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Abstract—This paper studies a wireless-powered sensor net-
work, where a sensor harvests energy from a dedicated radio-
frequency (RF) energy source and transmits information to an
information sink using the harvested energy. Two working modes
are considered. One is the frequency division multiplexing (FDM)
mode in which the sensor harvests RF energy and transmits
information simultaneously over orthogonal frequency bands.
The other is the time division multiplexing (TDM) mode in which
energy harvesting and information transmission are implemented
in the same frequency band but in different time slots. The energy
harvesting channel and the information transmission channel are
assumed to follow the Rician and the Rayleigh distributions,
respectively, and are discretized and modeled as finite-state
Markov chains. We formulate the process of energy harvesting
and information transmission as an infinite-horizon discounted
Markov decision process (MDP). The value iteration algorithm
is used to find an asymptotically optimal energy harvesting
and information transmission policy to optimize the long-term
throughput. In the asymptotically optimal policy of the FDM
mode, the energy transmitted from the sensor in one slot is
proved to be non-decreasing with the battery state of the sensor.
By contrast, such monotonicity between the transmitted energy
and the battery state does not exist in the asymptotically optimal
policy in the TDM mode. Simulation results verify the above
findings and demonstrate that the proposed method outperforms
the heuristic greedy method.

Index Terms—Wireless-powered sensor network, dedicated RF
energy source, Markov decision processes, asymptotically optimal
policy, monotonicity.

I. INTRODUCTION

PROLONGING the lifetime of sensors has always been a
research focus for wireless sensor networks, especially for

the networks with sensors powered by the limited battery en-
ergy. Manually replacing batteries or replenishing energy can
be infeasible or costly in some cases, e.g., when sensors are
embedded inside concrete walls or human bodies. In addition
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to designing efficient data transmission mechanisms for saving
energy [1]–[3], harvesting renewable energy also emerges as
an appealing solution to the battery depletion problem [4]–[8].
For energy harvesting, compared with other renewable energy
(e.g., wind energy and solar energy), the radio-frequency (RF)
energy [9] is more reliable and manageable because it is less
constrained by time and environments.

Wireless sensors equipped with RF energy receivers can
harvest RF energy to process signals and transmit information.
The harvested energy can be stored in energy storages, such as
rechargeable batteries and capacitors. Since the RF signals at-
tenuate severely in propagation [10], improving the efficiency
of energy harvesting is of great challenge in wireless-powered
sensor networks.

Wireless-powered communication networks (WPCN) have
been extensively researched [11]. Typically, the RF energy
transmitter and the information receiver are co-located in a
communication node, namely, hybrid access point (H-AP)
[12]–[15]. In [12] and [13], users only harvest RF energy from
the H-AP. The individual data of each user is transmitted via
time division multiple access (TDMA) in [12], while users
transmit information cooperatively in [13]. In [14], a user can
harvest energy from the RF signals transmitted by the H-AP
and other users. In [15], all users first harvest RF energy from
the H-AP, and then simultaneously transmit information to the
H-AP. Nevertheless, in the above WPCN, users may not obtain
enough RF energy due to the large distance between the users
and the H-AP.

The WPCN in which the RF energy transmitters are sepa-
rated from the information receivers are more practical than
the WPCN with H-AP in real-life applications because the
RF energy transmitters can be close to users [16]–[20]. In
some of the WPCN with dedicated RF energy sources such as
that in [16], the optimal power allocation policy is obtained
assuming that the channel information is known in advance
for several time slots, which may not be reasonable in time-
varying wireless communication networks. In other WPCN
with dedicated RF energy sources, such as those in [17]–[20],
users first receive and store the RF energy, and then use up
the harvested energy to transmit information within a time
slot. However, the optimal long-term power allocation policies
are not obtained in these works. Therefore, finding a dynamic
power allocation method for WPCN with separated RF energy
transmitter and information receiver to maximize the long-term
throughput remains an open problem.

This paper investigates a wireless-powered sensor network
which consists of one dedicated RF energy source, one sensor,

1



and one information sink. The sensor transmits information
to the information sink using the energy harvested from
the dedicated RF energy source. Two working modes are
considered: the frequency division multiplexing (FDM) mode
and the time division multiplexing (TDM) mode. In the FDM
mode, the sensor harvests RF energy and transmits information
simultaneously over orthogonal frequency bands. In the TDM
mode, the sensor harvests RF energy and transmits information
in the same frequency band but in different time slots. We
aim to maximize the long-term throughput of the information
transmission link in these two modes. The main contributions
of this paper are as follows:

• We model the small-scale fading of the energy harvesting
channel and the information transmission channel as
finite-state Markov chains (FSMC) and derive the steady-
state probabilities, the average power gains of states, and
the state transition probabilities of the FSMC.

• We formulate the process of energy harvesting and infor-
mation transmission as an infinite-horizon Markov deci-
sion process (MDP). We use the value iteration algorithm
to obtain an asymptotically optimal energy harvesting and
information transmission policy for the optimal long-term
throughout.

• For the FDM mode, we prove that the energy transmitted
from the sensor is non-decreasing with the battery state
in the asymptotically optimal policy. This property can
can be used to reduce the computational complexity. By
contrast, in the TDM mode, there is no monotonicity
between the transmitted energy and the battery state in
the asymptotically optimal policy . We analyze the above
difference and give insights regarding the effect of the
working modes on the optimal policy.

The advantages of our solution are as follows. Compared
with the wireless-powered sensor networks with the H-AP, the
sensor is powered by the dedicated RF energy source in our
solution to guarantee an effective energy supply. Compared
with other power allocation schemes of the dedicated RF
energy powered communication networks, we consider the
correlation of channel states between adjacent time slots, there-
by obtaining the optimal energy harvesting and information
transmission policy for the long run.

