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Abstract—Unmanned Aerial Vehicles (UAVs) are considered as
a promising platform providing high-speed wireless communica-
tions services. In this paper, we propose a new three-dimensional
(3D) non-stationary geometry-based stochastic channel model
(GSCM) for the multi-input multi-output (MIMO) communica-
tion links between the UAV and the mobile terminal (MT). The
proposed GSCM considers not only the 3D scattering scenario,
but also the 3D arbitrary trajectories and 3D antenna arrays
of both terminals. The computation methods of time evolving
channel parameters, i.e., path number, delays, powers and angle
parameters, are also given. In addition, the theoretical statistical
properties of the proposed GSCM, i.e., the autocorrelation func-
tion (ACF), the cross-correlation function (CCF) and the Doppler
power spectrum density (DPSD) are analyzed and derived. The
good agreement between the simulated results and corresponding
theoretical ones shows the correctness of both the simulation and
the derivation.

Index Terms—Unmanned Aerial Vehicles (UAVs), non-
stationary channel models, geometry-based stochastic channel
models (GSCMs), three-dimensional (3D) arbitrary trajectories.

I. INTRODUCTION

During the past decade, there has been a dramatic increase
in the use of unmanned aerial vehicles (UAVs), i.e., the
remote surveillance, filming, disaster relief, goods transport,
and communication relaying, due to their affordable prices,
multiple flight controls, high maneuverability, ease operability
and increasing payload weight [1]. UAVs also have been
considered as the aerial base station in the fifth generation
(5G) communication systems [2], [3]. Since multi-input multi-
output (MIMO) technologies can improve the capacity and
efficiency of communication systems significantly, the UAV
communication systems with MIMO technologies have gradu-
ally become a research hotspot. However, it is vital to establish
accurate and reliable UAV-MIMO channel models for the
system design, optimization, and performance evaluation.
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Several channel models for UAV communications can be
addressed in [4]–[12]. Among them, the Geometry-based
stochastic channel models (GSCMs) [6]–[12] have attracted
more and more attention for their good tradeoff between the
complexity and accuracy. In [6], [7], the authors proposed two
3D stationary GSCMs for the air-to-ground channels, in which
they assumed that scatterers around the mobile terminal (MT)
were distributed on the surface of several ellipsoids [6] or
cylinders [7] , respectively. In [8], the author took the joint
distribution of the azimuth and elevation angles into account
and presented a 3D stationary sphere-shaped GSCM. It should
be mentioned that the GSCMs in [6]–[8] assumed that all
scatterers were fixed for the sake of simplicity. Measurement
campaigns [13] have proved that scatterers could appear (birth)
or disappear (death) due to the rapid movements of terminals,
which has been included in the traditional radio channel
models [14]–[17]. Recently, some non-stationary UAV channel
models have been presented in [9]–[12]. These models took the
time-variant scatterers into account by a birth-death process,
but still assumed the UAV is fixed [9], [10] or moving with
a constant velocity horizontally [11], [12]. In addition, both
terminals are configured with 2D antenna arrays [9]–[11] or
uniform linear arrays [12]. However, measurement results in
[18] have shown that the flight height of the UAV has a
significant effect on the channel characteristic and should not
be neglected. This paper aims to fill this gap.

In this paper, we develop a new non-stationary 3D GSCM
for UAV-MIMO channels, which allows for 3D arbitrary tra-
jectories and 3D antenna arrays of both terminals. Meanwhile,
the corresponding time evolving algorithms of channel param-
eters, i.e., the path number, delay, power and angle parameters,
are also given. In addition, The time-variant autocorrelation
function (ACF), cross-correlation function (CCF) and Doppler
power spectrum density (DPSD) of the proposed GSCM are
investigated and verified by simulations.

The remainder of this paper is organized as follows. In
Section II, a new 3D non-stationary GSCM for UAV-MIMO
channels as well as the compuatation methods of channel



parameters are presented. The statistical properties of the
proposed GSCM are derived in Section III. In Section IV,
simulation results are given and compared with the theoretical
ones. Finally, conclusions are given in Section V.

