Qihou Hu

Qihou Hu
Chinese Academy of Sciences | CAS · Anhui Institute of Optics and Fine Mechanics

PhD

About

123
Publications
24,016
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,042
Citations
Additional affiliations
July 2014 - May 2015
Chinese Academy of Sciences
Position
  • Research Associate
September 2009 - June 2014
University of Science and Technology of China
Position
  • PhD Student

Publications

Publications (123)
Article
Full-text available
The Tibetan Plateau (TP) plays a key role in the regional environment and global climate change; however, the lack of vertical observations of atmospheric species, such as HONO and O3, hinders a deeper understanding of the atmospheric chemistry and atmospheric oxidation capacity (AOC) on the TP. In this study, we conducted multi-axis differential o...
Article
Full-text available
Formaldehyde (HCHO) is a serious hazardous air pollutant and crucial precursor of PM 2.5 and ozone compound pollution. There has been a dearth of HCHO research in Tibet where pressing need to protect the unique ecosystem. Therefore, this study aims to investigate the spatial-temporal distribution of HCHO from 2013 to 2021 and identify its influenci...
Preprint
Full-text available
The Tibetan Plateau (TP) plays a key role in regional environment and global climate change, however, the lack of vertical observation hinders a deeper understanding of the atmospheric chemistry and atmospheric oxidation capacity (AOC) on the TP. In this study, we conducted MAX-DOAS measurements at Nam Co, central TP, to observe the vertical profil...
Article
Full-text available
Photochemical ozone (O3) formation in the atmospheric boundary layer occurs at both the surface and elevated altitudes. Therefore, the O3 formation sensitivity is needed to be evaluated at different altitudes before formulating an effective O3 pollution prevention and control strategy. Herein, we explore the vertical evolution of O3 formation sensi...
Article
Full-text available
This study analyzed the differences in ozone (O3) sensitivity in four different urban areas in China from February 2019 to January 2020 based on data on various near-surface pollutants from passive multi-axis differential optical absorption spectroscopy (MAX-DOAS) sites and nearby China National Environmental Monitoring Center (CNEMC) sites. Across...
Article
Full-text available
Due to the difference of industrialization degree and meteorological conditions, there are obvious differences in the composition of air pollution between islands and inland areas. With Zhoushan (ZS) and Nanjing (NJ) representing islands and inland cities in the Yangtze River Delta, the differences in vertical distribution of atmospheric components...
Article
Full-text available
High spatial-temporal resolution distribution of atmospheric gaseous pollutant is an important basis for tracing its emission, transport, and transformation. Typical methods for acquiring regional atmospheric gaseous pollutant distributions are satellite remote sensing and in situ observations. However, these approaches have limitations, such as sp...
Article
Full-text available
Urban air pollution has become a regional environmental problem. In order to explore whether island areas were affected by the urban development of surrounding areas, in this paper, we systematically study the vertical distribution characteristics of atmospheric components, meteorological drivers, potential pollution sources, and the population hea...
Article
Bottom-up emission inventories of atmospheric nitrogen oxides (NOx = NO + NO2) are usually limited to annual updates and have large uncertainties. The recent launch of the Geostationary Environmental Monitoring Spectrometer (GEMS) first provides hourly measurements of trace gas pollutants from space, enabling new insights into the diurnal variation...
Article
Full-text available
Limitations in the current capability of monitoring PM2.5 adversely impact air quality management and health risk assessment of PM2.5 exposure. Commonly, ground-based monitoring networks are established to measure the PM2.5 concentrations in highly populated regions and protected areas such as national parks, yet large gaps exist in spatial coverag...
Article
Full-text available
Ship-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were conducted along the marginal seas of China from 19 April to 16 May 2018 to measure the vertical profiles of aerosol, nitrogen dioxide (NO2), and nitrous acid (HONO). Along the cruise route, we found five hot spots with enhanced tropospheric NO2 vertical...
Article
Full-text available
Recently, air pollution especially fine particulate matters (PM2.5) and ozone (O3) has become a severe issue in China. In this study, we first characterized the temporal trends of PM2.5 and O3 for Beijing, Guangzhou, Shanghai, and Wuhan respectively during 2018-2020. The annual mean PM2.5 has decreased by 7.82%-33.92%, while O3 concentration showed...
Article
With increasing geopolitical conflicts and climate change, the effects of war on the atmosphere remain unclear, especially the recent large-scale war between Russia and Ukraine. Here, we assess how war affects human emission activities by observing atmospheric nitrogen dioxide (NO2) using high-resolution satellite spectroscopy. Spatial and temporal...
