be proved similarly. 
Since

(0) 2 (0) (1)
0 1 0 1,1 2( ) ( ) ,A A N A

we obtain 

(0) (0) (1) 2 (0) (1)
0 1 0 1,1 2 0 1,1 2

d d( ) 2 ( ) ( ) .
d d

A A N A A N A

Note that 1( )I  is invertible, it is clear that the matrix 1
1,1 1( ) [ ( )]N I

is finite. If the matrix 1,1
d ( )

d
N  is finite, then the matrix 0

d ( )
d

 is finite. 

For the QBD process { , 0},nX n  we write 

( )
, ; , 1 0{ ( , ), ( , ) for 1 1| ( , )}n

k i k i nf P X k i X k i l n X k i

and

( )
, , ; ,

0
( ) .n n

k i k i k i
n

n f

Note that the irreducible QBD process { , 0}nX n  is -positive recurrent if 
, ( )k i  and -null recurrent otherwise. 
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Note that ( )
0 ,

,n

i j
 the ( , )i j th entry of ( )

0 ,n  is the probability that the QBD 

process arrives at state ( , )k i  at time n for the first time, given its initial state 
( , )k i  at time 0. Let 

( )
0, ;0, 0, ;0,

0
( ) .n n

i i i i
n

F f

Then

0, 0, ;0,
d( ) ( ).

di i iF

Since

1 1

1

1 1 2 2
1 2

1

0

0, ;0, 0 , 0 , 0 ,

0 , 0 , 0 ,
,

0 ,
1 , 1

,1 1

( ) ( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ( ))

( ( )) ,
s s

t
k

i i i i i j j i
j i

i j j j j i
j j i

t

j j
t j j i s

j i k t

F

we obtain 

1

0

1 1

1

0, 0 ,
1 , 1 1

,1 1

0 , 0 ,
1

( ) ( ( ))

d ( ( )) ( ( )) .
d

s s
t

k

r r s s

rt

i j j
t j j i r s

j i k t

t

j j j j
s r

Let
01 2( , , , )mx x x x  be the left eigenvector of the matrix 0 ( )  with the 

maximal eigenvalue ( ) 1  due to the condition under which the QBD process 
P is -recurrent. We write 

T 1
0 ( )U

where
01 2diag ( , , , ).mx x x  It is clear that the matrix U is stochastic. The 

expected first return time for state i of the Markov chain U is given by 

1
0

1
0

,
1 , 1

,1 1

T
0 ,

1 , 1
,1 1

[ ]

( ( ) ) .

s s
t

k

s s
t

k

t

i j j
t j j i s

j i k t

t

j j
t j j i s

j i k t

E D t U

t
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If the matrix 1,1
d ( )

d
N  is finite, then there exists a larger positive number K

such that 

1 10 , 0 ,
d ( ( )) ( ( )) .

d r r r rj j j jK

Thus, we have 

1
0

T
0, 0 ,

1 , 1
,1 1

( ) ( ( ) )

[ ] ,

s s
t

k

t

i j j
t j j i s

j i k t

i

K t

KE D

which indicates that the QBD process P is -positive recurrent. This completes 
the proof. 

Remark 9.6 Theorem 9.9 illustrates that the -recurrent QBD process is 
-positive recurrent if and only if .  A similar analysis shows that the 
-recurrent level-dependent QBD process is -positive recurrent if and only if 

.  Now, we compare this result with Theorem 9.25. If ,  then since  

2 ,  where (2)
1, ( )N z  is analytic at .z  Thus, (2)d ( )

d
N

(2)
|

d ( ) .
d zN z
z

 On the contrary, if (2)d ( ) ,
d

N  then ,  since 

(2) (2)( ) and ( )N N z  is increasing for 21 .z

9.7 Continuous-Time Markov Chains 

In this section, similar to the analysis in the discrete-time case, we study the 
quasi-stationary distribution of an irreducible continuous-time Markov chain with 
block structure, and provide conditions for the state -classification and expressions 
for the quasi-stationary distribution. 

We consider an irreducible continuous-time Markov chain whose infinitesimal 
generator is given by 

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

,

Q Q Q
Q Q Q

Q
Q Q Q

where the size of the matrix ,k kQ  is k km m  for 0,k  and the sizes of the other 
matrices are determined accordingly. 
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We write 

( ) exp { }P t Qt

and let , ; , ( )l i k jP t  be the ( , ; , )l i k j th entry of the matrix ( ),P t  where l and k are the 
level numbers and i and j are the phase numbers. We define 

, ; ,0

1sup 1: exp ( )d .l i k jt P t t

It is easy to check that if the Markov chain Q is irreducible, then the positive 
number  is independent of state ( , )l i  and ( , ).k j  In this case, 

0 0

1

min

1 1exp exp{ }d exp d

1 .

tt Q t Q I t t

I Q

If the matrix 1 1
min[ ]I Q  is finite, then the Markov chain Q is -transient, 

otherwise it is -recurrent. Let 1.  Then  is the decay parameter of the 
Markov chain Q.

For 1 ,  if there exists a nonnegative non-zero row vector  such that 

 ( ) ( )Q  (9.107) 

and
 ( ) 1,e  (9.108) 

then ( )  is called the quasi-stationary distribution of the continuous-time Markov 
chain Q.

The following proposition provides a useful relation between the matrix P(t)
and the quasi-stationary distribution ( ).  The proof is easy, and thus is omitted 
here.

Proposition 9.5 If the vector ( )  is the quasi-stationary distribution of the 
continuous-time Markov chain Q, then 

( ) ( ) ( )exp tP t

or

( ) exp ( ) ( ).t P t
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It follows from Eq. (9.107) that 

1( ) ( )Q

or

1( ) 0.Q I  (9.109) 

Let
1( ) .Q I

Note that the matrix ( )  is the infinitesimal generator of an irreducible 
continuous-time Markov chain, thus it is necessary to provide the RG-factorizations 
for computing the quasi-stationary distribution. 

9.7.1 The UL-Type RG-Factorization 

For the continuous-time Markov chain ( ),  we write {0,1,2, , }E n  and 
{ 1, 2, }.cE n n  Based on the two sets E and ,cE  the matrix ( )  is 

partitioned as 

( ) ( )( ) .
( ) ( )

T V
H W

Then
[ ] 1

min( ) ( ) ( )[ ( )] ( ).n T V W H

The block-entry expression of the matrix [ ] ( )n  is written as 
( ) ( ) ( )

0,0 0,1 0,
( ) ( ) ( )

[ ] 1,0 1,1 1,

( ) ( ) ( )
,0 ,1 ,

( ) ( ) ( )
( ) ( ) ( )( ) .

( ) ( ) ( )

n n n
n

n n n
n n

n n n
n n n n

f f f
f f f

f f f

For , 1,i j n  we have 

1( 1) ( ) ( ) ( )
, , , , ,( ) ( ) ( ) ( ).n k k k

i j i j i k k k k j
k n

f Q f f f

We define the U-measure as 
( )
,( ) ( ), 0,n

n n nU f n
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the R-measure as 
( ) 1

, ,( ) ( )[ )] , 0 ,j
i j i j jR f U i j

and the G-measure as 
1 ( )

, ,[ ( )] ( ), 0 .i
i j i i jG U f j i

The UL-type RG-factorization is given by 

( ) [ ( )] ( )[ ( )],U D UI R U I G

where

0,1 0,2 0,3

1,2 1,3

2,3

0 1 2 3

0 ( ) ( ) ( )
0 ( ) ( )

( ) ,0 ( )
0

( ) diag ( ( ), ( ), ( ), ( ), )

U

D

R R R
R R

R R

U U U U U

and

1,0

2,0 2,1

3,0 3,1 3,2

0
( ) 0
( ) ( ) 0( ) .
( ) ( ) ( ) 0

L

G
G GG
G G G

In what follows we study some useful properties for the censored discounted 
Markov chain ( )kU  for 0,k  which are necessary in analysis of the quasi- 
stationary distribution. 

Proposition 9.6 (1) For 1 ,  the matrix ( )kU  is invertible for 0.k
(2) The matrix ( )kU  is invertible for 1.k
(3) The matrix 0 ( )U  is invertible if the Markov chain Q is -transient; 

while 0 ( )U  is singular if the Markov chain Q is -recurrent. 
Based on (3) in Proposition 9.6, we have 

0:sup{ 1 det( ( )) 0}.U

Let
1

0 0( ) ( ).N U

Then

0:sup{ 1 ( ) }.N
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When the Markov chain Q is -recurrent, the following theorem provides 
expressions for the quasi-stationary distribution, which is similar to that in the 
discrete-time case. 

Theorem 9.26 For  under which the continuous-time Markov chain Q 
is -recurrent, the quasi-stationary distribution is expressed as 

0 0( ) ( )x
and

1

,
0

( ) ( ) ( ), 1,
k

k i i k
i

R k

where 0 ( )x  is a nonnegative non-zero solution to the system of equations  

0 0( ) ( ) 0x U  and 0 ( ) 1,x e  and the constant  makes 
0

( ) 1.k
k

e

Proof Since 
1( )[ ] 0,Q I

we obtain 
( )[ ( )] ( )[ ( )] 0.U D UI R U I G

Let
( )[ ( )].Ux I R

Then
( )[ ( )] 0.D UxU I G

Based on the censoring technique, it is clear that 0( ( ),0,0, )x x  is a 
nonnegative non-zero solution to ( )[ ( )] 0.D UxU I G  Thus we obtain 

0( )[ ( )] ( ( ),0,0, ),UI R x

which leads to the desired result. This completes the proof. 
In what follows we consider another type of expression for the quasi-stationary 

distribution for either or  under which the continuous-time Markov 
chain Q is -transient. Note that in this case, a general irreducible Markov chain 
with infinitely-many levels can not be dealt with, thus we only simply study a 
continuous-time Markov chain of GI/G/1 type. 

We consider an irreducible continuous-time Markov chain of GI/G/1 type whose 
infinitesimal generator is given by 

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

.

D D D D
D A A A

Q D A A A
D A A A
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The RG-factorization of the matrix ( )  is given by 

( ) [ ( )] ( )[ ( )],U D LI R U I G

where

0,1 0,2 0,3

1 2

1

0 0 0 0

0 ( ) ( ) ( )
0 ( ) ( )

( ) ,0 ( )
0

( ) diag ( ( ), ( ), ( ), ( ), )

U

D

R R R
R R

R R

U U

and

1,0

2,0 1

3,0 2 1

0
( ) 0
( ) ( ) 0( ) .
( ) ( ) ( ) 0

L

G
G GG
G G G

For the G-measure: ,0 ( )kG  and ( )kG  for 1,k  there exist a constant 0,
and two nonnegative non-zero row vectors y and 0y  such that 

1

0 ,0
1

( ),

( ).

k
k

k

k
k

k

y y G

y y G

Thus, using a similar analysis to that of the discrete-time case, we can obtain the 
following theorem whose proof is easy, and thus is omitted here. 

Theorem 9.27 If 1  or  under which the continuous-time 
Markov chain Q of GI/G/1 type is -transient, then the quasi-stationary distribution 

0 1 2( ) ( ( ), ( ), ( ), )  is given by 

0 0 0

0 0,
1

( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ), 1,
k

k
k k i k i

i

y N

yN R R k

where 1 1
0 0 0( ) [ ( )] , ( ) [ ( )]N U N  and the positive constant  satisfies 

0
( ) 1.k

k
e
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9.7.2 The LU-Type RG-Factorization 

Now, we construct the LU-type RG-factorization of the continuous-time Markov 
chain ( ).

Let
[ ] 1( ) ( ) ( )[ ( )] ( ).n W H T V

The block-entry expression of the matrix [ ] ( )n  is written as 

( ) ( ) ( )
, , 1 , 2

( ) ( ) ( )
1, 1, 1 1, 2[ ]

( ) ( ) ( )
2, 2, 1 2, 2

( ) ( ) ( )

( ) ( ) ( )
( ) .

( ) ( ) ( )

n n n
n n n n n n

n n n
n n n n n nn

n n n
n n n n n n

h h h

h h h
Q

h h h

For , 1,i j n  we obtain 

( 1) ( ) ( ) 1 ( )
, , , , ,

0
( ) ( )[ ( )] ( ).

n
n k k k

i j i j i k k k k j
k

h Q h h h

We define the U-measure as 

( )
,( ) ( ), 0,n

n n nU h n

the R-measure as 

( ) 1
, ,( ) ( )[ ( )] , 0 ,j

i j i j jR h U j i

and the G-measure as 

1 ( )
, ,( ) ( ( )] ( ), 0 .i

i j i i jG U h i j

The LU-type RG-factorization is given by 

( ) [ ( )] ( )[ ( )],L D UI R U I G

where

1,0

2,0 2,1

3,0 3,1 3,2

0 1 2 3

0
( ) 0

( ) ,( ) ( ) 0
( ) ( ) ( ) 0

( ) diag ( ( ), ( ), ( ), ( ), )

L

D

R
R R R

R R R

U U U U U
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and

0,1 0,2 0,3

1,2 1,3

2,3

0 ( ) ( ) ( )
0 ( ) ( )

( ) .0 ( )
0

U

G G G
G G

G G

9.8 Decay Rate for the GPH Distribution 

In this section, we use the quasi-stationary distribution and the RG-factorization 
to study the decay rate of a GPH distribution which is either continuous-time or 
discrete-time, and show that the decay rate can be determined by both the transition 
matrix and the initial probability vector. 

9.8.1 The Discrete-Time PH Distribution with Finitely Many Phases 

We first consider a discrete-time PH distribution with irreducible representation 
( , )T  of order m whose random variable X has the following distribution: 

0
1 0

, 0,
{ }

, 1,k k

k
p P X k

T T k
 (9.110) 

where 0 1e  and 0 .T Te e  For simplicity of exposition, we assume that 
the transition matrix T is irreducible. Note that the matrix T is irreducible if and 
only if 1( ) 0.mI T

It is clear from Eq. (9.110) that 

* 1 0
0( ) [ ] ( ) .XP z E z z I zT T  (9.111) 

We now are interested in the tailed behavior of the PH random variable X as 
follows: 

lim { } lim kk k
P X k p

or

lim { } lim kk k
P X k p

where
1

.k l
l k

p p  Note that 
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1 0

1
,l k

k
l k

p T T T e

thus we only need to analyze the tailed behavior lim .kk
p

For the irreducible nonnegative matrix T, we define 

( )
,

0
( ) sup 1: ,n n

i j
n

T t

which is independent of i and j, where ( )
,
n

i jt  is the ( , )i j th element of the matrix 
nT  for 0.n  We denote by ( )T  the maximal eigenvalue of the matrix T.
Note that the matrix T is of order m, thus we have 

1( ) .
( )

T
T

 (9.112) 

In this case, we only need to analyze the spectral radius ( )T  for studying the 
tailed behavior lim .kk

p  To this end, the following two lemmas, stated in 8.4.4 and 

8.4.6 in Horn and Johnson [11], are useful for describing the spectral radius ( ).T
Lemma 9.21 For the irreducible nonnegative matrix T, we have 
(1) ( ) 0T  is an algebraically (and thus geometrically) simple eigenvalue of T. 
(2) There must exist a positive row vector u and a positive column vector v 

such that 

( ) , ( ) ,
1.

uT T u Tv T v
ue uv

Lemma 9.22 If the irreducible nonnegative matrix T has r eigenvalues of 
maximal modulus ( ),T  then the 1st eigenvalue is given by 

2( )exp ,l
lT i

r

where 2 1i  and 0 1.l r  At the same time, the eigenvalue l  is an 
algebraically (and thus geometrically) simple eigenvalue of T. 

If the irreducible nonnegative matrix T has r eigenvalues of maximal modulus 
( ),T  then there exists an invertible matrix D such that 

1 ,T D JD

where J is the Jordan canonical form of the matrix T, 1 2daig ( , )J J J  and  

1
2( ) diag exp , 0,1, , 1 .lJ T i l r
r
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Hence, we obtain 

1 1 1 1
1 2

1 1 1 1 1
1 2

diag( , )

( ) diag( ,[ ( ) ] ) ,

k k k

k k k

T D J J D

T D J T J D

where

1
1

2diag exp , 0,1, , 1 .k lJ k i l r
r

It is clear that 

1 1
2lim[ ( ) ] 0,k

k
T J

but this limit 1
1lim k

k
J  does not exist for 2.r  In this case, we have 

1 0

1 1 1 1 1 0
1 2

1 1 1 1 1 0
1 2

1 1 1 1 0
2

( ) diag ,[ ( ) ]

( ) || ||||diag ,[ ( ) ] |||| ||

( ) || ||||diag ,[ ( ) ] |||| || .

k
k

k k k

k k k

k k

p T T

T D J T J DT

T D J T J D T

T D I T J D T

Let

1 0|| |||| diag( ,0) |||| || .D I D T

Then as ,k we have 

1 1 1 1 0 1
2( ) || |||| diag( ,[ ( ) ] ) |||| || ( ) .k k k

kp T D I T J D T T  (9.113) 

Specifically, if the irreducible nonnegative matrix T has a single eigenvalue of 
maximal modulus ( ),T  then it is easy to check that 

1 1( ) ,k kT T vu

thus we obtain 
1( ) , as ,k

kp T k  (9.114) 

where
0.vuT

Definition 9.1 A nonnegative matrix A of order m is said to be primitive if it 
is irreducible and has only one eigenvalue of maximal modulus. 
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Obviously, if the matrix T is primitive, then the tailed behavior lim kk
p  is 

completely determined by the spectral radius ( )T  in terms of Eq. (9.114). 
The following proposition provides conditions under which the matrix T is 

primitive. Their proofs may refer to 8.5.2 and 8.5.9 in Horn and Johnson [1]. 
Proposition 9.7 (1) The matrix T of order m is primitive if and only if 0nT

for some 1.n
(2) The matrix T of order m is primitive if and only if 

2 2 2 0.m mT

9.8.2 The Discrete-Time GPH Distribution with Infinitely-many  
Phases

When the size of the matrix T is infinite, and even though there do not exist the 
eigenvalues and eigenvectors for the matrix T, we have a similar concept: the 
decay rate 1/ T  and the quasi-stationary distribution ( ),T  is given by 

( ) ( )T T TT

or

1( ) ( )T T
T

T

which has been analyzed in the previous sections. Therefore, the tailed behavior 
lim kk

p  can be described by the radius T  of convergence of the matrix T.

Note that 

[ ( )][ ( )][ ( )],U D LI zT I R z I z I G z

it follows from Eq. (9.111) that 

* 1 1 1 0
0( ) [ ( )] [ ( )] [ ( )] .L D UP z z I G z I z I R z T

Let
*:sup{ 1 ( ) }.P

It is clear that the discrete-time GPH distribution { }kp  is heavy-tailed if and only 
if 1,  and { }kp  is light-tailed if and only if 1.

In general, it is difficult to determine the decay rate 1/  for a general GPH 
distribution with irreducible representation ( ).T  In what follows we analyze 
two special cases for a level-dependent discrete-time QBD process. 



9 Quasi-Stationary Distributions 

511

9.8.3 The Level-Dependent QBD Processes 

Let

(1) (1)
1 0
(2) (2) (2)
2 1 0

(3) (3) (3)
2 1 0

.

A A
A A AT

A A A

Then we consider the following two cases: 
Case (1) (1)

0 1A e A e e  and ( ) ( ) ( )
0 1 2

k k kA e A e A e e  for 2.k
In this case, it is clear that 

T0 (1) T T T
2[ ] ,0 ,0 , .T A e

We introduce the notation 

1 .
N

j M M N
j M

A A A A

Note that 
1 (1)

1 2

1 1 0

[ ( )]
0[ ( )] [ ( )] ,
0D U

I z A e

I z I R z T

(2)
2

1 (3) (3)
3 2
(4) (4) (4)

4 3 2

( )
[ ( )] ( ) ( )

( ) ( ) ( )
L

I
Y z I

I G z Y z Y z I
Y z Y z Y z I

with for 1 l k,
( )

1
1

( )
1 1

( ) ,

( ) ( ) ( ) ( ) ( ),

l

l k
l

k l l l k i
i l

Y z I

Y z G z G z G z G z

and

1 ( )

1

1

1

[ ( )] ( ),*,*,

( ) ,*,*, ,

k
L k k

k

k j
k j k

I G z Y z

G z
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we obtain 

* 1 1 1 0
0

1
1 (1)

0 1 2
1

( ) [ ( )] [ ( )] [ ( )]

( ) [ ( )] .

L D U

k j
k j k

P z z I G z I z I R z T

z G z I z A e

We write 

1

1

sup 1: ( )k j
k j k

G e

and

1
1sup{ 1:[ ( )] }.T I

It is clear that 

min{ , }.T

If the QBD process is level-independent, then ( ) ( )kG G  for 1.k
Hence we obtain 

1
sup 1: ( ) .k

k
k

G

Case 1( ,0,0, ).
In this case, note that 

1 1 1
1 1

(1) (1) (1)
1 2 3

(2) (2)
1 2

1 (3)
1

[ ( )] [ ( )] ( [ ( )] ,0,0, ),

( ) ( ) ( )
( ) ( )

[ ( )] ( )

L D

U

I G z I z I z

I X z X z X z
I X z X z

I R z I X z
I

with

( )
0

1
( )

1 1

( ) ,

( ) ( ) ( ) ( ) ( )

l

l k
l

k l l l k i
i l

X z I

X z R z R z R z R z

and
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(1) 0 0

1 1 1
1 0

( ) ( )

[ ( )] ,* *
* *

k

k k i k
k k i

U

X z T R z T

I R z T

we obtain 

* 1 0
0 1 1

1 1

( ) [ ( )] ( ) .
k

i k
k i

P z z I z R z T

Let

0

1 1

sup 1: ( )
k

i k
k i

R T

and

1
1sup{ 1:[ ( )] }.T I

Then min{ , }.T

9.8.4 The Continuous-Time GPH Distribution 

We consider a continuous-time GPH distribution with irreducible representation 
( , )T  whose analysis is similar to the discrete-time case. Note that the size of the 
matrix T is infinite, we can determine the decay rate 1/ T  of the matrix T, and thus 
the quasi-stationary distribution ( )T  of the Markov chain T is given by 

 ( ) ( )T T TT

or

1( ) ( ).T T
T

T

Therefore, the tailed behavior lim kk
p  can be described by only the radious T  of 

convergence of the matrix T.
Note that 

 ( ) 1 exp{ }F x Tx e

and the Laplace-Stieltjes transform 



Constructive Computation in Stochastic Models with Applications 

514

* 1 0
0( ) ( ) .f s sI T T

Since

 [ ( )] ( )[ ( )],U D LT sI I R s U s I G s

it follows from Eq. (9.111) that 

* 1 1 1 0
0( ) [ ( )] [ ( )] [ ( )] .L D Uf s I G s U z I R s T

Let

*sup{ 0 : ( ) }.s f s

It is clear that the continuous-time GPH distribution F(x) is heavy-tailed if and 
only if 0; ( )F x  is light-tailed if and only if 0.

In general, it is difficult to determine the decay rate for a general GPH 
distribution with irreducible representation ( , ).T  In what follows we analyze a 
level-dependent Markov chain of M/G/1 type and a level-dependent Markov chain 
of GI/M/1 type, respectively. 

9.8.5 The Level-Dependent Markov Chains of M/G/1 Type 

Let

(1) (1) (1) (1)
1 2 3 4
(2) (2) (2) (2)
0 1 2 3

(3) (3) (3)
0 1 2

.

A A A A
A A A AT

A A A

We assume that (1)

1
0k

k
A e  and ( )

0
0l

k
k

A e  for 2.l  In this case, it is clear that 

T0 (1) T T T
0[ ] ,0 ,0 , .T A e

Note that 

1 (1)
1 0

1 1 0

[ ( )]
0[ ( )] [ ( )] ,
0D U

U s A e

U s I R s T
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(2)
2

1 (3) (3)
3 2
(4) (4) (4)

4 3 2

( )
[ ( )] ( ) ( )

( ) ( ) ( )
L

I
Y s I

I G s Y s Y s I
Y s Y s Y s I

with for 1 ,l k

( )
1

1
( )

1 1

( )

( ) ( ) ( ) ( ) ( ),

l

l k
l

k l l l k i
i l

Y s I

Y s G s G s G s G s

and

1 ( )

1

1

1

[ ( )] ( ),*,*,

( ) ,*,*, ,

k
L k k

k

k j
k j k

I G s Y s

G s

we obtain 

* 1 1 1 0
0

1
1 (1)

0 1 0
1

( ) [ ( )] [ ( )] [ ( )]

( ) [ ( )] .

L D U

k j
k j k

f s I G s U s I R s T

G s U s A e

We write 

1

1

sup 0 : ( )k j
k j k

s G s e

and

1
1sup{ 0 :[ ( )] }.T s U s

It is clear that 

 min{ , },T

which depends on both the matrix T and the initial probability vector 
0 1 2( , , , ).
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9.8.6 The Level-Dependent Markov Chains of GI/M/1 Type 

Let
(1) (1)
1 0
(2) (2) (2)
2 1 0
(3) (3) (3) (3)
3 2 1 0

.

A A
A A AT
A A A A

We assume that 1( ,0,0, ).  In this case, note that 

1 1 1
1 1

(1) (1) (1)
1 2 3

(2) (2)
1 2

1 (3)
1

[ ( )] [ ( )] ( [ ( )] ,0,0, ),

( ) ( ) ( )
( ) ( )

[ ( )] ( )

L D

U

I G s U s U s

I X s X s X s
I X s X s

I R s I X s
I

with
( )
0

1
( )

1 1

( ) ,

( ) ( ) ( ) ( ) ( ).

l

l k
l

k l l l k i
i l

X s I

X s R s R s R s R s

Note that 0 0 T 0 T 0 T T
1 2 3(( ) , ( ) , ( ) , ) ,T T T T  we have 

1
(1) 0 0

1 1
0 0 1

1 0

( ) ( )

[ ( )] ,* *
* *

k

k k i k
k k i

U

X s T R s T

I R s T

we obtain 

* 1 0
0 1 1 1

0 1

( ) [ ( )] ( ) .
k

i k
k i

P z U s R s T

Let

0
1

0 1

sup 0 : ( )
k

i k
k i

s R s T

and
1

1sup{ 0 :[ ( )] }.T s U s

Then min{ , }.T
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9.9 QBD Processes with Infinitely-Many Phases 

In this section, we apply the quasi-stationary distribution and the UL-type 
RG-factorization to study the decay rate of the stationary probability vector of a 
discrete-time level-independent QBD process with infinitely-many phases.  

Consider an irreducible discrete-time level-independent QBD process with 
infinitely-many phases whose transition probability matrix is given by 

0 0

0 ,

B A
C B AP

C B A
 (9.115) 

where the sizes of matrices B0 and B are infinite and the sizes of all other blocks 
are determined accordingly. We assume that the QBD process is irreducible and 
positive recurrent. Let 0 1 2( , , , )  be the stationary probability vector of 
the QBD process. Then 1

1
k

k R  for 1,k  where the matrix R is the minimal 
nonnegative solution to the matrix equation 2 .A RB R C R  In addition, let 
the matrix G be the minimal nonnegative solution to the matrix equation 2AG

.BG C G  Let U be the transition probability matrix of the censored chain of 
the Markov chain  to level 0, where 

 .

B A
C B A

C B A

Then
1 T T

min
1

( ,0,0, )[ ] ( ,0,0, )

( ) .

U B A I C

B A I U C

It is easy to see from the censoring technique that 
1( )R A I U

and
1( ) .G I U C

It is easy to check from the RG-factorization for the repeated row that 
1 1( ) ( )( )( ).I A B C I R I U I G

We assume that there exists a positive constant 1 and two positive vectors 
x and y such that 
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Condition 1 1 1( ) and ( ) .x A B C x A B C y y
Condition 2 1 and .xe xy
Condition 3 1 .xAy xCy
Then xR x  and ,Rz z  where 1( )( ) .z I U I G y
For the positive recurrent QBD process Q, if Conditions 1 to 3 hold, 

1c z  and the QBD process  is irreducible, then 

~ , as .n nR zx n

Thus, we obtain that as n

1 ~ .n n
n R cx

We consider a double QBD process P given in Eq. (9.115) whose repeated blocks 
are given by 

1 0

2 1 0

2 1 0

2 1 0

1 0

2 1 0

2 1 0

2 1 0

,

a a
a a a

A a a a
a a a

b b
b b b

B b b b
b b b

and

1 0

2 1 0

2 1 0

2 1 0

.

c c
c c c

C c c c
c c c

We write 
2( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

D A B C
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and

( ) ( )
( ) ( ) ( )

( ) .( ) ( ) ( )
( ) ( ) ( )

E

Let ( )  be the radius of convergence for the matrix ( ).D  We denote by x
and y the ( )-invariant measure and the ( )-invariant vector of the matrix 

( ).D  To determine ( ),  we first need to compute the radius ( )  of convergence 
for the matrix ( ).E  Let 1/ ( )v  and ( ) ( ) ( )z z 2 ( ).z  Then 
solving the system of equations 

( ) ,
( ) ,

v
v

we obtain 

( ) ,
( )

( ) 2 ( ) ( ).v

Hence we have 

1( ) .
( ) 2 ( ) ( )

To provide the state classification of the matrix ( ),D  we consider the censored 
matrix of ( )D  to level 0 which is given by 

2

0 2

( ) ( ) ( ) ( ) ( ) 4 ( ) ( )( ) 1 1 .
2 ( ) ( )

U

Thus, we obtain 

0
0

( ) ( ) 1 ,k
k

k
q U D

Note that, in Condition 2: 1xe  and ,xy  this indicates that the matrix 
( )D  is ( )-positive recurrent. That is, we consider the QBD process with 

infinitely-many phases in which the matrix ( )D  must be ( )-positive recurrent. 
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The following theorem provides a sufficient condition under which the matrix 
( )D  is ( )-positive recurrent. The proof is clear, and thus is omitted here. 
Theorem 9.28 If ( ) ( ),  then the matrix ( )D  must be ( )-positive 

recurrent. In this case, 1/ .
If the matrix ( )D  is ( )-positive recurrent, then the ( )-invariant measure 

is given by 

0 0x z

and
1

0 0,1( ) ( ), 1,k
kx z R R k

where 0 0z  such that 
0

1,k
k

x  or 

0 1
0,1

2 2

1 ,
1 ( )[1 ( )]

1 ( ) ( ( ) 1) 4 ( ) ( )
( )

2 ( )

z
R R

R

and

0,1
( )( ) ( );
( )

R R

and the ( )-invariant vector is given by 

0 0y w

and
1

0 1,0 ( ) ( ), 1,k
ky w G G k

where 0 0w  such that 
0

,k k
k

x y  or 

0 1
0,1

2 2

1 ,
1 ( )[1 ( )]

1 ( ) ( ( ) 1) 4 ( ) ( )
( )

2 ( )

w
G G

G

and
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1,0
( )( ) ( ).
( )

G G

Note that 

2
0 0

0 1

( ) ( ) ( )1 ( ) ,
( ) ( ) ( )

n
n

k k
k n

x y z w R

we obtain that 
0

.k k
k

x y  if and only if 

2

1

( ) ( ) .
( )

n
n

n
R

Thus we have 

2( ) ( ) 1.
( )

R

For the double QBD process, if the matrix ( )D  is ( )-positive recurrent 
with 1/ ,  then 

~ , as .n nR zx n

Thus, we obtain that as .n

1 ~ ,n n
n R cx

where

1c z

and
1( )( ) .z I U I G y

9.10 Notes in the Literature 

Quasi-stationary behaviour for block-structured Markov chains is not only 
theoretically important, but also it is found to have many interesting applications 
in practical areas, including biology by Scheffer [30], Holling [10], Pakes [24] 
and Pollett [26]; chemistry by Oppenheim, Shuler and Weiss[23], Parsons and 
Pollett [25] and Pollett [27]; telecommunications by Schrijner [31]; queues by 
Makimoto [20], Kijima and Makimoto [15], among others. Three excellent 
overviews on the quasi-stationarity behaviour can be found in Schrijiner [31], 
Kijima and Makimoto [15] and Pollett [29]. 



Constructive Computation in Stochastic Models with Applications 

522

The study of the quasi-stationary behavior was initiated by Yaglom[33]. Since 
then, significant advances have been made through the efforts of many researchers. 
For the block-structured transition matrices, those works were centered in obtaining 
probabilistic measures for expressing the radius of convergence, the state 

-classification, and the quasi-stationary distributions. Kijima [14] first analyzed 
the quasi-stationary distributions of the Markov chains of GI/M/1 type without the 
boundary and the Markov chains of M/G/1 type without the boundary through the 
matrix R and the matrix G, respectively. Some preliminary results for expressing 
the quasi-stationary distributions of the Markov chains of GI/M/1 type and M/G/1 
type were obtained in Li [17]. A complete work for the quasi-stationary distributions 
of the Markov chains of GI/M/1 type and M/G/1 type were obtained in Li [18,19]. 
On the other hand, the quasi-stationarity distributions of the QBD processes can 
be found in Makimoto [20],Bean, Bright, Latouche, Pearce, Pollett and Taylor 
[1], and Bean, Pollett and Taylor [3,4]. 

The concept of -invariant measures is a generalization of the quasi-stationarity 
distributions, e.g., see Derman [5], Harris [9], Latouche, Pearce and Taylor [16], 
and Gail, Hantler and Taylor [7]. In this case,  can still be interpreted 
probabilistically in terms of the movement of particles whose initial states are 
governed by Poisson distributions. Readers may refer to Derman [5], Kelly [12], 
Latouche, Pearce and Taylor [16], and Gail, Hantler and Taylor [17]. 