The rest of this paper is organized as follows. Section
II describes the system model. Section III formulates the
problem as an MDP and optimizes the energy harvesting
and information transmission policy. Section IV discusses
the monotonic property of the asymptotically optimal policy.
Simulation results are given in section V. Conclusions are
presented in section VI.

II. SYSTEM MODEL

We consider a wireless-powered sensor network with one
dedicated RF energy source, one sensor, and one information
sink. The sensor harvests energy from the dedicated RF
energy source and transmits information to the information
sink using the harvested energy. Two working modes are
studied, i.e., the FDM mode (Fig. 1) and the TDM mode (Fig.

2)1. In the FDM mode, the sensor uses different antennas to
simultaneously harvest energy and transmit information over
orthogonal frequency bands to avoid the interference between
the energy harvesting link and the information transmission
link. In the TDM mode, the sensor uses one antenna to harvest
RF energy or transmit information in the same frequency
band but in different time periods to avoid mutual interference
between the two links.
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Fig. 1. FDM working mode.
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Fig. 2. TDM working mode.

We assume that the wireless-powered sensor network oper-
ates in a time-slotted manner. The duration of each time slot
is τ . The dedicated RF energy source transmits energy with
fixed power P if the sensor decides to harvest energy from
it. The capacity of the sensor’s rechargeable battery is B. We
assume that the sensor has infinite data to be transmitted and
the energy for sensing is negligible compared with that for
transmitting information.

The energy harvesting channel and the information trans-
mission channel are assumed to be block-fading, namely, the
channels remain constant within one slot but may change
between adjacent slots. We consider the large-scale fading part
and the small-scale fading part for either of the channels. The
large-scale fading part is summarized into path-loss which
relies mainly on the propagation distance and the fading
environment. In the simplified large-scale fading model, the
path-loss is [10]:

PL = C

(
d0
d

)θ

(1)

where C is the unitless constant, d0 is the reference distance,
d is the distance between the transmitter and the receiver,

1FDM and TDM are the two most popular work modes in theoretical
research and practical application because of their low complexity in signal
processing. Therefore, both modes are studied in this work.
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and θ is the path-loss exponent. Generally, the values of C,
d0 and θ can be measured by the experiment. We denote
the path-losses of the energy harvesting channel and the
information transmission channel as PH

L and PG
L , respectively.

Since the sensor is close to the dedicated RF energy source,
the line-of-sight (LOS) path of the energy harvesting channel
should be considered. Thus, the envelope of the small-scale
fading part of the energy harvesting channel is assumed to
have a Rician distribution. For the information transmission
channel, the sensor is far away from the information sink.
The scattering environment is complex and the LOS path can
be neglected. Therefore, the small-scale fading part of the
information transmission channel is modeled as a Rayleigh
fading channel.

The signal received by the sensor at time t (t ∈ (0, τ ]) of
the nth time slot can be formulated as:

ys(t) =
√
PH
L Ph′

nx(t) + zs(t) (2)

where h′
n is the complex small-scale fading gain of the energy

harvesting channel, and x(t) is the signal transmitted from the
dedicated RF energy source (with the power |x(t)|2 equal to
1). The signal x(t) carries pilots which are used for channel
estimation. In general, the noise zs(t) can be ignored in the
energy harvesting link. The RF energy conversion efficiency
of the sensor is assume to be η. Then the harvested power of
the sensor in the nth time slot can be represented as:

Ph(n) = ηPH
L Phn (3)

where hn = |h′
n|2 is the normalized power gain (i.e., the

expectation of hn is equal to 1) of the small-scale fading part
for the energy harvesting channel. The sensor can only use the
energy harvested in the previous slots.

We assume the power transmitted from the sensor in the nth
time slot is en. The received signal of the information sink at
time t of the nth time slot can be formulated as:

yi(t) =
√
PG
L eng

′
ns(t) + zi(t) (4)

where g′n is the complex small-scale fading gain of the
information transmission channel, and s(t) is the normalized
signal transmitted from the sensor. In the information transmis-
sion channel, the noise zi(t) can not be ignored. We denote
the noise power spectral density and the bandwidth of the
information transmission channel by N0 and W , respectively.
On account of practical modulation and coding, there exists
a gap between the achievable rate and the channel capacity,
denoted as γ (larger than 1) [21]. The data rate received by
the information sink in the nth time slot can be formulated as
[22]:

rn = W log2

(
1 +

PG
L engn
N0Wγ

)
(5)

where gn = |g′n|2 is the normalized power gain of the small-
scale fading part for the information transmission channel.

In the FDM mode, the sensor determines the amount of
power to transmit information at the beginning of a slot. In
the TDM mode, the sensor needs to determine whether to
harvest energy or transmit information, and, if transmitting,
how much power to use. The sensor should choose the energy

harvesting and information transmission scheme according to
the remaining energy in the battery, the power gains of the
energy harvesting channel and the information transmission
channel. We aim to find an optimal adaptive energy harvesting
and information transmission policy to maximize the total
discounted throughput for the long run:

Rmax = max lim
N→∞

N∑
n=0

λnrn (6)

where λ ∈ (0, 1) is the discount factor.

III. MDP FORMULATION AND POLICY OPTIMIZATION

In this section, we model the process of energy harvest-
ing and information transmission using an infinite-horizon
MDP. Generally, an MDP model comprises five elements,
i.e., decision epoch, state space, action space, state transition
probability, and reward function [23], [24]. In the rest of
this section, we first formulate these five elements for the
considered wireless-powered sensor network and then adopt
the value iteration algorithm to maximize the total discounted
throughput of the information transmission link.