II. 3D NON-STATIONARY GSCM FOR UAV-MIMO
CHANNELS

A. Channel impulse response (CIR)

Let us consider the downlink UAV-MIMO channel with
Q transmit and P receive antennas as illustrated in Fig. 1.
Both terminals are configured with 3D antenna arrays and
moving with 3D arbitrary trajectories. In Fig. 1, there are two
coordinate systems, i.e., the UAV coordinate system and the
MT coordinate system. The coordinate systems are established
with the origin at the center of the UAV and MT. The local
cluster, denoted by Sn, are composed of M non-uniformly
distributed scatterers on the surface of half-sphere with radius
Rn centered at the MT, while scatterers around the UAV are
neglected. The rest parameters used are listed in Table I.

Fig. 1. 3D non-stationary GSCM for UAV-ground link.

The fading channel between the UAV and MT can be
expressed as an Q × P complex matrix, and each element

TABLE I
PARAMETER DEFINITIONS IN THE PROPOSED MODEL

Parameters Definition
M Number of scatterers within each cluster
N(t) Number of NLoS paths
vtx(t),vrx(t) 3D velocity vectors of the UAV and MT
vSn (t) 3D velocity vectors of the cluster Sn
φtx/rx(t), θtx/rx(t) Azimuth and elevation angles of the velocity

vector of the UAV or MT
αLoS
tx/rx

(t), βLoS
tx/rx

(t) Azimuth and elevation angles of depar-
ture/arrival signal of the LoS path

α
tx/rx,n

(t), β
tx/rx,n

(t) Mean azimuth and elevation angles of de-
parture/arrival of the nth NLoS path

α
tx/rx,n,m

(t), β
tx/rx,n,m

(t) Azimuth and elevation angles of depar-
ture/arrival of the mth ray within the nth
NLoS path

rtx,q(t), rrx,p(t) 3D locations of the qth transmit and pth
receive antenna elements

sLoS
tx (t), sLoS

rx (t) Spherical unit vectors of the LoS path of
departure and arrival signals

stx,n,m(t), srx,n,m(t) Spherical unit vectors of the mth ray within
the nth NLoS path of departure and arrival
signals

hqp(t, τ) denotes the complex CIR between the qth transmit
antenna and the pth receive antenna. In this paper, we model
hqp(t, τ) as

hqp(t, τ) =
√
PLoS
qp (t)hLoS

qp (t)δ(τ − τLoS
qp (t))

+
N(t)∑
n=1

√
PNLoS
qp,n (t)hNLoS

qp,n (t)δ(τ − τNLoS
qp,n (t))

(1)

where hLoS
qp (t)PLoS

qp (t) and τLoS
qp (t) mean the complex channel

coefficient, the power, and delay of the LoS path, respectively,
hNLoS
qp,n (t), PNLoS

qp,n (t) and τNLoS
qp,n (t) mean the complex channel

coefficient, the power, and delay of the nth NLoS path,
respectively. For the LoS path, the complex channel coefficient
can be further expressed as

hLoS
qp (t) = e

jk
(

(sLoS
tx (t))

T ·rtx,q(t)+(sLoS
rx (t))

T ·rrx,p(t)
)

·ejk
∫ t
0 (vtx(t)·sLoS

tx (t′)+vrx(t)·sLoS
rx (t′))dt′ejφLoS

(2)

where k = 2πf0/c0 denotes the wave number, f0 and c0

represent the carrier frequency and the speed of light, and φLoS

is the random initial phase. For the NLoS path, the complex
channel coefficient can be further expressed as (3), where
φn,m is the random initial phase. In (2) and (3), 3D locations
of transmit and receive antenna element can be written as

hNLoS
qp,n (t) =

√
1

M

M∑
m=1

e

{
jk
∫ t
0 [(vtx(t)−vSn )·stx,n,m(t′)+(vrx(t)−vSn )·srx,n,m(t′)]dt′

+jk((stx,n,m(t))T ·rtx,q(t)+(srx,n,m(t))T ·rrx,p(t))+jφn,m

}
(3)