This chapter is mainly based on Li and Zhao [18,19], Kijima [14], Bean, 
Pollett and Taylor [3], Fujimoto, Takahashi and Makimoto [6], Bean and Nielsen 
[2] and Haque, and Zhao and Liu [8]. At the same time, we have also added some 
new results without publication for a more systematical organization. 

Problems

9.1 For a Markov chain P of GI/G/1 type, provide probabilistic interpretation 
on the R-, U- and G-measures of the matrix P.
9.2 Consider a continuous-time Markov chain Q of GI/G/1 type without the 
boundary, prove that Q is -transient and provide expression for the quasi- 
stationary distribution. 
9.3 Construct an irreducible Markov chain with finitely many levels, which is 

-transient.
9.4 For an -recurrent Markov chain of GI/G/1 type, provide conditions under 
which P is -positive recurrent. 
9.5 For a PH/PH/1/N queue, compute the quasi-stationary distribution when the 
server is in a busy period. 
9.6 For a MAP/PH/1 queue with a repairable server, compute the quasi-stationary 
distribution before the server fails for the first time. 
9.7 For a BMAP/MX/1 queue with a repairable server, compute the quasi- 
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stationary distribution before the server fails for the first time. 
9.8 For a level-dependent QBD process, provide expression for the quasi- 
stationary distribution in terms of the LU-type RG-factorization.
9.9 Consider a two-demand queueing system, where there are three types of 
customers. The first and second types of customers can enter server one and server 
two for their services, respectively. Each arrival of the third type of customers 
simultaneously places two service demands to server one and server two. The 
arrivals of the three types of customers form Poisson processes with arrival rates 

1 2 3, and , respectively. The service times at the two servers are exponential 
with rates 1  and 2 ,  respectively. The waiting rooms before the two servers are 
infinite. Use the QBD process with infinitely-many phases to analyze the decay 
parameter for the stationary probability vector. 
9.10 Consider a pre-emptive priority queue with an infinite waiting room. Two 
types of Poisson customers arrive independently at rate 1  for lower priority 
customers and at rate 2  for higher priority customers. The two types of customers 
require the same exponential service time at rate .  with the preemptive rule, a 
higher priority customer, upon arrival, passes all lower priority customers in the 
queue or takes over the service if a lower priority customer is currently being 
served. Use the QBD process with infinitely-many phases to analyze the decay 
parameter for the stationary probability vector. 
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Abstract In this chapter, we consider reward processes of an irreducible 
continuous-time block-structured Markov chain. By using the RG-factorizations, 
we provide a unified algorithmic framework to derive expressions for 
conditional distributions and conditional moments of the reward processes. 
As an important example, we study the reward processes for an irreducible 
continuous-time level-dependent QBD process with either finitely-many 
levels or infinitely-many levels. At the same time, we provide a simple 
introduction to the reward processes of an irreducible discrete-time 
block-structured Markov chain. 

Keywords stochastic models, RG-factorization, reward process, accumulated 
reward, reward rate, the first accumulated time. 

In this chapter, we consider various reward processes of an irreducible continuous- 
time block-structured Markov chain. By using the UL- and LU-types of RG-
factorizations, we provide a unified algorithmic framework to derive expressions 
for conditional distributions and conditional moments of the reward processes. 
As an important example, we study the reward processes for an irreducible 
continuous-time level-dependent QBD process with either finitely-many levels or 
infinitely-many levels. At the same time, we provide a simple introduction to the 
reward processes of an irreducible discrete-time block-structured Markov chain.  

This chapter is organized as follows. Section 10.1 considers reward processes 
of an irreducible continuous-time block-structured Markov chain in terms of the 
UL- and LU-types of RG-factorizations. Section 10.2 deals with the transient 
accumulated rewards in terms of the partial differential equations. Section 10.3 
computes moments of both the accumulated reward and the first accumulated 
time to a given reward. Section 10.4 analyzes an accumulated reward process for 
an irreducible continuous-time level-dependent QBD process in terms of a 
system of infinite-dimensional linear equations. Sections 10.5 and 10.6 study an 
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up-type reward process of the QBD process with finitely-many levels and with 
infinitely-many levels, respectively. Section 10.7 discusses a down-type reward 
process and a return-type reward process for the QBD process. Section 10.8 provides 
a simple introduction to the reward processes for an irreducible discrete-time 
block-structured Markov chain. Finally, Section 10.9 summarizes notes for the 
references related to the results of this chapter.  

10.1 Continuous-Time Markov Reward Processes

In this section, we consider various reward processes of an irreducible continuous- 
time block-structured Markov chain in terms of the UL- and LU-types of 
RG-factorizations, and provide expressions for the conditional distributions and 
onditioncel moments of the reward processes.  

We consider an irreducible continuous-time block-structured Markov chain 
{ , 0}tx t  on the state space {( , ) : 0,1 }kk j k j m  whose infinitesimal 
generator is given by 

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

.

D D D
D D D

Q
D D D

Let

,

,1 ,2 ,

( ) { ( , )},
( ) ( ( ), ( ), , ( ))

k

k j t

k k k k m

t P x k j
t t t t

and

0 1 2( ) ( ( ), ( ), ( ), ).t t t t

Then it is clear that 

d ( ) ( ) ,
d

t t Q
t

 (10.1) 

which leads to 

( ) (0)exp{ },t Qt

where (0)  is the initial probability vector of the Markov chain Q.
If the Markov chain Q is positive recurrent, then the limit lim ( )

t
t  exists, 

and it is clear that 0Q  and 1e , Where e is a column vector of ones with 
suitable size. Further, if ,  then ( )t  for all 0.t
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Let
0

( ) ( )d .
t

L t x x  We call ( )L t  a cumulative state probability vector of the 

Markov chain Q. At the same time, , ( )k iL t  is the expected total time spent by the 
Markov chain Q at state ( , )k i  during the time interval [0, ).t  It is easy to check 
that

d ( ) ( ) (0).
d

L t L t Q
t

 (10.2) 

Thus we have 

0
( ) (0) exp{ }d .

t
L t Qx x  (10.3) 

Specifically, we write 
0

( )d .x x  Note that lim d ( ) d 0,
t

L t t  it follows from 

Eq. (10.2) that 
 (0)Q  (10.4) 

Using the UL-type RG-factorization, we obtain 

111 1
max(0) (0) ( ) .( ) D ULQ U I RI G

For
1 1 1 1

0 1 2diag( , , , ),DU U U U

it is worthwhile to note that 1
0U  is the ordinary inverse if the Markov chain Q is 

transient; 1
0U  is the group inverse 0

#U  if the Markov chain Q is recurrent. Note 
that the group inverse is given by 

11
0 0 0 0( ) ,U U ex ex

where 0x  is the sectionary probability vector of the Markov chain 0.U
On the other hand, applying the LU-type RG -factorization we obtain 

1 11 1
max(0) (0) .( )( ) D LUQ U I RI G

Note that 1
0U  is the ordinary inverse of the censored matrix 0U  for any 

irreducible Markov chain Q.
Remark 10.1 (1) If ,E  then ,

( , )
k i

k i E
e  is the expected total time 

spent by the Markov chain Q in the state set E.  
(2) If 0,Qe  then the Markov chain Q contains at least one absorbing state, 

hence ,
( , )

k i
k i

e  is the mean time to absorption.  
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Let ( )f x  be a real function which guarantees that the random variable ( )tf X
is finite for 0t  a.s.. Then ( )tf X  is an instantaneous reward rate at time t. We 
now consider the instantaneous reward rate ( )tf X  through Eq. (10.5) to Eq. (10.9), 
which can be easily proved by the law of total probability.  

10.1.1 The Expected Instantaneous Reward Rate at Time t

,
( , ) 0

[ ( )] ( ) ( , ) ( ) ( ) ,t k i k k
k i k

E f X t f k i t f t f  (10.5) 

where
TT T T T

0 1 2( ( ,1), ( ,2), , ( , )) , .( , , , )k kf f k f k f k m f f f f

If the Markov chain Q is stable, then the limit of the expected instantaneous 
reward rate ( )tf X  is given by 

,
( , ) 0

lim [ ( )] ( , ) .t k i k kt k i k
E f X f k i f f  (10.6) 

10.1.2 The nth Moment of the Instantaneous Reward Rate at Time t

,
( , )

[ ( ) ] ( ) ( , ) .n n
t k i

k i
E f X t f k i  (10.7) 

If the Markov chain Q is stable, then the limit of the n th moment of the 
instantaneous reward rate ( )tf X  is given by 

( )
lim ( ) ( ) .n n

t k it k i
E f X f k i  (10.8) 

10.1.3 The Distribution of the Instantaneous Reward Rate at Time t

Note that 

( , )

( , )

,
( , )

( , )

{ ( ) } { ( ) , ( , )}

{ ( , ) , ( , )}

( ).

t t t
k i

t
k i

k i
f k i x
k i

P f X x P f X x X k i

P f k i x X k i

t
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If the Markov chain Q is stable, then 

,
( , )

( , )

lim { ( ) } .t k it f k i x
k i

P f X x  (10.9) 

10.1.4 The Accumulated Reward Over [0,t)

For the instantaneous reward rate ( ),tf X  an accumulated reward over the time 
interval [0 )t  is defined as  

0
( ) ( )d .

t

ut f X u  (10.10) 

We assume that the real function ( )f x  makes the random variable ( )t
for 0,t  a.s.. 

The accumulated reward process ( )t  may represent many interesting perfor- 
mance measures of a stochastic model. For example, we analyze an irreducible 
QBD process: (1) if ( , ) 1f k j  for ,m k n  then ( )t  represents the sojourn 
time of the QBD process on levels m to n in the time interval [0, ].t  (2) If ( , )f k j
is a reward associated with operating at state ( , )k j  for ( , ) ,k j  then ( )t
represents the total reward of the QBD process in the time interval [0, ]t .

10.1.5 The Expected Accumulated Reward (t) Over [0,t)

Note that 

0

0
( , )

,
( , )

[ ( )] ( )d

( , ) { ( , )}d

( ) ( , ),

t

u

t

u
k i

k i
k i

E t E f X u

f k i P X k i u

L t f k i

we obtain 

,
( , ) 0

[ ( )] ( ) ( , ) ( ) ( ) .k i k k
k i k

E t L t f k i L t f L t f  (10.11) 

10.1.6 The nth Moment of the Accumulated Reward (t) Over [0,t)

,
( , )

[ ] ( ) ( , ) .( )n n
k i

k i
E L t f k it  (10.12) 
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As a practical application, we use the Markov reward process to analyze a 
finite-buffer 1M M m  queue with server breakdowns and repairs. A reward rate 
of 1 is assigned to all the system operational states and a reward rate of 0 is 
assigned to all the system failure states. The instantaneous availability of the 
system is [ ( ( ))]E f X t  and the cumulative operational time of the system in the 
time interval [0, )t  is [ ( )].E t  The interval availability of the system in the  
time interval [0, )t  is [ ( )] ,E t t  and the stationary availability of the system is 
lim [ ( )] .
t

E t t  On the other hand, the measures related to the time to the system 

first failure are of interest. To compute these measures, all the failure states are 
regarded as an absorbing state. In this case, the reliability function is [ ( ( ))].E f X t
The lifetime of the system in the time interval [0, )t  is [ ( )]E t  and the mean time 
to the system first failure is [ ( )].E

10.2 The Transient Accumulated Rewards

In this section, we analyze the transient accumulated rewards of an irreducible 
continuous-time block-structured Markov chain in terms of a useful method 
devoloped by the partial differential equations.  

Based on the real function ( )f x  and the Markov chain Q, the transient probability 
distribution of the accumulated reward ( )t  is defined by  

( , ) { ( ) }.t x P t x

We write 

,

,1 ,2 ,

( , ) { ( ) , ( ) ( , )},
( , ) ( ( , ), ( , ), , ( , ))

k

k j

k k k k m

H t x P t x X t k j
H t x H t x H t x H t x

 (10.13) 

and

0 1 2( , ) ( ( , ), ( , ), ( , ), );
( ) diag( ( ,1), ( ,1), , ( , ))k k

H t x H t x H t x H t x
f f k f k f k m

and

0 1 2diag ( ), ( ), ( ), .f f f

It is clear that 

( , ) ( , ) .t x H t x e

For the Markov reward process { ( ), 0},t t  it is easy to obtain the 
Kolmogorov’s forward equation as follows: 
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, ,
, ( , ),( , )

( , )

( , ) ( , )
( , ) ( , ) ,k j k j

l i l i k j
l i

H t x H t x
f k j H t x D

t x
 (10.14) 

or

,
0

( , ) ( , ) ( ) ( , ) ,k k
k l l k

l

H t x H t x f H t x D
t x

Therefore, we have 

( , ) ( , ) ( , )H t x H t x H t x Q
t x

 (10.15) 

with the initial conditions 

 ( ,0) (0) ( )H t t  (10.16) 

and

 (0, ) (0) ( ).H x x  (10.17) 

Remark 10.2 Let , ( , ) { ( ) , ( ) ( , )}k jL t x P t x X t k j  and T( , ) ( , ).L t x H t x
Then the Kolmogorov’s backward equation is given by 

, ,
( , ) ( , ) ,

( , )

( , ) ( , )
( , ) ( , ),k j k j

k j l i l i
l i

L t x L t x
f k j D L t x

t x
 (10.18) 

which leads to 

( , ) ( , ) ( , ),L t x L t x QL t x
t x

 (10.19) 

with the initial conditions 

( ,0) ( )L t e t

and

(0, ) ( ).L x e x

It is easy to see that ( , ) (0) ( , ).t x L t x
We introduce the necessary notation for the Laplace transform and the 

Laplace-Stieltjes transform as follows:  

*

0
( ) ( )dstA s e A t t

and

0
( ) d ( ).stA s e A t
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Now, we solve the Kolmogorov’s forward equation Eq. (10.15) with the initial 
conditions Eq. (10.16) and Eq. (10.17). Taking the Laplace transform of Eq. (10.15) 
with respect to ,t s  we obtain 

*
* *d ( , )( , ) (0, ) ( , ) .

d
H s xsH s x H x H s x Q

x

Note that (0, ) (0) ( )H x x  in Eq. (10.17), we obtain 

*
*d ( , ) ( , )( ) (0).

d
H s x H s x Q sI

x
 (10.20) 

Taking the Laplace-Stieltjes transform of Eq. (10.20) with respect to ,x u  we 
obtain

*

1*
max

( , )[ ( )] (0),
( , ) (0) ,[ ( )]

~

~

H s u Q sI u
H s u Q sI u

which leads to 
1

max( , ) (0) .[ ( )]~~H s u s Q sI u

Let
1

max( , ) .[ ( )]~~S s u s Q sI u

Then

( , ) ( , ).~~ ~~H s u S s u

Note that for , 0,s u  the matrix ( )Q sI u  is the infinitesimal generator of 
an irreducible Markov chain, we have the UL-type RG-factorization

( ) [ ( , )] ( , )[ ( , )],U D LQ sI u I R s u U s u I G s u

which leads to 
11 1( , ) (0) ( , )[ ( , )] ,[ ( , )]~~

D ULH s u s U s u I R s uI G s u

where
1 1 1 1

0 1 2( , ) diag( ( , ), ( , ), ( , ), ),DU s u U s u U s u U s u

On the other hand, we obtain the LU-type RG-factorization

( ) [ ( , )] ( , )[ ( , )],L D UQ sI u I R s u U s u I G s u

hence we have 
1 11( , ) (0) ( , ) .[ ( , )][ ( , )]~~

D LUH s u s U s u I R s uI G s u
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10.3 The First Accumulated Time

In this section, we analyze the first accumulated time of the reward process to a 
given reward, and obtain the conditional distribution of the first accumulated time. 

Let ( )x  be the first accumulated time to a given reward x. Then 

 ( ) min{ : ( ) }.x t t x  (10.21) 

We write 

 ( , ) { ( ) }.C t x P x t  (10.22) 

Since ( )t  is the accumulated reward over the time interval [0, ),t  it is clear that 
the event ( )x t  is equivalent to the event ( ) .t x  Hence we get  

 ( , ) 1 { ( ) } 1 ( , ).C t x P t x t x  (10.23) 

Let the given reward W be a random variable with the distribution ( ) { }.w x P W x
Then

0
( ) { ( ) } ( , )d ( ).C t P W t C t x w x  (10.24) 

Now, we compute the distributions of the accumulated reward ( )t  and the 
first accumulated time ( )x  to a given reward x . We define 

( , ),( , ) ( , ) { ( ) , ( ) ( , ) (0) ( , )}l i k jS t x P t x X t k j X l i  (10.25) 

and

( , ),( , ) ( , ) { ( ) , ( ) ( , ) (0) ( , )}.l i k jT t x P x t X t k j X l i  (10.26) 

We write 

( , ),( , ), 1 ,1

0

( , ),( , ), 1 ,1

, 0

( ( , ))( , ) ,

( ( , ))( , ) ;
( ( , ))( , ) ,

( ( , ))( , ) .

l k

l k

l i k jl k i m j m

l k l k

l i k jl k i m j m

l k l k

S t xS t x

S t xS t x
T t xT t x

T t xT t x

It is clear that 

 ( , ) (0) ( , ) ,t x S t x e  (10.27) 

 ( , ) (0) ( , )C t x T t x e  (10.28) 

and

[ ( , ) ( , )] .S t x T t x e e



10 Markov Reward Processes 

535

The following theorem provides two useful relations for the two matrices 
( , )~~S s u  and ( , ),~~T s u  respectively. 

Theorem 10.1 

( ) ( , )~~sI u Q S s u sI  (10.29) 

and

( ) ( , ) .~~sI u Q T s u u Q  (10.30) 

Proof Consider an exponentially distributed reward requirement W with 
parameter u. Then it follows from Eq. (10.23) and Eq. (10.24) that 

0

0

d 1

1 d

1

ux

ux

~

C t u C t x e

u t x e x

t u

Note that ( , )C t u  is of phase type with irreducible expression ( (0), ),Q u  thus 
we obtain 

1 ( , ) ( , ) 1 (0)exp{( ) } ,~ t u C t u Q u t e

which leads to 

( , ) (0)exp{( ) } .~ t u Q u t e

It follows from Eq. (10.27) and Eq. (10.28) that 

( , ) exp{( ) },~S t u Q u t  (10.31) 

which leads to Eq. (10.29).  
Note that 

( , ) ( , ),~~ ~~T s u I S s u

we have 

( ) ( , ) ( )[ ( , )] .~~ ~~sI u Q T s u sI u Q I S s u u Q

This completes the proof. 
It is easy to check that the matrix ( )Q sI u  for , 0s u  is the infinitesimal 

generator of an irreducible Markov chain. Thus, we obtain 
1

max( , ) [ ( )]~~S s u s Q sI u  (10.32) 

and
1

max( , ) ( ).[ ( )]~~T s u u QQ sI u  (10.33) 
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It is clear that 

1( , ) ( , )( ).~~ ~~T s u S s u u Q
s

Note that 
111 1

max ( , )[ ( , )][ ( , )][ ( )] D UL U s u I R s uI G s uQ sI u

or
1 11 1

max ( , ) .[ ( )] [ ( , )][ ( , )] D LU U s uQ sI u I R s uI G s u

Finally, we compute the first moments of the random variables ( )t  and 
( ).x
It follows from Eq. (10.3) and Eq. (10.11) that 

0
[ ( )] (0) exp{ }d .

t
E t Qx x e  (10.34) 

It follows from Eq. (10.22) and Eq. (10.23) that 

{ ( ) } 1 { ( ) }P x t P t x

which leads to 

0
[ ( )] { ( ) }d .E x P t x t

Let ( ) [ ( )].x E x  Then 

0

0
1

max

( ) ( , )d

(0)exp{( ) } d

(0) .( )

~ ~u t u t

Q u t e t

eQ u (10.35)

10.4 Computation of the Reward Moments

In this section, we provide a method for computing moments of the accumulated 
reward and the first accumulated time to a given reward.  

10.4.1 The Moments of the Transient Accumulated Reward  

It follows from Eq. (10.15) that  

( , ) ( , ) ( , )H t x H t x H t x Q
t x
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with the initial conditions 

( ,0) (0) ( )H t t

and

(0, ) (0) ( ).H x x

We obtain 

( , ) ( , )( )H t u H t u Q u
t

with the initial condition 

(0, ) (0).H u

Thus we have 

( , ) (0)exp{( ) },H t u Q u t

which leads to 

( , ) (0)exp{( ) } .t u Q u t e

It is clear that for 1,n

0[ ] ( 1) ( , ) .( )
n

n n
unE t ut

u
We write 

0( , ) , , 1.( )
n

i
unn i n iQ u

u
The following lemma provides an iterative relationship for the matrices ( , )n i

for , 1.n i  The proof is clear, and thus is omitted here.  
Lemma 10.1 For 0,n i

1

(0,0) ,
( ,0) 0, 1,
(0, ) , 1,
(1, ) , 1,
( ,1) 0, 2,
( , ) ( , 1) ( 1, 1), , 2.

i

i

I
n n

i Q i
i i Q i

n n
n i Q n i n n i n i

The following theorem provides an expression for the nth moment [ ( ) ].nE t
Theorem 10.2 For 1,n ,

0
[ ] ( 1) (0) ( , ) .( )

!

i
n n

i

tE n i et
i

 (10.36) 
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Proof It follows from Eq. (10.27) that 

0

( , ) (0)exp{( ) }

(0) .( )

~

i
i

i

t u Q u t e
t eQ u
i

Hence, we obtain 

0

0

[ ( ) ] ( 1) ( , )

(0) ( , ) .( 1)

n
n n ~

un

i
n

i

E t t u
u

t n i e
i

This completes the proof. 

10.4.2 The Moments of the First Accumulated Time  

It is complicated to compute the function [ ( ) ]nE x  for 1,n  thus we consider 
the following two cases:  

Case  ( , ) 0f k i  for all 0k  and 1 .ki m
It follows from Eq. (10.15) that 

1d ( , ) ( , )( )
d

H s x H s x Q sI
x

with the initial condition 

( ,0) (0).H s

Therefore, we get 
1( , ) (0)exp{( ) },H s x Q sI x

which leads to 
1( , ) (0)exp{( ) } .~ s x Q sI x e

Note that 

0[ ( ) ] ( 1) ( , ) .
n

n n ~
snE x s x

s

Let

1
0( , ) , , 0.[( ) ]

n
i

n sM n i n iQ sI
s
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Then

1

1 1

(0,0) ,
( ,0) 0, 1,

(0, ) , 1,( )
( , ) ( , 1) ( 1, 1), , 1.

i

M I
M n n

M i iQ
M n i Q M n i nQ M n i n i

Therefore, we obtain 

0

[ ( ) ] ( 1) (0) ( , ) .
!

i
n n

i

xE x M n i e
i

Now, we provide another method for computing [ ( ) ].nE x

Let ( ) ( ) [ ( ) ]n nx E x  and ( ) ( )

0
( ) ( ).n ux nu e d x  Then   

( )
0

0

1 1
0max

1 1 1 1
0

0

( ) ( 1) ( , )

(0) ( , )( 1)

(0)( 1) [ ( )]

(0) ( 1) .( 1) ( )

n
n n ~~

sn

n
n ~~

sn

n
n

sn

n i in
sn

i

u C s u
s

T s u e
s

u eQ sI u
s

eI su u Q
s

We write 

1 1 1 1
0( , ) ( ) , , 0.

n
i

u snn i I su u Q n i
s

Thus we obtain 

( )

0

( ) ( 1) (0) ( , ) .( 1)in n
u

i
u n i e

Case ( , ) 0f k i  for 0 k N  and 1 ,ki m  while ( , ) 0f k i  for 
1k N  and 1 .ki m

In this case, we write 

1 2

1

(0) ( (0), (0)),
diag( ,0)

and

1,1 1,2

2,1 2,2

Q Q
Q

Q Q
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according to {Level : 0 }E k k N  and {Level : 1}.cE k k N  Hence 

1
1,1 1 1,21

max
2,1 2,2 max

( )
[ ( )] .

Q sI u Q
Q sI u

Q Q sI

Let

( ) ,
A B

Q sI u
C D

where

1,1 1( ),A Q sI u

1,2 ,B Q

2,1C Q

and

2,2 .D Q sI

Then
1 1 1 1

1 1 1 1 1 1
,

A B F F BD
C D D CF D D CF BD

where
1 .F A BD C

It follows from Eq. (10.28) and Eq. (10.33) that 

1
max

1 1 1
1

1 2 1 1 1 1 1 1

1 1 1
1 1 2 1

( , ) (0) ( , )
(0)[ ( )]

( (0), (0))
0

(0) (0) .

~~ ~~C s u T s u e
u eQ sI u

u eF F BD
D CF D D CF BD

F u e D CF u e

Let
1

1 1 1( , ) (0)~~C s u F u e

and
1 1

2 2 1( , ) (0) .~~C s u D CF u e

Then
11

1 1 12,21 1,1 1,2 2,1( , ) (0) ,( )[ ]~~C s u u esI QsI u Q Q Q



10 Markov Reward Processes 

541

which leads to 

1 1( , ) (0)exp{ ( ) } ,~C s x s x e

where
11 1 1

2,21 1,1 1 1,2 2,1 1( )( ) ;sI Qs Q Q Q s

2 2 2,2 2,1
11

11 1,1 1,2 2,2 2,1

( , ) (0)( )

,[ ( ) ]

~~C s u sI Q Q

u esI u Q Q sI Q Q

which yields 

2 2 2,2 2,1( , ) (0)( ) exp{ ( ) } .~C s x sI Q Q s x e

We write 

( ) ( )
1 2[ ] ( ) ( ),( )n n nE x xx

where

( )
1 1 0( ) ( 1) ( , )

n
n n ~

snx C s x
s

and

( )
2 2 0( ) ( 1) ( , ) .

n
n n ~

snx C s x
s

Note that 

1 1
0

[ ( ) ]( , ) (0) ,
!

i
~

i

s xC s x e
i

we obtain 

( ) ( )
1

0

( ) ( 1) ( ) ,
!

i
n n n

i

xx L i e
i

where

( )
0

1 1 1
1 1,1 1 1,2 2,2 2,1

1 1 1
1 1 1,2 2,2 2,1

1 1 1
1 1,2 2,2 2,1

( ) ( 1)

0

d [ ( )]( )
d

0 0, 1,

, 0, 0,

, 1, 1,

! , 1, 2,( 1)

(1) ( 1), 2, 1.

in
n

sn

i

n

n
l n

l

sL i
s

i n

i nQ Q Q Q

Q Q Q i n

n Q Q Q i n
n

L L i i n
l
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Similarly, since 

2 2 2,2 2,1
0

2 2 2 2,1
0

[ ( ) ]( , ) (0)( )
!

(0) ,[ ( )]
!

i
~

i
i

i

i

s xC s x sI Q Q e
i

x sI Q Q es
i

we obtain 

( ) ( )
2 2

0

( ) (0) ( ) ,( 1)
!

i
nn n

i

xx H i e
i

where

2,2 2,1( )

0

( 1)
2,2 2,1

1 1 1 1
2,2 2,1 1 1,1 1 1,2 2,2 2,1

( ) ( 1)

0

d {( ) }[ ( )]
( )

d

, 0, 0,( 1)
( ) , 1, 0,

( 1) , 1, 1,

in
n

n

s
n n

i

n
l n

l

sI Q Q s
H i

s

Q Q i n
Q Q Q Q Q Q i n

n
H i G i n

l

and

1 1 1
1 1,1 1 1,2 2,2 2,1

( ) 1
1 1 1,2 2,2 2,1

1 1
1 1,2 2,2 2,1

, 0,
, 1,

! , 2.( 1)

n

n

Q Q Q Q n
G Q Q Q n

n Q Q Q n

Therefore for 1,n

( ) ( ) ( )
1

0
[ ] ( ) ( 1) [ ( ) ( )] .( )

!

i
n n n n n

i

xE x L i H i ex
i

Since the matrix 2,2Q  is of infinite size, the inverse of 2,2Q  is maximal nonpositive. 
We can use the RG-factorizations to compute the maximal nonpositive inverse 1

2,2 .Q

10.5 Accumulated Reward in a QBD Process

In this section, we consider the accumulated reward process of an irreducible 
continuous-time QBD process. We provide an iterative solution for the Laplace 
transforms of the conditional moments of the accumulated reward process in 
terms of a system of infinite-dimensional linear equations.  
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Let { ( ), 0}x t t  be an irreducible continuous-time QBD process with 
infinitesimal generator Q given in Eq. (1.4). We assume that the QBD process Q
is separable and Borel measurable, and its sample functions are all lower semi- 
continuous at the right-hand side. Therefore, the QBD process has the strong 
Markov property. Intuitively, if each diagonal entry of the matrix Q is finite, then 
the QBD process also has the strong Markov property.  

We define an accumulated reward process as 

0
( ) ( ( ))d .

t
t f x u u  (10.37) 

Suppose the initial state of the QBD process { ( ), 0}x t t  is at state ( , ),k j  i.e, 
(0) ( , ).x k j  Let 

, 0
( ) ( ( ))d (0) ( , )

t

k j t E f x u u x k j  (10.38) 

and
T

,1 ,2 ,( ( ), ( ), , ( ))( ) , 0.
kk k k Mk t t tt k

We denote by *( )k s  the Laplace transform of the column vector ( ),k t  that is, 

*

0
( ) ( )d , 0.st

k ks e t t k  (10.39) 

For an arbitrary matrix ( ) ,k
lA  we use ( )

,( , )
k

l i ja  to denote its ( , )i j th entry.  

The following theorem provides a system of infinite-dimensional linear equations 
satisfied by the vector sequence *{ ( )}.k s

Theorem 10.3 The vector sequence *{ ( ), 0}k s k  satisfies the following 
system of infinite-dimensional linear equations,  

* * (0) *
0 0 0 0 0 1( ) ( ) ( ) ( ) ,s s e B s B s  (10.40) 

and for 1,l
* ( ) * * ( ) *

2 1 0 1( ) ( ) ( ) ( ) ( ) ,l l
l l l l l ls s e B s B s B s  (10.41) 

where for 0,k
( ) ( ) ( ) ( )
1 1,(1,1) 1,(2,2) 1,( )diag , , ,

k k

k k k k
k M MB B b b b  (10.42) 

and

2 2 2( ) ( ) ( )
1,(1,1) 1,(2,2) 1,( , )

( , )( ,1) ( ,2)( ) diag , , , .
k k

k
k k k k

M M

f k Mf k f ks
s b s b s b
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Proof We only prove Eq. (10.40), while the proof of Eq. (10.41) is similar.  
Let inf{ : ( ) ( , )}.t x t l i  Then we have 

( , ) 0
( ) ( ( ))d (0) ( , )

t

l i t E f x u u x l i

                       
0

( ( ))d , (0) ( , )
t

E f x u u t x l i

                              
0

( ( ))d , (0) ( , ) .
t

E f x u u t x l i  (10.43) 

When (0) ( , ),x l i  it is easy to check that ( )
1,( , ){ } exp l

i iP t b t  with ( )
1,( , ) 0,l

i ib

and

0

1

2

( )
0,( , )

0 ( )
1,( , )

( )
1,( )

1 1( )
1,( )

( )
2,( )

2 ( )
1,( )

( 1, ), with probability ,

( ) ( , ), with probability for ,

( 1, ), with probability .

l
i j
l

i i

l
i j
l

i i

l
i j
l

i i

b
l j

b

b
x l j j i

b

b
l j

b

Let  be a -algebra consisting of all the events of the QBD process which 
have occurred before the Markov time .  By the strong Markov property of the 
QBD process, we obtain that for 1,l

( )
1,( )0

( ( ))d , (0) ( , ) ( , ) exp ,
t l

i iE f x u u t x l i f l i t b t  (10.44) 

and

0
( ( ))d (0) ( , )

t
E f x u u t x l i

1

0 0
0

( ) ( )
0,( ) 1,( ) ( 1, )0

1
( , ) exp ( )d

lM tl l
i j i i l j

j
f l i b x b x t x x

       
1

2 2
2

( ) ( )
2,( , ) 1,( , ) ( 1, )0

1
( , ) exp ( )d

lM tl l
i j i i l j

j
f l i b x b x t x x

                            
1 1

1

( ) ( )
1,( , ) 1,( , ) ( , )0

( , ) exp ( )d
lM tl l

i j i i l j
j i

f l i b x b x t x x  (10.45) 

Taking the Laplace transforms on the both sides of Eq. (10.44) and Eq. (10.45), it 
follows from Eq. (10.43) that for 1,l

* ( ) * * ( ) *
2 1 0 1( ) ( ) ( ) ( ) ( ) .l l

l l l l l ls s e B s B s B s
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This completes the proof.  
Let

(0)
0 0 0

(1) (1)
1 12 0

(2) (2)
2 22 0

( )
( )

( ) ,
( )

s B B
s B B B

Q s
s B B B

*
0 0

*
1 1

*
2 2

( ) ( )
( ) ( )

( ) and ( ) .
( ) ( )

s e s
s e s

s s
s e s

Then it follows from Theorem 10.13 that 

( ) ( ) ( ) ( ).s Q s s s  (10.46) 

Note that ( ) 0Q s  and ( ) 0s  for 0.s  Let 0 ( ) 0s  and 

1 ( ) ( ) ( ) ( ), 0.N Ns Q s s s N

Theorem 10.4 If there exists a positive number 0K  such that 0 ( , )f k j
K  for all 0,1 ,kk j M  then for each 0,s  the vector sequence { ( ),N s

0}N  is non-decreasing and upper bounded. Hence the limit ( )s lim ( )NN
s

exists for each 0.s  Also, ( )s  is the minimal nonnegative solution to Eq. (10.46).
Proof We first prove that for each 0,s  the sequence { ( )}N s  is non- 

decreasing for 0.N  Since ( , ) 0f k j  for ( , ) ,k j  ( ) 0k s  for all 
0.k  Therefore, the matrices ( )Q s  and ( )s  are all nonnegative for each 0.s

Therefore, 0 ( ) 0s  and 

1 0 0( ) ( ) ( ) ( ) ( ) ( ).s Q s s s s s

Assuming that 1( ) ( )N Ns s  for an arbitrarily given N, one can immediately 

show that 

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).NN N Ns Q s s s Q s s s s

Thus through induction, one can show that for each 0,s  the vector sequence 
{ ( )}N s  is non-decreasing for 0.N

We now prove that for each 0,s  the sequence { ( ), 0}N s N  is upper 
bounded. Since there exists a positive number 0K  such that 0 ( , )f k j K
for all 0,1 ,kk j M  we obtain 
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*
( , )

0,1

0 00,1

20

( ) sup ( )

sup ( ( ))d (0) ( , )

1d .

l

l

l i
l i M

tst

l i M

st

s s

e E f x x l i

K te t K
s

A similar induction argument yields  

2

10 ( ) ( ) ,N s s K
s

for every 0,1,2,N . Therefore, the following limit must exist for all 0s

( ) lim ( ).NN
s s

Finally, we prove that ( )s  is the minimal nonnegative solution to Eq. (10.46). 
To this end, for an arbitrary nonnegative solution ( )s to Eq. (10.46), we have  

0 ( ) ( ), for each 0.
N

s s N

Hence, we obtain 0 ( ) ( ),s s  which implies that ( )s  is the minimal 
nonnegative solution to Eq. (10.46). This completes the proof. 

