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Abstract 
 
We propose a new moving target detection method for 

stationary cameras. In this method, local temporal 
variance is used as a measure for characterizing object 
motion, along with a simple background modeling 
technique to remove an artifact resulting from using 
temporal variance. The algorithm is efficient both in 
computation time and required memory space. 
Performance evaluation using the PETS 2001 dataset 
shows that our approach gives a high detection rate while 
keeping a low false positive rate. Our method is also 
shown to outperform the kernel density estimation-based 
background subtraction method under temporary image 
degradation and rapidly changing illumination. 

 
 

1. Introduction 
Moving target detection and localization1 is one of the 

most fundamental tasks in visual surveillance. Assuming 
that the video is taken from a stationary camera, moving 
target detection algorithms are mostly based on either 
some kind of image differencing or background modeling. 

A simple moving target detection can be achieved by 
subtracting and thresholding two successive frames from 
a sequence. However, frame differencing alone is not 
robust enough for most applications. Jain and Nagel [1] 
used an accumulation of the thresholded difference 
images with respect to a reference frame. A Moving 
object detection method by Paragios and Tziritas [2] used 
the consecutive image difference in a Markov Random 
Field formulation. Rosin [3] compared several different 
criteria for choosing the threshold for change detection. A 
comprehensive survey on general change detection in 
images is given by Radke et al. [4]. 

Background modeling methods construct a model of 
the stationary background and then each pixel of a video 

                                                           
* This work was supported in part by the Advanced Sensors Consortium 
sponsored by the U.S. Army Research Laboratory under the 
Collaborative Technology Alliance Program, Cooperative Agreement 
DAAD19-01-2-0008. 
1 In this paper, moving target detection refers to both detection and 
localization. 

frame is classified as a part of a moving object, if the 
pixel is not likely to be from the background. Stuaffer and 
Grimson [5] modeled each pixel value as a mixture of K 
Gaussians and used an approximate on-line algorithm to 
update the model. In [6], Elgammal et al. used kernel 
density estimation to model each pixel of the background 
and applied a threshold on the probability to obtain the 
foreground. False detection was suppressed by 
considering the local spatial information in the model. To 
achieve further robustness, results from two separate 
models, a short-term model with selective update and a 
long-term model with blind update are combined to 
produce the final result. 

Background subtraction methods typically require 
some training period to construct the background model 
and are generally not robust to rapid changes in the 
background. We suggest a novel approach for moving 
object detection using the local temporal variance as the 
main criteria. In addition, a simple background model is 
used to enhance the detection. The algorithm not only 
requires minimal computation and memory but also 
quickly adapts to a changing background, eliminating the 
need for the training period. Our method is also robust to 
image degradation that is previously unobserved, and thus 
unmodeled. 

To the best of our knowledge, temporal variance has 
not been used directly as the measure for target detection. 
In [7], the local temporal mean of difference images and 
adaptive background modeling was combined. The 
Dynamic Retina [8] used the local temporal mean as an 
intensity normalization factor to measure the intensity 
offset caused by camera jitter as well as object motion. 
Temporal variance of the spatial average of consecutive 
frame difference was used in [9] to determine when to 
update the threshold for background subtraction. 

The following section describes the temporal variance 
measure in detail. Next, we show how a simple 
background model is utilized to remove the artifact 
coming from the use of a local window. Finally, we 
describe our performance metric based on the bounding 
boxes and centroids of the objects, followed by the 
evaluation results. 



 

 

2. The temporal variance measure 
Since an object in a video generally occupies a small 

spatial area and almost always moves with a limited speed, 
the changes in the pixel values caused by the moving 
object are localized in the spatio-temporal domain. It is 
the pixel-wise temporal locality that we wish to exploit. 
Although consecutive two-frame differencing is highly 
adaptive to changes in the scene, it is also very sensitive 
to noise. Therefore, we use information from multiple 
frames for robustness. One natural way to measure the 
amount of change in some time interval is the variance. 
Further, we apply an exponentially decaying weight 
(window) to the pixel values to save computation and 
memory. This is easily computed by the recursive filter 
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where x(t) is the value of the pixel at time (frame) t, α is 
the decay rate, v(t) is the variance, and t=1,2,… In order 
to avoid floating point operations, (1) can be rewritten as 
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where )1(1 α−=N  is a measure of the size of the 
exponential window. The initial value m(1) and m2(1) are 
respectively set as x(1) and {x(1)}2. Moving target 
detection can be achieved by thresholding this variance. 
Note that the variance measure is reduced to the 
consecutive frame differencing by using a uniform 
window of length 2 
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This approach uses the variance directly as the 
measure whereas background subtraction methods model 
the background with the variance information (or 
probability distribution in general) and use the pixel 
values as the measure. This strategy is similar in spirit to 
the Resonant Retina [10] where the variance arising from 
camera jitter is actively used to collect useful information. 
The increase in variance of a pixel is caused by an object 
with a different intensity entering the pixel. Furthermore, 
since an object usually has texture or is non-rigid, as the 

