
Nesprins: Tissue-Specific Expression of Epsilon and Other
Short Isoforms
Nguyen Thuy Duong1,2, Glenn E. Morris1,3, Le Thanh Lam1, Qiuping Zhang4, Caroline A. Sewry1,5,

Catherine M. Shanahan4, Ian Holt1,3*

1 Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom, 2 Institute of Genome Research (IGR), Vietnam Academy of

Science and Technology (VAST), Hanoi, Vietnam, 3 Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom, 4 Cardiovascular

Division, James Black Centre, King’s College, London, United Kingdom, 5 Dubowitz Neuromuscular Centre, Institute for Child Health and Great Ormond Street Hospital,

London, United Kingdom

Abstract

Nesprin-1-giant and nesprin-2-giant regulate nuclear positioning by the interaction of their C-terminal KASH domains with
nuclear membrane SUN proteins and their N-terminal calponin-homology domains with cytoskeletal actin. A number of
short isoforms lacking the actin-binding domains are produced by internal promotion. We have evaluated the significance
of these shorter isoforms using quantitative RT-PCR and western blotting with site-specific monoclonal antibodies. Within a
complete map of nesprin isoforms, we describe two novel nesprin-2 epsilon isoforms for the first time. Epsilon isoforms are
similar in size and structure to nesprin-1-alpha. Expression of nesprin isoforms was highly tissue-dependent. Nesprin-2-
epsilon-1 was found in early embryonic cells, while nesprin-2-epsilon-2 was present in heart and other adult tissues, but not
skeletal muscle. Some cell lines lack shorter isoforms and express only one of the two nesprin genes, suggesting that either
of the giant nesprins is sufficient for basic cell functions. For the first time, localisation of endogenous nesprin away from the
nuclear membrane was shown in cells where removal of the KASH domain by alternative splicing occurs. By distinguishing
between degradation products and true isoforms on western blots, it was found that previously-described beta and gamma
isoforms are expressed either at only low levels or with a limited tissue distribution. Two of the shortest alpha isoforms,
nesprin-1-alpha-2 and nesprin-2-alpha-1, were found almost exclusively in cardiac and skeletal muscle and a highly
conserved and alternatively-spliced exon, available in both nesprin genes, was always included in these tissues. These
‘‘muscle-specific’’ isoforms are thought to form a complex with emerin and lamin A/C at the inner nuclear membrane and
mutations in all three proteins cause Emery-Dreifuss muscular dystrophy and/or inherited dilated cardiomyopathy, disorders
in which only skeletal muscle and/or heart are affected.
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Introduction

Nesprins (nuclear envelope spectrin-repeat proteins) are intra-

cellular linkers and scaffolds. The SYNE1 gene for nesprin-1 was

first identified in the mouse post-synaptic membrane [1] and in rat

vascular smooth muscle cells [2]. Two protein products were

postulated, one of approximately 110 kD and another greater than

230 kD [1,2]. Zhang et al., 2001 [2] named the equivalent human

110 kD protein, nesprin-1-alpha, and identified the larger product

as 382 kD nesprin-1-beta. A related gene, SYNE2, was also

identified [1,2], and shown to produce protein products of

approximately 61 kD (nesprin-2-alpha), 87 kD (nesprin-2-beta)

and 377 kD (nesprin-2-gamma) [2]. It was shown that these

nesprins are short forms of larger proteins, nesprin-1-giant

(1008 kD) and nesprin-2-giant (792 kD) [2–4]. SYNE1, also known

as MYNE1 [5] or Enaptin [6], is on human chromosome 6q25.

SYNE2, also known as NUANCE [3], is on human chromosome

14q23.

Structurally, nesprins have a central rod domain composed of

spectrin repeats. Nesprin-1-giant and nesprin-2-giant have N-

terminal CH (calponin homology) domains that bind the actin

cytoskeleton and C-terminal transmembrane KASH (Klarsicht-

ANC-Syne-homology) domains, which reside in the outer nuclear

membrane and bind across the luminal space to the SUN (Sad1,

UNC84) type II inner nuclear membrane proteins, SUN1 and

SUN2 [7,8]. These interactions form LINC (Linker of Nucleoske-

leton and Cytoskeleton) complexes, which form a physical link

between the cytoskeleton and the nucleus (Reviewed: [9,10]).

Nesprins have multiple internal promoters which give rise to

shorter isoforms with a common C-terminal region, but truncated

at the N-terminus. Those short isoforms containing the trans-

membrane KASH domain are also able to interact with the SUN

proteins. The LINC complex is further strengthened by SUN

proteins interacting with lamin A/C on the nucleoplasmic side of

the inner nuclear membrane. Additionally, the spectrin repeat-

containing domain of nesprin-2-alpha DTM, which may be

nucleoplasmic, has been shown to interact with a different domain
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of the SUN proteins, so that SUN may anchor nesprin isoforms on

opposing faces of the nuclear envelope [11].

The nesprins can undergo alternative splicing to give rise to

proteins lacking the KASH and transmembrane domains. These

KASH-less isoforms are unable to form LINC complexes with

SUN proteins, but can participate in the direct interactions of

nesprins in the nucleoplasm. If the KASH transmembrane

domains are absent, there may then be direct interactions between

the C-terminal regions of nesprins 1 and 2 and their binding

partners including emerin [4,12], muscle A–kinase anchoring

protein (encoded by gene AKAP6) [13], components of the nuclear

lamina (Lamin A/C) [4,5,12] a muscle-specific tyrosine kinase

receptor (encoded by gene MuSK) [1] and chromatin [2,4].

The bioinformatics study of Simpson and Roberts [14] found

good support for two additional nesprin-1 isoforms, with little

known about their function, which are not included in this study

because they contain only N-terminal sequences (CPG2:109 kD

and GSRP-56:56 kD). The two additional members of the nesprin

family (nesprin-3 and -4), which are not included in this study,

both lack the N-terminal CH domain. Instead, the N-terminal of

nesprin-3 contains a plectin-binding domain which interacts with

intermediate filaments [15] and nesprin-4 interacts with microtu-

bules via kif5b and is involved in cell polarity [16].