Let
( )
1,( , )

2( )0,1
1 ( , )

( , )
( ) sup .

k

k
j j

kk j M
j j

b f k j
s

s b

Then

( )
0,1 1,( )

( , )(0) sup .
k

k
k j M j j

f k j
b

Theorem 10.5 Suppose (0) 1.
(1) The vector sequence { ( )}N s  is uniformly convergent for (0, )s  with 

the convergent rate being of an exponential type.  
(2) If D denotes the set of all bounded nonnegative solutions to Eq. (10.46), then 

{ ( )}.D s
Proof (1) It is easy to check that  

( ) ( )
0 1 0,11 ( , ) 1,( , )

( , ) ( , )( ) ( ) sup sup (0) 1.
k k

k k
k j M k j Mj j j j

f k j f k jQ s s
s b b

Therefore, as ,N
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1 1 2

1
1 0

( ) ( ) ( ) ( ) ( )

(0) ( ) ( ) 0.

NN N N

N

s s s s s

s s

(2) Let ( )s  and ( )s  be any two bounded nonnegative solutions to 
Eq. (10.46). Then as ,N

( ) ( ) (0) ( ) ( ) (0) ( ) ( ) 0.Ns s s s s s

Thus, ( ) ( ).s s  Note that ( )s  is a bounded nonnegative solution to 
Eq. (10.46), it is clear that { ( )}.s

Remark 10.3 Note that the level-dependent QBD process with infinitesimal 
generator Q is equivalent to another QBD process with infinitesimal generator 

,Q  where  is an arbitrarily given positive number, thus (0) 1  in Theorem 
10.5 can be relaxed to a weaker condition:  

( )
0,1 1,( , )

( , )sup 1.
k

k
k j M j j

f k j
b

In other words, the condition (0) 1  given in Theorem 10.5 is in principle not 
restrictive.  

In what follows we provide an iterative relationship for the conditional moments 
of the accumulated reward process ( ),t  which shows the usefulness of the 
maximal non-positive inverse for the related computations.  

We write 

( , ) ( , ) 0

T
( ,1) ( ,2) ( , )

d( ) ( 1) ( ) ,
d

( ( ), ( ), , ( ))( ) ,
k

n
n

k j k j sn

k k k Mk

m n s
s

m n m n m nm n

and
TT T T

0 1 2( ) .( ( ) , ( ) , ( ) , )M n m n m n m n

It follows from Eq. (10.38) and Eq. (10.39) that for 1,n

( , ) 0
( ) ( )d (0) ( , ) .n

k jm n E t t t x k j

It follows from Eq. (10.46) that   

(0) (0) (0) (0).Q

It is clear that (0)Q I  is the infinitesimal generator of an irreducible continuous- 
time QBD process. Thus, there always exists an LU-type RG-factorization for the 



Constructive Computation in Stochastic Models with Applications 

548

matrix (0) .Q I  Using the LU-type RG-factorization, we obtain 

1 11 1
max[ (0) ] .( )( ) D LUQ I U I RI G

Therefore

1
max

1 11

(0) (0)[ (0) ]

(0).( )( ) D LU

Q I

U I RI G

Taking the first n derivatives with respect to s on the both sides of Eq. (10.46) 
and letting 0,s  we obtain 

1
max 00

d d(1) [ (0) ] (0) ( )( )
d d ssM Q I Q ss

s s

and for 2,n

1
1

max 0 0
0

d d( ) [ (0) ] ( ) ( ) ( ) .
d d

n l nn

s sn l n
l

n
M n Q I Q s M l s

l s s

10.6 An Up-Type Reward Process in Finitely-Many Levels

In this section, we consider an up-type reward process, defined in finitely-many 
levels, of the QBD process given in Eq. (1.17). We explicitly express the Laplace 
transforms of the conditional distributions of the up-type reward process and its 
conditional moments.  

The QBD process Q, given in Eq. (1.17), can be denoted as { ( ), 0}tx t
with state space {( , ) : 0,1 },kk j k j M  where  is a sample path 
of the QBD process. It is worthwhile to note that the assumption that each 
diagonal element of the matrix Q is finite implies that the QBD process is a 
Markov jump process. Therefore, it follows from Theorem 1.1 in Chapter  of 
Asmussen [2] that the QBD process has the strong Markov property.  

We write  

          ( ) inf{ 0 : ( ) ( , )}, if the -set is not empty,
( )

, otherwise.
tj

k

t x k j t
 (10.47) 

Let ( , )V k j  be a suitable non-zero nonnegative function defined on the set .
We define 
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( ) ( )( )

0
( ) ( ( ))d , 0.

j
kj

k tV x t k  (10.48) 

We now study the conditional distributions of the reward process ( ) ( )j
k  and 

its conditional moments in terms of the LU-type RG-factorization.  
Let

( )
( , )( , ) ,

( , )( , ), 1 ,1

( ) ( ) ,

[ ( )]( )
l k

j
l i k j kl i

l i k jl k i M j M

F x P x

F xxF

and
*

,0
( ) d ( ), 0 1.sx

l k l ks e x l kf F

It is clear that the ( , )i j th entry of the matrix *
, ( )l k sf  is given by  

( ) ( )*
( , )( , ) , 0

( ) exp ( ( ))d .
j

k

l i k j tl if s E s V x t

The following theorem provides a system of matrix equations satisfied by the 
matrix sequence *

,{ ( ),0 1}l k s l kf .
Theorem 10.6 The matrix sequence *

,{ ( ),0 1}l k s l kf  satisfies the system 
of matrix equations

(0) * (0) *
1 0, 0 1,( ) ( ) ( ) 0,k ks s A sf f  (10.49) 

( ) * ( ) * ( ) *
2 1, 1 , 0 1,( ) ( ) ( ) ( ) 0, 1 2,l l l

l k l k l kA s A s s A s l kf f f  (10.50) 

( 1) * ( 1) * ( 1)
2 2, 1 1, 0( ) ( ) ( ) 0,k k k

k k k kA s A s s Af f  (10.51) 

where 

( ) ( )
1 1( ) diag ( ,1), ( ,2), , ( , ) , 0.l l

ls A s V l V l V l M l

Proof We only prove Eq. (10.50), while Eq. (10.49) and Eq. (10.51) can be 
proved similarly.  

Let  be the first transition time of the QBD process from the state ( , )l i  to a 
nearby state: Either state ( 1, ),l i  state ( , )l i  or state ( 1, ).l i  Then  

( )
( , ) 1,{ } 1 exp ,l
l i iiP x a x

hence,  
( )

def1, ( )
( , ) ( )

1,

[exp{ ( , ) }] ( ).
( , )

l
ii l

l i il
ii

a
sV l i H s

sV l i a
E
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It is clear that  is a Markov time. Let  be a -algebra consisting of all the 
events of the QBD process which have occurred before the time .  Applying the 
strong Markov property of the QBD process, we obtain  

( )

( )

( )

( )*
( , )( , ) ( , ) 0

( )

( , ) ( , ) 0

( , ) 0

( )

( , )

( , )

( ) exp ( ( ))d

exp ( ( ))d

[exp ( ( ))d

exp ( ( ))d

exp{ (

j
k

j
k

j
k

l i k j l i t

l i l i t

l i t

l i t

l i

f s s V x t

s V x t

s V x t

s V x t

sV

E

E E

E

E

E
( )

( )

( )

0
, ) } exp ( ( ))d .

j
k

x tl i s V x tE (10.52)

Note that  
( )
2,

( , ) ( )
1,

( )
1,

( , ) ( )
1,

( )
0,

( , ) ( )
1,

{ ( ) ( 1, )} ,

{ ( ) ( , )} , ,

{ ( ) ( 1, )} ,

l
ij

l i l
ii

l
ij

l i l
ii

l
ij

l i l
ii

a
P x l j

a
a

P x l j i j
a

a
P x l j

a

it follows from Eq. (10.52) that 

1

1

( ) ( )
2, 1,* ( ) * ( ) *

( , )( , ) ( 1, )( , ) ( , )( , )( ) ( )
1 1, 1,

( )
0,( ) *

( 1, )( , )( )
1 1,

( ) ( ) ( ) ( ) ( )

( ) ( ),

l l

l

l lM M
ij ijl l

l i k j i l j k j i l j k jl l
j j iii ii

lM
ijl

i l j k jl
j ii

a a
f s H s f s H s f s

a a
a

H s f s
a

which leads to 

( ) * ( ) * ( ) *
2 1, 1 , 0 1,( ) ( ) ( ) ( ) 0.l l l

l k l k l kA s s s A sf f f

This completes the proof. 
Let

(0)
0 1

( ) ( ) 1 ( 1)
1 2 1 0

( ) ( ),
( ) ( ) ( ) , 1 1,i i i

i i

U s s
U s s A U s A i k
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and
1 ( )

0( ) ( ) , 0 1.i
i iG s U s A i k

The following theorem provides expressions for the matrices *
, ( )l k sf  for 

0 1.l k
Theorem 10.7 If 0,s  then 

1
*
, ( ) ( ), 0 1.

k

l k j
j l

s G s l kf

Proof Using Theorem 10.6, we have  

*
1 1 1( ) ( ) ,k k ks s AA f  (10.53) 

where
T* T * T * T * T*

0, 1, 2, 1,1

TTT T T ( 1)
01

( ) ,( ) , ( ) , , ( ) , ( )

( ) 0 ,0 , ,0 ,

k k k k k kk

k
k

s s s s s

s AA

f f f ff

and
(0) (0)
1 0

(1)(1) (1)
02 1

1
( 2) ( 2)( 2)
2 01

( 1) ( 1)
2 1

( )
( )

( ) .
( )

( )

k
k kk

k k

s A
A s A

s
A s A

A s

A

Since the QBD process given in Eq. (1.17) is irreducible, the QBD process 
1( )k sA  for 0s  is transient so that the matrix 1( )k sA  is invertible. Note that 

1( ) [ ( )] ( )[ ( )],k L D Us I R s U s I G sA

it follows from Eq. (10.53) that  

1* 1 1
1 1( ) [ ( )] [ ( )] ( ),[ ( )]U Dk kLs I G s U s sI R s Af

where
(0) (0)(0)

1 12
(1) (1)

1 2
1 (2)

3
[ ( )] ,

k

k

U k

I Y Y Y
I Y Y

I G s I Y

I
1 11 1

0 11diag , , ,[ ( )] [ ( )][ ( )] [ ( )] kD U s U sU s U s
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and

(1)
1

1 (2) (2)
2 1

( 1) ( 1) ( 1)
1 2 3

.[ ( )]L

k k k
k k k

I
X I
X X II R s

X X X I

After some matrix computations, we have 
1

1* ( ) ( 1)
, 1 01( ) ( ).[ ( )]

k
l k

l k k l jk
j l

s Y A G sU sf

This completes the proof. 
From Theorem 10.7 we easily obtain the following corollary.  
Corollary 10.1 If 0 1,l k  then 

* * * * *
, , 1 1, 2 2, 1 1,( ) ( ) ( ) ( ) ( ).l k l l l l k k k ks s s s sf f f f f

Now, we compute the conditional moments of the reward process ( ) ( ).j
k  Let 

( ) ( )
( , )( , ) ( , ) ( )g j g
l i k j l i km E

and

( ) ( )
, ( , )( , ) 1 1

, 0 1, 1.
l k

g g
l k l i k j i M j M

M l k gm

We write 
1

( 1)
,

( 1)
,

diag( ( ,1), ( ,2), , ( , )) (0), if 1,

diag( ( ,1), ( , 2), , ( , )) , if 2,

k

l jg j ll k
g

l l k

V l V l V l M G g

V l V l V l M gM g

for 0 1.l k
Note that  

( ) *
( , )( , ) ( , )( , ) 0

d( 1) ( ) ,
d

g
g g
l i k j l i k j sgm f s

s
it follows from Theorem 10.6 that the matrix sequence ( )

,{ , 1,0g
l kM g l 1}k

satisfies the system of matrix equations 

( 1) (0) ( ) (0) ( )
0, 1 0, 0 1, 0,g g g

k k kA M A M  (10.54) 

( 1) ( ) ( ) ( ) ( ) ( ) ( )
, 2 1, 1 , 0 1, 0, 1 2,g l g l g l g

l k l k l k l kA M A M A M l k  (10.55) 
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( 1) ( 1) ( ) ( 1) ( )
1, 2 2, 1 1, 0.g k g k g

k k k k k kA M A M  (10.56) 

To solve the system of matrix equations Eq. (10.54), Eq. (10.55) and Eq. (10.56), 
let the matrix sequences { },kR { }lG  and { }iU  be the LU-type measures of the 
QBD process given in Eq. (1.17) for 2.N k  Based on this, the matrix sequences 

( )k
iX  and ( )l

jY  are defined by Eq. (1.32) and Eq. (1.33), respectively.  

The following corollary provides an iterative relationship for the matrix 
sequence ( )

, , 1,0 1 .g
l kM g l k

Corollary 10.2 

( ) ( ) 1 ( )
, 1, ,

( ) 1 ( 1) ( 1) ( )
1, 1 1, 2 2,

, 0 2,

,

g g g
l k l l k l l k

g g k g
k k k k k k k

M G M U L l k

M U A L

where for 0 2,l k

( ) ( 1) ( 1) ( 1) ( 1)
, , 1, 1 2, 1 1 0, .g g g g g

l k l k l l k l l l k l l kL R R R R R R

Applying (2) of Theorem 1.2, the following corollary further expresses the 
matrix sequence ( )

, , 1,0 1 .g
m kM g m k

Corollary 10.3 For 1,g 0 1,m k

1 1
( ) 1 ( ) ( ) 1 ( ) ( 1)

, ,
0 1

1
1 ( ) 1 ( ) ( 1)

,
1

1 1
( ) 1 ( ) 1 (

( )
1 1

m k m
g m m i m g

m k m m n i i m i m n n k
n i

k m
m i m g

m i i m i m k
i

k k m
i mm m g

n m n i i m i n m n k
n m i n m

M U X Y U X

U Y U X

Y U Y U X 1)

1 ( 1) ( 1)
1 1 1, .k g

k k m k kU X

Proof It follows from Eq. (10.54), Eq. (10.55) and Eq. (10.56) that  

( ) ( 1)*
1 1 1 ,g g

k k kM

where

TT T T( ) ( ) ( ) ( )
0, 1, 1,1

TT T T( 1) ( 1) ( 1) ( 1)
0, 1, 1,1

,, , ,

, , ,

g g g g
k k k kk

g g g g
k k k kk

M M MM

and
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(0) (0)
1 0
(1) (1) (1)
2 1 0

*
1

( 2) ( 2) ( 2)
2 1 0

( 1) ( 1)
2 1

.k
k k k

k k

A A
A A A

A A A
A A

Since the QBD process given in Eq. (1.17) is irreducible, the matrix *
1k  is 

invertible for 1,k  using (2) in Theorem 1.2 some matrix computations yield 
the desired result. 

10.7 An Up-Type Reward Process in Infinitely-Many Levels

In this section, we consider an up-type reward process, defined in infinitely-many 
levels, of the QBD process given in Eq. (1.16). We provide expressions for the 
Laplace transforms of the conditional distributions of the up-type reward process 
and its conditional moments.  

We define 

inf{ 0 : ( ) }, if the - set is not empty,
( )

, otherwise,

L
t

k
t x k t

where ( )L
tx  denotes the level number of the QBD process at time t. It is easy to 

see from Eq. (10.48) that 

( )

1
( ) min ( ) .

k

j
k kj M

 (10.57) 

If the initial state 0 ( ) ( , )x l i  with 0 ,l k  then the sequence { ( )}k  is 
monotonely increasing for .k l  Therefore, the limit: lim ( )kk

 either  or 

,  a.s.. Let 

( ) lim ( ), a.s..kk
 (10.58) 

Then

inf{ 0 : ( ) }, if the - set is not empty,
( )

, otherwise,

L
tt x t

where ( )L
tx  means that the level number of the QBD process can not be 

finite at time t.
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We show below that ( )  is also a limit of other time sequences. To do this, 
we define a sequence of state jumping times as follows:  

Since the QBD process { ( ), 0}tx t  is a Markov jump process,  

1 0( ) inf{ 0 : ( ) ( )}tt x x

is the first jump time of the QBD process. Define  

11 { ( ) ( ), 0}.t ty x t  (10.59) 

Using the strong Markov property, 1  is also a Markov jump process with the 
same infinitesimal generator as that of the QBD process ,  and  

2 0( ) inf{ 0 : ( ) ( )}tt y y  (10.60) 

is the second jump time of the QBD process  (or it is also the first jump time 
of the Markov process 1).  Similar arguments to Eq. (10.59) and Eq. (10.60) 
indicate that ( )n  is the n th jump time of the QBD process  for 3.n  It is 
easy to see that 

0 1 20 ( ) ( ) ( ) ( ) , a.s..n

Hence, the limit: lim ( )nn
 either  or ,  a.s., and ( ) lim ( ).nn

Let
( )

0
( )

0

( ) ( ( ))d , 0,

( ) ( ( ))d .

k

k t

t

V x t k

V x t (10.61)

Since { ( )}k  is monotonely increasing for k l  and the function ( ( ))tV x
is non-zero nonnegative, the sequence { ( )}k  is also monotonely increasing for 

.k l  Hence,  

( ) lim ( ), a.s..kk

Remark 10.4 (1) If ( , ) 1V k j  for 0k  and 1 ,kj M  then ( ) ( )i
k

( ) ( ),i
k ( ) ( )k k  and ( ) ( ).  This implies that the reward process 

becomes the first passage times.  
(2) If 

1, if 0 ,
( , )

0, otherwise,
l n

V l j

then ( )k  becomes the total sojourn time of the QBD process staying in levels 
0 to n before it enters level k for the first time.  
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The following lemma provides a criterion for recognizing ( ) .
Lemma 10.2 ( ) ,  a.s., if and only if  

( )
0 1,

( , )
, a.s.,

k

k k

k k
n

k i i

V n i
a

where {( , )}k kn i  is a sequence of jumping states on the sample path  of the 
QBD process given in Eq. (1.16).

Based on this lemma, the following theorem provides a sufficient condition 
under which ( ) ,  a.s.. The sufficient condition is simple to be verified in 
practice.  

Theorem 10.8 Suppose that the function ( , )V k j  for 0,1 kk j M  is 
non-zero nonnegative. If the QBD process is recurrent, then 

( ) , a.s..

Proof If the function ( , )V k j  for 0,1 kk j M  is non-zero nonnegative, 
then there always exists a state * *( , )k j  such that * *( , ) 0.V k j  Since the QBD 
process is recurrent, it follows from Proposition 1.2 in Asmussen [2] that there 
must exist a subsequence {( , )}

j jk kn i  of the state sequence {( , )}k kn i  on the sample 
path  such that  

* *, , 0.
j jk kn k i j j

Hence,  

*

* *

* *

( ) ( ) ( )
0 0 01, 1, 1,

( , )( , ) ( , ) , a.s..j j

k k j
k k k kj j

k kk k
n n k

k j ji i i i j j

V n iV n i V k j
a aa

Using Lemma 10.2 leads to ( ) ,  a.s.. This completes the proof. 
We now express the Laplace transforms of the conditional distributions of the 

reward process ( )  a.s. and its conditional moments in terms of the UL-type 
RG-factorization.  

We write  
*
( , ) ( , ))

T* * * *
( ,1) ( ,2) ( , )

( ) [exp{ ( )}],

( ) ( ), ( ), , ( ) , 0.
l

l i l i

l l l l M

s E s

s s s s l

The following theorem provides a system of vector equations satisfied by the 
vector sequence * ( )l s .

Theorem 10.9 The vector sequence * ( )l s  satisfies the system of vector 
equations  
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(0) * (0) *
1 0 0 1( ) ( ) ( ) 0s s A s  (10.62) 

and

( ) * ( ) * ( ) *
2 1 1 0 1( ) ( ) ( ) ( ) 0, 1.l l l

l l lA s s s A s l  (10.63) 

Proof We only prove Eq. (10.63), while Eq. (10.62) can be proved similarly. 
Using a similar method to Theorem 10.6 leads to 

( )

1

( )*
( , ) ( , ) 0

( )

( , ) 0

( ) ( )
2, 1,( ) * ( ) *

( 1, ) ( , )( ) ( )
1 1, 1,

( ) exp ( ( ))d

exp{ ( , ) } exp ( ( ))d

( ) ( ) ( ) ( )
l l

l i l i t

l i x t

l lM M
ij ijl l

i l j i l jl l
j j iii ii

s E s V x t

E sV l i E s V x t

a a
H s s H s s

a a

H
1

( )
0,( ) *

( 1, )( )
1 1,

( ) ( ),
l

lM
ijl

i l jl
j ii

a
s s

a

which can be written in matrix form  

( ) * ( ) * ( ) *
2 1 1 0 1( ) ( ) ( ) ( ) 0.l l l

l l lA s s s A s

This completes the proof. 
We now use the UL-type RG-factorization Eq. (1.21) to solve the system of 

vector Eq. (10.62) and Eq. (10.63). Based on this, we provide an expression for 
the vector sequence * .( )l s  We use the notation { ( )},l sR  { ( )}k sG  and { ( )}l sU
to denote the UL-type measures of the QBD process with infinitesimal generator, 
given by  

(0) (0)
1 0

(1)(1) (1)
02 1

(2)(2) (2)
02 1

( )
( )

( ) .
( )

s A
A s A

s
A s A

For the matrix sequence { ( )}l sR  for 0,s  following identically Theorem 3.1 
in Latouche, Pearce and Taylor [27] or Lemma 7 in Bean, Pollett and Taylor [3], we 
give the following lemma, which will be used later in the proof of Theorem 10.10. 

Lemma 10.3 For 0,s  there exists a sequence { ( ), 0}k s k  of positive 
scalars and a sequence { ( ), 0}kz s k  of non-zero nonnegative column vectors 
such that

1( ) ( ) ( ) ( ), 0.kk k kz s s s z s kR
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Using Lemma 10.3 and the RG-factorization Eq. (1.21), the following theorem 
describes the vector sequence * .( )k s

Theorem 10.10 For 0,s ,

* 1
000 1

* 1 1
01 0 11 1 1

( ) [ ( )] ( ) ( ),
( ) ( )[ ( )] [ ( )] ( )

s s s z sU R
s s s s z s s z sG U UR

and for 2,k
1

1*
00 1

1 1
1

1 1

( ) ( ) ( ) ( )[ ( )]

( ) ( ) ( ).[ ( )]

jk
j k

i ik

j l ii
i j k l

s s s z ssG RU

s s z sG sU

Proof According to Eq. (1.21), the UL-type RG-factorization of the QBD 
process ( )s  for 0s  is written as 

( ) [ ( )] ( )[ ( )].U D Ls I R s U s I G s

It follows from Theorem 10.9 that ( ) ( ) 0,s s  where 

TT * T * T
0 1 2( ) .( ) , ( ) , ( ) ,s s s s

Hence,

 [ ( )][ ( )][ ( )] ( ) 0.U D LI R s U s I G s s  (10.64) 

We now solve the equation Eq. (10.64) by two steps. In the first step, let  

( ) [ ( )][ ( )] ( )D Lv s U s I G s s

partitioned according to the levels as 

TT T T
0 1 2( ) .( , ( ) , ( ) , )( )v s v v s v ss

This is equivalent to  
1*

00 0( ) ( ),[ ( )]s v ssU  (10.65) 

1* *
1( ) ( ) ( ) ( ), 1.[ ( )]k kk k ks s s v s ksG U  (10.66) 

To determine the sequence { ( )},kv s  in the second step we solve  

[ ( )] ( ) 0,UI R s v s

which is equivalent to  
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1( ) ( ) ( ), 0.kk kv s s v s kR  (10.67) 

Using Lemma 10.3 and Eq. (10.67) leads to 

00 1( ) ( ) ( ),v s s z sR  (10.68) 

1 1( ) ( ),v s z s  (10.69) 

1

1

( ) ( ) ( ), 2.
k

k l k
l

v s s z s k  (10.70) 

Substituting Eq. (10.68), Eq. (10.68) and Eq. (10.70) into Eq. (10.65) and 
Eq. (10.66) leads to 

1*
000 1

1 1*
01 0 11 1 1

( ) ( ) ( ),[ ( )]
( ) ( ) ( ) ( ) ( )[ ( )] [ ( )]

s s z ss RU
s s s z s z ss sG RU U

and for 2,k

1
1* *

1
1

2
1*

1 12 1
1

1
1

1

1
1

00 1

1
1

1 1

( ) ( ) ( ) ( ) ( )[ ( )]

( ) ( ) ( ) ( ) ( ) ( )[ ( )]

[ ( )] ( ) ( )

( ) ( ) ( )[ ( )]

( )[ ( )]

k

k kk k l k
l

k

k k k kk l k
l

k

k l k
l

j
j k

i ik

j i
i j k l

s s s s z ssG U

s s s s s z ssG G G U

s s z sU

s s z ssG RU

s sG U
1

( ) ( ).l is z s

This completes the proof.  
We now compute the conditional moments of the reward process.  
For 1,g 0,l  we write 

( )
( , ) ( , ))

T( ) ( ) ( ) ( )
( ,1) ( ,2) ( , )

[ ( ) ],

, , ,
l

g g
l i l i

g g g g
l l l l M

m E

M m m m

and
*

( 1)
( 1)

diag ( ,1), ( ,2), , ( , ) (0), if 1,

diag ( ,1), ( ,2), , ( , ) , if 2.
l lg

l g
l l

V l V l V l M g

V l V l V l M gM g
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Based on Theorem 10.9, some computations yield that the vector sequence 
( )g
lM  satisfies the system of vector equations 

( 1) (0) ( ) (0) ( )
0 1 0 0 1 0g g gA M A M  (10.71) 

and
( 1) ( ) ( ) ( ) ( ) ( ) ( )

2 1 1 0 1 0, 1, 1.g l g l g l g
l l l lA M A M A M g l  (10.72) 

Using (1) of Theorem 1.2 to solve the system of vector Eq. (10.71) and Eq. (10.72), 
we have the following corollary. 

Corollary 10.4 The vector sequence ( ) , 1, 0g
mM g m  is given by 

1
( ) 1 ( ) ( ) 1 ( ) ( 1)

0 1

1 ( ) 1 ( ) ( 1)

1

( ) 1 ( ) 1 ( ) ( 1)
( )

1 1

.

m
g m m i m g

m m m n i i m i m n n
n i

m i m g
m i i m i m

i

m m i m g
n m n i i m i n m n

n m i n m

M U X Y U X

U Y U X

Y U Y U X

It is easy to see from Corollary 10.4 that ( ) ,  a.s., if and only if (1)
mM

are infinite for some 0.m  For example, (1)
mM  has a simple expression for a 

birth-death process. In this case, (1)
mM  is a useful condition under which 

( ) ,  a.s.. 

10.8 A Down-Type Peward Process

In this section, we consider a down-type reward process and a return-type reward 
process for the QBD process given in Eq. (1.16). By means of the RG-factorizations, 
we first express the Laplace transforms of the conditional distributions of the down- 
type reward process and its conditional moments. Based on the up- and down-type 
reward processes, we then provide a way to study the return-type reward process. 

Let
( )
0 ( )( )

0 0
( ) ( ( ))d ,

j
j

tV x t

which is called a down-type reward process.  
Given that a level-independent QBD process starts at level 1 , the down-type 

reward process ( )
0 ( )j  is a reward-type generalization of the busy period or the 

fundamental period, which is referred to Subsection 2.2 in Neuts [40] for more 
details.
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We write  

0

( )
,( , ) ( , ) 0

( ) 1 ,1

( ) ( ) ,
[ ( )]( )

k

j
k i j k i

k i jk i M j M

G x P x
G xG x

and

*

0
( ) d ( ).sx

k ks e G xg

A similar argument to the proof of Theorem 10.6 yields the following lemma.  
Lemma 10.4 The matrix sequence * ( )k sg  satisfies the system of matrix 

equations
(1) (1) * (1) *
2 1 1 0 2( ) ( ) ( ) 0A s s A sg g  (10.73) 

and
( ) * ( ) * ( ) *
2 1 1 0 1( ) ( ) ( ) ( ) 0, 2.k k k

k k kA s s s A s kg g g  (10.74) 

Based on Lemma 10.4, we explicitly express the sequence * ( )k sg  in the 
following theorem.  

Theorem 10.11 For 0,s

*
1 2 1( ) ( ) ( ) ( ) ( ), 1,k k kk s s s s G s kG G Gg

where the sequence ( )kG s  is the UL-type G-measure of the QBD process whose 
infinitesimal generator is given by  

(1) (1)
1 0

(2)(2) (2)
02 1

(3)(3) (3)
02 1

( )
( )

( ) .
( )

s A
A s A

s
A s A

Proof Let T* T * T * T
1 2 3( ) .( ) , ( ) , ( ) ,g s s s sg g g  Then it follows from Lemma 

10.4 that 
TT(1) T T

2( ) ( ) .,0 ,0 ,s g s A  Using the UL-type RG-factorization 

leads to 

TT111 (1) T T
2

TT T1 (1) (1) 1 (1)
11 2 1 2

( ) [ ( )] [ ( )][ ( )] ,0 ,0 ,

,, ,[ ( )][ ( )]

L UDg s I G s I R sU s A

A Z s As UU
 (10.75) 

where
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( )
1 2 2( ) ( ) ( ) ( ), 1.k

k kk kZ G s s s s kG G G

Notice that (1)1
1 12( ) ( ),s A sU G  and so Eq. (10.75) gives the desired result. 

We write  
( )

1*
,( , ) ( , ) 0

( ) exp ( )d
j

k

k i j k i tw s E s V x t

and the matrix  

1

* *
,( , ) 1 ,1

( ) ( ) .
k k

k k i j i M j M
w s w s

The following theorem provides expression for the sequence * ( )k sg  in terms 

of the skip-free property of the QBD process.   
Theorem 10.12

* * * *
1 1( ) ( ) ( ) ( ),k k ks w s w s w sg  (10.76) 

where the matrix sequence * ( )lw s  satisfies the system of matrix equations  

( ) ( ) * ( ) * *
2 1 0 1( ) ( ) ( ) ( ) 0, 1.k k k

k k kA s w s A w s w s k  (10.77) 

Proof Similar argument to the proof of Theorem 10.6 leads to  

1

( ) ( )
2, 1,* ( ) ( ) *

,( , ) ,( , )( ) ( )
1 1,

( )
0,( ) * *

1,( , ) ,( , )( )
1 11,

( ) ( ) ( ) ( )

( ) ( ) ( ),

k

k k

k kM
ij ijk k

k i j i i k j jk k
j iii ii

kM M
ijk

i k j m k m jk
j mii

a a
s H s H s s

a a
a

H s s s
a

w w

w w

which is equivalent to Eq. (10.77). Note that when the QBD process arrives at 
level 0  from the initial level k, it certainly needs to pass through level 1,k
level 2, ,k  level 2 and level 1. Therefore, we get  

11 2

1 1 2 1
1 2 1

* * * *
,( , ) ,( , ) 1,( , ) 1,( , )

1 1 1
( ) ( ) ( ) ( ),

k

k k k
k

MM M

k i j k i i k i i i j
i i i

s s s sg w w w

which is equivalent to Eq. (10.76).  
For a level-independent QBD process, according to Theorem 10.12 we have 

the following corollary.  
Corollary 10.5 If ( )

2 2
lA A  for 2,l ( )

1 1
kA A  and ( )

0 0
kA A  for 1,k  then  

* *

* * 1 *
1

( ) ( ), 2,
( ) ( ) ( ).

l
k

k

w s w s l
s w s w sg



10 Markov Reward Processes 

563

In particular, 
* 1

1(0) , 1,k
k G G kg

where *
1 1 (0)G w  and G is the minimal nonnegative solution to the matrix 

equation
2

2 1 0 0.A A G A G

Remark 10.5 (1) Let * (0)k kG w  for 1.k  Then the matrix sequence { }kG
is the minimal nonnegative solution to the system of matrix equations  

( ) ( ) ( )
2 1 0 1 0, 1.k k k

k k kA A G A G G k

(2) If ( , ) 1V k j  for all 0,1 ,kk j M  then the matrix sequence 
{ , 1}kG k  is the same as (43) in Ramaswami and Taylor [46]. 

