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Abstract In this paper, we propose a uniform quantization
likelihood evaluation (UQLE) algorithm for particle filters
(PFs). This algorithm simplifies the exact likelihood evalua-
tion (ELE) algorithm, the most computationally demanding
function in PFs, by using a uniform quantization scheme to
generate approximated weights. Simulation results indicate
that PFs using UQLE can achieve comparable or better accu-
racy than PFs using ELE. The software implementation of
UQLE for the bearing-only tracking (BOT) model in fixed-
point arithmetic with 32 quantized intervals achieves 39.5×
average speedup over the software implementation of ELE.
An Application-specific Instruction-set Processor instruction
was designed to accelerate the UQLE algorithm in a hardware
implementation. The custom instruction implementation of
UQLE for the BOT model with 32 intervals achieves 23.0×
average speedup over the software implementation on a
general-purpose processor with 5 % additional gates.

Keywords Particle filters . Likelihood evaluation .

Embedded implementation . Application-specific
instruction-set processor

1 Introduction

Particle filters (PFs) [1–4] are statistical signal processing
methods that perform sequential Monte Carlo estimation
based on a particle representation of probability densities.
Since their introduction in 1993 [5, 6], PFs have gained in

popularity to solve non-linear and/or non-Gaussian applica-
tions. They have shown great promise as a powerful meth-
odology in addressing a wide range of complex applications
including visual tracking [7, 8] and navigation [9, 10]. PFs
use the concept of importance sampling to recursively com-
pute the relevant probability distributions conditioned on the
observations. In comparison with the Extended Kalman Fil-
ter (EKF) [11, 12], PFs do not rely on linearization tech-
niques and can robustly approximate the true system state
with an appropriate number of particles. In contrast, the
Extended Kalman Filter sometimes has poor performance,
lacks robustness and may introduce large biases [5].

One of the drawbacks of PFs comes from their significant
computational requirements. This feature tends to limit their
use in some embedded applications requiring real-time, high
throughput processing. There are two main reasons for the
significant computational requirements in PFs. The first reason
is that a large number of particles are often required in order to
achieve acceptable accuracy. As the number of particles in-
creases, the processing speed of the PF tends to be seriously
affected, although this problem can be mitigated through the
use of a distributed architecture [13]. The second reason is
related to the type of operations involved. In addition to non-
linear operations in the dynamic state space (DSS) model
defined by the target applications, traditional PFs, such as
Sample-Importance-Resampling (SIR) PFs, may require non-
linear operations such as division and exponentiation to calcu-
late the particle weights in the likelihood evaluation step. These
expensive and complex operations are often important bottle-
necks in embedded implementations of PFs. Simplifying such
complex operations is therefore a promising first step in order
to improve the PF processing speed and energy efficiency.

PFs are commonly implemented in General-Purpose Pro-
cessors (GPP) or Digital Signal Processors (DSP). Bolic used
a TI TMS320C54x DSP to implement SIR PFs as a reference
[14]. In that DSP, the exponential operation is approximated
by a Taylor series. Implementation in GPPs and DSPs is
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advantageous from a programmability point of view, but may
not satisfy the performance requirements of applications that
demand very high throughput. A hardware implementation is
an appealing solution to this problem. This can include custom
processors in Field Programmable Gate Arrays (FPGAs) or
Application-Specific Integrated Circuits (ASICs). Several
works have reported PF designs based on this approach
[14–18]. These studies focused on doing the parallelization
on the resampling step, which is a sequential portion of the
algorithm. Hendeby et al. implemented SIR PFs in a Graphics
Processing Unit (GPU) [19]. The speed increase was signifi-
cant due to the nature of parallelization in GPU and the
interpolation method for the exponential operation, but this
solution is not suitable in general for embedded applications.

A hardware implementation can provide higher perfor-
mance, but at the expense of making the implementation less
flexible. A modification to an application’s specifications
may require significant redesign effort. Consequently, the
other class of hardware implementation considered in this
paper is the Application-Specific Instruction-set Processor
(ASIP) [20]. ASIPs aim to strike a balance between GPPs
and custom processors by combining a programmable solu-
tion with customized hardware units. With this approach,
once the bottlenecks of the PFs are found, local acceleration
can be applied with customized hardware units to improve
the application’s overall performance.

In this paper, we target SIR PFs, where resampling process-
ing is a necessary step. We analyze their characteristics and
profile them to identify possible bottlenecks for three applica-
tions. We specifically consider the likelihood evaluation. Pre-
vious work only focused on the exponential operation of the
likelihood evaluation step. We broaden the scope of simplifi-
cation. We also present a customized hardware unit for the
proposed simplified algorithm, which can be locally accelerat-
ed with an ASIP. The main contributions of the paper are:

1) A characterization of PFs, which, unlike previous work
[9, 14], focuses on distinguishing the application-
specific blocks and the algorithm-defined blocks.

2) A demonstration that the likelihood evaluation is a sig-
nificant and sometimes dominant step affecting PF
throughput, and that it is worth optimizing.

3) A novel efficient uniform quantization likelihood eval-
uation (UQLE) algorithm to replace the exact likelihood
evaluation (ELE) algorithm.

4) An evaluation of the impact of the approximated weights
generated by UQLE under various options on the accu-
racy of the target applications.