Mutations in the C-terminal regions of nesprins-1 and -2 have

been associated with Emery-Dreifuss muscular dystrophy (EDMD)

and dilated cardiomyopathy (CMD) [17–19]. Similarly, mutations

in nesprin-binding partners, emerin (EMD) [20] and lamin A/C

(LMNA) [21] are also associated with EDMD (reviewed: [22]).

Mutations in two other genes, four and a half LIM domains 1

(FHL1) and transmembrane protein 43 (TMEM43), may also cause

EDMD [23,24]. FHL1 proteins contain LIM (Lin-11, Isl-1, Mec3)

domains and the main isoform, FHL1A is expressed predomi-

nantly in striated muscle where it may have a role in sarcomere

assembly [23]. TMEM43 encodes for LUMA, a structural protein

of the inner nuclear membrane that interacts with lamins and

emerin [24]. In around half of cases of EDMD, causative

mutations have not been identified [22]. The characteristic

features of EDMD are weakness and wasting of specific muscles,

early contractures and cardiac conduction defects [25], but the

molecular mechanisms by which the mutations in emerin, lamins

or nesprins lead to the clinical features of EDMD are still largely

unknown.

Studies of the short isoforms of nesprin-1 and nesprin-2 have

often been inconclusive, because of the possibility that some bands

seen on northern and western blots may be the result of

degradation of endogenous mRNAs and proteins in tissue extracts,

rather than the detection of true short isoforms. In the present

study, taking as a starting point the bioinformatics data of Simpson

and Roberts [14], we have defined more fully the ‘nesprinome’ of

different tissue types. We have re-evaluated the importance of

previously-reported short isoforms of nesprin-1 and nesprin-2 that

have a common C-terminal domain, by determining their

expression levels relative to ‘‘housekeeping’’ proteins and to the

giant, full-length nesprin proteins. We show that some short

isoforms are expressed at very low, or barely-detectable, levels in

most tissues, though, in some cases, they may be significant in

certain specific cells or tissues. Examples of how degradation

products of giant nesprins may have been mistaken for true

isoforms are given. In contrast, we also show that the importance

of two novel epsilon isoforms of nesprin-2 has been previously

overlooked. Finally, the abundant expression of one specific alpha

isoform of each nesprin in both cardiac and skeletal muscles

suggests that these may be important for understanding the

pathogenesis of EDMD.

Results

Figure 1 is a pictorial representation of nesprin-1-giant and

nesprin-2-giant with the N-terminal start points of the smaller

isoforms, as defined by Simpson and Roberts [14]. To determine

isoform mRNA levels, we performed qPCR on total cDNA from a

panel of 20 human tissues and 7 human cell lines and calculated a

Relative Expression (RE) value against two endogenous ‘‘house-

keeping’’ controls, GAPDH and cytoskeletal beta-actin. The

isoforms, isoform-specific primer sequences, product sizes and

efficiencies of amplification are shown in Table S1 in File S1.

Primer pair specificity was verified by sequencing the products

from conventional PCR. Although a PCR product for sequencing

was obtained for nesprin-1-alpha-1 (in spleen) and nesprin-2-beta-

1 (in skeletal muscle), we were unable to determine an efficiency of

qPCR with any tissue, even when several alternative primer pairs

were tested. This suggests that nesprin-1-alpha-1 and nesprin-2-

beta-1 were present at very low or undetectable levels in the 27

cells/tissues we have studied. Otherwise, the high PCR efficiencies

show that qPCR is accurately reflecting the levels of each mRNA

species, relative to the internal controls.

For nesprin-1, we found significant expression, in at least one

tissue, of nesprin-1-beta-1 and nesprin-1-alpha-2 (nesprin-1-alpha-

1 was not detected and nesprin-1-beta-2 was present at very low

levels). For nesprin-2, we consistently found epsilon-1, epsilon-2,

alpha-1 and alpha-2 at significant levels (nesprin-2-beta-1 was

barely detectable, while nesprin-2-gamma and nesprin-2-beta-2

were present at only low levels). Mean Relative Expression values

(6SD) of the nesprin-1 and nesprin-2 isoforms for the 27 cDNA

samples are shown in Tables S3 and S4 in File S1. These values

are shown as bar charts for selected isoforms (Figs. 2 and 3). The

relative abundance of all the different nesprin isoforms are

summarised as exploded pie-charts for the 20 human tissues and

7 cell lines (Fig. 4). These results are described in detail under sub-

headings below.

Giant Isoforms, Especially Nesprin-2-giant, are the
Dominant Nesprins in most Cells and Tissues

The two giant isoforms accounted for more than 80% of the

nesprin mRNA in most of the 20 human tissues, except cardiac

muscle (63%), skeletal muscle (66%) and spleen (56%), which were

particularly rich in shorter isoforms (Fig. 4). ESC (embryonic stem

cells) and Ntera-2 (embryonic teratocarcinoma) cells also con-

tained less than 80% giant isoforms (Fig. 4). There was more

nesprin-2 mRNA than nesprin-1 mRNA in most cells and tissues

(Fig. 2A), the notable exceptions being brain (81% nesprin-1-giant)

and VSMC (vascular smooth muscle cells: 92% nesprin-1-giant).

Nesprin-1 mRNA was almost undetectable in ESC, Ntera-2 and

HeLa cells (Fig. 4 and Tables S3 and S4 in File S1).