Rtx/rx(t) =

 cos θtx/rx(t)cosφtx/rx(t) − sinφtx/rx(t) − sin θtx/rx(t)cosφtx/rx(t)
cos θtx/rx(t) sinφtx/rx(t) cosφtx/rx(t) − sin θtx/rx(t) sinφtx/rx(t)

sin θtx/rx(t) 0 cos θtx/rx(t)

 (4)



rtx,q(t) = Rtx(t) · rtx,q(t0) and rrx,p(t) = Rrx(t) · rrx,p(t0),
here the time-variant rotation matrix Rtx(t) and Rrx(t) are
introduced to take the effect of 3D arbitrary trajectories into
account and defined as (4).

B. Flowchart of updating channel parameters

Fig. 2 gives the updating process of channel parameters for
the proposed model and it can be described as follows:

Step 1: Generate the total number of NLoS paths based on
the birth-death process at time instant t.

Step 2: Generate initial clusters and scatterers randomly at
time instant t. The computation method of channel parameters,
i.e., delays, powers and angle parameters, is given in Section
III-B.

Step 3: For the newly generated path, the geometrical
parameter is generated similar to the initial cluster. For the
survival path, the geometrical parameter is updated by the
method in Section III-B.

Step 4: When the evolution at time t is finished, the
algorithm returns to Step 1 for the next time instant.

Fig. 2. Flowchart of updating channel parameters.

C. Computation methods of channel parameters

1) Total number of NLoS paths: In this paper, we model
the birth-death process of NLoS paths by a Markov process,
where the birth and death rates of clusters are λB and λD,

respectively. We assume that the UAV, MT, and each cluster
move at constant speeds in the time interval ∆t and mean
velocities of clusters are denoted as vS(t) = E{vSn

(t)}. The
channel fluctuation ε(t,∆t) measures how much the scattering
environment varies within a short period. Since the variation
of scattering environment is due to the movements of the UAV,
MT and clusters during the time span from t to t + ∆t, the
time dependent channel fluctuation can be calculated as

ε(t,∆t) = (‖vtx(t)‖+ ‖vrx(t)‖+ Pc ‖vS(t)‖) ∆t (5)

where Pc denotes the average probability of moving clusters.
The survival probability of NLoS paths is computed as

Pr(t,∆t) = e−λB
ε(t,∆t)

Dc (6)

where Dc denotes a scenario dependent coefficient describing
the space correlation. The expectation of the total number of
NLoS paths can be calculated by

E{N(t)} =
λD

λB
(7)

where E{·} denotes the statistical average.
2) Geometrical parameters: For newly generated clusters,

the 3D location vectors and velocities of clusters can be
obtained by measurement campaigns or generation randomly.
For the survived clusters, the 3D location vectors of the UAV,
MT and cluster Sn at the time instant t can be updated by

Ltx/rx/Sn
(t) = Ltx/rx/Sn

(t−∆t) + vtx/rx/Sn
(t)∆t (8)

where Ltx(t), Lrx(t) and LSn(t) denote the time-variant
3D location vectors of the UAV, MT and cluster Sn, re-
spectively. The initial location vectors can be calculated by
Ltx(t0) = DLoS(t0)sLoS

tx (t0), Lrx(t0) = DLoS(t0)sLoS
rx (t0)

and LSn
(t0) = Rnsrx,n(t0), where DLoS(t0) means the initial

value of the distance of the LoS path.
By using the transform from the Cartesian coordination to

spherical coordination, the mean elevation angle of departure
(EAoD) and arrival (EAoA), azimuth angle of departure
(AAoD) and arrival (AAoA) of the LoS path can be calculated
by

