
Qingqing L.University of Turku | UTU · Department of Mathematics and Statistics
Qingqing L.
Master of Science
About
39
Publications
14,831
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
307
Citations
Introduction
He receives his Bachelor's and Master's degrees from Fudan University in 2016 and 2018 separately. He is pursuing a Ph.D. degree at the University of Turku from October 2019. His interests include sensor fusion, SLAM, UWB, and object tracking.
Skills and Expertise
Additional affiliations
September 2017 - February 2018
Education
September 2016 - July 2018
September 2016 - July 2018
September 2011 - July 2016
Publications
Publications (39)
Lidar technology has evolved significantly over the last decade, with higher resolution, better accuracy, and lower cost devices available today. In addition, new scanning modalities and novel sensor technologies have emerged in recent years. Public datasets have enabled benchmarking of algorithms and have set standards for the cutting edge technol...
Ultra-wideband (UWB) technology is a mature technology that contested other wireless technologies in the advent of the IoT but did not achieve the same levels of widespread adoption. In recent years, however, with its potential as a wireless ranging and localization solution, it has regained momentum. Within the robotics field, UWB positioning syst...
Unmanned aerial vehicles (UAVs) are becoming largely ubiquitous with an increasing demand for aerial data. Accurate navigation and localization, required for precise data collection in many industrial applications, often relies on RTK GNSS. These systems, able of centimeter-level accuracy, require a setup and calibration process and are relatively...
The combination of data from multiple sensors, also known as sensor fusion or data fusion, is a key aspect in the design of autonomous robots. In particular, algorithms able to accommodate sensor fusion techniques enable increased accuracy, and are more resilient against the malfunction of individual sensors. The development of algorithms for auton...
Ultra-wideband (UWB) technology is a mature technology that contested other wireless technologies in the advent of the IoT but did not achieve the same levels of widespread adoption. In recent years, however, with its potential as a wireless ranging and localization solution, it has regained momentum. Within the robotics field, UWB positioning syst...
The design and development of swarms of micro-aerial vehicles (MAVs) has recently gained significant traction. Collaborative aerial swarms have potential applications in areas as diverse as surveillance and monitoring, inventory management, search and rescue, or in the entertainment industry. Swarm intelligence has, by definition, a distributed nat...
Micro-aerial vehicles (MAVs) are becoming ubiquitous across multiple industries and application domains. Lightweight MAVs with only an onboard flight controller and a minimal sensor suite (e.g., IMU, vision, and vertical ranging sensors) have potential as mobile and easily deployable sensing platforms. When deployed from a ground robot, a key param...
Odometry during forest operations is demanding, involving limited field of vision (FOV), back-and-forth work cycle movements, and occasional close obstacles, which create problems for state-of-the-art systems. We propose a two-phase on-board process, where tree stem registration produces a sparse point cloud (PC) which is then used for simultaneous...
Numerous studies have proven that the mirror therapy can make rehabilitation more effective on hemiparesis following a stroke. Using surface electromyography (SEMG) to predict gesture presents one of the important subjects in related research areas, including rehabilitation medicine, sports medicine, prosthetic control, and so on. However, current...
Unmanned Aerial Vehicles (UAVs) have been playing an increasingly active role in supporting search and rescue (SAR) operations in recent years. The benefits are multiple such as enhanced situational awareness, status assessment, or mapping of the operational area through aerial imagery. Most of these application scenarios require the UAVs to cover...
Current research directions in deep reinforcement learning include bridging the simulation-reality gap, improving sample efficiency of experiences in distributed multi-agent reinforcement learning, together with the development of robust methods against adversarial agents in distributed learning, among many others. In this work, we are particularly...
The integration of edge computing in next-generation mobile networks is bringing low-latency and high-bandwidth ubiquitous connectivity to a myriad of cyber-physical systems. This will further boost the increasing intelligence that is being embedded at the edge in various types of autonomous systems, where collaborative machine learning has the pot...
Effective collaboration in multi-robot systems requires accurate and robust estimation of relative localization: from cooperative manipulation to collaborative sensing, and including cooperative exploration or cooperative transportation. This paper introduces a novel approach to collaborative localization for dense scene reconstruction in heterogen...
As autonomous robots become increasingly ubiquitous, more attention is being paid to the security of robotic operation. Autonomous robots can be seen as cyber-physical systems that transverse the virtual realm and operate in the human dimension. As a consequence, securing the operation of autonomous robots goes beyond securing data, from sensor inp...
The integration of edge computing in next-generation mobile networks is bringing low-latency and high-bandwidth ubiquitous connectivity to a myriad of cyber-physical systems. This will further boost the increasing intelligence that is being embedded at the edge in various types of autonomous systems, where collaborative machine learning has the pot...
Current research directions in deep reinforcement learning include bridging the simulation-reality gap, improving sample efficiency of experiences in distributed multi-agent reinforcement learning, together with the development of robust methods against adversarial agents in distributed learning, among many others. In this work, we are particularly...
This conceptual paper discusses how different aspects involving the autonomous operation of robots and vehicles will change when they have access to next-generation mobile networks. 5G and beyond connectivity is bringing together a myriad of technologies and industries under its umbrella. High-bandwidth, low-latency edge computing services through...