Nesprin-2-epsilon-1 is Expressed in Early Embryonic Cells,
While Nesprin-2-epsilon-2 is Produced in Several Adult
Tissues, Including Heart

We showed in an earlier study [26] that nesprin-2-epsilon-

1 mRNA and protein (122 kD) is expressed in Ntera-2 cells and

ovary, but not in other tissues, and suggested that it might be an

early embryonic isoform. In addition to Ntera-2 and ovary, we

now show significant expression of epsilon-1 in ESC which

supports the view that it may have a function in early

development. Two nesprin-2-epsilon isoforms were predicted by

bioinformatics studies [14] and we now show that epsilon-

2 mRNA is absent from Ntera-2 and ESC (Figs. 3A and 4), but

is expressed at significant levels in heart, brain, thymus, thyroid,

prostate, testis and ovary (Figs 3A and 4). The production of

Short Isoforms of Nesprin-1 and Nesprin-2
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epsilon-2 protein (103 kD) by heart and brain is confirmed by

western blot, which showed a lower Mr band than the epsilon-1

(122 kD) in ESC and Ntera-2 cells (Fig. 5). Although low levels of

nesprin-2-epsilon-2 mRNA were present in skeletal muscle (10%

of brain levels), protein was not detected on western blots, possibly

because of the sensitivity of the method. Ovarian tissue contains

both epsilon-1 and epsilon-2 mRNAs but the total RNA

preparation will contain mRNA from a number of ‘‘adult’’ cell

types, as well as ‘‘embryonic’’ oocytes. Until specific antibodies to

distinguish the two isoforms become available, it is not possible to

investigate the exact cellular location of nesprin-2-epsilon-1 by

immuno-localisation.

The Short Alpha Isoforms of both Nesprins are Expressed
Mainly in Cardiac and Skeletal Muscle, the two Affected
Tissues in Emery-Dreifuss Muscular Dystrophy

Cardiac and skeletal muscles are unusual in expressing, in

addition to both giant forms, significant amounts of mRNA for

nesprin-1-beta-1, nesprin-1-alpha-2 and nesprin-2-alpha-1 (Fig. 4).

Cardiac muscle differs in producing substantial amounts of

nesprin-2-epsilon-2, which is virtually absent from skeletal muscle

(Figs. 3A and 4). The seven cell lines studied expressed giant forms

almost exclusively, except for the large amounts of nesprin-2-

epsilon-1 in Ntera-2 and ESC (Figs. 3A and 4) and the presence of

nesprin-1-beta-1/beta-2 in VSMC (Fig. 4 and Table S3 in File

S1). Relative expression of the two nesprin genes varied greatly

between cell lines, with HeLa expressing nesprin-2 and VSMC

expressing nesprin-1 almost exclusively (Fig. 4). This suggests that

any non-specialised functions can be performed by either of the

two nesprins.

Use of mRNA Studies to Distinguish True Isoforms from
Degradation Products

In an earlier study [27], we suggested that skeletal muscle

contains nesprin-2-gamma (377 kD) and nesprin-2-alpha-2

(47 kD), in addition to giant and nesprin-2-alpha-1 isoforms, and

all four bands (plus a ‘‘ghost’’ band of myosin at 200 kD) can be

seen clearly in Fig. 5. However, mRNAs for gamma and nesprin-

2-alpha-2 are barely detectable in skeletal muscle (Fig. 3B and

Table S4 in File S1), suggesting that giant (792 kD) and alpha-1

(60 kD) are the only significant isoforms of nesprin-2 produced by

skeletal muscle and the two bands at ca. 400 kD and ca. 50 kD are

likely degradation products of higher Mr isoforms. The alternative

possibility that these lower Mr bands are due to cross-reactions of

the antibody with non-nesprin proteins has been eliminated by the

use of monoclonal antibodies (mAbs) against different epitopes in

the C-terminal region [27]. Although nesprin-2-alpha-2 mRNA

was absent from skeletal muscle, we did detect significant amounts

in some cell lines and tissues, notably kidney (Fig. 3B).

Nesprin-1-beta-1 Protein is Produced in Spleen
Since the qPCR data showed unusually high levels of nesprin-1-

beta-1 in spleen (Figs. 3B and 4), we performed a western blot on

an extract of pig spleen (Fig. 6). Consistent with qPCR, a band of

the expected molecular weight for the nesprin-1-beta-1 isoform

was found in spleen. In heart, which has 10-fold lower levels of

nesprin-1-beta-1 mRNA, this band was barely detectable. Heart

does have a prominent band of nesprin-1-alpha-2 protein (Fig. 6),

as predicted from qPCR, but the triplet protein band in this region

of the spleen blot is unlikely to be this isoform, since the mRNA for

nesprin-1-alpha-2 is not expressed in spleen. This again illustrates

the value of running qPCR alongside western blots to identify true

nesprin isoforms.

Alternative Splicing of the Highly-conserved DV23 Exon
of Nesprins is Highly Variable between Tissues

To avoid the implication that the sequence is absent or deleted,

we have used the term ‘‘DV23’’ to describe the 69 bp exon

sequence, described by Simpson and Roberts [14] as ‘‘DSR’’. The

product of DV23 contains 23 amino acids, beginning with

Aspartic Acid (D) and Valine (V). Bioinformatics showed that this

exon is highly conserved across species and is present in both

nesprin-1 and nesprin-2, suggesting that this sequence has an

important function [14]. Fig. 7 shows PCR across the DV23 exon

of nesprin-1 and nesprin-2, to determine the relative amounts of its

inclusion by alternative splicing in different tissues. The nesprin-

1 PCR primers detected DV23 in all nesprin-1 isoform mRNAs

(Fig. 7A). The nesprin-2 primers (Fig. 7B) did not amplify DV23

contained in the nesprin-2-alpha-1 isoform, so the results refer

mainly to nesprin-2-giant, unless there was significant expression

of other isoforms, such as epsilon. There were high levels of

inclusion of DV23 for both nesprins in cardiac and skeletal muscle.

Using a primer pair specific for nesprin-2-alpha-1, inclusion of

DV23 in nesprin-2-alpha-1 was also .95% in cardiac and skeletal

muscle (Fig. 7C).