We now compute the conditional moments of the random variable ( )
0 ( ).j  Let 

( ) ( )
,( , ) ( , ) 0 ( )gg j

k i j k im E

and the matrix 

0

( ) ( )
,( , ) 1 ,1

, 1.
k

g g
k k i j i M j M

gm

We write 
1

( )

( 1)

diag( ( ,1), ( ,2), , ( , )) , if 0,

diag( ( ,1), ( ,2), , ( , )) , if 1,

k jg j kk
g

k k

V k V k V k M G g

V k V k V k M g g

where the matrix sequence { }kG  is given in (1) of Remark 10.5.  
Note that  

( ) *
,( , ) ,( , ) 0

d( 1) ( ) ,
d

g
g g

k i j k i j sgm g s
s

it follows from Eq. (10.73) and Eq. (10.74) that the matrix sequence ( ){ , 1,g
m g

1}.m  satisfies the system of matrix equations  

( 1) (1) ( ) (1) ( )
1 1 1 0 2 0g g gA A  (10.78) 

and
( 1) ( ) ( ) ( ) ( ) ( ) ( )

2 1 1 0 1 0, 2.g k g k g k g
k k k kA A A k  (10.79) 

The following corollary gives an expression for the matrix sequence ( ){ , 1,g
m g

1}.m



Constructive Computation in Stochastic Models with Applications 

564

Corollary 10.6 For 1,g 1,m

1
( ) 1 ( ) ( ) 1 ( ) ( 1)

0 1

1 ( ) 1 ( ) ( 1)

1

( ) 1 ( ) 1 ( ) ( 1)
( )

1 1

,

m
g m m i m g

m m m n i i m i m n n
n i

m i m g
m i i m i m

i

m m i m g
n m n i i m i n m n

n m i n m

U X Y U X

U Y U X

Y U Y U X

where { },kR { }lG  and { }lU  are the LU-type measures of the QBD process 
whose infinitesimal generator is given by 

(1) (1)
1 0
(2) (2) (2)
2 1 0

(3) (3) (3)
2 1 0

,

A A
A A A

A A A
 (10.80) 

and ( ) ,1l
kX k l  and ( ) , 1, 0l

kY k l  are respectively expressed by { }kR

and { }lG  according to Eq. (1.32) and Eq. (1.33).
Proof It follows from Eq. (10.78) and Eq. (10.79) that ( ) ( 1),g g

M  where 
TT T T( ) ( ) ( ) ( )

1 2 3, , ,g g g g
M

and
TT T T( 1) ( 1) ( 1) ( 1)

1 2 3 ., , ,g g g g

Using (1) of Theorem 1.2 to solve the equation ( ) ( 1),g g
M  we obtain the 

desired result. 
Finally, we study a return-type reward process and express the Laplace 

transforms of its conditional distributions in terms of the up- and down-type 
reward process discussed above.  

If the QBD process starts at state ( , )k i  at time 0, then ( ) ( )j
k  is called the 

first return time to state ( , ).k i
We write 

( ) ( )*
,( , ) ( , )( )

j
ks

k i j k ih s E e

and the matrix 
*

,( , ) 1 ,
( ( ))( ) .

k
k i jk i j M

h sh s
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Using the law of total probability, we obatin 

1* (0) *(0)
0 0 11( ) ( )[ ( )]h s A w ss  (10.81) 

and
1* ( ) ( ) * ( ) *

1 2 1, 0 1( ) ( ) ( ) ( ) , 1.k k k
k k k kh s s A f s A w s k  (10.82) 

Clearly, it is not difficult to further derive the conditional moments of the return-type 
reward process according to Eq. (10.81) and Eq. (10.82). 

10.9 Discrete-Time Markov Reward Processes

In this section, we provide a simple introdution to reward process of an irreducible 
discrete-time block-structured Markov chain. By using the UL- and LU-types of 
RG-factorizations, we provide expressions for conditional distributions and 
conditional moments of the reward process.  

Consider an irreducible discrete-time block-structured Markov chain { ,nX
0}n  whose transition probability matrix is given by Eq. (2.1), or 

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

.

P P P
P P P

P
P P P

Let 0 1 2(0) ( (0), (0), (0), )  be the initial probability vector of the Markov 
chain { , 0},nX n  that is, the ( , )k i th entry of (0)  is given by 

, 0(0) { ( , )}.k i P X k i

Obviously, the transient probability vector of the Markov chain at time n is given 
by ( ) (0) ,nn P 0.n

Let ( )f x  be a reward rate with repect to state x of the Markov chain 
{ , 0},nX n  i.e., the reward rate is ( , )f k i  if the Markov chain { , 0}nX n  is at 
state ( , ).k i  Then the random variable ( )nf X  is the instantaneous reward rate at 
time n. Hence 

,
( , ) 0

[ ( )] ( ) ( , ) ( ) ( )n k i k k
k i k

E f X n f k i n f n f  (10.83) 

and

,
( , )

[ ( ) ] ( ) , 2.( , )rr
n k i

k i
E f X n f rk i
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At the same time, the probability distribution of the random variable ( )nf X  is 
given by 

,
( , )

( , )

{ ( ) } ( ).n k i
f k i x
k i

P f X x n

Also, the limit distribution of the random variable ( )nf X  is given by 

,
( , )

( , )

lim { ( ) } .n k in f k i x
k i

P f X x

If the Markov chain { , 0}nX n  is positive recurrent and  is the stationary 
probability vector of the Markov chain, then lim n

n
P e  and lim ( ) .

n
n  We 

write lim [ ( )].nn
E f X  It is easy to see that 

,
( , ) 0

( , ) .k i k k
k i k

f k i f f  (10.84) 

Now, we analyze the accumulated reward over these times 0,1, , N  as 
follows:

0

( ) ( ) .
N

n
n

N f X  (10.85) 

Let
0

( ) (0)
N

n

n
L N P  and ( ) [ ( )].N E N  It is easy to check that 

,
( , ) 0

( ) ( ) ( , ) ( ) ( )k i k k
k i k

N L N f k i L N f L N f  (10.86) 

and

,
( , )

[ ( ) ] ( ) , 2.( , )rr
k i

k i
E N L N f rk i

It follows from Eq. (10.86) that 

 (0) (0) f  (10.87) 

( ) ( 1) (0) , 1.NN N P f N  (10.88) 

Using the iterative relations Eq. (10.87) and Eq. (10.88), we can compute the 
reward value ( )N  for each 0.N

The following proposition provides a useful property for the limit of the 
sequence { ( )}.N
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Proposition 10.1 If the Markov chain P is positive recurrent, (0) 0e  and 
0,f  then lim ( ) .

N
N

Proof Since the reward rate vector 0,f  it is easy to see that the sequence 
{ ( )}N  is non-decreasing. Thus the limit lim ( )

N
N  is either finite or infinite.  

We assume that lim ( ) .
N

N  Taking the limit N  for the Eq. (10.88), 

and using ,NP e  we obtain 

(0) ,e f

which leads to 
(0) 0.e f

This yields a contradiction due to the fact that (0) 0e  and 0.f  Therefore, 
lim ( ) .
N

N  This completes the proof. 

Remark 10.6 If the Markov chain P is transient, then 

1
min( ) (0) .( )L I P

Thus we obtain 
1

min(0) .( ) fI P

Proposition 10.1 provides a sufficient condition under which .  However, 
this condition can have many forms once guaranteing that lim (0) 0.N

N
P f

For this, we should introduce a discounted reward function as follows: 

0

( , ) ( ),
N

n
n

n
N f X

where (0,1]  is a discounted factor. It is clear that (1, ) ( ),N N  a.s.. Let 
( , ) [ ( , )].N E N  Then (1, ) ( ).N N  In this case, we can compute the 

sequence { ( , )}N  according to the following iterative relations: 

( ,0)
( , ) ( , 1) (0) , 1.N N

f
N N P f N

If 0N NP  as ,N  then 

1
min( ) ( , ) (0) .( ) fI P  (10.89) 

Using the UL-type RG-factorization, we have 

11 1( ) (0) [ ( )][ ( )] [ ( )] UL D I R fI G I
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or applying the LU-type RG-factorization, we obtain 

111( ) (0)[ ( )] .[ ( )] [ ( )]U D LI G fI I R

10.10 Notes in the Literature

Markov reward processes can accurately model practical systems that evolve 
stochastically over time. A Markov reward process consists of two elements: A 
Markov environment and an associated reward structure. Important examples 
include Naddor [38] for inventory systems, Daley [13] and Daley and Jacobs [14] 
for queues, Puri [41] for biological models, Kulkarni, Nicola and Trivedi [26], 
Masuda and Sumita [33], Donatiello and Grassi [17], Nabli and Sericola [37], 
and Vaidyanathan, Harper, Hunter and Trivedi [58] for communication networks.  

Karlin and McGregor [24], Wang [59], Puri [41,42], and McNeil [35] studied 
Markov reward processes for a birth-death process. Darling and Kac [15], Kesten 
[25], Mclean and Neuts [34], Puri [43], Howard [23], Meyer [36], Masuda and 
Sumita [33], and Stenberg, Manca and Silvestrov [51] analyzed Markov reward 
processes for Markov or semi-Markov processes. Glasserman [18,19,20], Ho and 
Cao [22], Cassandras [9], and Cao [7,8] studied Markov reward processes by 
means of infinitesimal perturbation analysis. Bobbio and Trivedi [5] provided a 
method for computing the first completion time distribution of a continuous-time 
Markov reward chain. Reibman, Smith and Trivedi [47] gave an overview for 
transient numerical approach of Markov reward models. Readers may further 
refer to Trivedi and Wagner [57], Reibman and Trivedi [48], Ciardo, Marie, Sericola 
and Trivedi [11], Ciardo, Blakemore, Chimento, Muppala and Trivedi [10], Ciardo 
and Trivedi [12], Rubino and Sericola [49], Masuda [32], Qureshi and Sanders [44], 
Mallubhatla, Pattipati and Viswanadham [31], Telek, Pfening and Fodor [54,55], 
Brenner and Kumar [6], Abdallah and Hamza [1], de Souza e Silva and Gail [16], 
Telek and Rácz [56], Bladt, Meini, Neuts and Sericola [4], Rácz [45], Telek, 
Horváth and Horváth [52,53], Grassmann and Luo [21], Stefanov [50], and 
Lisnianski [30].  

In this chapter, we mainly refer to Li [28,29], Reibman, Smith and Trivedi [47], 
Telek, Pfening and Fodor [54,55], and Rácz [45]. At the same time, we have also 
added some new results without publication for a more systematical organization. 

Problems

10.1 For a continuous-time level-dependent QBD process { , 0}tX t  with 
finitely-many levels, discuss the two reward processes { ( )}tf X  and { ( )}.t
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10.2 For a discrete-time level-dependent QBD process { , 0}nX n  with finitely- 
many levels, discuss the two reward processes { ( )}nf X  and { ( )},n  where 

0
( ) ( ).

n

k
k

n f X

10.3 For a continuous-time Markov chain of 1GI M  type, study the reward 
process { ( )}.t
10.4 For a continuous-time level-dependent QBD process { , 0}tX t  with 
infinitely-many levels, ( ) min{ : ( ) },x t t x ( , ) { ( ) },C t x P x t discuss the 
probability distribution ( , ).C t x
10.5 For a continuous-time Markov chain of 1M G  type, study the probability 
distribution ( , ).C t x  Further, extend the results to a Markov chain of 1GI G  type. 
10.6 Using the Markov reward process to study the multivariate PH distribution. 
10.7 Consider an 1M G  queue with server breakdowns and repairs, where the 
distributions of the life time and repair time are exponential and general, 
respectively. A reward rate of 1 is assigned to all the system operational states 
and a reward rate of 0 is assigned to all the system failure states. Compute 

[ ( ( ))],E f X t [ ( )],E t [ ( )]E t t  and lim [ ( )] .
t

E t t

10.8 Consider a 1PH PH  queue. Let ( )N t  be the number of customers in the 
system at time t. We define the reward rate 

1, 0 ( ) ,
( ( ))

0, ( ) 1.
N t M

f N t
N t M

Let
0

)( ) ( ( ))d .
t

t f N x x  Compute [ ( )],E t [ ( )]E t t  and lim [ ( )] .
t

E t t

10.9 Consider a 1BMAP G  queue. Let ( )N t  be the number of customers in the 
system at time t. We define the reward rate 

1, 0 ( ) ,
( ( ))

0, ( ) 1.
N t M

f N t
N t M

Let
0

( ) ( ( ))d .
t

t f N x x  Compute [ ( )], [ ( )]E t E t t  and lim [ ( )] .
t

E t t

10.10 Consider a M M c  retrial queue, where the retrial time is exponential. 
Let ( )N t  be the number of customers in the system at time t. We define the 
reward rate 

1, 1 ( ) ,
( ( ))

0, ( ) 0 or ( ) 1.
N t M

f N t
N t N t M

Let
0

( ) ( ( ))d .
t

t f N x x  Compute [ ( )], [ ( )]E t E t t  and lim [ ( )] .
t

E t t
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10.11 Consider an accumulated reward in an irreducible continuous-tine Markov 
chain which is either finite-state or infinite-state, provide some sufficient conditions 
for iteratively computing the distribution of the accumulated reward. 
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Abstract In this chapter, we present sensitivity analysis for performance 
measures of an irreducible perturbed Markov chain which is either discrete- 
time or continuous-time. By using the UL- and LU-types of RG-factorizations, 
we can express the nth derivatives of the performance measures, including the 
stationary, transient and discounted cases. Furthermore, we apply the sensitivity 
analysis to study symmetric evolutionary games by perturbed birth death 
processes and asymmetric evolutionary games by perturbed QBD processes. 

Keywords stochastic models, RG-factorization, sensitivity analysis, evolu- 
tionary game, perturbed Markov chain, perturbed birth death process, perturbed 
QBD process. 

In this chapter, we present sensitivity analysis for performance measures of an 
irreducible perturbed Markov chain which is either discrete-time or continuous- 
time. By using the UL- and LU-types of RG-factorizations, we can express the nth 
derivatives of the performance measures, including the stationary, transient and 
discounted cases. Further, we apply the sensitivity analysis to study symmetric 
evolutionary games by perturbed birth death processes, and asymmetric evolutionary 
games by perturbed QBD processes.  

This chapter is organized as follows. Section 11.1 provides sensitivity analysis 
for the stationary performance measures of a perturbed discrete-time Markov 
chain with either finitely-many levels or infinitely-many levels. Also, it gives the 
censored structure for sensitivity analysis of a perturbed discrete-time Markov 
chain on either a large state space or an infinite state space. Section 11.2 obtains 
sensitivity analysis for a perturbed Markov chain of 1GI M  type and a perturbed 
Markov chain of 1M G  type by means of the matrix-geometric solution and the 
matrix-iterative solution, respectively. Section 11.3 discusses a perturbed continuous- 
time Markov chain. Section 11.4 derives the nth derivative of the conditional 
moments of the accumulated reward process for a QBD process. Section 11.5 
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discusses a perturbed 1MAP PH  queue, including sensitivity analysis for a 
perturbed PH distribution and also for a perturbed MAP. Sections 11.6 and 11.7 
use perturbed birth death processes to analyze the evolutionary stable strategy (ESS) 
of symmetric evolutionary games. Section 11.8 discusses the ESS of asymmetric 
evolutionary games by terms of perturbed QBD processes. Finally, Section 11.9 
summarizes notes for the references related to the results of this chapter. 

11.1 Perturbed Discrete-Time Markov Chains

In this section, we provide sensitivity analysis for performance measures of a 
perturbed discrete-time Markov chain with either finitely-many levels or infinitely- 
many levels. Applying the RG-factorizations, we can express the nth derivative 
for the performance measures for 1.n

11.1.1 Markov Chains with Finitely-Many Levels  

Consider an irreducible discrete-time block-structured Markov chain with N
levels whose transition probability matrix is given by 

0,0 0,0,1

1,1,0 1,1

,0 ,,1

,

N

N

N N NN

P P P
P P P

P

P P P

and introduce a perturbed real matrix or a perturbed-directional matrix as follows:  

0,0 0,0,1

1,1,0 1,1

,0 ,,1

.

N

N

N N NN

V V V
V V V

V

V V V

Note that the block structure of the matrix V is the same as that of the matrix P.
We assume that there exists a sufficiently small number 0  such that  

0,0 0, 0,0 0,0,1 0,1

1,0 1, 1,0 1,1,1 1,1

,0 , ,0 ,,1 ,1

N N

N N

N N N N N NN N

P VP
P P P V V V
P P P V V V

P P P V V V

(11.1)
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is still a transition probability matrix whose irreducibility and state classification 
are the same as those of the matrix P.

We assume that the Markov chain P and the perturbed Markov chain P  are 
both positive recurrent. In this case, it is clear that 0,Ve  where e is a column 
vector of ones with suitable size. Let  and  be the stationary probability 
vectors of the perturbed Markov chain P  and the Markov chain P, respectively. 
We denote by f the reward rate vector with respect to the Markov chain P. In what 
follows we discuss the perturbed stationary performance measure , where

.f  Note that the stationary performance measure of the Markov chain P
is given by 

0
lim .f

It is clear that P  and 1,e  thus we have  

 ( )P V  (11.2) 

and
 1.e  (11.3) 

Taking derivatives of the both sides of Eq. (11.2) for the variable ,  we obtain  

d d ( ) ,
d d

P V V  (11.4) 

let 0  in Eq. (11.4), we have 

0
d ( ) .

d
I P V  (11.5) 

It follows from Eq. (11.3) that 

0
d 0,

d
e

which leads to 

0
d 0.

d
e

Therefore, we obtain 

0
d ( ) .

d
I P e V

Note that I P e  is the fundamental matrix of the Markov chain P with 
finitely-many levels, and I P e  is always invertible, hence we obtain 

1
0

d .( )
d

V I P e  (11.6) 

Continuously taking derivatives of both sides of Eq. (11.2) in the variable 
for 2,n  we obtain 
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1

1

d d[ ( )] ,
d d

n n

n nI P V n V

let 0  we have 
1

0 01

d d( ) .
d d

n n

n nI P n V  (11.7) 

Note that 

0
d 0,

d

n

n e  (11.8) 

it follows from Eq. (11.7) and Eq. (11.8) that for 2,n

1

0 01

d d( ) .
d d

n n

n nI P e n V

Therefore, we have 

1
1

0 01

1

d d ( )
d d

! .[ ]( )

n n

n n

n

nV I P e

n V I P e (11.9)

Further, for the perturbed stationary performance measure we can obtain 

1
0

d ! , 1.[ ]( )
d

n
n

n n f nV I P e

Now, we provide the generalized inverse expression for the nth derivative 

0
d .

d

n

n  Note that the matrix I P  is singular, we write the generalized 

inverse as 

1 .( ) ( )# eI P I P e

Since

1
0 0

1
0

1
0

0

d d( ) ( )[( ) ]( )
d d

d ( )( )
d
d ( )( )

d
d

d

#I P I P I P e eI P

I P I P e

I P e I P e
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and

1

1

[( ) ]( )
,( )

#V V I P e eI P
V I P e

0
d .( )

d
#V I P

Further, we can obtain that for 2,n

0
d ! .[ ]( )d

n
n#

n n V I P

Therefore, we obtain that for 1,n

0
d ! .[ ]( )d

n
n#

n n fV I P

Now, we provide a mathematical interpretation for the derivative 0
d

d

n

n

for 1n  as follows:  
(1) If for 1,2,..., 2 1,n k

0
d 0,

d

n

n

and
2

02

d 0 (or 0),
d

k

k

then the perturbed stationary performance measure  can reach its maximal (or 
minimal) value at 0.  In this case, system performance is not sensitive to the 
designed parameters of the system, thus such designed parameters are satisfied for 
system operations. 

(2) If for 1,2,..., 2 ,n k

0
d 0,

d

n

n

and
2 1

02 1

d 0,
d

k

k

then the perturbed stationary performance measure does not exist the maximal 
(or minimal) value at 0.  In this case, system performance is sensitive to the 
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designed parameters of the system, it is necessary to redesign (or readjust) 
system parameters. 

11.1.2 Markov Chains with Infinitely-Many Levels 

Consider an irreducible discrete-time block-structured Markov chain whose 
transition probability matrix is given by 

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

P P P
P P P

P
P P P

and the perturbed-directional matrix is given by 

0,0 0,1 0,2

1,0 1,1 1,2

2,0 2,1 2,2

.

V V V
V V V

V
V V V

Note that the block structure of V is the same as that of P, we assume that there 
exists a sufficiently small number 0  such that  

0,0 0,00,1 0,2 0,1 0,2

1,0 1,01,1 1,2 1,1 1,2

2,0 2,02,1 2,2 2,1 2,2

P P V
P P P V V V
P P P V V V
P P P V V V

 (11.10) 

is still a transition probability matrix whose irreducibility and state classification 
are the same as those of the matrix P.

We now discuss the perturbed stationary performance measure  with respect 
to the perturbed Markov chain P  and the reward rate vector f. We assume that 
the two Markov chains P and P  are both irreducible and positive recurrent. 
Then ,P  which leads to  

 ( ) .P V  (11.11) 

Taking derivatives of the both sides of Eq. (11.11) for the variable ,  we obtain 



Constructive Computation in Stochastic Models with Applications 

580

d d ( ) ,
d d

P V V  (11.12) 

let 0  we have 

0
d ( ) ,

d
I P V  (11.13) 

which leads to 

1
0 min

d ,( )
d

V I P  (11.14) 

where

1
min

0
.( ) n

n
PI P

In order to compute the minimal nonnegative inverse 1
min,( )I P  we apply the 

RG-factorizations. Using the UL-type RG-factorization, we obtain  

11 11
min ( ) .( ) ( )( ) UL D I RI G II P  (11.15) 

Note that 1( )LI G  and 1( )UI R  are ordinary matrix inverses, while 1( )DI
contains the group inverse of a matrix of finite size which is indicated by 

11 1 1
0 31 2diag(( ) , , , ( ) , ),( ) ( ) ( )#

D I II I I  (11.16) 

where the group inverse is given by 

1
0 0 0 0( ) ( ) ,#I I ex ex  (11.17) 

and 0x  is the stationary probability vector of the finite-state Markov chain 0.
Applying the LU-type RG-factorization, we obtain  

1 111
min .( )( ) ( )( ) D LU II P I RI G  (11.18) 

Continuously taking derivatives of both sides of Eq. (11.11) for the variable ,
we obtain 

1

1

d d[ ( )] ,
d d

n n

n nI P V n V

let 0  we have 

1

0 01

d d( ) ,
d d

n n

n nI P n V
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which leads to 
1

1
0 0 min1

1
min

d d ( )
d d

! .( )

n n

n n

n

n V I P

n V I P

By means of Eq. (11.15) or using Eq. (11.18), we have 

11 1
0

d ! [ ( ) ]( ) ( )
d

n
n

n UL Dn V I RI G I  (11.19) 

or

1 11
0

d ! .[ ]( ) ( )( )d

n
n

n D LU
n V I I RI G  (11.20) 

Note that ,f  it follows from Eq. (11.19) or Eq. (11.20) that for 1,n

11 1
0

d ! [ ( ) ]( ) ( )
d

n
n

n UL Dn fV I RI G I  (11.21) 

or

1 11
0

d ! .[ ]( ) ( )( )d

n
n

n D LU
n fV I I RI G  (11.22) 

11.1.3 The Realization Matrix and Potential Vector  

Now, we discuss computations for the realization matrix D of the Markov chain P
with either finitely-many levels or infinitely-many levels. Note that TD eg

T ,ge  where g is a potential vector. Note that for an arbitrary constant c, g ce  is 
also a potential vector. The realization matrix plays an important role in 
sensitivity analysis of stochastic models based on the following relationship 

T T
0

d .
d

VD Vg

For the Markov chain P, the potential vector g satisfies the Poisson equation 

 ( ) .I P g f fe  (11.23) 

Thus, using the UL-type RG-factorization, it follows from Eq. (11.23) that 

1
min

1 1 1

( )( )
( ) ( ) ( )( ) D UL

g f feI P
I I R f feI G (11.24)
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or using the LU-type RG-factorization, we have 

1
min

1 11

( )( )

( ).( ) ( )( ) D LU

g f feI P

f feI I RI G (11.25)

It follows from Eq. (11.24) and Eq. (11.25) that the realization matrix D is given by 

T TD eg ge
T T TT 1 1 1( ) [( ) ] [ ] [ ]( ) ( )U D Le f fe I R I I G

                    11 1 T( ) ( )( ) ( ) UL D I R f fe eI G I  (11.26) 

or

T TD eg ge
TT T 11T 1( ) [ ][ ] [ ]( )( ) ( )DL U

e f fe II R I G

                    1 11 T( ) .( ) ( )( ) D LU f fe eI I RI G  (11.27) 

11.1.4 The Censored Structure in Sensitivity Analysis  

When the perturbed discrete-time Markov chain has a large state space or an 
infinite state space, the censored approximation is a useful method. Let the state 
space cE E  where {0,1,2, , },E N  we write 

, ,A AB B

C D C D

P P V V
P V

P P V V

based on the two subsets E and .cE  Hence we have 

.A A B B

C C D D

P V P V
P

P V P V

Obviously, the censored chain of the perturbed Markov chain P  to the set E is 
given by the transition probability matrix 

0
( ) ( ) ( ).( )nE

A A B B C CD D
n

P P V P V P VP V

Lemma 11.1 Let

.EP K L
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Then

0

E n
A B D C

n
K P P P P P

and
2

0 0 0
2

0 0 0

.

n n n
A B D C B D C B D D C

n n n

nn n
A B D C B D C B D CD

n n n

L V P P V V P P P P V P

V P P V V P P P V PP

Proof We write the following two general forms 

1
min

0
( ) ( )n

D D D D
n

I P V P V

and

1
min

0
.( ) ( )n

D D
n

I P P

Note that 

0
1

min
1 1

min min

1 1
min min

1
min

( ) ( ) ( )( )

( ) ( )( ) ( )
( )( ) ( ) ( )

( ) [ ( )
( ) (

nE
A A B B C CD D

n

A A B B D D C C

A A B B D D D C C

A B D C A B D C

B D C B

P P V P V P VP V

P V P V I P V P V
P V P V I P I I P V P V

P P I P P V P I P V
V I P P P 2

min) ],D D CI P V P

which leads to the stated results. This completes the proof. 
Let

T
0 1 2

T
1 2 3

0

( , , , , )

,( , , , )

E
N

n
B D N N N

n

f f f f f

P P f f f

and E  and E  the stationary probability vectors of the censored Markov chains 
EP  and ,EP  respectively. Then .E E Ef  Therefore, for the perturbed stationary 

performance measure we can obtain that for 1,n

1
0

d ! .[ ]( )d

n
nE E EE

n n fL I K e
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11.1.5 The Transient Performance Measure  

We provide sensitivity analysis for the transient performance measures. 
Let

0
( ) (0) , 0.( )

N
k

k
N f NP  (11.28) 

Then

d ( ) (0) ( 1) ( 1)( ) , 1 .
d

n N
k n n

n
k n

N k k k n P V f n N  (11.29) 

Hence, it is easy to see from Eq. (11.29) that 

0
d ( ) (0) ( 1) ( 1) , 1 .

d

n N
k n n

n
k n

N k k k n P V f n N  (11.30) 

11.1.6 The Discounted Performance Measure  

We provide sensitivity analysis for the -discounted performance measures.  
Let

1
min( ) (0)( ) .I P f  (11.31) 

Then

1
min

d ( ) ! (0)( ) ,
d

n
n n n

n n I P V f

which leads to 

1
0 min

d ( ) ! (0) .( )
d

n
nn n

n n V fI P  (11.32) 

Note that 
11 1

min( ) { [ ( )] }[ ( )] [ ( )]
nn

UL DI P I RI G I  (11.33) 

or
1 11

min .( ) { }[ ( )] [ ( )][ ( )]
nn

D LU
I P I I RI G  (11.34) 

11.2 Two Important Markov Chains

In this section, we provide sensitivity analysis for the stationary performance 
measures of Markov chains of 1GI M  type and Markov chains of 1M G  type 
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in terms of the matrix-geometric solution and the matrix-iterative solution, 
respectively. Using the matrix R or G, we express the n th derivative for the 
stationary performance measures.  

11.2.1 Perturbed Markov Chains of GI/M/1 Type  

Consider an irreducible discrete-time Markov chain of 1GI M  type whose 
transition matrix is given by  

1 0

2 1 0

3 2 1 0

4 3 2 1 0

,

B B
B A A

P B A A A
B A A A A

 (11.35) 

where 1B  is a square matrix of finite size 0 ,m  all iA  are square matrices of finite 
size m, the sizes of the other block-entries are determined accordingly and all 
empty entries are zero.  

We define a perturbed matrix of 1GI M  type as 

,P P V  (11.36) 

where 0  is sufficiently small, and the perturbed-directional matrix V is of 
1GI M  type as follows: 

1 0

2 1 0

3 2 1 0

4 3 2 1 0

.

D D
D C C

V D C C C
D C C C C

We assume that the irreduciblity and state classification of P  are the same as 
those of P.

We provide sensitivity analysis for the stationary performance measure 

0

( ) ,k
k

f k f  (11.37) 

where

0(0) ( ) ( )x  (11.38) 



Constructive Computation in Stochastic Models with Applications 

586

and
1

0 0,1( ) ( ) ( ) ( ) ( ) , 1,kk x R R k  (11.39) 

the matrix ( )R  is the minimal nonnegative solution to the nonlinear matrix 
equation

0

( ) ( ) ( ),k
k k

k
R R A C  (11.40) 

the matrix 0,1( )R  is given by 

1
1

0,1 0 0
1

( ) ( ) ( ) ( ) ,k
k k

k
R B D I R A C  (11.41) 

0 ( )x  is the stationary probability vector of the censored chain to level 0 whose 
transition probability matrix is given by 

0 1 1 1 1
1

( ) ( ) ( ),( )k
k k

k
B D R B D  (11.42) 

and the positive constant ( )  is given by 

1
0 0,1 0 0,1

1( ) .
1 ( ) ( ) ( ) ( )[ ( )]x R e x R eI R

 (11.43) 

To give the sensitivity analysis, let the matrix R  be the minimal nonnegative 

solution to the nonlinear matrix equation 
0

.k
k

k
R R A  It is seen later that each 

expression in the sensitivity analysis will be given by the minimal nonnegative 
solution R and the matrix sequences { },kA { },kB { }kC  and { }.kD It is worthwhile 

to note that 
1

1
0,1 0

1

,k
k

k
R B I R A 0 1 1 0

1

,k
k

k
B R B x  is the stationary pro- 

bability vector of the censored chain 0 ,  and 11
0 0,1 0 0,1 .[1 ]( )x R e x R eI R

Our computations for the sensitivity analysis are listed in the following steps:  

(1) Compute 0
d ( )

d
R

It follows from (11.40) that 

1
1

0
0 1

d ( ) .
d

k k
k k

k k
R R C I kR A  (11.44) 

(2) Compute 0 0
d ( )

d
x
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Since 0 0 0( ) ( ) ( ),x x  we obtain 

0 0 0 1 1
1

1
0 1 0

1

d ( )
d

d ( ) ( ) .
d

k
k

k

#k
k

k

x x D R D

R kR B I (11.45)

(3) Compute 0,1 0
d ( )

d
R

1 2
1 1

0,1 0 0 0
1 1

d ( )
d

k k
k k

k k
R D I R A B I R A

                 1 2
0

1 2

d ( ) ( 1) .
d

k k
k k

k k
R C R k R A  (11.46) 

(4) Compute 0
d ( )

d

21
0 0 0,1 0 0,1

1
0 0 0,1

1
0 0 1 0

2
0 0,1 0

d ( ) 1 ( )
d

d ( ) ( )
d

d ( ) ( )
d

d ( ) .( )
d

x R e x R eI R

x R I eI R

x R I eI R

x R R eI R

(5) Compute 0
d

d

1
0 0 0 0 0,1 0

1

1
0 0 0 0 0 1 1 0 0 1

2

0 0 0 0 0,1 0 0,1 0

0 0 0,1
2

d d ( ) ( ) ( ) ( ) ( )
d d

d ( )
d

d d d( ) ( ) ( )
d d d

d ( )
d

k
k

k

k
k

k

k

x f x R R f

x f x R f x R R f

x f x R f x R f

x R 1 1
0 0,1 0

2

2
0 0,1 0

2

d ( )
d

d( 1) ( ) .
d

k k
k k

k

k
k

k

R f x R R f

k x R R R f
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Therefore, the derivative 0
d

d
 can be given by Eq. (11.44), Eq. (11.45) and 

Eq. (11.46).  