βLoS
tx/rx(t) =

arctan(
Lz

rx/tx(t)−Lz
tx/rx(t)√

(Lx
tx/rx

(t)−Lx
rx/tx

(t))2+(Ly
tx/rx

(t)−Ly
rx/tx

(t))2
) (9)

and
αLoS

tx/rx(t) =

arctan(
Ly

rx/tx
(t)−Ly

tx/rx
(t)√

(Lx
tx/rx

(t)−Lx
rx/tx

(t))2+(Ly
tx/rx

(t)−Ly
rx/tx

(t))2
) (10)

where Lxtx/rx/Sn
(t), Lytx/rx/Sn

(t) and Lztx/rx/Sn
(t) are the x,

y and z components of Ltx/rx/Sn
(t), respectively.

Similarly, the mean EAoD, EAoA and AAoD, AAoA of
nth NLoS path at time instant t can be calculated by

βrx/tx,n(t) =

arctan(
Lz

Sn
(t)−Lz

rx/tx(t)√
(Lx

Sn
(t)−Lx

rx/tx
(t))2+(Ly

Sn
(t)−Ly

rx/tx
(t))2

) (11)



and

αrx/tx,n(t) =

arctan(
Ly

Sn
(t)−Ly

rx/tx
(t)√

(Lx
Sn

(t)−Lx
rx/tx

(t))2+(Ly
Sn

(t)−Ly
rx/tx

(t))2
) . (12)

3) Path delays and powers: The time-variant delay of the
LoS path can be calculated as

τLoS
qp (t) = ‖Ltx(t)− Lrx(t)‖ /c (13)

and the time-variant delay of nth NLoS path can be calculated
as

τNLoS
qp,n (t) = ‖Ltx(t)− LSn

(t)‖ /c︸ ︷︷ ︸
τNLoS
tx,qp,n(t)

+ ‖LSn(t)− Lrx(t)‖ /c︸ ︷︷ ︸
τNLoS
rx,qp,n(t)

.

(14)

Then, the time-variant power of the LoS path can be
calculated as [19]

PLoS
qp (t) = exp

(
−τLoS

qp (t)
1− rτ
rτστ

)
10

Yn
10 (15)

where rτ and στ mean the delay scalar and delay spread,
and Yn follows the Gaussian distribution characterizing the
magnitude large-scale fading in dB. Meanwhile, the power of
the nth NLoS path can be calculated by

PNLoS
qp,n (t) = exp

(
−τNLoS

qp,n (t)
1− rτ
rτστ

)
10

Yn
10 . (16)

Therefore, the ratio of the power of LoS path to the total power
of all NLoS paths, namely the Ricean factor, can be calculated
as

K(t) =
PLoS
qp (t)

N(t)∑
n=1

PNLoS
qp,n (t)

. (17)

4) Angle parameters: In this paper, we jointly consider the
azimuth and elevation angles and model them by the von Mises
Fisher (VMF) distribution [12],

p(α, β) =
eκ(cosβ cos β̄ cos(α−ᾱ)+sinβsinβ̄)

(κ−1/2)(2π)
3/2

I1/2(κ)
(18)

where ᾱ and β̄ are the mean azimuth and elevation angles,
I1/2(·) denotes the zero-order modified Bessel function, and
κ controls the concentration of the distribution. In a scattering
environment, as κ→∞ the scattering becomes a point source
and when κ = 0 the isotropic scattering occurs.

Then, angle parameters EAoA and AAoA of the mth ray
within nth path can be calculated by adding the angle offset
∆α and ∆β as

[βrx,n,m(t), αrx,n,m(t)] = [βrx,n(t), αrx,n(t)]+[∆β,∆α] (19)

where ∆α and ∆β also obey the VMF distribution. Angle
parameters EAoD and AAoD of the mth ray of nth path can
be calculated by

αtx,n,m(t) =

arctan(
Ly

Sn,m
(t)−Ly

tx(t)√
(Lx

Sn,m
(t)−Lx

tx(t))2+(Ly
Sn,m

(t)−Ly
tx(t))2

) (20)

and

βtx,n,m(t) =

arctan(
Lz

Sn,m
(t)−Lz

tx(t)√
(Lx

Sn,m
(t)−Lx

tx(t))2+(Ly
Sn,m

(t)−Ly
tx(t))2

) (21)

where the location vector of each scatter within nth cluster
can be expressed as LSn,m

(t) = Rnsrx,n,m(t).