Figure 1. Short forms of nesprin-1 and nesprin-2. Pictorial representation of nesprin-1-giant and nesprin-2-giant with the N-terminal start
points of the smaller isoforms indicated by black lines and arrows. Isoforms that we found present at low levels are labelled in grey. Those isoforms
that were barely detectable, or undetectable, are labelled in grey with parenthesis. (See Results).
doi:10.1371/journal.pone.0094380.g001
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Inclusion of DV23 varied from 100% in some tissues (including

cardiac muscle) to ,25% in others, and even lower in some

transformed cell lines (Fig. 7 and Table 1). Generally, inclusion of

DV23 in nesprin-2 was similar to, or higher than, in nesprin-1 for

most tissues, but brain was a notable exception with 89% inclusion

in nesprin-2 but only 31% in nesprin-1 (Table 1).

Fig. 8A shows the 23-amino-acid sequence of DV23 in both

nesprins. It is quite highly-conserved, even between the two

human nesprin genes (57% identity). We produced a panel of

8 mAbs against the DV23 sequence of nesprin-2 using a peptide-

conjugate as immunogen and mapped their epitopes using a

phage-displayed random peptide library. All 8 mAbs recognised

four peptides, which are shown aligned with each other and with

the nesprin-2 DV23 sequence in figure 8A. Common amino acids

are shown in red and the mapped epitope is underlined in Fig. 8A.

PCR showed strong inclusion of the nesprin-2 DV23 exon in

nesprin-2-giant and nesprin-2-alpha-1 in skeletal muscle, which

was confirmed by western blot with one of these mAbs, N2-DV23

6B4 (Fig. 8B). Six of the 10 amino-acids in the epitope of mAb N2-

DV23 6B4 are identical in nesprins -1 and -2, so it was necessary

to demonstrate specificity of the mAb for nesprin-2 experimen-

tally. Fig. 8C shows that mAb N2-DV23 6B4 does not stain the

nuclear membrane in vascular smooth muscle cells; VSMC do not

have nesprin-2 although they do express high levels of nesprin-1

containing DV23, so confirming the specificity of this antibody for

nesprin-2. Fig. 8D-G shows that the same mAb (N2-DV23 6B4)

stained the nuclear rim as strongly as mAbs against total nesprin-2

in tissues where DV23 is mainly included (heart and skeletal

muscle), but shows much weaker nuclear staining in cells where

nesprin-2 DV23 is largely excluded (ESC and Ntera-2). This

confirms the mRNA results for DV23 at the protein level.

Nesprin-2 Lacking the KASH Domain Locates in the
Nucleoplasm of Embryonic Stem Cells

The nesprin-2 mAb (MANNES2A), showed only nuclear rim

staining in heart and skeletal muscle sections (Fig. 8D, E). This

mAb in ESC showed an intense nucleoplasmic speckle-like

distribution (Fig. 8F) and in Ntera-2 there was some cytoplasmic

stain (Fig. 8G). PCR for nesprin-2 KASH indicated that most of

the nesprin-2 mRNA in ESC, lacked the KASH domain (Fig. 7D).

Heart and skeletal muscle appeared to contain the highest levels of

nesprin-2 KASH, with ovary and Ntera-2 also positive for KASH

(Fig. 7D). These results in combination indicate that the

nucleoplasmic, speckle-like distribution of nesprin-2 in ESC is

attributable to absence of the KASH domain.

Discussion

Support for the different Isoforms of Nesprin-1 and
Nesprin-2

This study differs from earlier studies, first of all in using qPCR

with internal standards to determine the relative levels of all known

KASH domain isoforms (and their KASH-less splice variants), of

both nesprins-1 and -2, and secondly, in combining mRNA

(qPCR) and protein (western blot) data to distinguish true isoforms

from degradation products at the protein level. We have

concluded that the main isoforms expressed from SYNE1 are

nesprin-1-giant (1008 kD), nesprin-1-alpha-2 (111 kD) and, at

lower levels, two forms of nesprin-1-beta (383 kD and 370 kD),

but nesprin-1-alpha-1 mRNA was barely detectable. The main

isoforms from SYNE2 were nesprin-2-giant (792 kD), two forms of

nesprin-2-epsilon (103 kD and 122 kD) and two forms of nesprin-

2-alpha (60 kD and 47 kD). Nesprin-2-gamma and nesprin-2-

beta-2 were present at only very low levels, while nesprin-2-beta-1

was barely detectable. It is perhaps surprising that we were able to

amplify nesprin-1-alpha-1 and nesprin-2-beta-1 by conventional

PCR but were unable to determine efficiency of qPCR, using the

same primer pairs. In this respect, it has been reported that

conventional PCR and qPCR may perform differently and that

conventional PCR may have greater analytical sensitivity com-

pared with qPCR [28]. The conclusions are in excellent

agreement with the bioinformatics studies of Simpson and Roberts

[14], which found ‘‘evidence against a biological role’’ for both

nesprin-1-alpha-1 and nesprin-2-beta-1 and ‘‘strong support for

the biological relevance’’ of nesprin-1-alpha-2, both nesprin-2-

epsilons and both nesprin-2-alphas. They had insufficient

sequence data to make reliable predictions about other beta and

gamma isoforms [14]. It seems as though only the giant isoforms of

nesprins are essential for basic cell functions, since some of the cell

lines lack shorter isoforms. Similarly, some cell lines showed almost

exclusive expression from only one of the two nesprin genes.

The tissue distribution data on nesprin-2-giant mRNA agree

broadly with the hybridization array data of Zhen et al. [3] with

highest expression in kidney, liver and thyroid and low levels in

brain, except that we found significant amounts in HeLa and other

cell lines and only average levels in spleen. The unusually high

levels of nesprin-1-beta-1 mRNA and protein in spleen are

consistent with previous northern blot analysis [2] and show the

importance of avoiding generalisations about nesprins based on a

limited range of cells or tissues. Relative to GAPDH and beta-

actin, overall nesprin mRNA levels were high in kidney and

thyroid, but low in brain, bladder, thymus and all seven cell lines.

Tissues are not homogeneous and contain a variety of cell types,

including vascular cells and blood/lymph cells. It is possible,

therefore, that the high levels of nesprin-1-beta-1 mRNA and

protein in spleen can be traceable to one particular cell type.