object moves through, the pixel tends to have even larger 
variance. The advantage of using an exponential window, 
apart from its simplicity is that it is sensitive to the initial 
entry of the object and suppresses noise to some degree. 
Large coherent change in the signal is quickly amplified, 
while temporary noise is smoothed out. Assuming a 
simplified case of perfectly still background and a moving 
object of uniform intensity i.e., a square pulse temporal 
signal, the variance is expressed as 
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where the pulse starts right after time 0 and ends at time T, 
A is the intensity difference between the background and 
the object, and α is the window decay rate. The maximum 
value of v(t) in the interval 0 < t ≤ T is 
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meaning the peak in v(t) is suppressed if the pulse 
duration T is short. Note that the critical point t = −log 2 / 
log α coincides with the half-life of the exponential 
window. As an example, Figure 1(a) illustrates two 
different pulse durations and the square-root of the 
variance. The short pulse at t = 10 results in a smaller 
peak variance than the case with the longer duration 
starting from t = 60. Figure 1(b) shows an example taken 
from a single pixel of a video with a person walking 
through it. Unfortunately, because the window has a long 
“tail”, the variance decreases too slowly over time. This 
results in the detection of the moving object with a long 
trail behind its trajectory (Figure 2(a)). Note that there is a 
tradeoff between the window size N and the robustness of 
detection: a small N will shorten the trail but cannot 
suppress the noise very well. 

 
3. Removing the trail artifact 

To eliminate the trail effect, a simple background 
subtraction is performed combining the result with the 
variance. The background is simply modeled by mean 
and variance, which are also obtained from recursive 
filtering. 
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m2bg(t) is the background mean and vbg(t) is the 
background variance. The window size Nbg should be 
large compared to N so that the background model covers 
a longer period and is robust to noise. The background 
mean and variance are updated only if the pixel is not part 
of the foreground. In order to avoid including any part of 
the foreground to the background model, an enlarged 
foreground region is obtained by thresholding the 
temporal variance from (2) with a small value. 

The background model is used to derive a confidence 
measure of the detected foreground. Assuming a 
Gaussian distribution for each background pixel, one 
measure of a given pixel being a foreground can be 
obtained by the error function 
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where )()( tmtxd bg−=  and )(tvbg=σ . The error 
function is close to linear near zero. However, we need a 
function that is very small near the background intensity 
so that it strongly suppresses false detection. Experience 
shows that the following sigmoidal function is adequate 
for our purpose. 
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r is a scale factor that determines the range of the function 
having the transition from 0 to 1. Finally, the square-root 
of the variance2 is multiplied by the confidence value and 
thresholded to obtain the detection mask. The threshold is 
defined as some factor of the average background 

                                                           
2 From here on, “variance” refers to the square-root of the variance 
(standard deviation) 
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Figure 1: One-dimensional example of the 
variance measure 
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Figure 2: Results of combining variance and 
background subtraction 



 

 

variance over all the pixels. Figure 2(a),(b), and (c) shows 
the variance, the confidence values, and the final 
detection mask, respectively. 

By combining the variance measure and background 
subtraction, the algorithm retains the robustness of the 
variance measure while effectively removing false 
detection in the trail. If background subtraction happens 
to give a false positive, the variance measure is robust 
enough to suppress the error. False negatives from 
background subtraction are less critical since they tend to 
occur sparsely. Even when background subtraction fails 
overall, the result would at least be similar to using the 
variance alone. 

 
4. Performance evaluation 
4.1. Implementation 

The temporal window size for our variance-based 
method was chosen as N = 4 and Nbg = 8, the range for the 
confidence function was fixed at r = 9. The sigmoidal 
function in (8) is discretized into a lookup table for faster 
computation. The algorithm implemented in Matlab can 
process 1.5 to 3 frames per second on a 1.7 GHz Pentium 
4 processor, depending on the frame size. Another 
implementation of a simpler version of the algorithm 
written in C++ achieves real-time rate of 30 frames per 
second. 