11.2.2 Perturbed Markov Chains of M/G/1 Type  

Consider an irreducible discrete-time Markov chain of 1M G  type whose transition 
matrix is given by  

1 2 3 4 5

0 1 2 3 4

0 1 2 3

0 1 2

,

B B B B B
B A A A A

P A A A A
A A A

 (11.47) 

where 1B  is a square matrix of finite size 0 ,m  all iA  are square matrices of finite 
size m, the sizes of the other block-entries are determined accordingly and all 
empty entries are zero.  

We define a perturbed matrix of 1M G  type as 

,P P V  (11.48) 

where 0  is sufficiently small, and the perturbed-directional matrix V is given by 

1 2 3 4 5

0 1 2 3 4

0 1 2 3

0 1 2

.

D D D D D
D C C C C

V C C C C
C C C

We assume that the irreducibility and state classification of P  are the same as 
those of  P.

We provide sensitivity analysis for the stationary performance measure 

0

( ) ,k
k

f k f  (11.49) 

where

0(0) ( ) ( )x  (11.50) 

and
1

0,
1

( ) (0) ( ) ( ) ( ),
k

k k i
i

k R i R  (11.51) 
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the matrix ( )G  is the minimal nonnegative solution to the nonlinear matrix 
equation

0

( ) ( ) ,( )k
k k

k
G A C G  (11.52) 

the matrix 0, ( )kR  is given by 

1
0,

1
1

1

1

( ) ( ) ( )

( ) ( ) ,

i
k k i k i

i

k
k k

k

R B D G

I A C G (11.53)

the matrix ( )kR  is given by 

1

1
1

1

1

( ) ( ) ( )

( ) ,( )

i
k k i k i

i

k
k k

k

R A C G

I A C G (11.54)

and 0 ( )x  is the stationary probability vector of the censored chain to level 0  
whose transirion probability matrix is given by 

1
0 1 1 1 1

1
1

1
0 0

1

( ) ( ) ( ) ( )

( ) ( ) ( ).

k
k k

k

k
k k

k

B D B D G

I A C G B D (11.55)

To give the sensitivity analysis, let the matrix G be the minimal nonnegative 

solution to the nonlinear matrix equation 
0

.k
k

k
G A G  It is seen later that each 

expression in the sensitivity analysis will be given by the minimal nonnegative 
solution G and the matrix sequences { },kA { },kB { }kC  and { }.kD  It is worthwhile 
to note that   

1
1 1

0,
1 1

,i k
k k i k

i k
R B G I A G

1
1 1

1 1

,i k
k k i k

i k
R A G I A G

1
1 1

0 1 1 0
1 1

k k
k k

k k
B B G I A G B
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and 0x  is the stationary probability vector of the censored chain 0.
Our computations for the sensitivity analysis are listed in the following steps:  

(1) Compute 0
d ( )

d
G

It follows from Eq. (11.52) that 

1
1

0
1 0

d ( ) .
d

k k
k k

k k
G I kA G C G  (11.56) 

(2) Compute 0, 0
d ( )

d kR

1
1 1

0, 0
1 1

d ( )
d

i k
k k i k

i k
R D G I A G

1
2 1

0
1 1

d( 1) ( )
d

i k
k i k

i k
i B G G I A G

2
1 1

1 1

i k
k i k

i k
B G I A G

        1 2
0

1 1

d( 1) ( ) .
d

k k
k k

k k
C G k A G G  (11.57) 

(3) Compute 0
d ( )

d kR

1
1 1

0
1 1

d ( )
d

i k
k k i k

i k
R C G I A G

1
2 1

0
2 1

d( 1) ( )
d

i k
k i k

i k
i A G G I A G

2
1 1

1 1

i k
k i k

i k
A G I A G

    1 2
0

1 2

d( 1) ( ) .
d

k k
k k

k k
C G k A G G  (11.58) 

(4) Compute 0 0
d ( )

d
x

Since 0 0 0( ) ( ) ( ),x x  we obtain 
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1
1 1

0 0 0 1 1 1 0
1 1

d ( ) ( )
d

k k
k k k

k k
x x D B D G I A G B

1
2 1

1 0 0
2 1

d( 1) ( )
d

k k
k k

k k
k B G G I A G B

2
1 1

1
1 1

k k
k k

k k
B G I A G

1 2
0 0 0

1 2

d( 1) ( ) ( ) .
d

#k k
k k

k k
C G k A G G B I

(11.59)

(5) Compute 0
d ( )

d
It follows from Eq. (11.50) and Eq. (11.51) that 

0

0 0,1

(0) ( ) ( )
(1) ( ) ( ) ( )

x
x R

and

1 2
1 2

1 2

0 0,

0 0,
2

1 , , ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),
m

m
m

k
k

i i i
m i i i k

i i i k

k x R

x R R R

thus, we get   

1 2
1 2

1 2

0 0, 0,
1 2

1 , , ,

1( ) ,

1 ( ) ( ) ( ) ( ) ( )
m

m
m

k

k i i i
k m i i i k

i i i k

x R R R R e

which easily leads to the expression of 0
d ( ) .

d

(6) Compute 0
d

d
Note that 

1 2
1 2

1 2

0 0 0 0,1 1 0 0,
2

0 0,
2 2

1 , , ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) .
m

m
m

k k
k

k

i i i k
k m i i i k

i i i k

x f x R f x R f

x R R R f
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Therefore, the derivative 0
d

d
 can be given by means of the above steps (1) 

to (5). 

11.3 Perturbed Continuous-Time Markov Chains

In this section, we provide sensitivity analysis for the stationary performance 
measure of a perturbed continuous-time Markov chain which is irreducible and 
positive recurrent. By means of the UL- and LU-types of RG-factorizations, we 
express the nth derivative for the stationary performance measure.  

We consider an irreducible perturbed continuous-time Markov chain { ( ),x t
0}t  whose infinitesimal generator is given by 

,Q VQ  (11.60) 

where

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

B B B B
B B B B

Q B B B B
B B B B

is the infinitesimal generator of an irreducible continuous-time Markov chain 
with block structure, the perturbed-directional matrix V is given by 

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

C C C C
C C C C

V C C C C
C C C C

is a non-zero matrix with the size of each block ,i jC  equal to that of ,i jB  for 
, 0,i j  and  is a sufficiently small positive number such that Q  is still the 

infinitesimal generator of a continuous-time Markov chain whose irreducibility and 
state classification are the same as those of the Markov chain Q. We assume that 
if the Markov chain Q is positive recurrent, then the perturbed Markov chain Q
can also be positive recurrent for each sufficiently small 0.  In this case, 0.Ve

We assume that the two Markov chains Q and Q  are both irreducible and positive 
recurrent. Let  and  be the stationary probability vectors of the Markov 
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chains Q and ,Q  respectively. We write f  and .f  In what follows 
we provide sensitivity analysis for the stationary performance measures .

Note that  is the unique positive solution to the system of equations 0Q
and 1,e  we obtain 

0
d

,
d

Q V  (11.61) 

1

0 01

d d
, 2,

d d

n n

n nQ nV n  (11.62) 

and

0
d

0, 1.
d

n

n e n  (11.63) 

Since Q always has the maximal nonpositive inverse 1
max ,Q  it follows from 

Eq. (11.61) and Eq. (11.62) that 

1
0 max

d
! , 1.

d

n n

n n Q V n  (11.64) 

Using Eq. (11.63) and Eq. (11.64), we have 

1
max 0, 1,

n
Q V e n  (11.65) 

For the stationary performance measure ,f

1
0 max

d ! .
d

n n

n n Q V f  (11.66) 

Therefore, it follows from the UL-type RG-factorization that for 1,n

11 1
0

d ! ( ) .( )
d

n n

D ULn n U I R V fI G  (11.67) 

or from the LU-type RG-factorization that for 1,n

1 11
0

d ! .( )( )
d

n n

D LUn n U V fI RI G  (11.68) 

In what follows we simply discuss the realization matrix of the continuous-time 
Markov chain. The realization matrix D is expressed in terms of a potential vector 
g which satisfies the Poisson equation   

 .Qg f fe  (11.69) 
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Thus, using the UL-type RG-factorization, it follows from Eq. (11.69) that 

max

111 1( ) ( ) ( )( ) D ULg Q f fe U I R f feI G  (11.70) 

or using the LU-type RG-factorization, we have 

max

1 11 1( ) ( ).( )( ) D LUg Q f fe U f feI RI G  (11.71) 

The realization matrix is given by 

T TD eg ge
T TT1 1T 1( ) ( )( ) U D Le I R U I Gf fe

                            11 1 T( ) ( ) .( ) D UL U I R f fe eI G  (11.72) 

or
T TD eg ge

TT T 11T 1( ) ( ) ( )DL Ue Uf fe I R I G
1 11 T( ) .( )( ) D LU U f fe eI RI G      (11.73) 

As an important example, we consider a perturbed continuous-time level- 
dependent QBD process with infinitely-many levels whose infinitesimal generator 
is given by 

 ( ) ,Q Q V  (11.74) 

where  is a sufficiently small positive number,  

(0) (0)
1 0
(1) (1) (1)
2 1 0

(2) (2) (2)
2 1 0

(3) (3) (3)
2 1 0

B B
B B B

Q B B B
B B B

 (11.75) 

and the perturbed-directional matrix 

(0) (0)
1 0
(1) (1) (1)
2 1 0

(2) (2) (2)
2 1 0

(3) (3) (3)
2 1 0

.

C C
C C C

V C C C
C C C
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Let 0 1 2( , , , )  be the stationary probability vector of the QBD process 
Q, partitioned according to the levels. We denote by the matrix sequence { }kR  the 
minimal nonnegative solution to the system of matrix equations 

( ) ( 1) ( 2)
0 1 1 2 0, 0.k k k

k k kB R B R R B k

Then

0 0x

and

0 0 1 1, 1,k kx R R R k

where 0x  is the stationary probability vector of the censored chain to level 0 with 
infinitesimal generator (0) (1)

0 1 0 2 ,U B R B  is a normalization constant such 

that
0

1,k
k

e i.e.,

0 0 1
0

1 .
1 k

k
x R R R e

In principle, Eq. (11.68), using the LU-type RG-factorization, provides 
expression for the nth derivative of the stationary performance measure  at 

0.  It is easy to see that for a small 1,n ( )n  can be further simplified using the 
LU-type R-, U- and G-measures. The following proposition provides expression 

for 0
d

d
 by means of the LU-type R-, U- and G-measures.  

Proposition 11.1 

(0) (1) (0) 1 ( )
0 0 1 1 1

0 0

( 1) ( ) ( 1)
1 0 1 1 2

1

( ) 1 ( )

0

d
d

,

k
k

k k i k i
k i

m m m
m m m

m
k

m k
k m k i k i

k m i

C C Y U X f

C C C

Y U X f

where
( )
0

( )
1 2 1

, 0,
, 1,

l

l
k l l l l k

X I l
X R R R R l k

and
( )

0
( )

1 2 1

, 0,
, 1, 0.

l

l
k l l l l k

Y I l
Y G G G G k l
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Proof Setting 1n  in Eq. (11.68), we have  

1 11
0

d .( )( )
d D LUV U fI RI G

Thus, we obtain 

(0) (1) (0) (1) (2) (1) (2) (3)
0 1 1 1 0 0 1 1 2 2 1 0 2 1 3 2( , , , ),V C C C C C C C C

and

(0) 1 ( )

0 0

1(1) ( )
1 1 11

1 0

1(2) ( )
2

2 0

.( )( )

k
k

k k i k i
k i

k
k

k i k ik
k iD LU

k
k

k i k ik
k i

Y U X f

Y U X f
U fI RI G

Y U X f

Simple computations yield the stated result. This completes the proof. 
Now, we provide sensitivity analysis for the transient performance measure 

( )t  for 0,t  where 

0
( ) [ ( )] ( )d .

t

ut E t E f X u

It is easy to see from Eq. (10.3) that 

0
( ) (0) exp{ }d .

t
t Qx xf  (11.76) 

Based on Eq. (11.76), for the perturbed Markov chain Q  we can write the perturbed 

transient performance measure as 

0
( ) (0) exp{ }d .

t
t x xfQ

Therefore, we obtain 

0

d ( ) (0) exp{ }d , 1,
d

n t n n
n t x x xV f nQ

which leads to 

0 0

d ( ) (0) exp{ }d , 1.
d

n t n n
n t x Qx xV f n  (11.77) 
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Finally, we provide sensitivity analysis for the -discounted performance 
measure ( ),  where 

0
( ) ( )d .u

uE e f X u

It is easy to see from Eq. (10.11) that 

1
max( ) (0) .( ) fQ I  (11.78) 

Based on Eq. (11.78), for the perturbed Markov chain Q  we can write the perturbed 

discounted performance measure as 

1

max
( ) (0) .fIQ

Therefore, we obtain 

11

max

d ( ) ! (0) , 1,( 1)
d

n nn n
n n V f nIQ

which leads to 

11
0 max

d ( ) ( 1) ! (0) , 1.( )
d

n
nn n

n n V f nQ I  (11.79) 

11.4 Perturbed Accumulated Reward Processes

In this section, we derive the nth derivative for the conditional moments of the 
accumulated reward process of an irreducible continuous-time perturbed QBD 
process.  

Consider the accumulated reward process of an irreducible continuous-time 
perturbed QBD process. We assume that the perturbed QBD process { ( ),x t

0},t  given in Eq. (11.74), is separable and Borel measurable, and its sample 
functions are almost all lower semi-continuous at the right-hand side. Therefore, 
the perturbed QBD process has the strong Markov property.  

Similar to (10.38), we define 

, 0
( , ) ( ( ))d (0) ( , ) .

t

k j t E f x u u x k j

Let
T

,1 ,2 ,( ( , ), ( , ), , ( , ))( , )
kk k k Mk t t tt
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and
*

0
( , ) ( , )d , 0.st

k ks e t t k

The sequence *{ ( , )}k s  then satisfies the following system of infinite-dimensional 
linear equations, as in Theorem 10.3,  

* * (0) (0) *
0 0 0 0 0 0 1( , ) ( , ) ( ) ( , ) ( , ) ,s s e s B C s  (11.80) 

and for 1,l

* ( ) ( ) *
2 2 1

* ( ) ( ) *
0 0 1

( , ) ( , ) ( , )

( ) ( , ) ( , ) ,

l l
l l l

l l
l l l

s s e B C s

s B C s (11.81)

where for 0,k

2 2( ) ( ) ( ) ( )
1,(1,1) 1,(1,1) 1,( , ) 1,( , )

( , )( ,1)( , ) diag , ,
k k k k

k
k k k k k

M M M M

f k Mf ks
s b c s b c

and

( ) ( ) ( ) ( ) ( ) ( )
1 1 1,(1,1) 1,(1,1) 1,( , ) 1,( , )( ) diag , , .

k k k k

k k k k k k
k M M M MB C b c b c

Note that ( ) ,k k k  where k  is given in Eq. (10.42) and  

( ) ( ) ( ) ( )
1 1,(1,1) 1,(2,2) 1,( , )diag , , , .

k k

k k k k
k M MC c c c

Let

0

1

2

(0) (0)
0 0 0

(1) (1)(1) (1)
0 012 2

(2) (2)(2) (2)
0 022 2

( , )
( , )

( , )
( , )

( )
( )

,
( )

s
s

Q s
s

B C
B C B C

B C B C

*
0 0

*
1 1

*
2 2

( , ) ( , )
( , ) ( , )

( , ) , ( , ) .
( , ) ( , )

s e s
s e s

s s
s e s
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Then it follows from Eq. (11.80) and Eq. (11.81) that 

( , ) ( , ) ( , ) ( , ).s Q s s s  (11.82) 

Let

22( ) ( ) ( ) ( )
1,(1,1) 1,(1,1) 1,( , ) 1,( , )( , ) diag , , ,

k k k k

k k k k
k M M M Ms s b c s b c

0 1 2( , ) diag( ( , ), ( , ), ( , ), ),s s s s
T( ( ,1), ( ,2), , ( , )) ,k kf f k f k f k M

and
TT T T

0 1 2 ., , ,f f f f  Then, using Eq. (11.82), we yield 

1 2
( , ) ( , ) ( , ) ,s s s fQ Q  (11.83) 

where

(0)
0 0
(1) (1)

12 0
1 (2) (2)

22 0

B
B B

Q B B

and

(0)
0 0
(1) (1)

12 0
2 (2) (2)

22 0

.

C
C C

Q C C

Let

( ) ( )
0 0( ) , ( ) , 1.( , ) ( , )

n n
n n

n ns s ns s

Taking the derivatives with respect to  on the both sides of Eq. (11.83) and 
letting 0,  we have 

(1) (1)
1 2

( ) ( ) ( ) ( ),s s s sQ Q

where ( ) ( ,0)s s  and ( )s ( )s  are given in Theorem 10.4. Hence, we 
obtain

1(1) (1)
1 2max

( ) ( ) ( ) ( ).s s s sQ Q  (11.84) 
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Further, for the nth derivative we can obtain 

( ) (1) ( 1)
1 2

1
( ) ( )

0

( ) ( ) ( ) ( )

( ) ( ).

n n

n
n l l

l

s s n s sQ Q
n

s s
l

Therefore,
1( ) (1) ( 1)

1 2max

11 ( ) ( )
1 max

0

( ) ( ) ( ) ( )

( ) ( ) ( ),

n n

n
n l l

l

s n s s sQ Q
n

s s sQ l
(11.85)

where
1 11 1

1 max
( ) [ ( )]( ) [ ( )] D UL U s I R ss I G sQ

or
1 1 11

1 max
( ) .( ) [ ( )][ ( )] D LU U ss I R sI G sQ

11.5 A Perturbed MAP/PH/1 Queue

This section provides sensitivity analysis for the stationary queue length of a 
perturbed 1MAP PH  queue. To achieve this, we must first provide a sensitivity 
analysis for the PH distribution as well as the MAP.  

11.5.1 A Perturbed PH Distribution  

Consider a PH distribution ( )F x  for 0x  with irreducible representation ( , )T
of order 1,  where 1.e  Thus we have 

( ) { } 1 exp{ } ,F x P X x Tx e

where X is the corresponding PH random variable. We denote by S a matrix of 
order 1,  which satisfies that the perturbed matrix T S  has negative 
diagonal elements and nonnegative off-diagonal elements with ( ) 0T S e
for each safficiently small 0.  Let 0T Te  and 0 .S Se  We assume that the 
irreducibility of the matrix 0T T  is the same as that for the matrix ( )T S

0 0( ) .T S  Obviously, ( , )T S  is the irreducible representation of order 1

of a perturbed PH distribution ( )F x  with 

 ( ) { } 1 exp{( ) } .F x P X x T S x e
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Let *( )f s  be the Laplace-Stieltjes transform of ( ).F x  Then 

1* 0 0( ) ( ).( )f s T SsI T S

We obtain 

1* 0
0( ) ! [ ], 1.( ) ( )

n
n n n

n f s n S T S e nsI T sI T

In addition, from ( 1) ![ ],( ) kk kE X k eT S  we obtain 

( )

0

d ( 1)! , 1, 1.( 1)
d

n
k nk k n n

n E X k n k T S e k n

For the PH distribution, the maximal eigenvalue of the matrix T is an important 
quantity. In what follows we provide sensitivity analysis for the maximal eigenvalue. 
Let c and d, c  and d  be the left and right Perron-Frobenius eigenvectors of the 
matrices T and ,T S  respectively. Assume 1.cd  We denote by  and  the 
maximal eigenvalues of T and ,T S  respectively. It is easy to verify that 

0 0
d d( ) .

d d
c I T cS c

Note that ( ) 0I T d  and 1,cd  we obtain 

0
d .

d
cSd

11.5.2 A Perturbed MAP 

Consider a MAP with irreducible matrix descriptor 1 1( , )C D  of order 2 ,  where 
the diagonal elements of the matrix 1C  are all negative, the off-diagonal elements 
of the matrix 1C  are all nonnegative, each element of the matrix 1D  is nonnegative 
and the Markov chain with infinitesimal generator 1 1C D  is irreducible and 
positive recurrent. Let  be the stationary probability vector of the Markov chain 
with infinitesimal generator 1 1.C D  Then 1r D e  is the stationary arrival rate. 
Let 2C  and 2D  be two matrices of order 2  such that for each sufficiently 
small 0,  the diagonal elements of the matrix 1 2C C  are all negative, the 
off-diagonal elements of the matrix 1 2C C  are all nonnegative, each element 
of the matrix 1 2D D  is nonnegative and 2 2( ) 0.C D e  It is clear that 

1 2 1 2( , )C C D D  is the irreducible matrix descriptor of a perturbed MAP. 
Let  be the stationary probability vector of the perturbed Markov chain with 
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infinitesimal generator 1 1 2 2( ) ( ).C D C D  Then 

1 1 2 2( ) ( ) 0C D C D

and 1.e  Thus, we obtain 

d 0, for 1, 0,
d

n

n e n  (11.86) 

and

0 1 1 2 2
d ( ) ( ).

d
C D C D  (11.87) 

It follows from Eq. (11.86) and Eq. (11.87) that 

0 1 1 2 2
d ( ) ( ),

d
C D e C D

where
2

1,( , ) 1,( , )1
min{ }.i i i ii

c d  Note that the matrix 1 1C D e  is invertible, 

we have 

1
0 2 2 1 1

d ( 1 ( ) , 1.( ))
d

n nn
n n C D nC D e

Therefore, the nth derivative of the stationary arrival rate r  of the perturbed 
MAP is given by 

111
0 2 2 1 1

1
2 2 2 11 1

d ! ( )( )( 1)
d

( ) , 1.( )

n nn
n r n C D C D e

D e C D D e nC D e

11.5.3 A Perturbed MAP/PH/1 Queue  

Consider a 1MAP PH  queue. We denote by ( ),q t  ( )I t  and ( )J t  the number of 
customers in the system, the phase numbers of the MAP input and the PH service 
time at time t, respectively. It is obvious that { ( ), ( ), ( ), 0}q t I t J t t  is a level- 
independent QBD process whose infinitesimal generator is given by 

1 1
0

11
0

1 1 1
0

1 1

.

C D
I T C T D I

I T C T D I
I T C T D I

 (11.88) 
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Let  and  be the stationary probability vectors of the Markov chains 1 1C D
and 0 ,T T  respectively. Then the QBD process with infinitesimal generator given 
in Eq. (11.88) is positive recurrent, null recurrent or transient according to 

0
1 ,D e T 0

1D e T  or 0
1 ,D e T  respectively.  

Now, we impose an infinitesimal perturbation on both the input stream and the 
service times, i.e., 1 2 1 2( , )C C D D  and ( , ),T S  respectively. The infini- 
tesimal generator of the perturbed QBD process { ( ), ( ), ( ), 0}q t I t J t t  is given by 

1 2 ,  (11.89) 

where 1  is given in Eq. (11.88) and 

2 2
0

22
0

2 2 2
0

2 2

.

C D
I S C S D I

I S C S D I
I S C S D I

Let R and R  be the minimal nonnegative solutions to the matrix equations 

2 0
1 1( ) ( ) ( ) 0D I R C T R I T

and
2 0 0

1 2 1 2[( ) ] [( ) ( )] [ ( ) ] 0,D D I R C C T S R I T S

respectively. Then 

2 0
0 2 2

0 1
1

d [( ) ( ) ( )]
d

[( ) 2 ( )] .

R D I R C S R I S

C T R I T

Since 0  is sufficiently small, the perturbed 1MAP PH  queue will keep 
the properties of state classification for the original 1MAP PH  queue. We now 
provide sensitivity analysis for the stationary queue length in the perturbed 

1MAP PH  queue as an example.  
If 0

1 ,D e T  then the perturbed 1MAP PH  queue is positive recurrent. To 
analyze the sensitivity of the stationary queue length, we need the derivatives of 
the stationary probability vector of the perturbed QBD process, since { }P L k

( )k e  for 0,k  where lim ( )
t

L q t  almost everywhere.  
Let 0 1 2( , , , )  and 0 1 2( , , , )  be the stationary 

probability vectors of the two level-independent QBD processes with infinitesimal 
generators 1  given in Eq. (11.88) and  given in Eq. (11.89), respectively. Then 
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1
1( ) ( ) , 2,k

k R k  (11.90) 

and 0 1( ( ), ( ))  is the unique positive solution to the system of equations 

0 0
0 1 2 1( )( ) ( ) ( ) 0,C C I T S  (11.91) 

0 1 2 1 1 2
0 0

( )[( ) ] ( ){( ) ( )
[ ( )] } 0,

D D C C T S
R I T S (11.92)

and 1
0 1( ) ( )( ) 1.e I R e  It is obvious that (0)l l  for all 0.l

It follows from Eq. (11.91) and Eq. (11.92) that 

1 1
0 1 0 20 0 0 0

1

d d, , ,( ) ( )
( )d d

C D
C A

I T C T R I T

where

0 0
0 2 1 2 0

d( ) ( ) ( ) .
d

A D C S R I S R I T

Note that 
1

1 111 12
0 0

1 21 22

,
( )

C D A A
I T C T R I T A A

where
1 1 1 0 1

11 1 1 1 1
1 1

12 1 1
1 0 1

21 1
1

22
0 0 1

1 1 1

( ) ( ) ,
( ) ,
( ) ,
,

( ) ( ) ( ),

A C C D B I T C
A C D B
A B I T C
A B

B I C T R I T I T C D

we obtain 

0 0 0 2 11 21

1 0 0 2 12 22

d ( ) ,
d
d ( ) .

d

C A AA

C A AA (11.93)

It follows from Eq. (11.90) and Eq. (11.93) that for 2,k

1 2
0 0 2 12 22 1 2 2

d ( ) ( ) ( 1) [( ) ( )
d

k k
k C A AA R k R D I R C S

                        102 0
1 .[( ) 2 ( )]( )] C T R I TR I S  (11.94) 
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Note that 2
1[ ] ( )( ) ,E L I R e  we obtain 

2 3
0 2 12 22 1 2 20

d [ ] ( ) 2 [( ) ( )( ) ( )
d

E L C A AA e D I R C SI R I R

                          102 0
1 .[( ) 2 ( )]( )] eC T R I TR I S  (11.95) 

The derivatives in Eq. (11.93), Eq. (11.94) and Eq. (11.95) can be obtained once 
matrix R  is calculated numerically.  

As an illustration, we now consider a perturbed 1M M  queue with perturbed 
arrival rate a  and perturbed service rate .b  Let 1  and 

( ) ( ) ( ) 1.a b  It is clear that the perturbed 1M M  queue is stable 
if 1.  Simple calculations show that ( ) [1 ( )] ( )k

k  for 0.k
Therefore, we obtain 

1
0

d ( ) [ ( 1) ] ,
d

k
k

a bk k  (11.96) 

and

2
2

02 2

d {[ ( 1) ( 1)][ ( 1) ]( )
d

( 1)( )}.

k
k

a b a k b k k k

k b (11.97)

Since the mean of the stationary queue length in the perturbed 1M M  queue 
is [ ] ( ) [1 ( )],E L  we have  

1
0 1

d !( )[ ] , 1.( 1)
d

n
n

nn

n a bE L n  (11.98) 

11.6 Symmetric Evolutionary Games

In this section, we apply the perturbed birth death processes to study a 2 2
symmetric evolutionary game, and obtain the evolutionary stable strategy (ESS) 
of the symmetric evolutionary game by means of the stationary probability 
distribution of the perturbed birth-death process. Note that a 2 2  evolutionary 
game contains 2 types of players, and each player has 2 strategies.  

The evolutionary game is a useful mathematical tool developed by biologists 
for predicting population dynamics in the context of interactions. The Evolutionary 
Stable Strategy (ESS) is an important concept which is characterized by a property 
of robustness against invaders (or mutations). More specifically, 

(1) if an ESS is reached, then the proportions of each population do not change 
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in time; and 
(2) at the ESS, the populations are immune from being invaded by other small 

populations.
Obviously, the ESS is stronger than Nash equilibrium in which it is only requested 

that a single user would not benefit by a change (mutation) of its behavior. 
Now, it is necessary to provide a mathematical description for the ESS, which 

will be useful in the rest of this section later. 
Consider a large population of players. Each tagged individual needs to take 

some strategies with the strategy set K. We denote by J(p, q) the expected payoff 
for our tagged individual if it uses a strategy p when meeting another individual 
who adopts the strategy q. In general, the payoff may be regarded as a fitness, 
and strategies with larger fitness are expected to propagate faster in a population. 
Let p and q belong to a set K of available strategies. In the standard framework 
for evolutionary games, there are a finite number of pure strategies, and a general 
strategy of an individual is a probability distribution over the pure strategies. 
Note that J(p, q) is linear in p and q.

Suppose that the whole population uses a strategy q, and a small fraction 
0  (called mutations) adopts another strategy p. Evolutionary forces are expected 

to select against p if 

( , (1 ) ) ( , (1 ) ).J q p q J p p q

A strategy q is said to be ESS if for every p q  there exists some 0  such 
that the above inequality holds for all (0, ) .

In fact, we expect that if for all p q ,

( , ) ( , ).J q q J q p

This indicates that the mutation fraction in the population will tend to decrease, 
since it has a lower reward which leads to a lower growth rate. Thus the strategy 
q is immune to the mutations. On the other hand, if for all ,p q ( , ) ( , )J q q J p q
and ( , ) ( , ),J q p J p p  then a population using strategy q are weakly immune 
against a mutation using strategy p. In this case, if the mutant’s population grows, 
then we shall frequently have individuals with strategy q competing with the 
mutations, since the condition ( , ) ( , )J q p J p p  ensures that the growth rate of 
the original population exceeds that of the mutations. 

Based on the above analysis, a strategy q is said to be ESS if for all ,p q

( , ) ( , );J q q J q p

or

( , ) ( , ) and ( , ) ( , ).J q q J p q J q p J p p

In the remainder of this section, we use the perturbed Markov chains to study the 
ESS for some symmetric evolutionary games and asymmetric evolutionary games. 
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We consider a 2 2  symmetric evolutionary game whose payoff matrix is given by 

1 2

1

2

( , ) ( , )
,

( , ) ( , )
a a b c

A c b d d
 (11.99) 

where 1  and 2  denote the two strategies for each player. We assume that the 
populations of players of types 1 and 2 are both N. For simplicity of description, 
we may only study the players of type 1 with the payoff matrix, given by  

1 2

1

2

.
a b

A c d
 (11.100) 

In fact, it is seen from Eq. (11.99) that the payoff matrix for players of type 2 is 
given by  

1 2

1

2

.
a c

B b d

We denote by ( )z t  the number of players of type 1 who are playing strategy 
1  at time t. Then ( ) {0,1,2, , 1, }.z t S N N  Using the total probability law, 

the profitability of choosing strategies 1  and 2  can be defined as 

1
( ) z N zf z a b

N N
 (11.101) 

and

2
( ) ,z N zf z c d

N N
 (11.102) 

respectively. Note that the players switch from one strategy to another according 
to the bounded rationality, using the two functions 

1
( )f z  and 2 ( ),f z  the state 

transition rates are defined as 

1 2
( ) max{ ( ) ( ),0}, 0 1,i f i f i i N  (11.103) 

and

2 1
( ) max{ ( ) ( ),0}, 1 ,i f i f i i N  (11.104) 

where  is the exogenous mutation rate,  estimates in some sense the speed at 
which the boundedly rational players react to their environment, thus  is called 
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the learning ability rate of the players.  
Based on Eq. (11.103) and Eq. (11.104), it is seen from the average meaning 

that { ( ), 0}z t t  is a continuous-time birth death process on state space S whose 
infinitesimal generator is given by 

0 0

1 1 1

2 2 2

1 1 1

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
,

( ) ( ) ( )
( ) ( )

N N N

N N

Q  (11.105) 

where

( ) ( ) ( ), 1 1.i i i i N

We assume that the perturbation parameter 0  is small enough, it is clear 
that ( ) 0i  for 0 1i N  and ( ) 0j  for 1 ,j N  so that the QBD 
process Q  is irreducible. Since the state space is finite and 0,Q e  the QBD 
process Q  is postive recurrent. Let 

0 1 2 1, , , , ,N N

be the stationary probability vector of the QBD process .Q  We write 

0 1

and

0 1 1

1 2

( ) ( ) ( )
.

( ) ( ) ( )
k

k
k

 (11.106) 

Then

0

, 0 .n
n N

k
k

n N  (11.107) 

It follows from Eq. (11.101) and Eq. (11.102) that 

1
( ) a bf z z b

N
 (11.108) 

and

2
( ) ,c df z z d

N
 (11.109) 
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respectively. Thus, 
1
( )f z  and 

2
( )f z  are both linear functions to z. Based on the 

two linear functions, we can distinguish three cases as follows.  
Case The two lines cross in the interval [0, ].N
In this case, there exists a unique * [0, ]z N  such that 

1 2

* *( ) ( ),f z f z

which leads to 
* .

( ) ( )
d bz N

a c d b

Let *i  be the largest integer part of *.z  Then * {0,1,2,..., 1, }i N N  and * *.i z
We write 

2 1

1 2

1( ) ( ) , if ,
2

1( ) ( ) , if ,
2

i

Nf i f i i
a

Nf i f i i

1 1 11 2
2 2

1 2 1
2

N N N

N
N

a a a
B

a a a

and
*

*

*

0 1 1

0 1 1
1

.
1

i

i
i

i

a a a

a
a a a

a

The following theorem describes the stationary probability vector  in Case .
Theorem 11.1 (1) If ,b d  then the stationary probability vector  puts 

probability 1 on state N when * ( 2) 2,i N  on state 0 when * ( 2) 2.i N
It puts probability 1 (1 )NB  on state 0  and (1 )N NB B  on state N when 

* ( 2) 2.i N
(2) If ,b d  then the stationary probability vector  puts probability  on 

state *i  and probability 1  on state * 1.i
Proof (1) If ,b d  then it follows from Eq. (11.101) and Eq. (11.102) that 

1 2
(0) (0).f f  Note that 

1
( )f z  and 

2
( )f z  are linear functions, we obtain that 

1 2
( ) ( )f i f i  when *i i  and 

1 2
( ) ( )f j f j  when *.j i  Let 

2 1

1 2

*

*

( ) ( ) , if ,

( ) ( ) , if .
i

f i f i i i
a

f i f i i i



Constructive Computation in Stochastic Models with Applications 

610

Then ( ) , ( )i i ia for *,i i  and ( ) , ( )j j ja  for *.j i
We write 

1 2

1( )
( )( ) ( )j

j

A
a a a

and

* * 11 2

1 2

( )( ) ( )
( ) .