Similarly, the expression of both nesprin-2-epsilon-1 and epsilon-2

in ovary may occur in different cell types in that tissue. Future

availability of isoform-specific mAbs should enable us to answer

this question in the long-term using immunolocalisation micros-

copy. The detection of nesprin-2-epsilon-1 only in cells of

embryonic origin suggests that it may occur in germ cells of

ovary, but this has not yet been confirmed. The question of

whether cardiac nesprin-2-epsilon-2 expression is attributable to

any particular cell type in the heart could also be answered with

epsilon-2-specific mAbs.

Validation of Western Blots by qPCR
We have also been able, where possible, to reconcile the mRNA

data with protein data from western blots, although available

antibodies are only able to detect isoforms produced at reasonably

high levels. The main problem in identifying bands on western

blots as authentic short forms of nesprin is the possibility that lower

Mr bands might be due to proteolysis of a larger isoform, such as

the ‘‘giant’’ form. This is especially problematical when a larger

isoform is present in great abundance. Large cytoskeletal proteins,

Figure 2. Tissue-specific expression of giant and alpha isoforms of nesprins. Quantitative PCR to show mRNA expression of nesprin
isoforms relative to the expression of two endogenous house-keeping controls. Charts represent the mean relative expression 6 SEM, measured in
cDNA preparations from 20 human tissues and 7 cell lines. These values are given in Tables S3 and S4 in File S1. Bar charts show relative expression of
(A) nesprin-1-giant and nesprin-2-giant, and (B) nesprin-1-alpha-2 and nesprin-2-alpha-1.
doi:10.1371/journal.pone.0094380.g002

Short Isoforms of Nesprin-1 and Nesprin-2
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Figure 3. Tissue-specific expression of nesprin-1-beta-1, nesprin-2-alpha-2 and the two nesprin-2-epsilon isoforms. Quantitative PCR
to show mRNA expression of nesprin isoforms relative to the expression of two endogenous house-keeping controls. Charts represent the mean
relative expression 6 SEM, measured in cDNA preparations from 20 human tissues and 7 cell lines. These values are given in Tables S3 and S4 in File
S1. Bar charts show relative expression of (A) nesprin-2-epsilon-1 and nesprin-2-epsilon-2, and (B) nesprin-1-beta-1 and nesprin-2-alpha-2.
doi:10.1371/journal.pone.0094380.g003

Short Isoforms of Nesprin-1 and Nesprin-2

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e94380



Figure 4. Relative abundance of nesprin isoform mRNAs in human tissues and cell lines. Exploded pie charts show the relative abundance
of nesprin isoform mRNA, relative to total nesprin-1 and nesprin-2 mRNA in cDNA preparations from 20 human tissues and 7 human cell lines.
doi:10.1371/journal.pone.0094380.g004
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like dystrophin and nesprins, are especially sensitive to proteolysis

and even when precautionary extraction methods are used (see

Methods), human tissues with no degradation are difficult to

obtain. Although human extracts and ready-made blots covering a

range of tissues are available commercially, we have found them

too dilute for detection of nesprins with our mAbs, although they

do work with antibodies against more abundant proteins, such as

GAPDH (unpublished observations). True isoforms can in theory

be identified using antibodies against isoform-specific amino-acid

sequences (usually at the amino-terminus) but such antibodies are

not yet available. The availability of qPCR data does throw some

light on this problem. Protein levels normally reflect levels of the

corresponding mRNA, though differences in protein stability or

turnover may complicate the relationship. These considerations

suggest that, in skeletal muscle, the only KASH domain proteins

produced in significant amounts are the two giant forms plus

nesprin-2-alpha-1 (60 kD) and nesprin-1-alpha-2 (111 kD). Very

small amounts of nesprin-1-beta-1 and nesprin-2-epsilon-2 mRNA

were also detected in skeletal muscle, but the putative nesprin-2-

gamma (377 kD) and nesprin-2-alpha-2 (47 kD) proteins identified

on western blots [27] are likely degradation products (see also

Fig. 5).

‘‘DV23’’ Splice Variants
Although this study has clarified the major KASH-containing

nesprin isoforms that are expressed, other studies have shown that

alternative splicing can produce additional variants within this

basic framework. We therefore studied splicing of the ‘‘DV23’’

exon, which has predicted functional importance [14] and is

located near the N-terminal of nesprin-2-alpha-1. DV23 was

largely included in nesprin-2-giant mRNA from skeletal muscle,

heart, brain and several other tissues, but largely excluded in liver,

kidney and thymus. The DV23 exon was also included in nesprin-

2-alpha-1 mRNA in cardiac and skeletal muscle, which was also

seen in an earlier report of total nesprin-2 [1]. Recently, many

alternative start and termination sites throughout the nesprin-1

and nesprin-2 genes have been identified, giving the possibility of

multiple short isoform variants [29].

Is Emery-Dreifuss Muscular Dystrophy caused by Defects
in a Specific Function of the Short Nesprin Isoforms in
Cardiac and Skeletal Muscle?

The observation, from qPCR and western blot, that the short

alpha isoforms, nesprin-1-alpha-2 and nesprin-2-alpha-1, are

expressed almost exclusively in cardiac and skeletal muscle is

consistent with previous northern analysis [1,2] and RT-PCR [4]

and extends these earlier results to a wider range of tissues.

Cardiac and skeletal muscles are also the only two tissues affected

in EDMD. All the known mutations in nesprins that are associated

with EDMD or dilated cardiomyopathy, lie within the alpha

isoform sequences [17–19]. The tissue-specific distribution of the

alpha isoforms, and the location of pathogenic nesprin mutations

within them, raises the possibility that alpha isoforms have some

specific function that is not shared by the full-length ‘‘giant’’ forms.

Loss of this function may then be responsible for the pathogenesis

of EDMD and dilated cardiomyopathy.