Article
Tropospheric ozone (O3) profiles, especially within the boundary layer, are essential for studying the vertical, temporal, spatial variations, as well as the formation sensitivity and regional transport of O3. However, it is rare to find continuous tropospheric O3 profiles with high temporal and spatial resolutions without blind areas using current...
Article
Full-text available
Formaldehyde (HCHO) and glyoxal (CHOCHO) are important oxidization intermediates of most volatile organic compounds (VOCs), but their vertical evolution in urban areas is not well understood. Vertical profiles of HCHO, CHOCHO, and nitrogen dioxide (NO2) were retrieved from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DO...
Preprint
Full-text available
Ship based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements were carried out along the marginal seas of China from 19 April to 16 May 2018, to measures the vertical profiles of aerosol, NO2 and HONO. Five hot spots of tropospheric NO2 VCDs were found in Yangtze River Delta, Taiwan straits, Guangzhou-Hong Kong-Macao Gr...
Article
Anthropogenic volatile organic compounds (VOCs) are serious pollutants in the atmosphere because of their toxicity and as precursors of secondary organic aerosols and ozone pollution. Although in-situ measurements provide accurate information on VOCs, their spatial coverage is limited and insufficient. In this study, we provide a global perspective...
Article
This study investigated the wintertime vertical distributions and source areas of aerosols, NO2, and HCHO in a coastal city of Dongying from December 2020 to March 2021, using ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and a potential source contribution function (PSCF) model, respectively. Moreover, the chemica...
Article
Atmospheric ammonia (NH3) plays an important role in the formation of fine particulate matter, leading to severe environmental degradation and human health issues. In this work, ground-based Fourier transform infrared spectrometry (FTIR) observations are used to obtain the total columns of atmospheric NH3 at Hefei, China, from December 2016 to Dece...
Article
Isoprene is important to the formation of secondary organic aerosols and can change the atmospheric oxidation capacity in the remote marine environment. However, the influencing factors of marine atmospheric isoprene are still unclear. Here, we report observed atmospheric isoprene in ambient air along three cruises path from the Arctic Ocean to the...
Article
Formaldehyde (HCHO) is a toxic and hazardous air pollutant that widely exists in atmosphere. Insufficient spatial and temporal coverage of surface HCHO measurements is limiting studies on surface HCHO-related air quality management and health risk assessment. This study develops a method to derive global ground-level HCHO concentrations from satell...
Article
Straw burning comprises more than 30% of all types of burned biomass in Asia, while the estimation of the emitted aerosols' direct radiative forcing effect suffers from large uncertainties, especially when atmospheric aging processes are considered. In this study, the light absorption properties of primary and aged straw burning aerosols in open fi...
Article
Full-text available
The characteristics of long time series of CO2 and CO surface concentrations, tropospheric and total column dry-air mole fractions (DMF) from May 2015 to December 2019 were investigated. Both CO2 and CO show different seasonality for the three datasets. The annual increasing trend of CO2 is similar for all three datasets. However, the annual decrea...
Article
The influence of regional transport on aerosol pollution has been explored in previous studies based on numerical simulation or surface observation. Nevertheless, owing to inhomogeneous vertical distribution of air pollutants, vertical observations should be conducted for a comprehensive understanding of regional transport. Here we obtained the ver...
Preprint
Full-text available
Limitations in the current capability of monitoring PM2.5 adversely impact air quality management and health risk assessment of PM2.5 exposure. Commonly, ground-based monitoring networks are established to measure the PM2.5 concentrations in highly populated regions and protected areas such as national parks, yet large gaps exist in spatial coverag...
Article
Full-text available
NO2 and O3 simulations have great uncertainties during the COVID-19 epidemic, but their biases and spatial distributions can be improved with NO2 assimilations. This study adopted two top-down NO X inversions and estimated their impacts on NO2 and O3 simulation for three periods: the normal operation period (P1), the epidemic lockdown period follow...
Article
Atmospheric oxidizing capacity (AOC) is an essential driving force of troposphere chemistry and self-cleaning, but the definition of AOC and its quantitative representation remain uncertain. Driven by national demand for air pollution control in recent years, Chinese scholars have carried out studies on theories of atmospheric chemistry and have ma...
Article
Volatile organic compounds (VOCs) are key precursors of PM2.5 and ozone. Glyoxal can be utilized as an indicator of VOC emission sources and secondary organic aerosol (SOA) formation. In this study, the high-resolution satellite observations of glyoxal were utilized to identify anthropogenic VOC sources, which can be utilized to formulate pollution...
Article
The vertical distributions of formaldehyde (HCHO) and nitrogen dioxide (NO2) and their indicative roles in ozone (O3) sensitivity are important for designing O3 mitigation strategies. Using hyperspectral remote sensing observations, tropospheric vertical profiles of HCHO, NO2, and aerosol extinction were investigated in Guangzhou, China from July t...