III. STATISTICAL PROPERTIES OF THE PROPOSED GSCM

1) ACF: The time-variant transfer function of the channel
is defined as the Fourier transform of the time-variant CIR
hqp(t, τ) with respect to the propagation delay can be defined
as

Hqp(r, f, t) =

∫ ∞
−∞

hqp(t, τ)e−j2πfτdτ (22)

where r = {∆rtx,∆rrx} is the space lag, and ∆rtx = rtx,q2−
rtx,q1 and ∆rrx = rrx,p2

− rrx,p1
denote the spacing between

antenna elements at the UAV and MT. In this paper, we assume
the UAV channel is non-stationary only on time domain. Thus,
the normalized 3D spatial-temporal correlation function can be
simplified as

ρq1p1,q2p2(∆t; t) = E

{
H∗q1p1

(t)Hq2p2
(t+ ∆t)∣∣H∗q1p1

(t)
∣∣ |Hq2p2(t+ ∆t)|

}
(23)

where (·)∗ denotes the complex conjugation operation. More-
over, the LoS and NLoS paths are usually uncorrelated, and
thus (23) can be rewritten as

ρq1p1,q2p2
(∆t; t) = ρLoS

q1p1,q2p2
(∆t; t) + ρNLoS

q1p1,q2p2,n(∆t; t).

(24)

The effect of survival probability from t to t+∆t should be
taken into account and the ACF can be obtained by substituting
(22) into (23) and imposing q1 = q2 = q and p1 = p2 = p

ρqp(∆t; t) = ρLoS
qp (∆t; t) + ρNLoS

qp,n (∆t; t) (25)

where

ρLoS
qp (∆t; t) = K(t)

K(t)+1h
LoS∗
qp (t)ej2πfτLoS

qp (t)

·hLoS
qp (t+ ∆t)e−j2πfτLoS

qp (t+∆t)
(26)



and

ρNLoS
qp,n (∆t; t) =

Pr

K(t) + 1
E

[
hNLoS∗
qp,n (t)hNLoS

qp,n (t+ ∆t)

·ej2πfτqp,n(t)e−j2πfτqp,n(t+∆t)

]
.

(27)

2) CCF: By imposing ∆t = 0 in (23), we can obtain the
CCF between two channel coefficients as

ρq1p1,q2p2
({∆rtx,∆rrx}; t) = ρLoS

q1p1,q2p2
({∆rtx,∆rrx}; t)

+ρNLoS
q1p1,q2p2,n({∆rtx,∆rrx}; t)

(28)

where

ρLoS
q1p1,q2p2

({∆rtx,∆rrx}; t) = K(t)
K(t)+1h

LoS∗
q1p1

(t)hLoS
q2p2

(t)

·ej2πfτLoS
q1p1

(t)e−j2πfτLoS
q2p2

(t)

(29)

and

ρNLoS
q1p1,q2p2,n({∆rtx,∆rrx}; t) = Pr

K(t)+1

·E[hNLoS∗
q1p1,n(t)ej2πfτq1p1,n(t)hNLoS

q2p2,n(t)e−j2πfτq2p2,n(t)].

(30)

3) DPSD: The DPSD of conventional stationary channels is
defined by the Fourier transform of the ACF, but this method is
invalid for non-stationary processes. We redefine the DPSD as
the short-time DPSD which can be calculated by the squared
amplitude of signals short-time Fourier transform (STFT) as

Sqp(f ; t) =

∣∣∣∣∫ ∞
−∞

ρqp(∆t; t)e
−j2πf∆tν(t−∆t)d∆t

∣∣∣∣2 (31)

where ν(t−∆t) is the window function, which is sufficiently
short such that the process can be considered to be stationary.