Figure 5. Evidence at the protein level for nesprin-2-epsilon-1
in Ntera-2 and ESC cells and for nesprin-2-epsilon-2 in heart
and brain. Western blot for nesprin-2 in human tissues and cell lines
using antibody against the C-terminal region of nesprin-2 (MANNES2A
11A3). Bands of approximate size of nesprin-2-epsilon-1 (122 kD) were
detected in Ntera-2 and ESC and bands the size of nesprin-2-epsilon-2
(103 kD) were detected in brain and heart. Nesprin-2-alpha-1 was
observed in skeletal muscle, but epsilon isoforms were not detected.
Absence of mRNA (see Table S4 in File S1), indicates that putative
nesprin-2-gamma (377 kD) and nesprin-2-alpha-2 (47 kD) bands on the
skeletal muscle western blot, are likely to be degradation products.
doi:10.1371/journal.pone.0094380.g005

Figure 6. Evidence at the protein level for nesprin-1-beta-1 in
spleen and for nesprin-1-alpha-2 in cardiac and skeletal
muscle. Western blot for nesprin-1 in tissues using antibody against
the C-terminal region of nesprin-1 (MANNES1E 8C3). A band the size of
nesprin-1-beta-1 (383 kD) was detected in spleen and bands of nesprin-
1-alpha-2 (111 kD) were detected in skeletal muscle and heart.
doi:10.1371/journal.pone.0094380.g006
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Figure 7. Tissue-dependent alternative splicing of the highly conserved DV23 exon of nesprin-1 and nesprin-2 and the KASH
domain of nesprin-2. Products of conventional PCR were separated on agarose gels. The 27 human cDNA samples, as shown in Table 1, were used
in A and B. For DV23, the upper band contained the DV23 region and the lower band lacked the DV23 region. Specific primer pairs spanned: (A) The
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One current hypothesis is that short isoforms of nesprin locate

to the inner nuclear membrane, where they can interact directly

with emerin and lamin A/C, mutations in which also cause

EDMD. The idea of loss of function of a complex of emerin, lamin

A/C and nesprins as a unifying cause of EDMD is an attractive

one, but no function requiring all three proteins has yet been

identified. When they are localised at the outer nuclear

membrane, giant nesprins can interact only indirectly with lamin

A/C, via SUN proteins at the inner nuclear membrane. Although

giant isoforms may locate to the inner membrane during assembly

of the nuclear envelope after mitosis, such large proteins may be

unable to cross the assembled nuclear envelope while still

membrane-associated [30]. However, nesprin isoforms without

KASH and transmembrane domains have been described and

these ‘‘non-membrane’’ proteins can enter the nucleus through the

nuclear pores. When transfected, isoforms of nesprin-2 that lack a

KASH domain have been shown to form nuclear complexes and

colocalise with promyelocytic leukemia protein (PML) bodies [31].

In this respect, we have shown that most of the nesprin-2 in ESC

lacks the KASH domain and is largely located in the nucleoplasm

with a speckle-like appearance. Nesprin-2-giant has also been

found with centromeric and heterochromatic sequences inside the

nucleus [32]. Immuno-gold EM studies using a keratinocyte cell

line, showed nesprin-2-giant at both the outer and inner nuclear

membranes [33]. One consequence of the presence of giant

isoforms, with or without KASH domains, inside the nucleus is

that formation of complexes with emerin/lamin A/C is not an

exclusive function of short isoforms.

Nearly all the pathogenic mutations in human nesprins known

so far are autosomal dominant mutations in nesprin-1. Nesprin-1-

giant does appear to have an essential function in myonuclear

positioning. A mouse knockout of the nesprin-1 KASH domain

nesprin-1 DV23 region of nesprin-1-giant and other nesprin-1 isoforms, (B) the nesprin-2 DV23 region of nesprin-2-giant (which included other
nesprin-2 isoforms except nesprin-2-alpha-1) and (C) the nesprin-2 DV23 region of only the nesprin-2-alpha-1 isoform. Vertical black lines indicate
images from different gels that have been compiled. (D) PCR was used to detect the presence of nesprin-2 KASH, along with GAPDH control in
5 cDNA samples.
doi:10.1371/journal.pone.0094380.g007

Table 1. Nesprin DV23 inclusion in cDNA from tissues and cells.

Sample Number cDNA Nesprin-1 DV23 inclusion (%) Nesprin-2 DV23 inclusion (%)

Except nesprin-2-alpha-1 Only nesprin-2-alpha-1

1 Adipose 100 100

2 Bladder 97 84

3 Brain 31 89

4 Cervix 100 87

5 Colon 100 71

6 Esophagus 99 73

7 Heart 100 100 100

8 Kidney 81 27

9 Liver 80 22 53*

10 Lung 83 61

11 Ovary 82 71

12 Placenta 86 56

13 Prostate 88 63

14 Skeletal Muscle 94 94 100

15 Small Intestine 83 38

16 Spleen 87 39

17 Testis 76 43

18 Thymus 30 24

19 Thyroid 24 49

20 Trachea 68 52

21 ESC 24 17

22 Fibroblast 92 75

23 LCL 47 9

24 Ntera-2 10 19

25 HeLa 23 19

26 U2OS 65 53

27 VSMC 95 Not detected

*It was necessary to perform PCR on the PCR product to obtain the bands with liver cDNA using nesprin-2-alpha-1 primers.
doi:10.1371/journal.pone.0094380.t001
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Figure 8. Immunolocalisation of isoforms lacking the DV23 region and/or the KASH domain. (A) Alignment of the 23 amino acid
sequences of the DV23 exon of nesprin-1 and nesprin-2. The nesprin-2 DV23 peptide was the immunogen for mAb production. The epitope of the
mAbs was mapped to the sequence shown in red and underlined. Sequences of the four 15-mer peptides pulled out of the phage-display peptide
library are shown aligned below the nesprin-2 DV23 sequence, with matching amino acids shown in red. (B) The mAb N2-DV23 6B4 recognised bands
of nesprin-2-giant and nesprin-2-alpha-1 in western blot of skeletal muscle (the intermediate band is a likely degradation product of nesprin-2-giant).
(C) The 6B4 mAb against nesprin-2 DV23 does not cross-react with nesprin-1 DV23. VSMC (which contain nesprin-1 with DV23 but no nesprin-2)
showed nuclear staining for nesprin-1 with MANNES1A but not with 6B4. Immunofluorescent staining with mAbs MANNES2A and N2-DV23 6B4 was
equally strong on both cardiac muscle nuclear rim (D) and skeletal muscle nuclear rim (E). However, MANNES2A was much stronger than N2-DV23
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had myonuclear localisation defects that were not shared by the

corresponding nesprin-2 KASH knockout mouse and disruption

of nesprin-1 KASH or nesprin-2 KASH did not affect viability or

fertility [34]. Knockout of the actin-binding region of nesprin-2

generated a mouse model with complete loss of nesprin-2-giant

[35]. These mice had an increased thickness of epidermis and

showed defective wound healing, but were otherwise very similar

to wild type mice and did not have an EDMD phenotype [32,35].