A. Decision Epoch

As stated in the above section, the time is divided into
slots. Each slot has the same duration in which several packets
can be transmitted. We define the beginning of a slot as the
decision epoch of that slot. At each decision epoch, the sensor
executes the energy harvesting and information transmission
policy according to the energy in the battery, the power gain
of the energy harvesting channel, and the power gain of the
information transmission channel.

B. State Space and Action Space

We divide the small-scale fading parts of the energy har-
vesting channel and the information transmission channel into
several states. The state sets of the two fading channels can
be respectively formulated as Sh = {0, 1, . . . , Nh − 1} and
Sg = {0, 1, . . . , Ng −1}, where Nh is the number of states of
the energy harvesting channel and Ng is the number of states
of the information transmission channel. The energy capacity
of the battery in the sensor is divided into Nb states and the
battery state set is Sb = {0, 1, . . . , Nb−1}. We define S as the
state space including the three state sets, i.e., S = Sh×Sg×Sb,
where the symbol × denotes the Cartesian product.

We assume that the basic unit of power that the sensor
can receive or transmit is Pu = Eu/τ = B/((Nb − 1)τ),
where Eu = B/(Nb − 1) is the minimum unit of energy
that can be received or transmitted in one slot. We denote
As = {0, 1, . . . , sb} as the action space given the system
state s = (sh, sg, sb) ∈ S . Here, sh ∈ Sh and sg ∈ Sg

are the energy harvesting channel state and the information
transmission channel state, respectively, and sb ∈ Sb is the
battery state, i.e., the number of unit energy at the beginning
of the current slot. For the FDM mode, a ∈ As\{0} denotes
the action that the sensor uses a units of energy to transmit
information in one slot, and a = 0 represents the action that
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the sensor does not transmit information. For the TDM mode,
a ∈ As\{0} also represents the action that the sensor uses
a units of energy to transmit information in one slot, except
when a = 0, which denotes the action that the sensor receives
energy from the dedicated RF energy source.

C. Channel State and State Transition Probability

In this subsection, we first study the steady-state prob-
abilities and the state transition probabilities of the energy
harvesting channel and the information transmission channel,
respectively. Then, we present the overall system state transi-
tion probabilities.

As mentioned in the previous section, the energy harvesting
channel is assumed to be Rician faded. The power gain h of
a Rician fading channel obeys a noncentral Chi-square (χ2)
distribution with two degrees of freedom [25]. The probability
density function (PDF) of h is:

fH(h) = (K+1)I0

(
2
√
K(K + 1)h

)
e−(K+1)(h+ K

K+1 ) (7)

where the parameter K (the K-factor) is the ratio of the energy
in the LOS path to the energy in the scattered paths, and I0(·)
is the zeroth-order modified Bessel function of the first kind.

The cumulative distribution function (CDF) of the channel
power gain can be formulated as:

FH(h) =

{
1−Q1

(√
2K,

√
2(K + 1)h

)
, h > 0

0, otherwise
(8)

where Q1(µ, ν) is the Marcum Q function defined as

Q1(µ, ν) =

∫ ∞

ν

xe−
µ2+x2

2 I0(µx)dx.

For the energy harvesting channel, let {A(i)
h }, i =

0, 1, . . . , Nh, be the quantization thresholds of the channel
power gain corresponding to the small-scale fading part, where
A

(i)
h < A

(i+1)
h , A(0)

h = 0 and A
(Nh)
h = ∞2. If the channel

power gain is in the interval [A(i)
h , A

(i+1)
h ), the channel state

sh is then equal to i. The steady-state probability that the
channel is in the state sh = i can be shown as:

Pr(sh = i) = FH

(
A

(i+1)
h

)
− FH

(
A

(i)
h

)
= Q1

(√
2K,

√
2(K + 1)A

(i)
h

)
−Q1

(√
2K,

√
2(K + 1)A

(i+1)
h

)
.

(9)

The expected channel power gain conditioned on a state
is the average channel power gain of this state. For instance,
the average channel power gain of the state i in the energy

2Zhang and Kassam [26] proposed the criterion of threshold partitions. We
consider the states with equal probability for simplicity.

harvesting channel is:

E[h|sh = i] =

∫ A
(i+1)
h

A
(i)
h

hfH(h)dh∫ A
(i+1)
h

A
(i)
h

fH(h)dh

=

∫ A
(i+1)
h

A
(i)
h

h(K + 1)I0
(
2
√

K(K + 1)h
)
e−(K+1)(h+ K

K+1 )dh

Q1

(√
2K,

√
2(K + 1)A

(i)
h

)
−Q1

(√
2K,

√
2(K + 1)A

(i+1)
h

) .

(10)

Before deriving the transition probabilities between channel
states, we introduce an important concept, i.e., the level
crossing rate (LCR) that is the number of passes for a level in
either the positive or the negative going position per unit time.
Suppose that the maximum Doppler frequency of the energy
harvesting channel is Dh. The LCR of the threshold A

(i)
h can

be formulated as [27]:

N(A
(i)
h ) =

√
2π(K + 1)DhρI0

(
2ρ

√
K(K + 1)

)
e−K−(K+1)ρ2

=

√
2π(K + 1)A

(i)
h DhI0

(
2

√
K(K + 1)A

(i)
h

)
e−K−(K+1)A

(i)
h

(11)

where ρ =

√
A

(i)
h /σ2 =

√
A

(i)
h and σ2 (normalized to 1) is

the average power of small-scale fading channel.
In the considered sensor network, the channel changes

slowly. Given a channel state in the current time slot, we
assume that the energy harvesting channel in the next slot is
in that state or the adjacent states. The channel state transition
probabilities can be approximated as [28]:

Pr(sh = i′|sh = i)

=


N(A

(i+1)
h )τ

Pr(sh=i) , i′ = i+ 1, i = 0, . . . , Nh − 2

N(A
(i)
h )τ

Pr(sh=i) , i
′ = i− 1, i = 1, . . . , Nh − 1

1− N(A
(i+1)
h )τ

Pr(sh=i) − N(A
(i)
h )τ

Pr(sh=i) , i
′ = i, i = 1, . . . , Nh − 2.