At a higher level, the location of the moving object is 
determined by finding the bounding box of the object and 
choosing the centroid of the detection mask inside the box 
as the center of the object. Instead of looking for 
connected components, which is computationally 
expensive, we use 1-dimensional projections of the 
detection image mask to find the bounding boxes. First 
the mask is projected on the vertical vector i.e., count the 
number of pixels in each horizontal scan line, and are 
segmented into chunks that form horizontal strips in the 
2-dimensional mask. Each strip is projected on the 
horizontal vector to get the left and right sides of the box. 
A final projection to the vertical vector gives a tight top 
and bottom bound. The boxes that are close together are 
merged and boxes with sparse pixels are removed. 
Although there exist configurations where this algorithm 
fails, most common situations are handled correctly. 

 
4.2. Performance metric 

Three types of performance metrics were used for 
sequences that have bounding boxes as ground truth. 
“Detection rate” is defined as the fraction of the ground 
truth boxes that are successfully detected by the algorithm. 
By successful detection we mean the centroid of the 
detected object is inside the ground truth box. “False 
positive rate” is the total number of detection centroids 
that does not land on any of the ground truth boxes, 

divided by the number of frames. Lastly, “Multiple 
detection” refers to the average number of detection 
inside the ground truth box that is successfully detected. 
This indicates the amount of “broken up” detection of an 
object. The ground truth bounding boxes were not quite 
correct – occasionally part of the object protruded out a 
few pixels from the box. In our experiments, the ground 
truth boxes were enlarged by 5 pixels in all directions to 
correct this error.  

 
4.3. The dataset 

The PETS 2001 datasets were used to evaluate the 
performance since the ground truth information for some 
of the sequences is publicly available. However, the 
ground truth is in the form of bounding boxes for the 
objects. To accurately evaluate the performance of the 
detection algorithm, the sequence is cut and cropped so 
that only one moving object exists in each sequence, or 
two objects do not intersect each other. The reason for 
this is that when objects merge and split, the detected 
centroid does not always fall inside a ground truth 
bounding box. This error is caused by the bounding box 
algorithm, not from the main detection algorithm. Three 
sequences, 1, 2, and 3, respectively containing a walking 
person, a moving car, and another person were selected 
for testing (Figure 4). The characteristics of each 
sequence are summarized in Table 1. Units are in pixels. 
Object size is the average size of the bounding box over 
all frames. Travel distance refers to the distance of the 
box centers between starting and ending frames. All the 
images were converted to 256-level grayscale. 

 
5. Results 
5.1. The effect of object speed 

For the variance measure, the window size should be 
adjusted according to the speed of the object. A slow 
object requires a long window; otherwise, the interior of 
the object becomes hollow with small variance, especially 
when the object has little texture e.g., a solid colored 
object (see the vehicle in Figure 2(a)) or when an infrared 
sequence is used. Conversely, a shorter window is 
desirable for a fast object so that the length of the trail is 
minimized. For this experiment, the threshold factor was 
fixed at 5. 

Various object speeds were simulated by skipping or 

Table 1: Characteristics of the test sequences 

Seq. Num. of
 frames Frame size Object size Travel dist-

ance (x,y) 
1 410 320×490 14.8×41.1 (470, 61)
2 139 392×322 71.7×50.6 (355, 53)
3 341 490×306 18.1×53.2 (413, 94)



 

 

interpolating the original frames. To speed up the object, 
larger frame steps were taken. Conversely to slow down 
the object, sub-frames were created by linear interpolation 
between consecutive frames, in which case the frame step 
was defined as a fraction. Figure 3 shows the detection 
performance with respect to the frame step. Faster object 
speed increased the false detection rate but did not 
degrade the detection rate. This is a consequence of using 
background subtraction: Even if the detection step based 
on variance had a long trail, background subtraction 
suppressed it, avoiding the bias that would have occurred 
towards the tail. At slower speeds, the detection rate 

slightly decreased and multiple detection increased. This 
is because the window size becomes relatively shorter 
compared to the object speed, and the detection is broken 
up into front and rear parts. This effect was amplified for 
larger objects (sequences 2 and 3). Multiple detection is 
considered relatively less critical in moving target 
detection applications and the current fixed window size 
appears to be sufficient. However, for some situation 
where the object speed is expected to be excessively fast 
or slow, the window size should be adjusted in advance 
for better performance. 
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Figure 3: The effect of object speed 
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Figure 4: Sample frames from the test 
sequences and the detection results 



 

 

5.2. Comparison with background subtraction 
A background subtraction method using kernel density 

estimation (KDE) [6] was also implemented for 
comparison. For the training phase, a section of frames 
was used which contains only the background. The 
number of training frames used was set to be equal to the 
number of samples. Shadow detection was not 
implemented and the same bounding box algorithm was 
used. 