Similarly, mice with a knockout of the C-terminal spectrin repeat

region of nesprin-1 which resulted in ablation of most isoforms of

nesprin-1 showed defects in positioning and anchorage of nuclei in

skeletal muscle, but had normal heart function and did not display

a phenotype similar to EDMD [36]. The bioinformatic study of

Simpson and Roberts [14] found nesprin-2-alpha-1 only in

human, but not in mouse, whereas nesprin-1-alpha-2 and both

epsilon isoforms of nesprin-2 were present in human and mouse.

Knockout of either Sun1 alone or double-knockout of both Sun1

and Sun2 also caused defects in myonuclear positioning, rather

than an EDMD-like phenotype [37]. A mouse model in which the

KASH domain of nesprin-1 was replaced with an unrelated

sequence did have an EDMD-like phenotype [38], consistent with

a dominant-negative effect of expression of a mutant protein. It

would seem that some, but not all, functions of nesprins can be

performed by either nesprin-1 or nesprin-2, since mice with a

double-knockout of both nesprins have respiratory failure and die

shortly after birth [34]. The two giant nesprins do not form

obligatory complexes together, since nesprin-1-giant and nesprin-

2-giant do not co-localise in EDMD skin fibroblasts without

emerin [27]. If giant isoforms of the two nesprins do not interact

with each other, short isoforms are unlikely to form heterodimers

either, although nesprin-1-alpha does form homodimers, which

bind directly to emerin and lamin A [12].

The presence of nesprin mutations that are likely to be

pathogenic and the muscle-specific distribution of the alpha

isoforms, raises the possibility that alpha isoforms have some

specific function that is not shared by the full-length ‘‘giant’’ forms.

Loss of this function may then be responsible for the pathogenesis

of EDMD and dilated cardiomyopathy.

Materials and Methods

Ethics Statement
This study has been approved by the Robert Jones and Agnes

Hunt Orthopaedic Hospital Research Committee. Human biop-

sies were obtained following written informed consent using

protocols approved by Hammersmith Hospital and the University

of Cambridge. The monoclonal antibody production protocol was

performed with approval of the Keele University Animal Welfare

and Ethical Review Body.

Cell Culture
Ntera-2 (pluripotent neuroectodermal human testicular embry-

onic teratocarcinoma cell line, gift from Peter Andrews, Sheffield

University [39]), LCL (lymphoblastoid cell line [40]), HeLa

(human epithelial carcinoma cell line [41]), fibroblasts (human

fibroblasts established in culture from skin biopsy [42]), and U2OS

(human osteosarcoma epithelial cell line, obtained from American

Tissue Culture Collection (ATCC)), were grown in DMEM with

10% fetal bovine serum and antibiotics and VSMC (vascular

smooth muscle cells [43]) were grown in Medium 199 with 20%

fetal bovine serum and antibiotics. The H9 Embryonic Stem Cell

(ESC) line (gift from Rachel Oldershaw, Newcastle University

[44]) was grown in StemPro hESC Serum-Free Medium (Gibco)

on fibronectin-coated tissue culture wells. Clumps of cells were

dissociated with TrypLE Express (Gibco).

RT-PCR and qPCR
The First Choice Human Total RNA Survey Panel (ABI

Ambion, Austin, Texas) was used as a source of RNA from 20

adult human tissues. Total RNA was prepared from cultured cells

using RNeasy Plus Mini Kit (Qiagen) and quantified using a

NanoDrop ND-1000 spectrophotometer. Total RNA (2 mg in a

20 mL reaction) was reverse transcribed using SuperScript VILO

cDNA Synthesis Kit (Applied Biosystems) and then diluted 1:12

with sterile water.

Forward primers for specific short isoforms of nesprin-1 and

nesprin-2 were each designed to recognise a unique sequence in

the 59 UTR of the isoform. Primer pairs for the giant isoforms

were designed, to minimise amplification of shorter isoforms.

Short isoforms containing the N-terminal CH domains have

recently been described [29] and we designed primers to avoid

these. Primers for nesprin-1-giant span the N-terminal site of

nesprin-1-beta-1 and primers for nesprin-2-giant span the N-

terminal site of nesprin-2-epsilon-1. Primer sequences are shown

in Table S1 in File S1. Primer pairs were tested by conventional

PCR (PCR Core Kit, Qiagen), and products confirmed by DNA

sequencing (DNA Sequencing and Services, University of

Dundee).

Relative quantitative PCR was performed using SYBR green

detection in an ABI 7500 Real Time PCR system (Applied

Biosystems). Reaction wells contained 10 mL SYBR Select Master

Mix (Applied Biosystems), 1.5 mL cDNA, 300 nM Forward and

300 nM Reverse primers in a final volume of 20 mL. For each

preparation of cDNA, each target sequence was amplified along

with two endogenous controls (Beta-actin and GAPDH). Quan-

titation of target transcripts relative to the two endogenous

reference transcripts were calculated by the 2-DCT method [45,46].

The efficiency of primer pairs for quantitative PCR was

determined by making serial dilutions of the cDNA, performing

absolute quantitation, plotting CT versus log cDNA dilution, with

the slope of the line being used to calculate efficiency [46].