(12)

In particular, the values of Pr(sh = 0|sh = 0) and Pr(sh =
Nh − 1|sh = Nh − 1) are given by:

Pr(sh = 0|sh = 0) = 1− Pr(sh = 1|sh = 0), (13)

and

Pr(sh = Nh − 1|sh = Nh − 1)

= 1− Pr(sh = Nh − 2|sh = Nh − 1).
(14)

In terms of the information transmission channel, the
complex channel gain g′ is subject to a complex Gaussian
distribution, i.e., CN (0, σ2), where σ2 is 1 for the considered
small-scale fading channel. The channel power gain g follows
exponential distribution [22]. The PDF is:

fG(g) =
1

σ2
e−g/σ2

= e−g. (15)

Similar to the case of the energy harvesting channel, we
set {A(j)

g }, j = 0, 1, . . . , Ng , as the quantization thresholds
of the information transmission channel power gain, where
A

(j)
g < A

(j+1)
g , A(0)

g = 0 and A
(Ng)
g = ∞. The steady-state
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probability that the channel is in the state sg = j can be
expressed as:

Pr(sg = j) =

∫ A(j+1)
g

A
(j)
g

fG(g)dg

= e−A(j)
g − e−A(j+1)

g .

(16)

The average channel power gain of the state sg = j is:

E[g|sg = j] =

∫ A(j+1)
g

A
(j)
g

ge−gdg∫ A
(j+1)
g

A
(j)
g

e−gdg

=
(A

(j)
g + 1)e−A(j)

g − (A
(j+1)
g + 1)e−A(j+1)

g

e−A
(j)
g − e−A

(j+1)
g

.

(17)

Suppose that the maximum Doppler frequency of the infor-
mation transmission channel is Dg . The LCR of the threshold
A

(j)
g can be formulated as [27]:

N(A(j)
g ) =

√
2πDgρe

−ρ2

=

√
2πA

(j)
g Dge

−A(j)
g (18)

where ρ =

√
A

(j)
g /σ2 =

√
A

(j)
g . The state transition

probabilities of the information transmission channel can be
approximated by replacing Ah in equations (12)-(14) with Ag .

When the energy harvesting channel is in the state i, the
expected amount of energy received by the sensor in one time
slot is:

Eh = ηPH
L PE[h|sh = i]τ. (19)

We assume the sensor can only harvest positive integral
multiples of unit energy. The number of unit energy harvested
in one time slot is:

q = max{m : mEu ≤ Eh} (20)

where m is a non-negative integer.
In the FDM mode, the sensor can harvest energy and

transmit information simultaneously. Given a battery state
sb = k in the current time slot, the battery state k′ in the
next slot is:

k′ = min{Nb − 1, k − a+ q}. (21)

In the TDM mode, the sensor need to either harvest energy
or transmit information in one time slot. Thus the connection
of the battery states in two adjacent time slots can be described
as:

k′ = min{Nb − 1, k − a+ δ(a)q} (22)

where δ(a) is the Kronecker delta function, i.e., if a = 0,
δ(a) = 1; otherwise, δ(a) = 0.

We assume the energy harvesting channel and the informa-
tion transmission channel are independent of each other. The
overall system state transition probability can be formulated
as:
Pr(s′|s, a)
= Pr((sh, sg, sb) = (i′, j′, k′)|(sh, sg, sb) = (i, j, k), a)

= Pr(sh = i′|sh = i)Pr(sg = j′|sg = j)

× Pr(sb = k′|(sh, sb) = (i, k), a)
(23)

where the channel state transition probabilities are obtained
from the equations (12)-(14), and the battery state transition
probability is deterministic. Specifically, the battery transition
probability is 1 for any k′ that satisfies the equation (21) or
(22), and 0 otherwise.

D. Reward Function

Given an action a and an information transmission channel
state sg = j, the reward function is formulated as

ra(sg = j) = W log2

(
1 +

PG
L aPuE[g|sg = j]

N0Wγ

)
(24)

which is the expected throughput in one time slot. In the time
slots with the action a that equals to 0, the sensor does not
transmit any signal to the information sink. Thus, there is no
reward in these slots.

E. Optimization of Policy

We assume the statistical properties of the network are time-
invariant. The decision policy of a time-invariant system can be
defined as a mapping π(s) : S → As. The goal of formulating
the MDP model is to find an optimal energy harvesting and
information transmission policy for the maximal expected total
discounted reward. The expected total discounted reward based
on the reward function (24) from using the policy π beginning
with the initial state s(0) can be formulated as:

vπ(s(0)) = Eπ
s(0)

[ ∞∑
n=0

λnrπ(s(n))(s
(n)
g )

]
(25)

Based on the property of the MDP proved in [23], at least one
optimal stationary policy π∗(s) satisfies the following Bellman
equation:

vπ
∗
(s) = max

a∈As

(
ra(sg) + λ

∑
s′∈S

Pr(s′|s, a)vπ
∗
(s′)

)
. (26)

where vπ
∗
(s) is the state-value function of the state s under

the optimal policy π∗. We can use the value iteration algorithm
(Algorithm 1) to obtain an asymptotically optimal policy [23].