Article
Full-text available
In response to the COVID-19 pandemic, governments worldwide imposed lockdown measures in early 2020, resulting in notable reductions in air pollutant emissions. The changes in air quality during the pandemic have been investigated in numerous studies via satellite observations. Nevertheless, no relevant research has been gathered using Chinese sate...
Article
Traditional ground-based air sampling measurements of air quality have blind monitoring areas in the junctions between provinces, cities and urban and rural areas, and they lack the ability of vertical monitoring. Stereoscopic hyperspectral remote sensing techniques provide a promising strategy for improving our understanding of air pollution. Sate...
Article
Since NOx has decreased significantly, ozone formation sensitivity in urban areas has gradually shifted from VOC-limited to NOx-limited. Ozone is usually formed at high altitudes. However, due to a lack of vertical gradient observation data support, the evidence of high-altitude sensitivity change is still not conclusive. To confirm this issue, ozo...
Article
Full-text available
New particle formation (NPF) events are an increasingly interesting topic in air quality and climate science. In this study, the particle number size distributions, and the frequency of NPF events over Hefei were investigated from November 2018 to February 2019. The proportions of the nucleation mode, Aitken mode, and accumulation mode were 24.59%,...
Article
Satellite remote sensing is an important technique providing long-term and large-scale information of formaldehyde (HCHO), which plays a crucial role in atmospheric chemistry. Low signal-to-noise ratio and poor stability of the Environmental Trace Gases Monitoring Instrument (EMI) On board Gaofen-5 satellite, the first Chinese space-borne spectrome...
Article
Full-text available
Air pollutant transport plays an important role in local air quality, but field observations of transport fluxes, especially their vertical distributions, are very limited. We characterized the vertical structures of transport fluxes in central Luoyang, Fen-Wei Plain, China, in winter based on observations of vertical air pollutant and wind profile...
Article
Full-text available
Analyzing vertical distribution characters of air pollutants is conducive to study the mechanisms under polluted atmospheric conditions. Nitrous acid (HONO) is a kind of crucial species in photochemical cycles. Exploring the influence and sources of HONO in air pollution at different altitudes offers some insights into the research of tropospheric...
Article
Full-text available
Studying the characteristics of new particle formation (NPF) is conducive to exploring the impact of atmospheric particulate matter on the climate, environment, and human health. The particle number size distributions (5.6–560 nm) of aerosols were measured using a fast mobility particle sizer (FMPS) from 1 to 11 May 2019. The clean atmosphere was o...
Article
Full-text available
The polarization–Raman Lidar combined sun photometer is a powerful method for separating dust and urban haze backscatter, extinction, and mass concentrations. The observation was performed in Beijing during the 2019 National Day parade, the particle depolarization ratio at 532 nm and Lidar ratio at 355 nm are 0.13 ± 0.05 and 52 ± 9 sr, respectively...
Article
Full-text available
Ethane (C2H6) is an important greenhouse gas and plays a significant role in tropospheric chemistry and climate change. This study first presents and then quantifies the variability, sources, and transport of C2H6 over densely populated and highly industrialized eastern China using ground-based high-resolution Fourier transform infrared (FTIR) remo...
Article
Full-text available
To prevent the spread of the COVID-19 epidemic, the Chinese megacity Wuhan has taken emergent lockdown measures starting on January 23, 2020. This provided a natural experiment to investigate the response of air quality to such emission reductions. Here, we decoupled the influence of meteorological and non-meteorological factors on main air polluta...
Article
Full-text available
Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations were operated from 02 to 21 December 2018 in Leshan, southwest China, to measure HONO, NO2 and aerosol extinction vertical distributions, and these were the first MAX-DOAS measurement results in Sichuan Basin. During the measurement period, characteristic r...
Article
Multiaxis differential absorption spectroscopy (MAX-DOAS) is a newly developed advanced vertical profile detection method, but the vertical nitrogen dioxide (NO2) profiles measured by MAX-DOAS have not yet been fully verified. In this study, we perform MAX-DOAS and tower gradient observations to simultaneously acquire tropospheric NO2 observations...
Article
Full-text available
With the coming of the “14th Five-Year Plan”, the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 μm (PM2.5) and O3 has become a major issue of air pollution prevention and control in China. The stereoscopic monitoring of regional PM2.5 and O3 and their precursors is crucial to achieve coordinated control....
Article
Atmospheric formaldehyde (HCHO) is considered as one of significant oxidization intermediate of most volatile organic compounds (VOCs). Previous studies using HCHO/NO2 ratio for ozone formation sensitivity are based on the hypothesis that HCHO is a reliable indicator for total VOC reactivity (VOCR), while few studies focused on evaluating this hypo...