( )( ) ( )
ji i

j
i

a a a
B

a a a

Therefore, we have 

0 1

and

*

*

*

*

* *

2 1 *

( ), for 1 1,

( ), for , 1,

( ), for 2.

j
j

i
j i

i j
j

A j i

A j i i

B j i

 (11.110) 

For simplicity of description, we suppress the dependence of ( )jA  and ( )jB  on 
,  and write ( )j jA A  and ( ) .j jB B  In these notation, it follows from 

Eq. (11.107) that 

* * *

* *

* *

* *

*

* * *

* *

1 2 1
1 2

*
1 2 1

1 2

2 1
*

1 2 1
1 2

1 , for 0,
1

, for 1 1,
1

, for 2 .
1

i i i N
Ni i

j
j

j i i i N
Ni i

i j
j

i i i N
Ni i

j
A A B B

A
j i

A A B B

B
i j N

A A B B

 (11.111) 

If * ( 2) 2,i N  it is clear from Eq. (11.111) that 

0

1, for 0,
lim

0, for 1 .j

j
j N

If ( 2) 2,i N  it is seen from Eq. (11.111) that 
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0

0, for 0 1,
lim

1, for .j

j N
j N

If * ( 2) 2,i N  it is clear that N is odd and 

*2 1 ( ) ( ).i N
N N NB B

Based on Eq. (11.111), we obtain 

* *

* *

0 1
1 12

1 ,
1 i i

N Ni i
A A B B B

which leads to 

00

1lim .
1 (0)NB

It is obvious from Eq. (11.111) that 

0
lim 0, 1 1.j j N

Note that 

* *

* *
1

1 12

,
1

N
N i i

N Ni i

B
A A B B B

we obtain 

0

(0)
lim .

1 (0)
N

N
N

B
B

(2) If ,b d  then it follows from Eq. (11.101) and Eq. (11.102) that 
1
(0)f

2
(0),f  we obtain that 

1 2
( ) ( )f i f i  when *i i  and 

1 2
( ) ( )f j f j  when *.j i

Let

1 2

2 1

*

*

( ) ( ) , if ,

( ) ( ) , if 1.
i

f i f i i i
a

f i f i i i

Then ( ) , ( ) ,i i ia  for * ,i i  and ( ) , ( )i j ja for j
* 1.i  We write 

0 1

and
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*

*

*

*

0 1 1 *

0 1

1

0 1 *
2 1

1

( )( ) ( )
, for 1 ,

( )( ) ( )
for 1,

( )

( )( ) ( )
for 2.

( ) ( )

j
j

i
j i

i

i
i j

ji

a a a
j i

a a a
j i

a

a a a
j i

a a

 (11.112) 

Using Eq. (11.110), we easily obtain 

*

*

0

, for ,
lim 1 , for 1,

0, otherwise.
j

j i
j i

This completes the proof. 
The following theorem further provides some useful properties for the stationary 

probability vector  in Case .
Theorem 11.2 For any 0,  the stationary probability vector  satisfies 

the following properties:  
(1) If ,b d  then 

*0 1 i

and
* *1 2

.Ni i

At the same time, j  attains its minimum at *j i  and * 1,j i  and * * 1
.

i i

(2) If ,b d  then 

*0 1 ,
i

* *1 2
,Ni i

and * * 1i i
 if and only if * *(2 1) 2.z i  At the same time, j  attains its 

maximum at *j i  if * *(2 1) 2z i  and at * 1j i  if * *(2 1) 2.z i
Proof We first prove (1) 
For * 2,i i  it follows from Eq. (11.110) that 

1

1
1 2 1 1

.
( )( ) ( )( )

i

i i
i i ia a a a a

Note that 1( ) 1ia  when 1 0,ia  we obtain 1i ,i  which leads to 
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*0 1 .
i

For * 2,i i  it follows from Eq. (11.110) that 

*

* *

*

*

1
1 2

1 1
1 2

( )( ) ( )
.

( )( ) ( )

i
ii i i

i ii i
i

a a a a
a a a

Note that ( ) 1ia  when 1 0,ia  we obtain 1i ,i  which leads to 

* *1 2
.Ni i

For * *, 1,i i i  it follows from Eq. (11.110) that 
*

*1 2

,
( )( ) ( )

i

i
i

a a a

which shows that * * 1
,

i i
 which yields that * * 1

.
i i

Now, We prove (2) 
For * 1,i i  it follows from Eq. (11.110) that 

0 1 1
1 1

( )( ) ( )( )

,

i i
i i

i
i i

a a a a

a

thus we obtain 

*0 1 .
i

For * 1,i i  it follows from Eq. (11.112) that 

*

*

*

0 1
1 2

11

1

( )( ) ( )

( ) ( )

,

i
i i i

ii

i i
i

a a a

a a

a

we get 

* *1 2
.Ni i

It follows from Eq. (11.112) that 

*

* *

*
1

1

.i
i i

i

a
a
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Since * * 1i i
a a  if and only if * *(2 1) 2,z i * * 1i i

if and only if 
* *(2 1) 2.z i  Hence, it is clear that j  attains its maximum at *j i  if 
* *(2 1) 2z i  and at * 1j i  if * *(2 1) 2.z i  This completes the proof. 

Case The two lines do not cross in the interval [0, ],N that is, there exists 
no * [0, ]z N  such that 

1 2

* *( ) ( ).f z f z
In this case, note that 

1
( )f z  and 

2
( )f z  are both linear functions to z, we have 

two different classes: 
1 2
( ) ( )f z f z  and 

1 2
( ) ( ).f z f z

The following theorem provides some useful properties for the stationary 
probability vector  in Case .

Theorem 11.3 (1) If ,b d  then for any 0,

0 1 ,N

and for 1 1,i N

*
1 1

*
1 1

, if 0,
, if .

i i i i

i i i i

i
i N

At the same time, we have 

0

0, for 0 1,
lim

1, for .i

i N
i N

(2) If ,b d  then for any 0,

0 1 ,N

and for 1 1,i N
*

1 1
*

1 1

, if 0,
, if .

i i i i

i i i i

i
i N

At the same time, we have 

0

1, for 0,
lim

0, for 1 .i

i
i N

Proof We only need to prove (1), while (2) can be proved similarly.  
If ,b d  then for any 0,

1 2
( ) ( )f z f z  for each [0, ].z N  Since there 

exists no * [0, ]z N  such that 
1 2

* *( ) ( ),f z f z  we obtain 
1 2
( ) ( )f z f z  for 

each [0, ].z N  In this case,  

2 1
[ ( ) ( )], for 0 ,ia f i f i i N
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which leads to that ( ) , ( )i i ia for 0 .i N  It follows from 
Eq. (11.110) that for 0 ,i N

0 1 1
1 1

( )( ) ( )( )

( )
,

i i
i i

i
i i

a a a a

a

thus we obtain 

0 1 .N

We consider the case with * 0.i  Note that for any 0,
1
( )f z and

2
( )f z

are linear functions, and 
1 2
( ) ( )f z f z  for each [0, ],z N  it is easy to see that 

2 1
( ) ( )ia f i f i  is increasing in 0,1,2, , .i N  Since 

1 ,i
i i i

a

it is easy to see that 1i i  is increasing in 0,1,2, , .i N  Therefore, 

1 1i i i  is increasing in 0,1,2, , .i N
Similarly, we can analyze the case with * .i N  The details of this proof are 

omitted here.  
Note that when ( ) ,i ( )i ia  for 0 ,i N it follows from 

Eq. (11.111) for 0 ,i N

* * *

* *

* * *

* *

1 2 1
1 2

1 2 1
1 2

1 , for 0,
1

, for 1 .
1

i i i N
Ni i

j j
j

i i i N
Ni i

j
A A B B

A
j N

A A B B

it is clear that 

0

1, for 0,
lim

0, for 1 .i

i
i N

This completes the proof. 
Case  The two lines are identical in the interval [0, ],N  that is, the two 

functions
1
( )f z  and 

2
( )f z  are equal for all 0,1,2, , .z N

The following theorem provides some useful properties for the stationary 
probability vector  in Case .
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Theorem 11.4 For any 0  and each 0,1,2, , ,i N

1
i N

and

0

1lim .i N

Proof Note that the two functions 
1
( )f z  and 

2
( )f z  are equal for all 

0,1,2, , ,z N  thus it is seen that ( ) , ( )i i  for 0 .i N  It follows 
from Eq. (11.106) that for each 0,1,2, , ,i N

1,i

which, together with Eq. (11.107), leads to that for any 0,

1 .i N
Therefore,

0

1lim .i N

This completes the proof.  
For the 2 2  symmetric evolutionary game under the above three cases, we 

can provide further analysis from the payoff matrix given in Eq. (11.100). We 
summarize the following three classes.  

Class 1 The class of a strictly dominant strategy:  
(1) If a c  and ,b d  then strategy 1  strictly dominates strategy 2.
(2) If a c  and ,b d  then strategy 2  strictly dominates strategy 1.
Class 2 The coordination class (when a c  and )b d  with its two pure Nash 

equilibria ( , )a a  and ( , )d d  and one mixed-strategy equilibrium * ( )p d b
[( ) ( )].a c d b

Class 3 When a c  and ,b d  there is no pure-strategy symmetric Nash 
equilibrium. The game has a unique equilibrium in mixed-strategy equilibrium 

* ( ) [( ) ( )].p d b a c d b
It is easy to see the risk dominance of strategy 1  (resp. strategy 2 ),  that is, 

a c d b  (resp. a c d b ), is equivalent to * 2z N  (resp. * 2).z N
The following definition provides a slightly more risk restrictive concept.  
Definition 11.1 Strategy 1  is called strictly more dominant than strategy 2

if * ( 1) 2.z N  On the other hand, Strategy 2  is called strictly more risk 
dominant than strategy 1  if * ( 1) 2.z N
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Theorem 11.5 (1) In class 1, the stationary distribution  puts probability 1 
on the dominant strategy. 

(2) In class 2, the stationary distribution  puts probability 1 on the pure Nash 
equilibrium that is strictly more risk dominant.  

(3) In class 3, the expected value of 
0

lim  is equal to * ,p  that is, 

00

lim ( ) [( ) ( )].
N

k
k

k d b a c d b

Proof (1) In class 1, when a c  and ,b d  it follows from Eq. (11.101) and 
Eq. (11.102) that for each [0, ],z N

1 2
( ) ( ) ( ) ( ) 0.z N zf z f z a c b d

N N

Hence, using (2) in Theorem 11.3 we can obtain the desired result.  
(2) In class 2, when ,b d  it follows from Eq. (11.108) and Eq. (11.109) that 

1 2
(0) (0),f f  and 

* ( ) .
( ) ( )

d bz N
a c d b

Note that ,a c  we obtain 

( ) 1
( ) ( )

d b
a c d b

which leads to * [0, ].z N  As seen above, the inequality * 2z N  is equivalent 
to saying that the pure Nash equilibrium ( , )a a  is risk dominant. But, in this case 
it might happen that * ( 1) 2,i N  which does not imply by Theorem 11.1 that 
the stationary distribution  puts probability 1 on state N. On the contrary, if we 
assume that strategy 1  is strictly more dominant than strategy 2 ,  then the 
inequality * ( 1) 2i N  follows, which implies the desired result. Likewise, we 
can analyze the case with strategy 2  which is strictly more dominant than 
strategy 1.

(3) When a c  and ,b d  we can obatin 

* *

* *

( 1) ,
1

i z
z i

which implies the desired result. This completes the proof. 
It is necessary to consider the following two borderline cases: (1) When a c

and ,b d the two functions 
1
( )f z and

2
( )f z  are equal for all 0,1,2, , ,z N
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the two strategies are indistinguishable, thus Theorem 11.4 indicates that the 
stationary distribution  is uniform on the state space {0,1,2, , }.S N (2) When 

,a c b d  then * 1 2,z  using Theorem 11.1 we obtain that the stationary 
distribution  puts probability 1 2  on state 0 and probability 1 2  on state N.

11.7 Constructively Perturbed Birth Death Process

In this section, we further construct the perturbed birth death process to study the 
ESS of the 2 2  symmetric evolutionary game.  

11.7.1 An Embedded Chain  

For the 2 2  symmetric evolutionary game, based on Eq. (11.100) we write 

1

1( )
1 1

z N zf z a b
N N

 (11.113) 

and

2

1( ) .
1 1

z N zf z c d
N N

 (11.114) 

It is easy to see from Eq. (11.113) that at least one player can play strategy 1,
and from Eq. (11.114) that at least one player can play strategy 2.  Under the 
two conditions, the best-response decision rule can be defined as follows:  

(1) when playing strategy 1,  switch to strategy 2  if 
1 2
( ) ( 1);f z f z  and  

(2) when playing strategy 2 ,  switch to strategy 1  if 
1 2
( 1) ( ).f z f z

From 
1 2
( ) ( 1),f z f z  it follows from Eq. (11.113) and Eq. (11.114) that  

1

*( 1) 1,z n N

while using 
1 2
( 1) ( )f z f z  we have 

2

*( 1) ,z n N

where
* .d b

a c d b

Therefore, we obtain that  
(1) when playing strategy 1,  switch to strategy 2  if 

1
;z n  and  

(2) when playing strategy 2 ,  switch to strategy 1  if 
2
.z n



11 Sensitivity Analysis and Evolutionary Games 

619

It is clear that 
1 2

1.n n  Hence the two thresholds 
1

n  and 
2

n  are closely 
linked to the mixed equilibrium strategy *  with 

2 1

* .n N n N
In what follows, we shall consider two different cases based on whether or nor 

1
n  (or 

2
)n  is an integer.  

Case 
2

n  (or 
1 2

1)n n  is not an integer.  
In this case, we denote by n  the unique integer between 

1
n  and 

2
.n  Obviously, 

*n  can be taken to be an integer approximation to the mixed equilibrium strategy 
*.  Therefore, when playing strategy 1,  switch to strategy 2  if *;z n  and 

when playing strategy 2 ,  switch to strategy 1  if *.z n
Now, we consider the dynamics. In each period, one player is sampled at 

uniformly random from the population and receives the opportunity with pro- 
babilities z N  (for 1)  and ( )N z N  (for 2 )  to revise his strategy. With 
probability 1 ,  the selected player takes the action prescribed by the myopic 
best reply. With probability  for 0 1 2,  he mutates and takes the opposite 
action.  

Let , ( )i jp  be the probability of transition from a state i to another state j. Clearly, 
if , ( ) 0i jp  whenever 1,i j  then the Markov chain ,( ) ( ( ))i jP p  is a 
birth death process. We take 

*

, 1
*

(1 ) , 1 ,
( )

, 1 ,
n n

n n n
Np

n n n N
N

*

, 1
*

(1 ) , 0 1,
( )

, 1,
n n

N n n n
Np

N n n n N
N

and

, , 1 , 1( ) 1 ( ) ( ), 0 .n n n n n np p p n N

Let 0 1 2 1( ) ( ( ), ( ), ( ), , ( ), ( ))N N  be the stationary probability 
vector of the perturbed birth death process ( ).P  Then ( )  is given by 

*

*

2 *

, 0,

, 1 ,
( )

, 1 ,

n

n

n n

C n
N

C n n
n

N
C n n N

n
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where

1
and

*
*

*

1

2

1 1

1 .
n N

n n n

n n n

N N
C

n n

Theorem 11.6 (1) If *2 ,n N  then

0

1, 0,
lim ( )

0, 1 .n

n
n N

(2) If *2 ,n N  then 

0

1 , 0,
2

lim ( ) 1 , ,
2
0, 1 1.

n

n

n N

n N

(3) If *2 ,n N  then
*

0

1, 2 ,
lim ( )

0, others.n
n n

Case 
2

n (or
1 2

1)n n  is an integer.  
In this case, the payoff ties occur at state 

1
n  and 

2
.n  We denote by  a fixed 

probability of switching from the current strategy if a tie occurs, reflecting, e.g., 
un-modeled switching cost. It is easy to see that when playing strategy 1,
player 1 switches to 2  if 

1
0 1,z n  does not change if 

1
1,z n  and 

switches randomly if 
1
.z n  On the other hand, when playing strategy 2 ,

player 1 switches to 1  if 
2

1,z n  does not change if 
2

0 1,z n  and 
switches randomly if 

2
.z n

Based on the switching probability, the birth death process ,( ) ( ( ))i jP p  is 
described as  

2

1

1

, 1

(1 ) , 1 ,

( ) [(1 ) (1 ) ] , ,

, 1 ,

n n

n n n
N

np n n
N

n n n N
N
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2

2

1

, 1

(1 ) , 0 1,

( ) [(1 ) (1 ) ] , ,

, 1,

n n

N n n n
N

N np n n
N

N n n n N
N

and

, , 1 , 1( ) 1 ( ) ( ), 0 .n n n n n np p p n N

Thus, the stationary probability ( )  is given by 

2

2

1

1

1

2 1

, 0,

, 1 ,

( )
, ,

, 1 ,

n

nn

n n

C n
N

C n n
n
N

C n n
n

N
C n n N

n

where

2
1 1

1 1

1

1 2 1

1 1
1 .

n N
n n nn

n n n

NN N
C nn n

Theorem 11.7 (1) If
1

2 1,n N  then

0

1, 0,
lim ( )

0, 1 .n

n
n N

(2) If
1

2 1,n N  then

0

1 , 0,
2

lim ( ) 1 , ,
2
0, 1 1.

n

n

n N

n N

(3) If
1

2 1,n N  then

1

0

1, 2 1,
lim ( )

0, others.n

n n
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11.7.2 A Probabilistic Construction  

For the 2 2  symmetric evolutionary game, based on Eq. (11.100) we write 

( 1) ( )
1i

i a N i bf
N

 (11.115) 

and

( 1 ) .
1i

ic N i dg
N

 (11.116) 

At every step, one individual is chosen to reproduce. The probability that an 
individual using strategy 1  is chosen is given by 

.
( )

i

i i

if
if N i g

We assume that with probability 0,  a 1-offspring is mutant which plays 
strategy 2  instead of strategy 1,  and with probability 0,  a 2-offspring is 
mutant which plays strategy 1.  After reproduction, the offspring replaces a 
randomly chosen member of the population, so that the population size is 
constant. The process that describes the number of individuals playing strategy 

1  is a birth death process whose transition probability matrix ,( ) ( ( ))i jP p
with ( ) 0i jp  for 1i j  is given by 

0,1 0,0( ) 1 ( ) ,p p

, 1 ,( ) 1 ( ) ,N N N Np p

and for 1 1,i N

, 1
(1 ) ( )

( ) ,
( )

i i
i i

i i

if N i g N ip
if N i g N

, 1
( ) (1 )

( )
( )

i i
i i

i i

if N i g ip
if N i g N

and

, , 1 , 1( ) 1 ( ) ( ).i i i i i ip p p

Because of the presence of mutations, the birth death process is irreducible and 
positive recurrent, and thus the stationary probability vector 0 1 2( , , , ,

1, ).N N  Let 
0

lim  with *

0
limi i  for 0 .i N
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We take a new birth death process with the transition probability matrix 

,
ˆ ˆ( ).i jP p  We write 

,0,0 ˆˆ 1,N Npp

and for 1 1,i N

, 1ˆ ,
( )

i
i i

i i

if N ip
if N i g N

, 1
( )ˆ

( )
i

i i
i i

N i g ip
if N i g N

and

, , 1 , 1ˆ ˆ ˆ1 .i i i i i ip p p

It is clear that ,, 0
ˆ lim ( )i ji j pp  for 0 , ,i j N  which leads to 

0
ˆ lim ( ).P P

Thus, *  is the stationary probability vector of the birth death process ˆ.P  Let 

1

1

.
N

i

i i

f
g

 (11.117) 

For very small mutation rates, the moran process spends nearly all the time at 
one of the two states 0 and N. It is easy to see that *

0  and *
N  are the limits of the 

fractions of time that the moran process spends at the states “all 1 ” and “all 2 ”,
respectively. Therefore, we obtain 

*
0 1

 (11.118) 

and
* 1 .

1N  (11.119) 

The following lemma provides a useful bound for *
0  and * .N  The proof is 

clear and is omitted here.  
Lemma 11.2 (1) *

0 1 2  (or * 1 2)N  if and only if 1 ,
(2) *

0 1 2  (or * 1 2)N  if and only if 1 ,  and 
(3) *

0 1 2  (or * 1 2)N  if and only if 1 .
Now, we construct a two-state Markov chain whose stationary probability 

vector is * *
0 ., N  Such a constructed Markov chain can be used to study the 

underlying game with more than two pure strategies. For the birth death process 
ˆ,P  the states 0 and N are absorbing and the other states are all transient. Let 1,2
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be the probability of absorption at state 0 , if the birth death process is initially at 
state 1.N  Thus, 1,2  is the probability that a single individual that plays 
strategy 2  takes over a population where everyone else plays strategy 1.
Define 2,1  analogously. It is easy to check that 

1

1
1,2 1

1 1

1

N
j

j j
iN

j

i j j

g
f

g
f

and

2,1 1

1 1

1 .
1

iN
j

i j j

g
f

It is clear that 2,1 1,2 .  We take a two-state Markov chain whose transition 
probability matrix is given by 

2,1 2,1

1,2 1,2

1
,

1
P

Simple computation shows that two-state Markov chain P has stationary probability 
vector * *

0 ., N

In what follows, we discuss how the limiting distribution * *
0 , N  depends on 

the size N of the population and the payoff matrix. In this situation, we rewrite 
*  as * * * * *

0 1 2( ) ( ), ( ), ( ), , ( )NN N N N N  in order to indicate the 

dependence on the number N.
Definition 11.2 Strategy  is called to be favored by the moran process if 

* ( ) 1 2,i N  and Strategy  is called to be selected by the moran process if 
*lim ( ) 1.iN

N

To determine favored and selected strategies, we rewrite Eq. (11.117) as 

1

1
1

1

[ ( 1 ) ]
( ) .

[ ( 1 ) ]

N

i
N

i

ib N i a
N

ic N i d

Following Lemma 11.2, the following theorem indicates how the favored and 
selected strategies depend on the payoff matrix. The proof is easy and is omitted 
here.



11 Sensitivity Analysis and Evolutionary Games 

625

Theorem 11.8 Suppose 1.
(1) If b c  and ,a d  then *

0 ( ) 1 2N  for each N.  
(2) If b c  and ,a d  then *

0 ( ) 1 2N  may depend on the population size  
N. A sufficient condition for *

0 ( ) 1 2N  is given by 

2 .b cN
d a

Recall that in a 2 2  game, a strategy is risk dominant if it is the unique best 
response to the distribution (1 2,1 2)  for the two strategies 1  and 2.  Thus, 
strategy 1  is risk dominant if ;a b c d  while strategy 2  is risk dominant 
if .a b c d  Strategy 1  is Pareto-dominant if ;a d  while strategy 2  is 
Pareto-dominant if .a d  The following theorem provides sufficient conditions 
for the favored and selected strategies.  

Theorem 11.9 (1) If b c  and ,a d  then *
0lim ( ) 1

N
N .

(2) If ,b d a c  then *
0lim ( ) 1.

N
N

(3) If ,d b c a  then *
0lim ( ) 0.

N
N

(4) If d b a c  or ,d a b c  then there are two pure-strategy Nash 

equlibibria, and *
0lim ( )

N
N  is either 1 or 0 as 

1

0
ln ( ) db a b x x  is greater or 

less than 
1

0
ln[ ( ) ]d .d c d x x  The risk dominant equilibrium need not be 

selected, even if it is also Pareto-dominant.  

(5) If b c d a  or ,b d c a  then there are two pure-strategy Nash 

equlibibria, and *
0lim ( )

N
N  is either 1 or 0 as 

1

0
ln[ ( ) ]db a b x x  is greater or 

less than 
1

0
ln[ ( ) ]d .d c d x x

Proof (1) The ratio of each pair of terms in ( )N  is bounded away from 1, 
hence lim ( ) ,

N
N  which leads to *

0lim ( ) 1.
N

N

(2) If ,b d a c  then it is easy to check that 

[( 1) ][( 2) ] [2 ( 3) ][ ( 2) ]( ) 1,
[ ( 2) ][2 ( 3) ] [( 2) ][( 1) ]

N b N b a b N a b N aN
c N d c N d N c d N c

which leads to *
0lim ( ) 1.

N
N

(3) If ,d b c a  then when 2 max{( ) ( ), ( ) ( )},N b c d b b c c a  it 
is easy to see that ( ) 1N  which leads to *

0lim ( ) 0.
N

N
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(4) and (5) To prove the two results, we need to approximate ( )N  as .N
Note that 

1

0

( 1 )( ) ,
( 1 )

N

j

d aj b N jN
a cj d N j

1 1

0
0

[ ( 1 )] exp ln[ ( ) ] (1)
N

j

d aj b N j d N a b a x dx O

and
1 1

0
0

[ ( 1 )] exp ln[ ( ) ] (1).
N

j

a cj d N j a N c d c x dx O

Therefore, lim ( )
N

N  is equal to 0 or  by means of the comparison for the two 

above integrals. Based on this, (4) and (5) can be proved. This completes the proof. 

11.8 Asymmetric Evolutionary Games

In this section, we apply the perturbed QBD processes to study the ESS for 
asymmetric evolutionary games under a unified algorithmic framework. For a 
2 2  asymmetric evolutionary game, we discuss three cases: Independent structure, 
dependent structure and information interaction, and provide numerical solution 
for the ESS of each case by means of the RG-factorizations. Further, we simply 
discuss the ESS for a 3 2  asymmetric evolutionary game.  

11.8.1 A 2 2 Game with Independent Structure  

Consider a 2 2  asymmetric evolutionary game with independent structure, 
where each player has two strategies 1  and 2 ,  the populations of players of 
type 1 and 2 are M and N, and their payoff matrices are given by 

1 21 2
1 2

1 1 2 2

, ,
a b a b

A A
c d c d

respectively.  
Based on the populations and the payoff matrices, we can setup a transition 

rate of players from strategy i  to j  under an average setting. Thus, for the first 
type of players we take 

1

1 1 1( )( ) a m b M mf m
M
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and

2

1 1 1( )( ) .c m d M mf m
M

Similarly, for the second type of players we write 

1

2 2 2 ( )( ) a n b N nf n
N

and

2

2 2 2 ( )( ) .c n d N nf n
N

Further, for the first type of players, the transition rate switching strategy from 
2  to 1  is defined as 

1 2

1 1 1
1( ) max ( ) ( ),0 , 0,1, , 1,i f i f i i M

and the transition rate switching strategy from 1  to 2  is defined as 

2 1

1 1 1
1( ) max ( ) ( ),0 , 1,2, , .i f i f i i M

Similarly, for the second type of players, the transition rate switching strategy 
from 2  to 1  is defined as 

1 2

2 2 2
2( ) max ( ) ( ),0 , 0,1, , 1,j f j f j j N

and the transition rate switching strategy from 1  to 2  is defined as 

2 1

2 2 2
2( ) max ( ) ( ),0 , 1,2, , .j f j f j j N

Note that  and i  are called an exogenous mutation rate and a learning ability 
rate.

Let 1 2( ) ( ( ), ( )),z t z t z t  where ( )iz t  is the number of the players of type i who 
are playing strategy 1  at time t for 1,2.i  Note that each player switches from 
one strategy to another according to the bounded rationality with myopia, inertia 
and mutation for a small probability 0.  Based on this, we can model this 
game as a continuous-time level-dependent QBD process { ( ), 0}z t t  on the 
state space 

{(0,0), (0,1), , (0, );(1,0), (1,1), , (1, );
; ( ,0), ( ,1), , ( , )},

S N N
M M M N
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where the first type of players are regarded as “level” while the second type of 
players are regarded as “phase”. Therefore, the infinitesimal generator of this 
QBD process is given by 

0 0
1 0
1 1 1
2 1 0

2 2 2
2 1 0

2 2 2
2 1 0

1 1 1
2 1 0

2 1

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ,

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

M M M

M M M

M M

A A
A A A

A A A
Q

A A A
A A A

A A

where for 0 ,k M

2

2 2

2 2

1

2 2

2

( ,0) (0)
(1) ( ,1) (1)

(2) ( ,2) (2)
( )

( 1) ( , 1) ( 1)
( ) ( , )

k

a k
a k

a k
A

N a k N N
N a k N

with for 0,k

1 2

1 2 2

1 2

(0) (0), 0,
(0, ) (0) ( ) ( ), 1 1,

(0) ( ), ,

l
a l l l l N

N l N

for ,k M

1 2

1 2 2

1 2

( ) (0), 0,
( , ) ( ) ( ) ( ), 1 1,

( ) ( ), ,

M l
a M l M l l l N

M N l N

and for 1 1,k M

1 1 2

1 1 2 2

1 1 2

( ) ( ) (0), 0,
( , ) ( ) ( ) ( ) ( ), 1 1,

( ) ( ) ( ), .

k k l
a k l k k l l l N

k k N l N

At the same time, for 0 1,m M
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1
0 ( ) ( )diag(1,1,1, ,1,1),mA m

and for 1 ,n M
1

2 ( ) ( )diag(1,1,1, ,1,1).nA n

For the QBD process, we write 

1( ) ( ),M
MU A

1 1
1 0 1 2( ) ( ) ( ) [ ( )] ( ), 0 1,k k k

k kU A A U A k M

and
1

0 1( ) ( )[ ( )] , 0 1.k
k kR A U k M

Let

0 1 2 1( ) ( ( ), ( ), ( ), , ( ), ( ))M M

with 
0 1 2 1( ) ( ( ), ( ), ( ), , ( ), ( ))N N

k k k k k k

be the stationary probability vector of the QBD process ( ).Q  Then 

0 0 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ), 0 ,k kv R R R R k M

where 0 ( )v  is the stationary probability vector of the censored Markov chain 

0 ( )U  to level 0, and the constant ( )  is given by 

0 0 1 2 1
1

1( ) .
1 ( ) ( ) ( ) ( ) ( )

M

k
k

v R R R R e

To compute the ESS of this game numerically, we need to study the limiting 
distribution

*

0
lim

where
* * *

0 00 0 0
lim ( ), lim ( ), lim ( ).k kv v R R

In what follows we provide two numerical examples to indicate the structure 
of the two probabilities ( )ip  and ( )jq  with respect to the two learning ability 
rates 1  and 2 ,  and the exogenous mutation rate .  For simplification of 
description, we write 
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1
0

( ) { ( ) } ( ),
N

j
i i

j
p P z i

2
0

( ) { ( ) } ( ).
M

j
j i

i
q P z j

Example 11.1 (The learning ability rate) In the 2 2  asymmetric evolutionary 
game, the parameters are given by 

1 2

20 0 40 1
,

2 8 0 10
A A

 6, 10, 0.5,M N

1 2 0.1,0.2,0.4,0.6,0.8,1.0.

Table 11.1 indicates how the two probabilities ( )ip  and ( )jq  depend on the 
learning ability rate .

Table 11.1 The role of the learning ability rate 

For the first type of players 

1( )z 0 1 2 3 4 5 6 
0.1  0.0457 0.0264 0.0264 0.0299 0.0598 0.1715 0.6402 
0.2  0.0171 0.0070 0.0070 0.0088 0.0264 0.1251 0.8087 
0.4  0.0046 0.0012 0.0012 0.0018 0.0090 0.0760 0.9063 
0.6  0.0019 0.0004 0.0004 0.0006 0.0044 0.0539 0.9384 
0.8  0.0010 0.0001 0.0001 0.0003 0.0026 0.0417 0.9541 
1.0  0.0006 0.0001 0.0001 0.0002 0.0017 0.0340 0.9634 

For the second type of players 

2( ) 0z 2( ) 1z 2( ) 2z 2( ) 3z 2( ) 4z 2( ) 5z 2( ) 6z 2( ) 7z 2( ) 8z 2( ) 9z 2( ) 10z

0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0025 0.0155 0.1088 0.8725 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0047 0.0620 0.9328 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0013 0.0332 0.9654 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0227 0.9767 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0172 0.9825 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0138 0.9859 

Example 11.2 (The exogenous mutation rate) In the 2 2  asymmetric 
evolutionary game, the parameters are given by 
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1 2

20 0 40 1
,

2 8 0 10
A A

1 26, 10, 0.6,M N

0.2,0.6,1.0,1.5,2.0,4.0.

Table 11.2 indicates how the two probabilities ( )ip  and ( )jq  depend on the 
exogenous mutation rate .