In the inequality (28) of Algorithm 1, the operator sp de-
notes the span which is formulated as sp(v) = maxs∈S v(s)−
mins∈S v(s). Each element of the vector v is the function
value of each state. The policy which results in the state-
value functions satisfying the inequality (28) is called the
ε-optimal policy π∗

ε (s). An optimal policy can be obtained
through enough iterations when the constant ε is sufficiently
small [23].

The value iteration algorithm is complex especially when
the state space and action space are large. In general, the
computational complexity per iteration is (|S|2|A|) multipli-
cation operations in the value iteration algorithm, where |S|
is the cardinality of the state space and |A| is the cardi-
nality of the action space [29]. Since many state transition
probabilities are zeros in the considered MDP, we treat the
number of multiplications of non-zero elements per iteration
as the computational complexity. The number of non-zero
energy harvesting channel state transition probabilities and
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Algorithm 1 Value Iteration Algorithm for MDP
1: Initialization: v0(s) = 0, ∀s ∈ S; ε > 0, λ ∈ (0, 1), and

n = 0.
2: For each state s ∈ S, compute vn+1(s) by

vn+1(s) = max
a∈As

{
ra(sg) + λ

∑
s′∈S

Pr(s′|s, a)vn(s′)

}
.

(27)

3: If
sp(vn+1 − vn) < ε(1− λ)/2λ (28)

go to step 4, otherwise increase n by 1 and go to step 2.
4: For each state s ∈ S, choose

π∗
ε (s) ∈ arg max

a∈As

{
ra(sg) + λ

∑
s′∈S

Pr(s′|s, a)vn+1(s
′)

}
(29)

and stop.

the number of non-zero information transmission channel
state transition probabilities are, (3Nh − 2) and (3Ng − 2),
respectively, because the transitions only happen between
adjacent states. In addition, since the battery state transition
is deterministic and the number of actions per iteration is
(Nb + 1)Nb/2, the computational complexity per iteration is
(3Nh−2)(3Ng−2)Nb(Nb+1)/2 multiplications of non-zero
elements. However, the above complexity is still very large
when the granularity of system states is small.

In practical applications, the asymptotically optimal policy
π∗
ε (s), ∀s ∈ S can be obtained via the value iteration

algorithm. The sensor chooses action by checking the asymp-
totically optimal policy on the basis of the overall system
state s = (sh, sg, sb). Specifically, the overall system state
can be acquired as follows. Since the signals transmitted from
the dedicated RF energy source carry pilots, the sensor can
estimate the power gain state sh of the energy harvesting
channel. The power gain state sg of the information transmis-
sion channel can be obtained at the sensor node via channel
feedback. In addition, the sensor has the information of the
battery state sb.

IV. MONOTONIC STRUCTURE OF THE OPTIMAL POLICY

In this section, for the FDM mode, we present an interesting
monotonic property of the transmitted energy in the asymp-
totically optimal policy with the battery state, which can be
exploited to reduce the computational complexity when using
the value iteration algorithm. However, the monotonic property
does not hold in the TDM mode. We will analyze and explain
this difference.

Before proving the monotonic property of the transmitted
energy with the battery state in the asymptotically optimal pol-
icy, we introduce the definition of the superadditive function
and its monotonic property [23].

Definition 1: Let X and Y be partially ordered sets and
Γ(x, y) be a real-valued function on X × Y . For x+ ≥ x− in

X and y+ ≥ y− in Y , if

Γ(x+, y+)− Γ(x−, y+) ≥ Γ(x+, y−)− Γ(x−, y−), (30)

Γ(x, y) is said to be a superadditive function of x and y.
Lemma 1 ( [23, Lemma 4.7.1]): Suppose that Γ(x, y) is a

superadditive function on X × Y and for each x ∈ X ,
maxy∈Y Γ(x, y) exists. Then

Θ(x) = max

{
y′ ∈ argmax

y∈Y
Γ(x, y)

}
(31)

is monotonically non-decreasing in x.
We reconstruct the iteration equation (27) as a function of

the action and state, i.e. the action-value function. According
to (12)-(14) and (23), the action-value function with respect
to action a and state s = (i, j, k) can be formulated as:

Qa
n+1(i, j, k) = ra(j) + λ

min{Nh−1,i+1}∑
i′=max{0,i−1}

Pr(sh = i′|sh = i)

×
min{Ng−1,j+1}∑
j′=max{0,j−1}

Pr(sg = j′|sg = j)

× Pr(sb = k′|(sh = i, sb = k), a)vn(i
′, j′, k′)

= ra(j) + λEi′,j′ [vn(i
′, j′,min{Nb − 1, k − a+ q})|i, j]

(32)

where vn+1(i, j, k) = maxa∈As Q
a
n+1(i, j, k). We define x =

k − a and

v̄n(i, j, x) = Ei′,j′ [vn(i
′, j′,min{Nb − 1, x+ q})|i, j], (33)

which is a function of i, j and x. We will prove that the
action-value function Qa

n(i, j, k) is superadditive in a and k
given i and j for any n > 0, so that the transmitted energy
is non-decreasing in the battery state in the asymptotically
optimal policy given the channel states. In the following, we
will first give the sufficient condition for Qa

n(i, j, k) to be a
superadditive function in Theorem 1, and then use Lemma 2
and Lemma 3 to prove that the sufficient condition is indeed
satisfied in the FDM mode.