IV. SIMULATION RESULTS AND VALIDATION

In this section, we validate the theoretical statistical prop-
erties of the proposed GSCM by simulation method under the
C2-LoS scenario [19]. The time variant velocity and direction
are modeled as

∥∥vtx/rx(t)
∥∥ = vtx/rx + atx/rx · t, φtx/rx(t) =

ϕtx/rx + αtx/rx · t and θtx/rx(t) = ϑtx/rx + βtx/rx · t, where
vtx/rx and atx/rx are the initial velocity and acceleration of
the UAV and MT, ϕtx/rx and ϑtx/rx are the initial azimuth and
elevation angle of motion of the UAV and MT, respectively,
αtx/rx and βtx/rx are the corresponding angular speed. The
detailed simulation parameters are given in Table II.

By using (23)-(27), the absolute values of the theoretical
ACFs at three time instants t= 0s, 2s, and 4s are calculated and
given in Fig. 3(a). For comparison purpose, the corresponding
simulated ACFs are also shown in Fig. 3(a). Similarly, by using
(28)-(30), the theoretical CCFs and corresponding simulated
CCFs at three time instants t= 0s, 2s, and 4s are shown
in Fig. 3(b). In this figure, the y axis has been normalized
with respect to half wavelength. It can be observed that the

TABLE II
SIMULATION PARAMETERS

Parameters Values Parameters Values
λD 28/m λB 14/m
Pc 0.3 ∆t 1ms
R U(60, 80)m κ 0.5
fc 2.4GHz DLoS(t0) 200m
Dc 80m ‖vS‖ 1.4m/s
vtx 27m/s atx 0.02m/s2

vrx 8m/s arx 0.001m/s2

ϕtx 130◦ αtx 30◦/s
ϕrx 10◦ αrx 2◦/s
ϑtx 20◦ βtx 3◦/s
ϑrx 5◦ βrx 0.2◦/s
αLoS
rx (t0) 10◦ βLoS

rx (t0) 80◦

βrx,n(t0) random αrx,n(t0) random
rτ 2.5 στ 41ns
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Fig. 3. (a) Theoretical and simulated ACFs at different time instants. (b)
Theoretical and simulated CCFs at different time instants.

ACF and CCF change over time due to time-variant channel
parameters, and the good consistent between theoretical results
and simulation results in both Fig. 3(a) and Fig. 3(b) verify
the correctness of above derivations.

By using (31), the theoretical DPSDs are calculated and
given by Fig. 4(a). For comparison purpose, the theoretical



DPSDs at three time instants are extracted from Fig. 4(a) and
the corresponding simulated DPSDs are shown in Fig. 4(b).
The drift of DPSDs over time due to the movements of
the UAV, MT and clusters can be clearly observed. It also
can be seen that Fig. 4 has an asymmetric DPSD, which is
the consequence of the non-isotropic scattering environment.
Again, the simulation results align well with the theoretical
results, illustrating the correctness of the derivations.

(a)
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(b)

Fig. 4. (a) Theoretical time-variant DPSDs. (b) Theoretical and simulated
DPSDs at different time instants.

V. CONCLUSIONS

In this paper, we have proposed a 3D half-sphere GSCM for
UAV-MIMO channels incorporating 3D arbitrary trajectories
and 3D antenna arrays of both terminals. The update and
computation methods of time-variant channel parameters have
been developed and analyzed. Based on the proposed model,
the expressions of time-variant statistical properties such as
the ACF, CCF and DPSD have also been derived. The good
agreement between the theoretical derived ones and simulation
results has validated the utility of the proposed model. There-
fore, the proposed model are very helpful on the performance
evaluation and system optimization of the UAV-based wireless
communication systems.
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