Table 11.2 The role of the exogenous mutation rate 

For the first type of players 

1( )z 0 1 2 3 4 5 6 
0.2  0.0002 0.0000 0.0000 0.0001 0.0008 0.0232 0.9757 
0.6  0.0029 0.0006 0.0006 0.0010 0.0061 0.0631 0.9257 
1.0  0.0082 0.0026 0.0026 0.0036 0.0144 0.0950 0.8737 
1.5  0.0171 0.0070 0.0070 0.0088 0.0264 0.1251 0.8087 
2.0  0.0270 0.0128 0.0128 0.0154 0.0385 0.1465 0.7469 
4.0  0.0613 0.0395 0.0395 0.0435 0.0761 0.1827 0.5573 

For the second type of players 

2( ) 0z 2( ) 1z 2( ) 2z 2( ) 3z 2( ) 4z 2( ) 5z 2( ) 6z 2( ) 7z 2( ) 8z 2( ) 9z 2( ) 10z

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0093 0.9906 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0269 0.9722 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0023 0.0433 0.9543 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0047 0.0620 0.9328 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0009 0.0079 0.0791 0.9120 
0.0001 0.0001 0.0001 0.0001 0.0001 0.0004 0.0012 0.0050 0.0241 0.1333 0.8354 

11.8.2 A 2 2 Game with Dependent Structure  

Consider a 2 2  asymmetric evolutionary game with dependent structure, where 
each player has two strategies 1  and 2 ,  the populations of players of types 1 
and 2 are M and N, their payoff matrices are given by 

1 21 2
1 2

1 1 2 2

, ,
a b a b

A A
c d c d

respectively. We assume that the dependent structure is expressed as four factors 

1 ( , ),D i j 1 ( , ),D i j 2 ( , )D i j  and 2 ( , )D i j  for 0 i M  and 0 .j N  Note 
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that when there are i players of type 1 playing strategy 1  and j players of type 2 
playing strategy 1, 1 ( , )D i j  and 1 ( , )D i j  are two dependent factors for the 
players of type 1 switching strategy 2  to strategy 1  and switching strategy 

1  to strategy 2 ,  respectively; while 2 ( , )D i j  and 2 ( , )D i j  can be similarly 
explained for the players of type 2. 

Let

1

1 1 1( )( ) ,a m b M mf m
M

2

1 1 1( )( ) ;c m d M mf m
M

1

2 2 2 ( )( ) a n b N nf n
N

and

2

2 2 2 ( )( ) .c n d N nf n
N

Applying the dependently structured factors, we can further define the transition 
rate either switching strategy 2  to strategy 1  or switching strategy 1  to 
strategy 2  as follows. For the first type of players, the transition rate switching 
strategy from 2  to 1  is defined as that for 0,1, , 1,i M

1 2

1 1 1 1
1 1 1( , ) ( , ) max ( ) ( ),0 ( ) ( , ),a i j D i j f i f i i D i j

and the transition rate switching strategy from 1  to 2  is defined as that for 
1,2, , ,i M

2 1

1 1 1 1
1 1 1( , ) ( , ) max ( ) ( ),0 ( ) ( , ).b i j D i j f i f i i D i j

Similarly, for the second type of players, the transition rate switching strategy 
from 2  to 1  is defined as that for 0,1, , 1,j N

1 2

2 2 2 2
2 2 2( , ) ( , ) max ( ) ( ),0 ( , ) ( ),a i j D i j f j f j D i j j

and the transition rate switching strategy from 1  to 2  is defined as that for 
1,2, , ,j N

2 1

2 2 2 2
2 2 2( , ) ( , ) max ( ) ( ),0 ( , ) ( ).b i j D i j f j f j D i j j
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Remark 11.1 The four dependently structured factors 1 ( , ),D i j 1 ( , ),D i j

2 ( , )D i j  and 2 ( , )D i j  for 0 i M  and 0 j N  can be chosen extensively, 
for example,  

2 3
1 1 1 1 1 1( , ) , , ln( ) ln( ), , .

ln( )

i
i j i jD i j c c i j c i j c c

j

Specifically, if the four dependently structured factors are all equal to one, then 
this game becomes the case with independent structure, as studied above. 

Let 1 2( ) ( ( ), ( )),z t z t z t  where ( )iz t  is the number of the players of type i who 
are playing strategy 1  at time t for 1,2.i  Then we can model this game as a 
continuous-time level-dependent QBD process { ( ), 0}z t t  on the state space 

{(0,0), (0,1), , (0, );(1,0), (1,1), , (1, );
; ( ,0), ( ,1), , ( , )},

S N N
M M M N

and its state transition relation is given in Fig. 11.1.  

Figure 11.1 The state transition relation

Based on Fig. 11.1, the infinitesimal generator of this QBD process is given by 

0 0
1 0
1 1 1
2 1 0

2 2 2
2 1 0

2 2 2
2 1 0

1 1 1
2 1 0

2 1

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ,

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

M M M

M M M

M M

A A
A A A

A A A
Q

A A A
A A A

A A

where for 0 ,k M



Constructive Computation in Stochastic Models with Applications 

634

2

2 2

2 2

1

2 2

2

( ,0) ( ,0)
( ,1) ( ,1) ( ,1)

( ,2) ( ,2) ( ,2)
( )

( , 1) ( , 1) ( , 1)
( , ) ( , )

k

k a k
b k k a k

b k k a k
A

b k N k N a k N
b k N k N

with for 0,k

1 2

1 2 2

1 2

(0,0) (0,0), 0,
(0, ) (0, ) (0, ) (0, ), 1 1,

(0, ) (0, ) ,

a a l
l a l a l b l l N

a N b N l N

for ,k M

1 2

1 2 2

1 2

( ,0) ( ,0), 0,
( , ) ( , ) ( , ) ( , ), 1 1,

( , ) ( , ), ,

b M a M l
M l b M l a M l b M l l N

b M N b M N l N

and for 1 1,k M

1 1 2

1 1 2 2

1 1 2

( ,0) ( ,0) ( ,0), 0,
( , ) ( , ) ( , ) ( , ) ( , ), 1 1,

( , ) ( , ) ( , ), .

k k k l
k l k l k l k l k l l N

k N k N k N l N

At the same time, for 0 1,m M

1 1 1 1 1
0 ( ) diag ( ,0), ( ,1), ( ,2), , ( , 1), ( , ) ,mA a m a m a m a m N a m N

for 1 ,n M

1 1 1 1 1
2 ( ) diag ( ,0), ( ,1), ( ,2), , ( , 1), ( , ) .nA b n b n b n b n N b n N

For the QBD process, we write 

1( ) ( )M
MU A

and for 0 1,k M

1 1
1 0 1 2( ) ( ) ( ) ( ) ( ),k k k

k kU A A U A

and
1

0 1( ) ( ) ( ) , 0 1.k
k kR A U k M
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Let

0 1 2 1( ) ( ( ), ( ), ( ), , ( ), ( ))M M

with 
0 1 2 1( ) ( ( ), ( ), ( ), , ( ), ( ))N N

k k k k k k

be the stationary probability vector of the QBD process ( ).Q  Then 

0 0 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ), 0 ,k kv R R R R k M

where 0 ( )v  is the stationary probability vector of the Markov chain 0 ( )U  and 
the constant ( )  is given by 

0 0 1 2 1
1

1( ) .
1 ( ) ( ) ( ) ( ) ( )

M

k
k

v R R R R e

To compute the ESS numerically, we need to study the limiting distribution 

*

0
lim ( )

where
* * *

0 00 0 0
lim ( ), lim ( ), lim ( ), 0 1.k kv v R R k M

In what follows we provide a comparable numerical example to indicate how 
the limiting distribution *  depends on the dependently structured factors 

1 ( , ),D i j 1 ( , ),D i j 2 ( , )D i j  and 2 ( , )D i j  for 0 i M  and 0 .j N
Example 11.3 (The dependently structured factors) In the 2 2  asymmetric 

evolutionary game, the payoff matrix is given by 

1 2

20 0
,

2 8
A A

1 28, 0.8, 0.1,M N

1 1( , ) , ( , ) ,(1 ) (1 ) (1 ) (1 )i j i jD i j D i j

2 2( , ) , ( , ) ,(1 ) (1 ) (1 ) (1 )i j i jD i j D i j

where in the original model 0;  while in a comparable model 
0.2, 0.6, 0.4.  Figure 11.2 indicates how the two probabilities 

( )ip  and ( )jq  depend on the dependently structured factors. It is seen that 
when this game has an independent structure, two types of players can choose 
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their dominant strategies { ( ) 8} 1iP z  for 1,2.i  However, when introducing 
the dependent structure to this game, the dominant strategies become that 

1 2{ ( ) 8} 1, { ( ) 0} 1.P z P z

Figure 11.2 The role of the dependent structure

11.8.3 A 2 2 Game with Information Interaction  

Consider a 2 2  asymmetric evolutionary game with information interaction, 
where each player has two strategies 1  and 2 ,  the populations of the players 
of types 1 and 2 are M and N, their payoff matrices are given by 

1 21 2
1 2

1 1 2 2

, ,
a b a b

A A
c d c d

respectively.  
We define 

1

1 1 1( )( ) ,a n b N nf n
N

2

1 1 1( )( ) ;c n d N nf n
N

1

2 2 2 ( )( ) a m b M mf m
M
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and

2

2 2 2 ( )( ) .c m d M mf m
M

For the first type of players, the transition rate switching strategy from 2  to 1

is defined as 

1 2

1 1 1
1( ) max ( ) ( ),0 , 0,1, , 1,i f i f i i N

and the transition rate switching strategy from 1  to 2  is defined as 

2 1

1 1 1
1( ) max ( ) ( ),0 , 1,2, , .i f i f i i N

Similarly, for the second type of players, the transition rate switching strategy 
from 2  to 1  is defined as 

1 2

2 2 2
2( ) max ( ) ( ),0 , 0,1, 1,i f i f i i M

and the transition rate switching strategy from 1  to 2  is defined as 

2 1

2 2 2
2( ) max ( ) ( ),0 , 1,2, , .i f i f i i M

Let 1 2( ) ( ( ), ( )),z t z t z t  where ( )iz t  is the number of the players of type i who 
are playing strategy 1  at time t for 1,2.i  We can model this game as a 
continuous-time level-dependent QBD process { ( ), 0}z t t  on the state space 

{(0,0), (0,1), , (0, );(1,0), (1,1), , (1, );
; ( ,0), ( ,1), , ( , )},

S M M
N N N M

and the infinitesimal generator of this QBD process is given by 

0 0
1 0
1 1 1
2 1 0

2 2 2
2 1 0

2 2 2
2 1 0

1 1 1
2 1 0

2 1

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
,

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

N N N

N N N

N N

A A
A A A

A A A
Q

A A A
A A A

A A

where for 0 ,k N
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2

2 2

2 2

1

2 2

2

( ,0) (0)
(1) ( ,1) (1)

(2) ( ,2) (2)
( ) ,

( 1) ( , 1) ( 1)
( ) ( , )

k

a k
a k

a k
A

M a k M M
M a k M

for 0,k

1 2

1 2 2

1 2

(0) (0), 0,
(0, ) (0) ( ) ( ), 1 1,

(0) ( ), ,

l
a l l l l M

M l M

for k N

1 2

1 2 2

1 2

( ) (0), 0,
( , ) ( ) ( ) ( ), 1 1,

( ) ( ), .

N l
a N l N l l l M

N M l M

and for 1 1,k N

1 1 2

1 1 2 2

1 1 2

( ) ( ) (0), 0,
( , ) ( ) ( ) ( ) ( ), 1 1,

( ) ( ) ( ), ,

k k l
a k l k k l l l M

k k M l M

At the same time, for 0 1,m N

1 1 1 1 1
0 ( ) diag (0), (1), (2), , ( 1), ( ) ,mA M M

for 1 ,n N

1 1 1 1 1
2 ( ) diag (0), (1), (2), , ( 1), ( ) .nA M M

For the QBD process, we write 

1( ) ( ),N
NU A

1 1
1 0 1 2( ) ( ) ( )[ ( )] ( ), for 0 1,k k k

k kU A A U A k N

and

1
0 1( ) ( )[ ( )] , 0 1.k

k kR A U k N
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Let

0 1 2 1( ) ( ( ), ( ), ( ), , ( ), ( ))N N

with
0 1 2 1( ) ( ), ( ), ( ), , ( ), ( )M M

k k k k k k

be the stationary probability vector of the QBD process ( ).Q  Then 

0 0 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ), 0 ,k kv R R R R k N

where 0 ( )v  is the stationary probability vector of the censored Markov chain 

0 ( )U  to level 0, and the constant ( )  is given by 

0 0 1 2 1
1

1( ) .
1 ( ) ( ) ( ) ( ) ( )

N

k
k

v R R R R e

To compute the ESS numerically, we need to study the limiting distribution 

*

0
lim

where
* * *

0 00 0 0
lim ( ), lim ( ), lim ( ), 0 1.k kv v R R k N

In what follows we provide two numerical examples to indicate how the 
limiting distribution *  depends on the information interaction.  

Example 11.4 (The information interaction) In the 2 2  asymmetric 
evolutionary game, the payoff matrices are given by  

1 2

20 10 10 1
,

2 8 0 40
A A

1 28, 10, 0.1, 0.8.M N

Figure 11.3 indicates how the two probabilities ( )ip  and ( )jq  depend on the 
information interaction. 

Example 11.5 (The information interaction) In the 2 2  asymmetric 
evolutionary game, the payoff matrices are given by 

1 2

2 20 12 1
,

10 0 0 8
A A

1 28, 10, 0.1, 0.8.M N



Constructive Computation in Stochastic Models with Applications 

640

Figure 11.3 The role of the information interaction

Figure 11.4 indicates how the two probabilities ( )ip  and ( )jq  depend on the 
information interaction. 

Figure 11.4 The role of the information interaction

11.8.4 A 3 2 Asymmetric Evolutionary Game  

Consider a 3 2  asymmetric evolutionary game with information interaction, 
where there are three types of players and each player has two strategies 1  and 
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2 ,  the populations of the players of type k are kN  for 1,2,3,k  their payoff 
matrices are given by 

1 1 1 1
1,1,1 1,1,2 1,2,1 1,2,2

1 1 1 1 1
2,1,1 2,1,2 2,2,1 2,2,2

,
c c c c

A
c c c c

2 2 2 2
1,1,1 1,1,2 2,1,1 2,1,2

2 2 2 2 2
1,2,1 1,2,2 2,2,1 2,2,2

c c c c
A

c c c c

and
3 3 3 3
1,1,1 1,2,1 2,1,1 2,2,1

3 3 3 3 3
1,1,2 1,2,2 2,1,2 2,2,2

,
c c c c

A
c c c c

respectively. For example, 2
1,1,2c  denotes the payoff for the players of type 2 when 

the players of types 1, 2 and 3 play strategies 1, 2  and 3 ,  respectively.  
For 1 20 ,0k N i N  and 30 ,j N  we define 

1

1 1 1 1
1,1,1 1,1,2 1,2,1

2 3 2 3 2 3

1
1,2,2

2 3

( , , ) 1 1

1 1 ,

i j i j i jf i j c c c
N N N N N N

i jc
N N

2

1 1 1 1
2,1,1 2,1,2 2,2,1

2 3 2 3 2 3

1
2,2,2

2 3

( , , ) 1 1

1 1 ;

i j i j i jf i j c c c
N N N N N N

i jc
N N

1

2 2 2 2
1,1,1 1,1,2 2,1,1

1 3 1 3 1 3

2
2,1,2

1 3

( , , ) 1 1

1 1 ,

k j k j k jf k j c c c
N N N N N N

k jc
N N

2

2 2 2 2
1,2,1 1,2,2 2,2,1

1 3 1 3 1 3

2
2,2,2

1 3

, , 1 1

1 1 ,

k j k j k jf k j c c c
N N N N N N

k jc
N N
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1

3 3 3 3
1,1,1 1,2,1 2,1,1

1 2 1 2 1 2

3
2,2,1

1 2

( , , ) 1 1

1 1 ,

k i k i k if k i c c c
N N N N N N

k ic
N N

2

3 3 3 3
1,1,2 1,2,2 2,1,2

1 2 1 2 1 2

3
2,2,2

1 2

( , , ) 1 1

1 1 ,

k i k i k if k i c c c
N N N N N N

k ic
N N

For the first type of players, the transition rate switching strategy from 2  to 1

is defined as that for 20,1, , 1i N  and 30,1, , 1,j N

1 2

1 1 1
1( , , ) max ( , , ) ( , , ),0 ,i j f i j f i j

and the transition rate switching strategy from 1  to 2  is defined as that for 

21,2, ,i N  and 31,2, , ,j N

2 1

1 1 1
1( , , ) max ( , , ) ( , , ),0 .i j f i j f i j

For the second type of players, the transition rate switching strategy from 2  to 

1  is defined as that for 10,1, , 1k N  and 30,1, , 1,j N

1 2

2 2 2
2( , , ) max ( , , ) ( , , ),0 ,k j f k j f k j

and the transition rate switching strategy from 1  to 2  is defined as that for 

11, 2, ,k N  and 31,2, , ,j N

2 1

2 2 2
2( , , ) max ( , , ) ( , , ),0 .k j f k j f k j

For the third type of players, the transition rate switching strategy from 2  to 

1  is defined as that for 10,1, , 1k N  and 20,1, , 1,i N

1 2

3 3 3
3( , , ) max ( , , ) ( , , ),0 ,k i f k i f k i

and the transition rate switching strategy from 1  to 2  is defined as that for 

11,2, ,k N  and 21,2, , ,i N

2 1

3 3 3
3( , , ) max ( , , ) ( , , ),0 .k i f k i f k i
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Let 1 2 3( ) ( ( ), ( ), ( )),z t z t z t z t  where ( )iz t  is the number of the players of type i
who are playing strategy 1  at time t for 1,2,3.i  We can model this game as a 
continuous-time level-dependent QBD process { ( ), 0}z t t  on the state space 

1 1

2 2 2 1 1

2 1 2 1 3 2 1

{(0,0,0), (0,0,1), , (0,0, );(0,1,0), (0,1,1), , (0,1, );
; (0, ,0), (0, ,1), , (0, , );(1,0,0), (1,0,1), , (1,0, );
;(0, , ), (1, , ), , ( , , )}

S N N
N N N N N
N N N N N N N

with the state transition relation shown in Fig. 11.5. 

Figure 11.5 The state transition relation

For a given integer 30,1, , ,j N  we have the transition rates 1( , , )i j  and 
1 ( , , )i j  for the players of type 1, and 2 ( , , )k j  and 2 ( , )k j  for the players 

of type 2, thus we can construct a QBD process with the infinitesimal generator 
1,2 ( )Q j  with respect to the players of types 1 and 2, as indicated above. Applying 

the state transition relation, the infinitesimal generator of the QBD process 
describing the 3 2  asymmetric evolutionary game is given by  

1,2

1,2

1,2,3

1,2
3

1,2
3

(0)
(1)

( ) ,

( 1)
( )

Q
N

N

where
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1,2

1,2 1,2
3

1,2
3 3

(0) , 0,
( ) ( ) , 1 1,

( ) , ,

Q l
l Q l l N

Q N l N

3 3 3 3 3
2

3 3 3 3
2 1 1 1 2

diag( (0,0, ), (0,1, ), , (0, , ); (1,0, ), (1,1, ),
, (1, , ); , ( ,0, ), ( ,1, ), , ( , , ))

N
N N N N N

and
3 3 3 3 3

2
3 3 3 3

2 1 1 1 2

diag( (0,0, ), (0,1, ), , (0, , ); (1,0, ), (1,1, ),
, (1, , ); , ( ,0, ), ( ,1, ), , ( , , )).

N
N N N N N

For the QBD process 1,2,3 ( ),Q  we write 

3

1,2
3( ) ( ) ,NU Q N

for 1 1,k N

11,2
1( ) ( ) [ ( )] ,k kU Q k U

and

11,2
0 1( ) (0) .[ ( )]U Q U

We write  

1
1( ) [ ( )] , 0 1.k kR U k N

Let

3 30 1 2 1( ) ( ), ( ), ( ), , ( ), ( )N N

be the stationary probability vector of the QBD process 1,2,3 ( ).Q  Then 

0 0 1 2 1 3( ) ( ) ( ) ( ) ( ) ( ) ( ), 0 ,k kv R R R R k N

where 0 ( )v  is the stationary probability vector of the censored Markov chain 

0 ( )U  to level 0, and the constant ( )  is given by 

3

0 0 1 2 1
1

1( ) .
1 ( ) ( ) ( ) ( ) ( )

N

k
k

v R R R R e

To compute the ESS numerically, we need to study the limiting distribution 

*

0
lim
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where

* * *
0 0 30 0 0

lim ( ), lim ( ), lim ( ), 0 1.k kv v R R k N

11.9 Notes in the Literature

Infinitesimal perturbation analysis is a sensitivity-analytic technique for discrete- 
event dynamic systems using single sample path performance measures. The basic 
approach is to obtain unbiased or strongly consistent estimates for derivatives of 
the stationary performance measures. Representative early works include Suri 
and Zazanis [71], Glasserman [32], Ho and Cao [44], Cassandras [18], Cao [9, 14] 
and Bao, Cassandras and Zananis [4]. 

For infinitesimal perturbation analysis of Markov chains, Cao, Yuan and Qiu [17] 
proposed a novel approach in terms of the realization factor. Cao [10, 11, 12, 13] 
developed two fundamental concepts: the realization matrix and the performance 
potential vector, to express derivatives of the stationary performance measures. 
The subsequent works may be referred to Cao and Chen [15], Cao and Wan [16] 
and the book by Cao [14]. 

Perturbation analysis of Markov chains is quite extensive, e.g., see Delebecque 
[23], Hunter [49, 50, 51], Korolyuk and Turbin [54], Cao and Chen [14], Roberts, 
Rosenthal and Schwartz [65], Bielecki and Stettner [5], Altman, Avrachenkov 
and Núñez-Queija [2], Solan and Vieille [70], Li and Liu [57] and Gambin, 
Krzyanowski and Pokarowski [31]. For Perturbation analysis of queueing 
systems, readers may refer to Latouche [55], Gong, Pan and Cassandras [33], 
Chang and Nelson [19], He [40], Grassmann and Chen [35], Grassmann [34] and 
He and Neuts [41]. 

The study of evolutionary game theory was originated in mathematical biology. 
Maynard Smith and Price [62] first introduced an important equilibrium concept: 
evolutionarily stable strategy (ESS), which is used to capture the possible stable 
outcomes of a dynamic evolutionary process, readers may also refer to Maynard 
Smith [60, 61] for more details. To derive the ESS, Taylor and Jonker [77] 
provided a basic method: replicator dynamics, which can be described as the 
ordinary differential equations based on the natural selection and the associated 
fitness. Based on this, the stability of the ordinary differential equations for the 
replicator dynamics can be used to express the ESS. Important examples of the 
replicator dynamics include the study of animal behavior, population ecology, 
population genetics, road traffic, computer networks, industrial evolutionary structure, 
and complex networks etc. Since 1980s, significant advances on the replicator 
dynamics have been made by the efforts of many researchers. Readers may refer 
to, such as, Vincent [79], Hines [42], Harsanyi and Selten [36], Robson [66], 
Cressman [22], Björnerstedt and Weibull [7], Vega-Redondo [78], Samuelson [68], 
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Schlag [69], Hofbauer and Sigmund [47], Hofbauer [45], Hofbauer and 
Sandholm [46], Hart and Mas-Colell [38, 39], Hofbauer and Sigmund [48] and 
Suri [72].  

For a stochastic evolutionary game, the replicator dynamics is not effective no 
longer when considering the strategic behavior over a long time horizon. To deal 
with the stochastic evolutionary games, perturbed Markov chains can be applied 
to analyze the ESS, that is, the perturbed stationary probability vector directly 
expresses the ESS based on its perturbed limit structure, which is the time 
proportion spent by this process in each population state. Foster and Young [27] 
gave stochastic evolutionary dynamics by means of the perturbed Markov chains 
whose stationary probability vector and the associated perturbed limit indicates 
the ESS. The subsequent works may refer to, for example, Takada and Kigami 
[74], Young [80, 81], Ellison [24], Kandori, Mailath and Rob [52], Nöldeke and 
Samuelson [63], Kandori and Rob [53], Binmore, Samuelson and Vaughan [6], 
Amir and Berninghaus [3], Robson and Vega-Redondo [67], Rhode and Stegeman 
[64], Fudenberg and Levine [28], Ellison [25], Corradi and Sarin [21], Tanaka 
[75], Hart [37], Blume [8], Tadj and Touzene [73], Taylor, Fudenberg, Sasaki and 
Nowak [76], Alos-Ferrer and Neustadt [1], Fudenberg and Imhof [29], Fudenberg, 
Nowakb, Taylorb and Imhof [30], Chen and Chow [20] and Fishman [26]. 

In this chapter, we mainly refer to Cao, Yuan and Qiu [17], Cao and Chen [15], 
Li and Zhao [58, 59], Li and Cao [56] and Li and Liu [57] for perturbation analysis 
of Markov chains; and Amir and Berninghaus [3], Tadj and Touzene [73], 
Alos-Ferrer and Neustadt [1], Fudenberg and Imhof [29] and Fudenberg, Nowakb, 
Taylorb and Imhof [30] for evolutionary games. At the same time, we also add 
some new results without publication for a more systematical organization of this 
chapter. 

Problems

11.1 For a perturbed discrete-time level-independent QBD process,  

(1) use the UL-type RG-factorization to compute 0
d ;

d

(2) use the LU-type RG-factorization to compute 0
d ;

d
(3) provide numerical examples to compare the results given in (1) and (2). 

11.2 For a perturbed continuous-time level-independent QBD process,  

(1) use the UL-type RG-factorization to compute 0
d ( ) ;

d
N

(2) use the UL-type RG-factorization to compute 0
d ( )

d
 for 0 1.
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11.3 For a perturbed PH distribution and a perturbed MAP which form a MAP/
PH/1 queue,  

(1) Provide sensitivity analysis for the mean of stationary waiting time;  
(2) Provide sensitivity analysis for the mean of busy period.   

11.4 Applying the matrix-geometric solution, provide numerical experiments 
for sensitivity analysis of a perturbed Markov chain of 1GI M  type. 
11.5 Applying the matrix iterative solution, provide numerical experiments for 
sensitivity analysis of a perturbed Markov chain of 1M G  type. 
11.6 For the perturbed 1MAP G  queue, apply the UL-type RG-factorization to 
provide sensitivity analysis for the mean of the stationary queue length, and give 
some numerical experimentations. 
11.7 For the perturbed 1SM PH  queue, apply the LU-type RG-factorization to 
provide sensitivity analysis for the mean of the stationary queue length, and give 
some numerical experimentations. 
11.8 Apply the RG-factorizations to provide sensitivity analysis for Markov 
chains of 1GI G  type. 
11.9 Provide a sensitivity analysis for the BMAP with irreducible matrix 
descriptor { , 0}.kD k
11.10 Provide a sensitivity analysis for the MMAP[K] with irreducible matrix 
descriptor { , }.k

nD Nn
11.11 Consider the 3 2, 2 3, 2,N 2 M  symmetric evolutionary games, 
and provide their ESS numerically. 
11.12 Consider the 3 2, 2 3, 2,N 2 M  asymmetric evolutionary games, 
and provide their ESS numerically. 

References

1. Alos-Ferrer C. and I. Neustadt (2005). Best-response dynamics in a birth-death model of 
evolution in games. In an initial version  

2. Altman E., K.E. Avrachenkov and R. Núñez-Queija (2004). Perturbation analysis for 
denumerable Markov chains with application to queueing models. Advances in Applied 
Probability 36: 839 853

3. Amir M. and S.K. Berninghaus (1996). Another approach to mutation and learning in games. 
Games and Economic Behavior 14: 19 43

4. Bao G., C.G. Cassandras and M.A. Zazanis (1996). First- and second-derivatives estimators 
for cyclic closed-queueing networks. IEEE Transaction on Automatic Control 41: 1106 1124

5. Bielecki T.R. and L. Stettner (1998). Ergodic control of singularly perturbed Markov process 
in discrete time with general state and compact action spaces. Applied Mathematics and 
Optimization 38: 261 281



Constructive Computation in Stochastic Models with Applications 

648

6. Binmore, K., L. Samuelson and R. Vaughan (1995). Musical chairs: Modeling noisy evolution. 
Games and Economic Behavior 11:1 35

7. Björnerstedt, J. and J.W. Weibull (1996). Nash equilibrium and evolution by imitation. In 
The Rational Foundations of Economic Behavior, Arrow, K. J. et al. (eds), St. Martin’s Press: 
New York, 155 181

8. Blume, L.E. (2003). How noise matters. Games and Economic Behavior 44: 251 271
9. Cao X.R. (1994). Realization Probabilities: The Dynamics of Queuing Systems, Springer- 

Verlag: London 
10. Cao X.R. (1998). The Maclaurin series for performance functions of Markov chains. Advances 

in Applied Probability 30: 676 692
11. Cao X.R. (1998). The relations among potentials, perturbation analysis, and Markov decision 

processes. Discrete Event Dynamic Systems 8: 71 87
12. Cao X.R. (2003). From perturbation analysis to Markov decision processes and reinforcement 

learning. Discrete Event Dynamic Systems 13: 9 39
13. Cao X.R. (2003). Semi-Markov decision problems and performance sensitivity analysis. 

IEEE Transaction on Automatic Control 48: 758 769
14. Cao X.R. (2007). Stochastic Learning and Optimization: A Sensitivity-Based Approach,

Springer-Verlag: New York 
15. Cao X.R. and H.F. Chen (1997). Perturbation realization, potentials, and sensitivity analysis 

of Markov processes. IEEE Transaction on Automatic Control 42: 1382 1393
16. Cao X.R. and Y.W. Wan (1998). Algorithms for sensitivity analysis of Markov systems 

through potentials and perturbation realization. IEEE Transaction on Control Systems 
Technology 6: 482 494

17. Cao X.R., X.M. Yuan, and L. Qiu (1996). A single sample path-based performance sensitivity 
formula for Markov chains. IEEE Transaction on Automatic Control 41: 1814 1817

18. Cassandras C.G. (1993). Discrete-Event Systems: Modeling and Performance Analysis,
Homewood, IL, Aksen Associates 

19. Chang C.S. and F. Nelson (1993). Perturbation analysis of the 1M M  queue in a Markovian 
environment via the matrix-geometric method. Stochastic Models 9: 233 246

20. Chen H.C. and Y. Chow (2008). Equilibrium selection in evolutionary games with imperfect 
monitoring. Journal of Applied Probability 45: 388 402

21. Corradi V. and R. Sarin (2000). Continuous approximations of stochastic evolutionary game 
dynamics. Journal of Economic Theory 94: 163 191

22. Cressman R. (1992). The Stability Concept of Evolutionary Game Theory. A Dynamic 
Approach, Springer-Verlag: Berlin 

23. Delebecque F. (1983). A reduction process for perturbed Markov chains. SIAM Journal on 
Applied Mathematics 43: 325 350

24. Ellison, G. (1993). Learning, local interaction, and coordination. Econometrica 61: 1047 1071
25. Ellison, G. (2000). Basins of attraction, long run equilibria, and the speed of step-by-step 

evolution. Review of Economic Studies 67: 17 45
26. Fishman M.A. (2008). Asymmetric evolutionary games with non-linear pure strategy payoffs. 