Theorem 1: For any n ≥ 0 such that v̄n(i, j, x) is concave
in x given i and j, Qa

n+1(i, j, k) is a supperadditive function
of k and a given i and j.

Proof: See Appendix A. �
Before proving that v̄n(i, j, x) is in fact concave in x given

i and j for any n ≥ 0, we first show that vn(i
′, j′, k′) is a

non-decreasing function of k′ given i′ and j′ for any n ≥ 0
in the following lemma.

Lemma 2: vn(i
′, j′, k′) is a non-decreasing function of k′

given i′ and j′ for any n ≥ 0.
Proof: See Appendix B. �

On the basis of vn(i′, j′, k′) being a non-decreasing function
of k′, we use mathematical induction to prove v̄n(i, j, x) is
concave in x given i and j in the following lemma.

Lemma 3: For any n ≥ 0, v̄n(i, j, x) is a concave function
of x given i and j.

Proof: See Appendix C. �
From Lemma 3, v̄n(i, j, x) is concave in x given i and j.

Therefore, given i and j, Qa
n+1(i, j, k) is a supperadditive
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function of k and a according to Theorem 1. Furthermore,
the transmitted energy is non-decreasing with the battery state
in the asymptotically optimal policy. This is demonstrated in
Fig. 3. In every iteration of the value iteration algorithm, the
sensor can search the optimal action at the current state from
the optimal action at the previous state, which can narrow
down the search scope of the optimal policy. Therefore, the
computational complexity can be reduced. The monotonic
value iteration algorithm is shown in Algorithm 2.

Algorithm 2 Monotonic Value Iteration Algorithm for MDP
1: Initialization: v0(s) = 0, ∀s ∈ S; ε > 0, λ ∈ (0, 1), and

n = 0.
2: For each sh = i and sg = j, initialize sb = k = 0,

As = {0}.
a: Set

vn+1(s) = max
a∈As

{
ra(sg) + λ

∑
s′∈S

Pr(s′|s, a)vn(s′)

}
,

and

A∗
s = arg max

a∈As

{
ra(sg) + λ

∑
s′∈S

Pr(s′|s, a)vn(s′)

}
.

b: If k = Nb − 1, go to step 3; else,

A(i,j,k+1) =
{
a ∈ {0, . . . , k + 1}

∩
{a ≥ max{a′ ∈ A∗

s}}} .

c: Substitute s = (i, j, k) with s = (i, j, k+1) and return
to 2(a).

3: If
sp(vn+1 − vn) < ε(1− λ)/2λ,

go to step 4; otherwise, increase n by 1 and go to step 2.

4: For each s ∈ S , choose

π∗
ε (s) ∈ arg max

a∈As

{
ra(sg) + λ

∑
s′∈S

Pr(s′|s, a)vn+1(s
′)

}
,

and stop.

In the FDM mode, the sensor harvests energy and transmits
information in the same time slot. When the energy harvesting
channel state is known, we can determine the amount of energy
that the sensor replenishes. However, in the TDM mode,
energy harvesting and information transmission are in different
time slots. The energy harvesting and information transmission
policy consists of not only power allocation but also link
selection. The sensor will replenish energy in future time slots
if information transmission is selected, and the replenished
energy in future slots is uncertain in the current time slot.
Therefore, the policy that uses more power in transmission
when the battery has more energy does not guarantee the
long-term optimality. From Fig. 4, it is demonstrated that the
transmitted energy in the optimal policy and the battery state
do not display a monotonic relation in the TDM mode.
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Fig. 3. The relation between the optimal action and the battery state at
each energy harvesting (EH) channel state given the information transmission
channel state sg = 7 in the FDM mode.
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Fig. 4. The relation between the optimal action and the battery state at each
EH channel state given the information transmission channel state sg = 7 in
the TDM mode.

V. SIMULATION RESULTS

In this section, we show simulation results to evaluate the
performance of the proposed energy harvesting and infor-
mation transmission scheme. Moreover, the effect of some
parameters (such as the battery capacity, the number of channel
states, and the discount factor) on the long-term average
throughput is investigated3. The bandwidth and the noise
power spectral density of the information transmission channel
are set to 10 kHz and −174 dBm/Hz, respectively. In the
TDM mode, energy harvesting uses the same frequency band
as information transmission, while in the FDM mode, energy
harvesting is allocated in another frequency band, such as the
license-free industrial, scientific, and medical (ISM) frequency
band. The bandwidth of the antenna in a dedicated RF energy
harvester is usually narrow [31]. How to determine the optimal
bandwidth of the energy harvesting channel in the FDM mode
is beyond the scope of this paper. We set the length of the
energy harvesting link and the information transmission link
to 2 m and 20 m, respectively. We set the unitless constant C in

3According to [23, Corollary 8.2.5], when the discount factor λ approaches
1, the policy that maximizes the discounted total reward can also approximate-
ly maximize the average reward.
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equation (1) to −31.5 dB, and the reference distance d0 to 1 m
for the two channels. The path-loss exponents of the energy
harvesting channel and the information transmission channel
are 2 and 3, respectively. We set the K-factor K to 0.5. The
small-scale fading channel is made based on the Jake’s model
[32]. The number of states of the energy harvesting channel
and the information transmission channel are both defaulted to
8. We set the maximum Doppler frequency of the two channels
are Dh = 0.01 Hz and Dg = 0.02 Hz, respectively. The
steady-state probabilities and the state transition probabilities
are calculated in accordance with section III. We set the
duration of one time slot to 1 s. The transmission power of
the dedicated RF energy source is defaulted to 4 W. The
battery capacity of the sensor is defaulted to 10−3 J which
is divided into 11 states, namely Sb = {0, 1, . . . , 10}. Thus
the unit energy is 10−4 J. The energy efficiency η is set to
0.5. The gap γ only depends on the symbol error rate (SER)
which is required to be 10−6 in this paper. The gap for the
frequently-used M-ary quadrature amplitude modulation (M-
QAM) is formulated as γ = 1/3(Q−1(SER/4))2 [21]. We set
ε = 10−8 and λ = 0.99. In the implementation of the optimal
and greedy policies, we set a simulation time as 5 × 106 s.
Each result is the average of 40 runs of the simulations.