Autonomous small robots are getting a lot of attention for use in industrial and domestic purposes. These are equipped with few to numerous amounts of sensors to help understand the operating environment, take appropriate next-step decisions, prioritize actions and operate with little to no human intervention. Light detection and ranging (LIDAR) se...
Autonomous harvesting and transportation is a long-term goal of the forest industry. One of the main challenges is the accurate localization of both vehicles and trees in a forest. Forests are unstructured environments where it is difficult to find a group of significant landmarks for current fast feature-based place recognition algorithms. This pa...
Autonomous harvesting and transportation is a long-term goal of the forest industry. One of the main challenges is the accurate localization of both vehicles and trees in a forest. Forests are unstructured environments where it is difficult to find a group of significant landmarks for current fast feature-based place recognition algorithms. This pa...
More widespread adoption requires swarms of robots to be more flexible for real-world applications. Multiple challenges remain in complex scenarios where a large amount of data needs to be processed in real-time and high degrees of situational awareness are required. The options in this direction are limited in existing robotic swarms, mostly homog...
This conceptual paper discusses how different aspects involving the autonomous operation of robots and vehicles will change when they have access to next-generation mobile networks. 5G and beyond connectivity is bringing together a myriad of technologies and industries under its umbrella. High-bandwidth, low-latency edge computing services through...
The combination of data from multiple sensors, also known as sensor fusion or data fusion, is a key aspect in the design of autonomous robots. In particular, algorithms able to accommodate sensor fusion techniques enable increased accuracy, and are more resilient against the malfunction of individual sensors. The development of algorithms for auton...
The integration of edge computing in next-generation mobile networks is bringing low-latency and high-bandwidth ubiquitous connectivity to a myriad of cyber-physical systems. This will further boost the increasing intelligence that is being embedded at the edge in various types of autonomous systems, where collaborative machine learning has the pot...
Fleets of autonomous mobile robots are becoming ubiquitous in industrial environments such as logistic warehouses. This ubiquity has led in the Internet of Things field towards more distributed network architectures, which have crystallized under the rising edge and fog computing paradigms. In this paper, we propose the combination of an edge compu...
Fleets of autonomous mobile robots are becoming ubiquitous in industrial environments such as logistic warehouses. This ubiquity has led in the Internet of Things field towards more distributed net-work architectures, which have crystallized under the rising edge and fog computing paradigms. In this paper, we propose the combi-nation of an edge com...
The combination of data from multiple sensors, also known as sensor fusion or data fusion, is a key aspect in the design of autonomous robots. In particular, algorithms able to accommodate sensor fusion techniques enable increased accuracy, and are more resilient against the malfunction of individual sensors. The development of algorithms for auton...
A recent trend in the IoT is to shift from traditional cloud-centric applications towards more distributed approaches embracing the fog and edge computing paradigms. In autonomous robots and vehicles, much research has been put into the potential of offloading computationally intensive tasks to cloud computing. Visual odometry is a common example,...
Offloading computationally intensive tasks such as lidar or visual odometry from mobile robots has multiple benefits. Resource constrained robots can make use of their network capabilities to reduce the data processing load and be able to perform a larger number tasks in a more efficient manner. However, previous works have mostly focused on cloud...
The need of data compression at smart Edge/Fog-based gateways is undeniable as data compression can significantly reduce the amount of data that has to be transmitted over a network. This, in turn, has a direct impact on reducing transmission latency and increasing network bandwidth. In time-critical and data sensitive IoT applications such as heal...
The development of autonomous vehicles has seen considerable advances over the past decade. However, specific challenges remain in the area of autonomous waterborne navigation. Two key aspects in autonomous surface vehicles are sensor calibration and segmentation of water surface. Cameras and other sensors in a car or drone can be installed accurat...
The agricultural and farming industries have been widely influenced by the disruption of the Internet of Things. The impact of the IoT is more limited in countries with less penetration of mobile internet such as sub-Saharan countries, where agriculture commonly accounts for 10 to 50% of their GPD. The boom of low-power wide-area networks (LPWAN) i...
The cooperation of multiple robots towards a common goal requires a certain spatial distribution, or formation configuration, of the agents in order to succeed. Centralized controllers that have information about the absolute or relative positions of all agents, or distributed approaches using communication to share system-wide information between...
Three-dimensional representations and maps are the key behind self-driving vehicles and many types of advanced autonomous robots. Localization and mapping algorithms can achieve much higher levels of accuracy with dense 3D point clouds. However, the cost of a multiple-channel three-dimensional lidar with a 360°field of view is at least ten times th...
Electromyography is a science that studies or detects bioelectrical activity of muscles to analyze skills and morphological changes of the neuromuscular system and contributes to studies on the neuromuscular system. Surface electromyography (SEMG) signal is a bioelectrical signal emitted when nervous and muscular activities are recorded from the su...
Projects
Projects (2)
Our research focuses in localization and mapping in dense urban environments, mapping of unstructured environments, computational offloading techniques, and hardware accelerators for ROS.
https://tiers.utu.fi/research/topics/autonomous
Collaborative Heterogeneous and Reconfigurable Multi-Robot Systems
Our main interests are in the areas of decentralized control, collaborative and heterogeneous multi-robot systems, and blockchain for distributed robotic systems.
https://tiers.utu.fi/research/topics/multirobot