Games and Economic Behavior 63: 77 90
27. Foster D. and P. Young (1990). Stochastic evolutionary game dynamics. Theoretical Population 

Biology 38: 219 232



11 Sensitivity Analysis and Evolutionary Games 

649

28. Fudenberg D. and D.K. Levine (1998). The Theory of Learning in Games, MIT Press: 
Cambridge, MA 

29. Fudenberg D. and L.A. Imhof (2006). Imitation processes with small mutations. Journal of 
Economic Theory 131: 251 262

30. Fudenberg D., M.A. Nowakb, C. Taylorb and L.A. Imhof (2006). Evolutionary game 
dynamics in finite populations with strong selection and weak mutation. Theoretical 
Population Biology 70: 352 363

31. Gambin A., P. Krzyanowski and P. Pokarowski (2008). Aggregation algorithms for perturbed 
Markov chains with applications to networks modeling. SIAM Journal on Scientific Computing
31: 45 73

32. Glasserman P. (1991). Gradient Estimation Via Perturbation Analysis, Kluwer Academic 
Publishers

33. Gong W.B., J. Pan and C.G. Cassandras (1992). Obtaining derivatives of stationary queue 
length probabilities through the matrix-geometric solution method. Applied Mathematics 
Letters 5: 69 73

34. Grassmann W.K. (1996). Optimizing steady state Markov chains by state reduction. European 
Journal of Operational Research 89: 277 284

35. Grassmann W.K. and X. Chen (1995). The use of derivatives for optimizing steady state 
queues. Journal of the Operational Research Society 46: 104 115

36. Harsanyi, J. and R. Selten (1988). A General Theory of Equilibrium Selection in Games,
MIT Press: Cambridge, MA 

37. Hart, S. (2002). Evolutionary dynamics and backward induction. Games and Economic 
Behavior 41: 227 264

38. Hart, S. and A. Mas-Colell (2000). A simple adaptive procedure leading to correlated 
equilibrium. Econometrica 68: 1127 1150

39. Hart, S. and A. Mas-Colell (2003). Uncoupled dynamics do not lead to Nash equilibrium. 
American Economic Review 93: 1830 1836

40. He Q.M. (1995). Differentiability of matrices R and G in the matrix-analytic method. 
Stochastic Models 11: 123 132

41. He Q.M. and M.F. Neuts (1997). On Episodic queues. SIAM Journal on Matrix Analysis 
and Applications 18: 223 248

42. Hines, W. (1987). Evolutionary stable strategies: a review of basic theory. Theoretical 
Population Biology 31: 195 272

43. Hipp C. (2006). Speedy convolution algorithms and Panjer recursions for phase-type 
distributions. Insurance: Mathematics & Economics 38: 176 188

44. Ho Y.C. and X.R. Cao (1991). Perturbation Analysis of Discrete-Event Dynamic Systems,
Kluwer

45. Hofbauer, J. (2000). From Nash and Brown to Maynard Smith: Equilibria, dynamics, and 
ESS. Selection 1: 81 88

46. Hofbauer, J. and W.H. Sandholm (2002). On the global convergence of stochastic fictitious 
play. Econometrica 70: 2265 2294

47. Hofbauer J. and K. Sigmund (1998). Evolutionary Games and Population Dynamics,
Cambridge University Press 



Constructive Computation in Stochastic Models with Applications 

650

48. Hofbauer J. and K. Sigmund (2003). Evolutionary game dynamics. American Mathematical 
Society Bulletin (New Series) 40: 479 519

49. Hunter J.J. (1986). Stationary distributions of perturbed Markov chains. Linear Algebra 
and its Applications 82: 201 214

50. Hunter J.J. (2005). Stationary distributions and mean first passage times of perturbed Markov 
chains. Linear Algebra and its Applications 410: 217 243

51. Hunter J.J. (2006). Mixing times with applications to perturbed Markov chains. Linear
Algebra and its Applications 417: 108 123

52. Kandori, M., G.J. Mailath and R. Rob (1993). Learning, mutation, and long run equilibria 
in games. Econometrica 61: 29 56

53. Kandori, M. and R. Rob (1995). Evolution of equilibria in the long run: A general theory 
and applications. Journal of Economic Theory 65: 383 414

54. Korolyuk V.S. and A.F. Turbin (1993). Mathematical Foundations of the State Lumping of 
Large System, Kluwer Academic Pulishers 

55. Latouche G. (1988). Perturbation analysis of phase-type queue with weakly correlated 
arrivals. Advances in Applied Probability 20: 896 912

56. Li Q.L. and J. Cao (2004). Two types of RG-factorizations of quasi-birth-and-death processes 
and their applications to stochastic integral functionals. Stochastic Models 20: 299 340

57. Li Q.L. and L.M. Liu (2004). An algorithmic approach on sensitivity analysis of perturbed 
QBD processes. Queueing Systems 48: 365 397

58. Li Q.L. and Y.Q. Zhao (2002). The RG-factorizations in block-structured Markov renewal 
processes with applications. Technical Report 381, Laboratory for Research in Statistics 
and Probability, Carleton University and University of Ottawa, Canada, 1 40

59. Li Q.L. and Y.Q. Zhao (2004). The RG-factorization in block-structured Markov renewal 
processes with applications. In Observation, Theory and Modeling of Atmospheric Variability,
X. Zhu (ed), World Scientific, 545 568

60. Maynard Smith J. (1979). Evolutionary game theory. In Vito Volterra Symposium on 
Mathematical Models in Biology, Rome, 73 81; or in Lecture Notes in Biomath., 39, Springer: 
Berlin-New York, 1980 

61. Maynard Smith, J. (1982). Evolution and the Theory of Game, MIT Press: Cambridge, MA 
62. Maynard Smith, J. and G.R. Price (1973). The logic of animal conflict. Nature 246: 15 18
63. Nöldeke, G. and L. Samuelson (1993). An evolutionary analysis of backward and forward 

induction. Games and Economic Behavior 5: 425 454
64. Rhode, P. and M. Stegeman (1996). A comment on “Learning, mutation, and long-run 

equilibria in games. Econometrica 64: 443 449
65. Roberts G.O., J.S. Rosenthal and P.O. Schwartz (1998). Convergence properties of 

perturbed Markov chains. Journal of Applied Probability 35: 1 11
66. Robson A.J. (1990). Efficiency in evolutionary games: Darwin, Nash and the secret handshake. 

Journal of Theoretical Biology 144: 379 396
67. Robson A.J. and F. Vega-Redondo (1996). Efficient equilibrium selection in evolutionary 

games with random matching. Journal of Economic Theory 70: 65 92
68. Samuelson L. (1997). Evolutionary Games and Equilibrium Selection, MIT Press: 

Cambridge, MA 



11 Sensitivity Analysis and Evolutionary Games 

651

69. Schlag, K.H. (1998). Why imitate, and if so, how? A boundedly rational approach to 
multi-armed bandits. Journal of Economic Theory 78: 130 156

70. Solan E. and N. Vieille (2003). Perturbed Markov chains. Journal of Applied Probability
40: 107 122

71. Suri R. and M.A. Zazanis (1988). Perturbation analysis gives strongly consistent sensitivity 
estimates for the 1M G  queue. Management Science 34: 39 64

72. Suri S. (2007). Computational evolutionary game theory. In Algorithmic game theory,
Cambridge University Press, 717 736

73. Tadj L. and A. Touzene (2003). A QBD approach to evolutionary game theory. Applied 
Mathematical Modelling 27: 913 927

74. Takada T. and J. Kigami (1991). The dynamical attainability of ESS in evolutionary games. 
Journal of Mathematical Biology 29: 513 529

75. Tanaka, Y. (2000). A finite population ESS and a long run equilibrium in a n players 
coordination game. Mathematical Social Sciences 39: 195 206

76. Taylor C., D. Fudenberg, A. Sasaki and M.A. Nowak (2004). Evolutionary game dynamics 
in finite populations. Bulletin of Mathematical Biology 66: 1621 1644

77. Taylor, P.D. and L. Jonker (1978). Evolutionarily stable strategies and game dynamics. 
Mathematical Biosciences 40: 145 156

78. Vega-Redondo, F. (1996). Evolution, Games and Economic Behaviour, Oxford University 
Press 

79. Vincent T.L. (1985). Evolutionary games. Journal of Optimization Theory and Applications
46: 605 612

80. Young, H.P. (1993). The evolution of conventions. Econometrica 61: 57 84
81. Young, H.P. (2004). Strategic Learning and Its Limits, Oxford University Press, Oxford 



Appendix

Appendix A Matrix Notation and Computation 

In this appendix, we provide some notation for Kronecker product of matrices 
(e.g., see Graham [1]), Perron-Probenius theory of nonnegative matrices (e.g., 
see Seneta [2]), and inverses of matrices of infinite size.  

A.1 Kronecker Product 

Let A and B be two matrices, where the ( , )i j th element of A is , .i ja  The Kronecker 
product of the two matrices A and B is defined as 

,( ),i jA B a B

and the Kronecker sum of the two matrices A and B is defined as 

.A B I B A I

The useful properties of the Kronecker product are listed as follows:  
(1) ( ) ;A B C A C B C ( ) .A B C A B A C
(2) ( ) ( ).A B C A B C
(3) ( )( ) ( ) ( ).A B C D AC BD
(4) T T T .( ) A BA B
(5) 1 1 1.( ) A BA B
(6) exp{( ) }A B x exp{ }Ax exp{ }.Bx

(7) d [exp{ } exp{ }] [exp{ } exp{ }]( ).
d

Ax Bx Ax Bx A B
x

(8) If A  and ,B  then 

 ( )( ) ( )A B

and

 ( )( ) ( )( ).A B
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A.2 Perron-Frobenius Theory  

Let 1 2 1, , ,m m  be all the eigenvalues of the matrix A of size m. The spectral 
radius of the matrix A is defined as 

1 2 1( ) max{ , , , , }.m msp A

For simplicity of description, we also write ( ) ( ).A sp A
Consider a square matrix , 1 ,

( ) .i j i j m
aA  If , 0i ja  for each pair ( , )i j  with 

1 , ,i j m  then A is called to be nonnegative; if , 0i ja  for each pair ( , )i j
with 1 , ,i j m  then A is called to be positive. The nonnegative matrix A is 
said to be primitive if there exists a positive integer k such that 0.kA  Obviously, 
A is primitive if 0.A  The nonnegative matrix A is said to be irreducible if 

1 0.( )mI A
For the nonnegative matrices, we list some useful properties as follows:  
(1) If 0 ,A B  then 0 ( ) ( ).A B  If 0 ,A B  then 0 ( ) ( ).A B
(2) If 0,A  then ( ) 1 ( ).I A A
(3) If 0,A  then ( )A  is an eigenvalue of the matrix A, and there exists a 

vector 0x  such that ( )Ax A x  or ( ) .xA A x
(4) If 0A  and there exists a vector 0x  such that ,Ax x then ( ).A

If 0A  and there exists a vector 0x  such that ,Ax x  then ( ).A
(5) If 0,A  0x  and ,x Ax x  then ( ) .A  If 0,A  0x

and ,x Ax x  then ( ) .A
(6) If 0A  or A is primitive, then there exists a unique positive vector x with 

1xe  such that ( )Ax A x  or ( ) .xA A x
The following two theorems are always useful in the study of nonnegative 

matrices and stochastic models.  
Theorem A.1 Suppose the nonnegative matrix A is primitive.  
(1) ( ) 0A  and ( )A  is an eigenvalue of the matrix A. 
(2) There exist two vectors 0x  and 0y  such that ( )Ax A x  and 

( ) .yA A y
(3) ( )A  for any eigenvalue ( ).A
(4) ( )A  is a simple root of the characteristic equation det( ) 0.I A

(5) lim .
( )

k

k

A yx
A

Theorem A.2 Suppose the nonnegative matrix A is irreducible.  
(1) ( ) 0A  and ( )A  is an eigenvalue of the matrix A. 
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(2) There exist two vectors 0x  and 0y  such that ( )Ax A x  and 
( ) .yA A y

(3) ( )A  is a simple root of the characteristic equation det( ) 0.I A

(4) If ( )A  for an eigenvalue ( ),A  then ( )exp 2 kA i
n

 with 

2 1.i  At the same time, ( )exp 2 kA i
n

 is a simple root of the characteristic 

equation det( ) 0.I A

A.3 Inverses of Matrices of Infinite Size  

We now compute the inverses of the two matrices UI R  and ,LI G which are 
useful in the study of stochastic models. The following two cases are listed.  

Case The inverse of the matrix UI R
Let

0,1 0,2 0,3

1,2 1,3

2,3

0
0

.0
0

U

R R R
R R

R R

Then

0,1 0,2 0,3

1,2 1,3
1

2,3( ) ,U

I Z Z Z
I Z Z

I R I Z
I

where
1

( , )

0,

,

, 2,

, 1,

b a
a b

k
ka b

a b

X b a
Z

R b a

1 2

1 2

, 1 1, 2 2, 1 1,
( , ) ( , )

, , ,

, 0,
, 1 1,

k
k

a a a a b b b b
a b a bk m m m

a m m m b

R R R R k
X Y k b a
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1 2 1 ( ) ( ) ( )1 1 ( )1

( ) ( ) ( )( )

( , )
, , , , 1 1, 2 1, ,

1, , 2, 1 1, ,
k m m N m

k m m Nk k mk

a b
m m m a a a a m N N N

m N N N b b b b

Y R R R R

R R R R

1

1
( )

( ) 1

1, 1 ,
, 1 .k

k

k k k
m

m k k

m m m
N

N m m

To understand the sequence 
1 2

( , )
, , , ,

k

a b
m m mY  we provide four examples as follows: 

(0,5) (0,5)
2,4 0,1 1,3 3,5 2,3,4 0,5, ,Y R R R Y R

(2,6) (2,6)
3,4 2,5 5,6 3 2,4 4,5 5,6, .Y R R Y R R R

It is necessary to consider the following two special cases: Markov chains of 
1GI G  type and level-dependent QBD processes.  

For a Markov chain of 1GI G  type, let 

1 2 3

1 2

1

0
0

.0
0

U

R R R
R R

RR

Then

1 2 3

1 2
1

1( ) ,U

I Z Z Z
I Z Z

I I ZR
I

where

1 2

1 21
1, 1

.
i

i
j

l n n n
i n n n l

n j i

Z R R R

For a level-dependent QBD process, we write 

0

1

2

0
0

.0
0

U

R
R

R R
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Then
(0) (0) (0)
1 2 3

(1) (1)
1 2

1 (2)
1( ) ,U

I X X X
I X X

I R I X
I

where
( )

1 2 1, 1, 0.l
k l l l l kX R R R R k l

Case  The inverses of the matrix LI G
Let

1,0

2,0 2,1

3,0 3,1 3,2

0
0

.0
0

L

G
G G G

G G G

Then

1,0
1

2,0 2,1

3,0 3,1 3,2

,( )L

I
T I

I G T T I
T T T I

where

,
1

, ( , )

0

, 1,

, 2,

a b
a b

a b a b
k

k

G a b
T

H a b

1 2

1 2

, 1 1, 2 2, 1 1,
( , ) ( , )

, , ,

, 0,
, 1 1,

k
k

a a a a b b b b
a b a bk m m m

a m m m b

G G G G k
H F k a b

1 2 1 ( ) ( ) ( )1 1 ( )1

( ) ( ) ( )( )

( , )
, , , , 1 1, 2 1, ,

1, , 2, 1 1, ,
k m m L m

k m m Lk k mk

a b
m m m a a a a m L L L

m L L L b b b b

F G G G G

G G G G

1

1
( )

( ) 1

1, 1 ,
, 1 .k

k

k k k
m

m k k

m m m
L

L m m
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To understand the sequence 
1 2

( , )
, ,..., ,

k

a b
m m mF  we provide two examples as follows: 

(5,0) (5,0)
4,2 5,3 3,1 1,0 4,3,2 5,1 1,0, .F G G G F G G

It is necessary to consider the following two special cases: Markov chains of 
1GI G  type and level-dependent QBD processes.  

For a Markov chain of 1GI G  type, let 

1

2 1

3 2 1

0
0

.0
0

L

G
G GG
G G G

Then

1
1

2 1

3 2 1

( ) ,L

I
W I

I W W IG
W W W I

where

1 2

1 21
1, 1

, 1.
i

i
j

l n n n
i n n n l

n j i

W G G G l

For a level-dependent QBD process, we write 

1

2

3

0
0

.0
0

L

G
G G

G

Then

(1)
1

1 (2) (2)
2 1
(3) (3) (3)

3 2 1

,( )L

I
Y I

I G Y Y I
Y Y Y I
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where

( )
1 2 1, 1.l

k l l l l kY G G G G l k
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Appendix B Heavy-Tailed Distributions 

In this appendix, we provide definitions and preliminary properties for light tail, 
heavy tail, long tail, subexponentiality and regular variation for sequences of 
nonnegative matrices. These preliminaries are useful in the study of block- 
structured stochastic models.  

Following the standard definition of the light tail for a sequence of non- 
negative scalars, the light tail of a sequence of nonnegative matrices is defined as 
follows.

Definition B.1 For a sequence { }kC  of nonnegative scalars, it is called 
light-tailed if  

1
exp{ } , for some 0.k

k
C k

For a sequence { }kC of nonnegative matrices of size ,m n  it is called light-tailed 
if for all 1,2, ,i m  and 1,2, , ,j n  the sequences { ( , )}kC i j  of nonnegative 
scalars are light-tailed, where ( , )kC i j  is the ( , )i j th entry of .kC

For the study of the light tail, readers may refer to Wilf [13] and Abate and 
Whitt [1] for more details, some of which are used in Sections 4.3 and 4.4.  

Based on the light-tailed definition, we now define the heavy tail as follows.  
Definition B.2 For a sequence { }kC  of nonnegative scalars, it is called 

heavy-tailed if 

1
exp{ } , for all 0.k

k
C k

For a sequence { }kC  of nonnegative matrices of size ,m n  it is called heavy-tailed 
if there exists at least one pair 0 0( , )i j  such that the sequences 0 0{ ( , )}kC i j  of 
nonnegative scalars are heavy-tailed.  
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According to Subsection 1.3 and Subsection 1.4 in Embrechts, Klüppelberg and 
Mikosch [6], we provide the following definitions for a sequence of nonnegative 
scalars to be heavy-tailed, long-tailed, subexponential and regularly varying.  

Definition B.3 (1) A sequence { }nc  of nonnegative scalars with 
0

n
n

c

is called heavy-tailed if for all 0

0
exp{ } .n

n
c n (A)

Otherwise,{ }nc  is called light-tailed. Denote by  the class of the heavy-tailed 
sequences.

(2) A sequence { }nc  of nonnegative scalars with 
0

n
n

c is called long-tailed 

if 0nc  for all ,n N  where N is a large enough positive integer, and  

lim 1, for any integer 0.n m

n
n

c
m

c
(B)

Denote  as the class of the long-tailed sequences.  
(3) A probability sequence { }nc  is called subexponential if  

2*

lim 2.n

n
n

c
c

(C)

Denote  as the class of the subexponential sequences.  

(4) (i) A sequence { }nl  of nonnegative scalars with 
0

n
n

l  is called slowly 

varying if 0nl  for ,n N  where N is a large enough positive integer, and 

[ ]lim 1n

n
n

l
l

 for any 0.  Denote 0  as the class of the slowly varying 

sequences. (ii) A sequence { }nc  of nonnegative scalars with 
0

n
n

c is called 

regularly varying with index ( , )  if n nc n l  for all .n N  Denote 
 as the class of the regularly varying sequences with index .

Let { }kc  be a sequence of nonnegative scalars with 
0

,k
k

c c  then 

2* 2 2* ,n nc c c  and  
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2*

lim 2n

n
n

c
c

c
 (D) 

if and only if 1
kc

c
 is subexponential. According to Teugels [15], properties of 

a subexponential sequence also hold for a sequence of nonnegative scalars 
satisfying (D).  

To characterize subexponential asymptotics, we need to introduce the class 
* ,  where * .  For a sequence { }kc  of nonnegative scalars with c

0
,k

k
kc  we define ( )

0

1 .
k

I
k l

lc

c c  Clearly, ( )I
kc  is a probability sequence. 

Following Klüppelberg [11], the integral tail of the sequence { }kc  is defined 

as ( )I
kc  for 1.k  Klüppelberg [11] illustrated that for { } ,kc  it is possible 

that ( ) .I
kc  Klüppelberg [11] provided a useful sufficient condition under 

which ( ) .I
kc

Definition B.4 A sequence { }kc of nonnegative scalars is in *  if c

and lim 2 .k k
ck

k

c c
c

Proposition B.1 (1) If *{ } ,kc  then ( ) .I
kc

(2) If { }kc  for 1,  then ( )
( 1) .I

kc

In (c) of Theorem 5.1 in Goldie and Klüppelberg [10], a condition on the 
closeness of convolution associated with two subexponential sequences was 
provided, which is restated in the following proposition. 

Proposition B.2 If { },kp { } ,kq S then { }k kp q S  if and only if 
{ (1 ) }k kp q S  for all (0,1).

Proof The proof is clear by noting the following two relationships: (1) The 
sequence { }kp  if and only if the function ;kp  and (2) the sequence 
{ }k kp q  if and only if the function of convolution ,*k kp q  since 

0
.*

k

k k l l
l

p q p q

Definition B.5 (1) (Tail-equivalent) Two sequences { }kc  and { }kd  of 

nonnegative scalars are called tail-equivalent, denoted as ,k kc d  if 

lim (0, ).k

k
k

c
d
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(2) (Tail-lighter) A sequence { }kc  of nonnegative scalars is tail-lighter than a 
sequence { }kd  of nonnegative scalars, or { }kd  is tail-heavier than { }kc , denoted 

as ( ),k kc o d  if lim 0.k

k
k

c
d

Remark B.1 (1) It is easy to check that ,  and  are all closed with 
respect to tail-equivalence.  

(2) Teugels [15] proved that  is closed with respect to tail-equivalence.  
(3) Goldie and Klüppelberg [10] (p. 445) illustrated that *  is closed with 

respect to tail-equivalence.  
Now, we extend the above notion for sequences of nonnegative scalars to that 

for sequences of nonnegative matrices. We will abuse the notation, without any 
confusion, by using the same *, , ,  and  for the classes of heavy-tailed, 
long-tailed, subexponential and regularly varying matrix sequences, respectively.  

Definition B.6 We assume that the nonnegative matrices nB  for 1n  have 

the same size and 
0

n
n

B  is finite.  

(1) The sequence { }nB  of nonnegative matrices is called heavy-tailed if there 
exists at least one entry sequence of { }nB  which is heavy-tailed. Otherwise, 
{ }nB  is called light-tailed. Denote  as the class of the heavy-tailed matrix 
sequences of all sizes.  

(2) The sequence { }nB  of nonnegative matrices is called long-tailed if there 
exists at least one entry sequence of { }nB  which is long-tailed and all the other 
entry sequences are either long-tailed or tail-lighter than a long-tailed entry 
sequence of { }.nB  Denote  as the class of the long-tailed matrix sequences of 
all sizes.  

(3) The sequence { }nB  of nonnegative matrices is called subexponential if 
there exists at least one entry sequence of { }nB  which is subexponential and all 
the other entry sequences are either subexponential or tail-lighter than a 
subexponential entry sequence of { }.nB  Denote  as the class of subexponential 
matrix sequences of all sizes.  

(4) The sequence { }nB  of nonnegative matrices is called regularly varying 
with index ( , )  if there exists at least one entry sequence of { }nB  which 
is regularly varying with index  and all the other entry sequences are either 
regularly varying with index ( , ]  or tail-lighter than an entry sequence 
in  of { }.nB  Denote  as the class of the regularly varying matrix 
sequences with index  of all sizes.  

(5) The sequence { }nB  of nonnegative matrices is in *  if there exists at least 
one entry sequence of { }nB  which is in *  and all the other entry sequences are 
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either in *  or tail-lighter than a entry sequence in *  of { }.nB
We denote ( , )b i j  as the ( , )i j th entry of the matrix B. For a sequence { }kB  of 

matrices, kB  and kB  are defined elementwise as ( ( , ))k kB b i j  and kB
( ( , )),kb i j  respectively.  

We denote  as the class of heavy-tailed matrix sequences satisfying the 
property that for each sequence { }kB  in  there exists a heavy-tailed scalar 

sequence { }k  and a finite, non-zero nonnegative matrix W such that lim .k

k
k

B
W

The sequence { }k  of nonnegative scalars and the matrix W are called a uniformly 
dominant sequence of the matrix sequence { },kB  and the associated ratio matrix, 
respectively.  

Proposition B.3 A heavy-tailed matrix sequence { }kB  is in  if and only if 
there exists at least a pair 0 0( , )i j  such that the sequence 0 0{ ( , )}kb i j  is heavy- 

tailed and the limit 
0 0

( , )
lim

( , )
k

k
k

b i j
b i j

 is either zero or a positive number for all i and j. 

Proof For the sufficiency, if there exists at least a pair 0 0( , )i j  such that the 

sequence 0 0{ ( , )}kb i j  is heavy-tailed and the limit 
0 0

( , )
lim

( , )
k

k
k

b i j
b i j

 is either zero or 

a positive number for all i and j, then the matrix 
0 0

lim
( , )

k

k
k

B
W

b i j
 is finite, non- 

zero, and nonnegative. We take 0 0( , )k kb i j  for 1.k  This implies { } .kB
For the necessity, if { } ,kB  then there exists a heavy-tailed scalar sequence 

{ }k and a finite, non-zero, nonnegative matrix W such that lim .k

k
k

B
W  We 

assume that the 0 0( , )i j th entry 0 0( , )w i j  of the matrix W is not zero. Then 

0 00 0 0 0

( , )
( , ) ( , )lim lim

( , )( , ) ( , )

k

k k

k k
k k

k

b i j
b i j w i j

w i jb i j b i j

for all i and j, which is either zero or a positive number. Since 0 0( , )kb i j

0 0( , ) , { }k kw i j  is heavy-tailed and 0 0( , ) 0,w i j 0 0{ ( , )}kb i j  is obviously 
heavy-tailed. This completes the proof.  

Remark B.2 It is possible that a heavy-tailed matrix sequence is not in .
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To illustrate this, we consider the vector sequence 

1 1, [1 sin(2 log )]kB a k
k k

for 1.k  Using 4G  in Embrechts and Omey [7] (p. 81 82) yields that 

{ (1,2)}kb  while 0{ (1,1)} ,kb  hence { } .kB  It is clear that 
(1,2)
(1,1)

k

k

b
b

1 sin(2 log )a k  has neither a finite nor an infinite limit. 

The following proposition provides a way of using a sequence of nonnegative 
scalars to characterize the tail of a sequence of nonnegative matrices. The proof 
is clear according to Definition B.6 and Remark B.1.  

Proposition B.4 Assume a heavy-tailed matrix sequence { }kB  with a 
uniformly dominant sequence { }k  and the associated ratio matrix W. 

(1) { }kB  is long-tailed if and only if { }k  is long-tailed.  
(2) { }kB  is subexponential if and only if { }k  is subexponential.  
(3) { }kB  is regularly varying with index ( , )  if and only if { }k  is 

regularly varying with index .
(4) *{ }kB  if and only if *{ }k .
We provide some basic properties for heavy-tailed matrix sequences which are 

useful for characterizing the tail behavior of block-structured stochastic models. 
For simplicity, we assume that all the nonnegative matrices involved are square 
matrices with a common size m.

Proposition B.5 For two sequences { }kB  and { }kC  of nonnegative matrices, 
if (1) there exists a nonnegative invertible matrix W such that k kB WC  for all 

,k N  where N is a large enough positive integer, and (2) { }kC  is heavy-tailed, 
then { }kB  is heavy-tailed.  

Proof If { }kC  is heavy-tailed, then there exists at least a pair 0 0( , )i j  such 
that the 0 0( , )i j th entry sequence 0 0{ ( , )}kC i j  is heavy-tailed. Since W is invertible, 
each column of W is not zero. For the 0i th column of W, we assume that the 

1 0( , )i i th entry 1 0( , ) 0.w i i  Then we obtain  

1 0 1 0 0 0
1

( , ) ( , ) ( , ) ( , ).
m

k k
l

w i l C l j w i i C i j

Since 1 0 1 0 0 0, ( , ) ( , ) ( , ).k k k kB WC b i j w i i C i j  Notice that 1 0( , ) 0w i i  and 

0 0{ ( , )}kC i j  is heavy-tailed. It follows from (1) in Definition B.3 that 1 0{ ( , )}kB i j
is heavy-tailed. Therefore, { }kB  is heavy-tailed according to (1) in Definition B.6. 
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Remark B.3 In Proposition B.5, condition (1) can be replaced, for example, 
by 0,W  or by k kWB C  for all ,k N  where N is a large enough positive 
integer.  

Proposition B.6 For two sequences { }kB  and { }kC  of nonnegative matrices, 
suppose that (1) there exists a nonnegative invertible matrices V and a matrix 
W V  such that k k kVC B WC  for all ,k N  where N is a large enough 
positive integer, (2) { }kC  and (3) { } .kB

(1) If { } ,kC  then { } .kB
(2) If *{ } ,kC  then *{ } .kB
(3) If { }kC  for ( , ),  then { } .kB
Proof We only prove (1); (2) and (3) can be similarly proved.  
Under assumptions that { }kC  and { } ,kC  it follows from Propositions 

B.3 and B.4 that there exists a pair 0 0( , )i j  such that the 0 0( , )i j th entry sequence 

0 0{ ( , )}kC i j  and the limit 
0 0

( , )
lim

( , )
k

k
k

C i j
C i j

 is equal to either zero or a positive 

constant. Let 
0 0

lim
( , )

k

k
k

C
C i j

 with the ( , )i j th entry being ( , ).i j  Then  is 

finite, non-zero, and nonnegative. Hence, for an arbitrarily small number 0
there always exists a large enough positive integer 0N  such that  

T T

0 0( , )
k

k

C
ee ee

C i j
 (E) 

for all 0.k N  This, together with k k kVC B WC  for all k N  means that for 
all 0max{ , },k N N

T T
0 0 0 0( ) ( , ) ( ) ( , ).k k kV ee C i j B W ee C i j  (F) 

We denote ( , )h i j  and ( , )f i j  as the ( , )i j th entries of the matrices H
T( )V ee  and T( ),F W ee  respectively. Let {( , ) : ( , ) 0}i j h i j

and * *

1 ,
max { ( , )} ( , ).

i j m
i j i j  Then 0  due to 0.  We take 0 .

Then T( ) 0,V ee  since * *( , ) 0i j  and V is invertible. Since V is 
invertible and nonnegative, each row of V is not zero. In the 1i th row of V, we 
assume that the *

1( , )i i th entry *
1( , ) 0.v i i  Therefore, for a small enough 0,

* * *
1 1 1 1

1 1
( , ) ( , )[ ( , ) ] ( , ) ( , ) 0,

m m

l l
h i j v i l l j v i i v i l
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which implies that the set  is not empty. Now, we assume the pair 1 1( , ) ,i j
then it follows from (F) that for all 0max{ , },k N N

1 1 0 0 1 1 1 1 0 0( , ) ( , ) ( , ) ( , ) ( , ),k k kh i j c i j b i j f i j c i j  (G) 

which illustrates that the sequence 1 1{ ( , )}kb i j  is heavy tailed due to the two facts 
that 1 1( , ) 0h i j  and 0 0{ ( , )} .kc i j  For an arbitrary pair 2 2 1 1( , ) ( , ),i j i j  it is 
clear that for all 0max{ , },k N N

2 2 2 2 0 00 ( , ) ( , ) ( , ).k kb i j f i j c i j  (H) 

It follows from (H) and the right-hand side of (G) that for all 0max{ },k N N

2 2
2 2 1 1

1 1

( , )0 ( , ) ( , ),
( , )k k

f i jb i j b i j
h i j

 (I) 

which shows that the sequence 1 1{ ( , )}kb i j  is not tail-lighter than the sequence 

2 2{ ( , )}kb i j  for each pair 2 2 1 1( , ) ( , ).i j i j  Therefore, the assumption that { }kB
implies that 1 1{ ( , )} .kb i j  Notice that 0 0{ ( , )} ,kc i j 1 1{ ( , )} ,kb i j 1 1( , ) 0h i j
and 1 1( , ) 0,f i j  it follows from (F) and (a) of Theorem 2.1 in Klüppelberg [11] 
that 1 1{ ( , )} .kb i j  Similarly, we can check that for an arbitrary pair ( , )i j  with 
1 ,i ,j m  the entry sequence { ( , )}kb i j  is either subexponential or tail-lighter 
than the subexponential entry sequence 1 1{ ( , )}kb i j  according to ( ). It follows 
from (3) in Definition B.6 that { } .kB

Remark B.4 (1) In Proposition B.6, conditions (2) and (3) are necessary. 
Refer to (a) of Theorem 2.1 in Klüppelberg [11] for details. Condition (1) can be 
replaced, for example, by 0V  and 0.W

For two sequences { }kB  and { }kC  of matrices, *k kB C is defined elementwise 
as

( , ) ( , ) .k k k k
r

B C b i r c r j

The following three propositions characterize tail behavior of convolutions for 
sequences of nonnegative matrices.  

Proposition B.7 If (1) { } , { }k kp q  is any probability sequence and kq

( )ko p , and (2) kB ,kW p kC ,kV q  then 

k kB C .kWV p

Proof It is easy to check that  
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1
( , ) ( , ) .

m

k k k k
r

B C b i r c r j

Since kB kW p  and kC ,kV q  we obtain 

( , )kb i r ( , ) and ( , )k kw i r p c r j ( , ) ( , ).kv r j c r j

If ( , ) 0w i r  or ( , ) 0,v r j  then we take ( , ) ( , )k kb i r c r j 0. If ( , ) 0w i r
and ( , ) 0,v r j  then  

( , ) ( , )( , ) ( , ) ( , ) ( , ) .
( , ) ( , )
k k

k k
b i r c r jb i r c r j w i r v r j
w i r v r j

Since

( , )
( , )
kb i r

w i r
( , ),

( , )
k

k
c r jp
v r j

,kq

{ }kp  and ( ),k kq o p  it follows from Proposition 2.7 in Sigman [14] that 

k kp q ,kp  and so 

( , ) ( , ) ( , ) ( , ) .k k kb i r c r j w i r v r j p

Therefore, we obtain 

k kB C
1

( , ) ( , ) .
m

k k
r

w i r v r j p WV p

This completes the proof. 
Proposition B.8 If { }kp , and two sequences (1){ }kC  and (2){ }kC of non- 

negative matrices satisfy ( )l
kC l kH p  for 1, 2,l  where 1H  and 2H  are two 

finite, non-zero nonnegative matrices, then

(1) (2)
k kC C T T

1 2( ) .kH ee ee H p

Proof The condition that ( )l
kC l kH p  for 1, 2l implies 

(1) ( , )kc i r (2)
1( , ) , ( , )k kh i r p c r j 2 ( , ) .kh r j p

Note that 

(1) (2) (1) (2)

1
( , ) ( , ) ,

m

k k k k
r

C C c i r c r j
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using Theorem 5.1 in Goldie and Klüppelberg [10] leads to 

(1) (2)
1 2( , ) ( , ) ( , ) ( , ) .k k kc i r c r j h i r h r j p

Simple computations lead to 

(1) (2)
k kC C T T

1 2 .kH ee ee H p

This completes the proof. 

Proposition B.9 If kB (1)
kWk l  and kC (2)

kVk l , where , 0 ,
the scalar sequences (1){ }kl , (2)

0{ }kl , and W  and V  are two finite, non-zero, 
nonnegative matrices, then 

(1)

(2)

T (1) T (2)

, if ,

, if ,

, if .

k

k k k

k k

WVk l

B C WVk l

k Wee l ee V l

Proof The first two equalities are obtained by Proposition B.7. The last one 
follows from a proposition in Feller [8] (p. 278). 
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