The average throughput for the FDM mode and the TDM
mode under different transmission power of the RF energy
source is shown in Fig. 5. It is shown that the average
throughput of the FDM mode is nearly twice as that of the
TDM mode. This is because that almost half of all time slots
are used for energy harvesting in the TDM mode. In practical
applications, we tend to choose the FDM mode if a dedicated
frequency band to transmit energy could be allocated.

1 2 3 4 5 6 7 8 9 10

The transmission power of the dedicated RF energy source (W)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

kb
ps

)

MDP in FDM
Greedy in FDM
MDP in TDM
Greedy in TDM

Fig. 5. Average throughput versus transmission power of the RF energy
source.

Fig. 6 presents the average throughput per information
transmission slot versus different transmission power of the
RF energy source. It is shown that the average throughput
per information transmission slot in the TDM mode is greater
than that in the FDM mode, especially when the transmission
power of the RF energy source is low. The reason is as
follows. The reward function increases with a large slope when
the transmission power of the sensor is low. Therefore, it
benefits the sensor to accumulate its received energy before
transmitting information in the TDM mode. As a result, the
number of information transmission slots is reduced and the

throughput in each information transmission slot becomes
larger in the TDM mode. In this simulation example, for the
MDP scheme in the TDM mode, when the transmission power
of the RF energy source is 1 W and 10 W, the information
transmission time slots only account for 9% and 38% of the
total time slots, respectively.
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Fig. 6. Average throughput per information transmission slot versus trans-
mission power of the RF energy source.

Fig. 7 shows the average throughput of the MDP scheme
and the greedy scheme for different battery state capacity
in the FDM mode and the TDM mode. As a benchmark,
the greedy scheme is performed without concerning the state
transition probabilities. The information is transmitted as long
as the battery is non-empty. It is observed that the average
throughput is monotonically increasing with the battery ca-
pacity, while the average throughput of the greedy scheme
becomes saturated when the battery capacity is large. This
is because that the energy may overflow when the battery
capacity is small. The probability of energy overflowing is
decreasing with the battery capacity increasing. Thus the
average throughput becomes stable. We can also observe that
the MDP scheme outperforms the greedy scheme, because the
action based on the MDP scheme is selected in accordance
with the current states. The sensor can wait for better channel
state before energy overflowing when the battery capacity is
large. Thus the average throughput can continue to increase
with the battery capacity increasing.
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Fig. 7. Average throughput versus battery capacity for the MDP scheme and
the greedy scheme.

Fig. 8 shows the effect of the number of information
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transmission channel states on the average throughput. When
the number of channel states is small, the average throughput
increases with the number of states increasing. However, when
the number of states is large, the average throughput decreases
with the number of states increasing. The reason is as follows.
When the number of channel states is small, the power gain in
one state will vary in a large range. The actual channel power
gain in one state will be in a smaller range than the range
in that state. Therefore, the expected channel power gain (17)
cannot represent the actual channel power gain accurately. In
contrast, when the number of channel states is large, the power
gain range will be small. In this case, the probability that the
channel power gain in the next time slot is not in the current or
adjacent states is large. The state transition probabilities (12)-
(14) cannot approximate the actual state transition processes
efficiently. For the energy harvesting channel, there exists the
same property according to the simulations.
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Fig. 8. Average throughput versus the number of information transmission
channel states.

Fig. 9 shows the effect of the discount factor on the average
throughput. It is observed that the average throughput is
monotonically increasing with the discount factor. This is
because that the optimal policy of the discounted criterion
can approximate the optimal policy of the average criterion
when the discount factor λ ≈ 1. However, the speed of
convergence of the discounted MDP algorithm decreases with
the discount factor increasing. It means that acquiring the
optimal transmission policy needs more iterations.
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Fig. 9. Average throughput versus the discount factor.

VI. CONCLUSIONS

This work studied a wireless-powered sensor communica-
tion network, in which the sensor is powered by the dedicated
RF energy source. We discussed two frequently-used working
mode: the FDM mode and the TDM mode. To obtain the
optimal policy for the long-term maximum throughput, we
formulated the energy allocation problem as a Markov decision
model and solved it through the value iteration algorithm. We
proved that the transmitted energy is a monotonically non-
decreasing function of the battery state in the asymptotically
optimal policy in the FDM mode. The computational complex-
ity can be reduced using this monotonic property. However,
the same monotonic property does not exist in the TDM mode.
The simulation results show that the proposed approach can
achieve significant gains compared with the greedy scheme. In
future works, we will extend our work to the case that several
sensors are supported by one dedicated RF energy source,
which is more practical in real-world wireless-powered sensor
networks.