Article
Full-text available
Vertical profiles and stratospheric HNO3 and HCl columns are retrieved by ground-based high resolution Fourier transform infrared spectroscopy (FTIR) remote sensing measurements at the Hefei site in China. The time series of stratospheric HNO3 and HCl columns from January 2017 to December 2019 showed similar annual variation trends, with an annuall...
Article
Full-text available
Persistent heavy haze episodes have repeatedly shrouded North China in recent years. Besides anthropogenic emissions, natural dust also contributes to the aerosols in this region. Through continuous observation by a dual-wavelength Raman lidar, the primary aerosol types and their contributions to air pollution in North China were determined. The fo...
Article
Full-text available
Air quality is strongly influenced by both local emissions and regional transport. Atmospheric chemical transport models can distinguish between emissions and regional transport sources in air pollutant concentrations. However, quantifying model inventories is challenging due to emission changes caused by the recent strict control measures taken by...
Article
Full-text available
Information on the vertical distribution of air pollutants is essential for understanding their spatiotemporal evolution underlying urban atmospheric environment. This paper presents the SO2 profiles based on ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements from March 2018 to February 2019 in Hefei, East...
Article
Full-text available
The major air pollutant emissions have decreased, and the overall air quality has substantially improved across China in recent years as a consequence of active clean air policies for mitigating severe air pollution problems. As key precursors of formaldehyde (HCHO) and ozone (O3), the volatile organic compounds (VOCs) in China are still increasing...
Preprint
Full-text available
Ethane (C2H6) is an important greenhouse (GHG) gas and plays a significant role in tropospheric chemistry and climate change. This study first presents and quantifies the variability, source, and transport of C2H6 over densely populated and industrialized eastern China by using ground-based high-resolution Fourier transform infrared (FTIR) remote s...
Article
Full-text available
The vertical distribution profiles of NO₂ are essential for understanding the mechanisms, detecting near-surface emissions, and tracking pollutant transportation at high altitude. However, most of the published NO₂ studies are based on the surface 2-D measurements. The ground-based 3-D remote-sensing stations were recently built to measure vertical...
Article
Assessing the vertical distribution of aerosols in the atmosphere can elucidate the regional sources of accumulated pollutants at different altitudes. Although studies in Hefei have mainly focused on aerosols in the near-surface atmosphere, few studies have assessed the vertical variability in aerosol concentrations. In this study, the vertical aer...
Article
Full-text available
High-resolution solar absorption spectra, observed by ground-based Fourier Transform Infrared spectroscopy (FTIR), are used to retrieve vertical profiles and partial or total column concentrations of many trace gases. In this study, we present the tropospheric CO2 columns retrieved by mid-infrared solar spectra over Hefei, China. To reduce the infl...
Article
Full-text available
Restrictions on human activities remarkably reduced emissions of air pollutants in China during the COVID-19 lockdown periods. However, distinct responses of O3 concentrations were observed across China. In the Beijing–Tianjin–Hebei (BTH) and Yangtze River Delta (YRD) regions, O3 concentrations were enhanced by 90.21 and 71.79% from pre-lockdown to...
Article
Full-text available
Persistent wintertime heavy haze incidents caused by anthropogenic aerosols have repeatedly shrouded North China in recent years, while natural dust from the west and northwest of China also frequently affects air quality in this region. Through continuous observation by a multi-wavelength Raman lidar, here we found that wintertime aerosols in Nort...
Article
Full-text available
The Environmental Trace Gases Monitoring Instrument (EMI) is the first Chinese satellite-borne UV–Vis spectrometer aiming to measure the distribution of atmospheric trace gases on a global scale. The EMI instrument onboard the GaoFen-5 satellite was launched on 9 May 2018. In this paper, we present the tropospheric nitrogen dioxide (NO2) vertical c...
Article
Full-text available
We present an improved TROPOspheric Monitoring Instrument (TROPOMI) retrieval of formaldehyde (HCHO) over China. The new retrieval optimizes the slant column density (SCD) retrieval and air mass factor (AMF) calculation for TROPOMI observations of HCHO over China. Retrieval of HCHO differential SCDs (DSCDs) is improved using the basic optical diffe...
Article
During the outbreak of the coronavirus disease 2019 (COVID-19) in China in January and February 2020, production and living activities were drastically reduced to impede the spread of the virus, which also caused a strong reduction of the emission of primary pollutants. However, as a major species of secondary air pollutant, tropospheric ozone did...
Article
Full-text available
Water vapor vertical profiles are important in numerical weather prediction, moisture transport, and vertical flux calculation. This study presents the Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) retrieval algorithm for water vapor vertical profiles and the retrieved results are validated with corresponding independent datase...