Dissociation curves were obtained to ensure that each primer pair

gave a single peak. When an isoform was detected, qPCR was

performed at least three times.

Specific primer pairs to span the DV23 regions of nesprin-1,

nesprin-2 (all isoforms except nesprin-2-alpha-1) and nesprin-2-

alpha-1 are shown in Table S2 in File S1. Specific products were

confirmed by sequencing. Where necessary, products were cut

from agarose gels and purified (Qiaex II gel extraction kit, Qiagen)

prior to sequencing. Upper bands contained DV23 and lower

bands lacked DV23. Values for percent inclusion of DV23 were

calculated following image analysis of the agarose gels. A forward

primer within nesprin-2 KASH and a reverse primer downstream

of this were used to detect the presence of the nesprin-2 KASH

domain, which was also confirmed by sequencing.

Hybridoma Production
Peptide: DVEIPENPEAYLKMTTKTLKASSC with Keyhole

Limpet Hemocyanin conjugated to the C-terminal (Alta-

Bioscience, Birmingham UK), was used as immunogen for

6B4 on both ESC (F) and Ntera-2 cells (G), since the DV23 exon is mainly excluded in these cells (see Fig. 7B). Furthermore, the MANNES1A mAb is
largely nucleoplasmic in ESC, which may be because the nesprin-2 KASH domain is also largely excluded in this cell type (see Fig. 7D).
doi:10.1371/journal.pone.0094380.g008
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production of monoclonal antibodies against DV23 region of

nesprin-2, using the hybridoma method [47]. Epitope mapping of

monoclonal antibodies was performed using phage-displayed

random peptide libraries in filamentous phage as previously

described [48], Briefly, monoclonal antibody mixtures were

diluted 1:50 with Tris-buffered saline (TBS) and immobilised onto

sterile 35 mm Petri dishes coated directly with 1 ml of 1:200

dilution of rabbit-anti-[mouse Ig] in TBS (DAKOs, Denmark).

Biopanning was performed using a 15-mer peptide library in

phage f88-4, maintained in the K91Kan strain of E. coli (G.P.

Smith, University of Missouri). Any remaining binding sites on the

dishes were blocked using 4% BSA in sterile TBS. A sample of the

phage library (1013 virions) was pre-incubated in dishes coated

with the rabbit anti-mouse antibodies alone to ensure any binding

was specific for the target mAbs. Following the first round of

biopanning, the bound phage were eluted and amplified by

infection of K91Kan E. coli cells. Two rounds of biopanning were

performed. Individual colonies of the phage-infected cells after the

second round were grown on nitrocellulose membrane (BA85) and

screened by western blotting to reveal positive clones. Positive

clones were subjected to western blotting with individual mAbs

from the mixture used for biopanning. After blocking non-specific

sites with 5% skimmed milk protein in TBS, membranes were

incubated with mAb supernatant (1/100 dilution in TBS).

Antibody-reacting clones were visualized following development

with biotinylated horse anti-mouse Ig in a Vectastain ABC kit

(Vector Labs, Burlingame, CA) and diaminobenzidine substrate

(Sigma; 0.4 mg/ml). Phage DNA was purified from positive clones

by the phenol/chloroform method and sequenced using primer:

59-AGTAGCAGAAGCCTGAAGA-39.

Other monoclonal antibodies used in this study were:

MANNES1A 7A12 (for immunofluorescence) and MANNES1E

8C3 (for western blot), which both recognise the C-terminal of

nesprin-1; and MANNES2A 11A3 which has an epitope in exon

112 of the C-terminal of nesprin-2 [27].

SDS-polyacrylamide Gel Electrophoresis and Western
Blotting

Cultured cells were extracted in 125 mM Tris pH 6.8, 2% SDS,

5% 2-beta mercaptoethanol, 5% glycerol with protease inhibitors

(Sigma P8340 plus 1 mM PMSF). Tissue samples (250 mg/ml)

were extracted in: 50 mM Tris pH 6.8, 1% EDTA, 10% SDS, 5%

beta mercaptoethanol, 10% glycerol with protease inhibitors. After

the addition of bromophenol blue and after boiling, samples were

subjected to SDS-PAGE using 4 to 12% polyacrylamide gels and

transferred to nitrocellulose membranes (Protan BA85, Whatman).

After blocking non-specific sites with 5% skimmed milk protein,

membranes were incubated with monoclonal antibody (1/50),

followed by washing and incubation with peroxidase-labelled

rabbit anti-mouse immunoglobulins (1/1000, Dako, Denmark).

Antibody reacting bands were visualized with West Femto

chemiluminescent detection system (Pierce, Thermo Scientific).

Immunofluorescence Microscopy
Immunohistochemistry was performed on unfixed cryostat

sections and also on cells that had been cultured on coverslips,

fixed with 50:50 acetone-methanol and washed with PBS.

Monoclonal antibodies in culture supernatants were diluted 1:3

in PBS and incubated on the specimen for 1 hour. Following

washing, incubation was continued with 5 mg/ml goat anti-mouse

ALEXA 488 (Molecular Probes, Eugene, Oregon, USA) second-

ary antibody diluted in PBS containing 1% horse serum, 1% fetal

bovine serum and 0.1% BSA, for 1 hour. DAPI (diamidino

phenylindole at 200 ng/ml) was added for the final 10 minutes of

incubation to counterstain nuclei before mounting in Hydromount

(Merck). Sequential confocal scans were performed with a Leica

TCS SP5 spectral confocal microscope (Leica Microsystems,

Milton Keynes, UK).

Supporting Information

File S1 Contains Table S1, Quantitative PCR primer pairs.

Table S2, PCR primer pairs used to span the 69 bp DV23 regions

of nesprin-1 and nesprin-2 and to amplify from within the KASH

region of nesprin-2. Table S3, Relative expression (RE) of nesprin-

1 (N1) isoforms in human tissues and cultured cells. Table S4,

Relative expression (RE) of nesprin-2 (N2) isoforms in human

tissues and cultured cells.
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