APPENDIX A
PROOF OF THEOREM 1

Proof: If v̄n(i, j, x) is a concave function of x given i
and j, the following inequality is valid:

Ei′,j′ [vn(i
′, j′,min{Nb − 1, k+ − a+ + q})|i, j]

− Ei′,j′ [vn(i
′, j′,min{Nb − 1, k− − a+ + q})|i, j] ≥

Ei′,j′ [vn(i
′, j′,min{Nb − 1, k+ − a− + q})|i, j]

− Ei′,j′ [vn(i
′, j′,min{Nb − 1, k− − a− + q})|i, j]

(34)

where k+ ≥ k−, a+ ≥ a−, and k− ≥ a+.
According to (32) and (34), the following inequality is

satisfied:

Qa+

n+1(i, j, k
+)−Qa+

n+1(i, j, k
−) ≥

Qa−

n+1(i, j, k
+)−Qa−

n+1(i, j, k
−).

(35)

Therefore, Qa
n+1(i, j, k) is a superadditive function of k and

a given i and j according to Definition 1. �

APPENDIX B
PROOF OF LEMMA 2

The proof of Lemma 2 will use the following property: for
any given x, if the bounded function Φ(x, y) is non-decreasing
in y, Ψ(y) = maxx Φ(x, y) is also a non-decreasing function
of y. The proof of the property is as follows.

Proof: For y1 ≤ y2, we define:

xmax
1 ∈ argmax

x
Φ(x, y1)

and
xmax
2 ∈ argmax

x
Φ(x, y2).

Since we assume Φ(x, y) is non-decreasing in y for any fixed
x, the following inequalities are satisfied:

Ψ(y1) = Φ(xmax
1 , y1) ≤ Φ(xmax

1 , y2) ≤ Φ(xmax
2 , y2) = Ψ(y2).

(36)
Therefore, Ψ(y) = maxx Φ(x, y) is a non-decreasing function
of y. �
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In the following content of this appendix, we use mathe-
matical induction to prove lemma 2.

Proof of Lemma 2. Suppose that vn(i
′, j′, k′) is non-

decreasing in k′ for a non-negative integer n. Since k′ =
min{Nb−1, x+q} is non-decreasing in x, vn(i′, j′,min{Nb−
1, x+ q}) is non-decreasing in x. The non-negative weighted
sum v̄n(i, j, x) of vn(i

′, j′,min{Nb − 1, x + q}) is a non-
decreasing function of x given i and j. Since ra(j) is unrelated
to k,

Qa
n+1(i, j, k)

= ra(j) + λEi′,j′ [vn(i
′, j′,min{Nb − 1, k − a+ q})|i, j]

(37)

is a non-decreasing function of k given i, j, and a. We can
infer that vn+1(i, j, k) = maxa∈As

{
Qa

n+1(i, j, k)
}

is non-
decreasing in k given i and j according to the above property.
Since v0(i

′, j′, k′) = 0 is a non-decreasing function of k′,
vn(i

′, j′, k′) is non-decreasing in k′ given i′ and j′ for all
n. �

APPENDIX C
PROOF OF LEMMA 3

Proof: Suppose that vn(i
′, j′, k′) is a concave function

of k′ given i′ and j′ for a non-negative integer n. Since
k′ = min{Nb − 1, x + q} is a concave function of x and
vn(i

′, j′, k′) is a non-decreasing function of k′ given i′ and j′

(Lemma 2), vn(i′, j′,min{Nb−1, x+q}) is a concave function
of x given i′ and j′ [30, Equation 3.10]. Since v̄n(i, j, x)
can be viewed as a non-negative weighted sum of concave
functions vn(i

′, j′, k′) based on equation (32), v̄n(i, j, x) is
a concave function of x given i and j. Before proving that
vn+1(i, j, k) is concave in k, we assume vn(i, j, k̃) is a
concave function of the continuous variable k̃ which contains
the discrete function values vn(i, j, k), k ∈ {0, 1, . . . , Nb−1}.
We also assume that vn+1(i, j, k̃) is a continuous function of
k̃. For ∀k1, k2 ∈ {0, 1, . . . , Nb − 1} and β ∈ [0, 1], we should
prove the following inequality:

βvn+1(i, j, k1) + (1− β)vn+1(i, j, k2)

≤ vn+1(i, j, βk1 + (1− β)k2).
(38)

Suppose that a1 and a2 satisfy vn+1(i, j, k1) = Qa1
n+1(i, j, k1)

and vn+1(i, j, k2) = Qa2
n+1(i, j, k2), respectively. Then

βvn+1(i, j, k1) + (1− β)vn+1(i, j, k2)

= βra1(j) + (1− β)ra2(j)

+ βλEi′,j′ [vn(i
′, j′,min{Nb − 1, k1 − a1 + q})|i, j]

+ (1− β)λEi′,j′ [vn(i
′, j′,min{Nb − 1, k2 − a2 + q})|i, j]

≤ raβ
(j) + λEi′,j′ [vn(i

′, j′,min{Nb − 1, kβ − aβ + q})|i, j]
≤ max

a∈As

{ra(j)

+ λEi′,j′ [vn(i
′, j′,min{Nb − 1, kβ − a+ q})|i, j]}

= vn+1(i, j, kβ)
(39)

where kβ = βk1+(1−β)k2, aβ = βa1+(1−β)a2 and As =
[0, kβ ] in the above inequalities. In (39), the first inequality is
established by using ra(j) and v̄(i, j, k) as concave functions.

Thus, we can prove that vn+1(i, j, k) is a concave function
of k given i and j. Similar to the procedure of proving that
v̄n(i, j, x) is a concave function of x given i and j, we can
prove that v̄n+1(i, j, x) is concave in x given i and j. Since
v0(i

′, j′, k′) = 0 is a concave function of k′ given i′ and j′,
v̄n(i, j, x) is a concave function of x given i and j for all
n ≥ 0. �
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