The identical test sequences were given as input for 
both our variance-based and the background subtraction 
algorithm. For KDE, 40 samples3 are used and only the 
“short term model” is used. For the variance-based 
algorithm, 5 consecutive frames consisting of only the 
background were added in front of the test sequence. The 
background-only frames were not required for our 
algorithm to work, but was included to remove the errors 
caused by inaccurate estimates of the parameters during 
the initial frames. This allows a fair evaluation of the 
long-term performance. The results are shown in Table 2. 
A set of different thresholds was used for each of the 
algorithms. For most thresholds, both methods achieved 
perfect detection. Since it is difficult to compare the two 
results objectively, the threshold that produced the lowest 
false positive was selected for each algorithm. It was 
observed that our algorithm tended to have lower false 
positives under similar multiple detections. 

In order to compare the performance under a 
temporary image quality degradation, 20 frames from 
sequence 1 were selected with the last frame 
recompressed using JPEG compression quality rate of 
50%. (The original frame was in JPEG format with a 
quite low compression ratio at 3.8%.) The resulting frame 
has a root mean squared error of 2.8966 and relative root 

                                                           
3 More samples did not significantly increase the performance for the 
test sequences used. 
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Figure 5: ROC curve for noisy frame 

 

0 100 200 300 400 500 600
80

100

120

frame

m
ea

n 
in

te
ns

ity

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 6: Frames from sequence with 
illumination changes 

Table 2: Performance measurements for the 
lowest possible false positive rate obtained 

Detection rate False Positive rate Multiple detectionS
e
q Proposal KDE Proposal KDE Proposal KDE 

1 1.0000 1.0000 0.0366 0.0512 1.1098 1.2415

2 1.0000 1.0000 0.0000 0.0863 1.0072 1.0000

3 1.0000 1.0000 0.0000 0.0528 1.0323 1.0469

 



 

 

mean squared error (with respect to the spatial variance) 
of 0.0880. Pixel-wise ground truth mask was manually 
generated for the last frame. The two algorithms were 
tested with varying thresholds. The ROC curve for the 
detection on the last frame is shown in Figure 5. Our 
proposed algorithm consistently gave less false positive 
rate under equal true positive rate. Since background 
modeling approaches rely on the history of the pixel 
values, it is likely to give false positives for the values 
that exceed the modeled noise range. On the contrary, our 
variance measure does not rely on history and is effective 
in handling moderate spike noise as described in (5). 

Next, performance under rapidly changing 
illumination was compared. The test frames are from 
another sequence of PETS 2001 dataset for which the 
ground truth is not available. We used manual selection 
and interpolation to generate a ground truth bounding box 
data. The number of frames is 600 with frame size 
454×360. Figure 6 shows a plot of the average intensity 
for each frame and two frames with the minimum and 
maximum mean intensity. For the KDE method, in 
addition to the “short-term” model, the “long-term” 
model that covers the entire sequence was used to remove 
persistent false positives. Figure 7 plots the false positive 
rate vs. the detection rate, as defined in section 4.2. For 
our proposed method, only the threshold was varied 
whereas for KDE, various thresholds and sample sizes 
were used. The plot shows that our algorithm gives higher 
detection rates with low false positive rates. The KDE 
approach needs to keep a small number of samples to 
quickly adapt to the changing illumination but on the 
other hand requires large enough samples to be accurate. 
However, our approach does not require a large number 
of samples, therefore is more adaptive. 

 

6. Conclusion 
We have proposed a temporal variance-based 

approach for moving target detection. The variance 
measure is robust to noise and gives a low false detection 
rate. The trail artifact is greatly reduced by a simple 
background modeling method. Experiments show that a 
fixed window size can be used for a reasonable range of 
object speeds. Under normal conditions, our method 
performed as well as the KDE-based background 
subtraction approach. In addition, our approach performs 
better than KDE under temporary compression noise and 
rapidly changing illumination. The algorithm is simple 
and fast and is highly adaptive to changing conditions, 
making it suitable for a wide range of real-time 
surveillance applications. 
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Figure 7: Performance under rapidly changing 
illumination 