5) An efficient customized instruction for UQLE that
achieves significant local acceleration in an ASIP.

The rest of the paper is organized as follows. In Section 2,
we describe the framework of PFs, analyze the computation-
al properties of SIR PFs and justify the need for UQLE. The

proposed UQLE is presented in detail in Section 3. In
Section 4, we evaluate the accuracy of the proposed UQLE
in comparison with that of ELE and profile both approaches
in a general-purpose processor. In Section 5, we evaluate the
throughput of UQLE in its software and customized ASIP
versions. Section 6 concludes the paper.

2 Computational Characteristics of PFs

In this section, we briefly introduce PFs and analyze the
computational complexity of SIR PFs to justify the need
for the simplification of the likelihood evaluation.

2.1 Description of DSS Models and Examples

PFs are applied to problems that can be written in the form of
DSS models. Consider the general form of a DSS model
expressed by Eqs. (1) and (2):

xt ¼ f t−1 xt−1; ut−1ð Þ; ð1Þ

zt ¼ ht xt;wtð Þ; ð2Þ

where t ∈N is the time index, xt is the target state vector, and
zt is the observation vector. ft−1 and ht are possibly
nonlinear prediction functions of the state xt−1 and observa-
tion functions of the state xt, respectively. ut−1 is the process
noise sequence and wt is the observation noise sequence.
Equation (1) describes how the state vector xt evolves with
time. Equation (2) develops the noisy observation vector zt
as a function of the state vector xt. In the PF framework, the
aim is to learn about the unobserved state based on a set of
noisy observations as time evolves.

In this paper, we apply DSS models to three concrete
examples: Linear Gaussian (LG), Uni-variate Non-
stationary Growth (UNG) and Bearing-only Tracking
(BOT) models.

2.1.1 Example 1: LG Model

Consider the following LG model [1]:

xt ¼ xt−1 þ ut; ð3Þ

zt ¼ xt þ wt; ð4Þ

where uteN 0; σ2
u

� �
and wteN 0; σ2

w

� �
, and where σ2

u and σ2
w

are considered fixed and known with variance σ2
u ¼ σ2

w ¼ 1.
The initial state distribution is x0eN 5; 1ð Þ. This is the basic
model for estimating the problems.
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2.1.2 Example 2: UNG Model

We consider here a classical UNG model which has been
used extensively in the literature for benchmarking numeri-
cal filtering techniques [1, 2, 5]. The state space equations
are as follows:

xt ¼ xt−1
2

þ 25
xt−1

1þ x2t−1
þ 8cos 1:2tð Þ þ ut; ð5Þ

zt ¼ x2t
20

þ wt; ð6Þ

where uteN 0; σ2
u

� �
and wteN 0;σ2

w

� �
, with σ2

u ¼ 10 and
σ2
w ¼ 1. The initial state distribution is x0eN 0:1; 5ð Þ.
We choose this model because it is highly nonlinear and

its observation Eq. (6) introduces an interesting bimodal
problem to the estimation. This makes the estimation prob-
lem more difficult to solve by traditional methods such as the
Kalman filter.

2.1.3 Example 3: BOT Model

This example is placed in the context of radar-based target
tracking. The BOT model concerns an object moving in the
x-y plane (2-D space). The observations taken by the sensor
to track the object are in terms of the bearing or angle with
respect to the sensor [5, 14].

Let the sensor be stationary and located at the origin in the
x-y plane. The object moves according to the following state
space model:

X t ¼
1 1
0 1

0 0
0 0

0 0
0 0

1 1
0 1

2
64

3
75X t−1 þ

0:5 0
1 0
0
0

0:5
1

2
64

3
75 uxt uyt
� �T ð7Þ

zt ¼ tan−1
yt
xt

� �
þ wt ð8Þ

where Xt ¼ xt vxt yt vyt
� �T

, xt and yt denote the
coordinate position of the target and vxt and vyt denote the
velocities in the x and y directions, respectively. The vector
uxt uyt

� �T
is composed of white Gaussian noise variable

with standard derivation σu=0.001. Parameter wteN 0;σ2
w

� �
is the observation noise with σw=0.005. The set of initial
states is set to X0=[−0.05,0.001,0.7,−0.055]T and σ1=
0.5, σ2=0.005, σ3=0.3 and σ4=0.01, which are the standard
derivations of the noise for the initial state.

From Eq. (8), we see that no range information is avail-
able to the sensor. Thus, only the angle of the object move-
ment but not its distance from the point of sensor can be
measured with a series of observations. The observation
consists of a modal ridge along the line yt = tan(zt) xt. Hence,

the BOT model is the multimodal case. The estimate of the
object trajectory is difficult to solve because it only depends
on this multimodal measurement and the prior information,
which is the position and the velocity of the object at the
initial stage.

2.2 Overview of the Particle Filtering Framework

PFs base their operations on approximating the a posteriori
probability density function (PDF) via a set of N weighted

samples xi0:t;ω
i
t

� 	N

i¼1
called particles. These particles are

drawn independently from an importance density q(xt|xt−1,
z1:t). Accordingly, if the observation z1:t={zj, j=1,…, t} is
available and the weights are normalized such that ∑ i ω t

i=1,
the a posteriori PDF at time t can be approximated as:

p x0:t z1:tjð Þ≈
XN

i¼1
ω i

tδ x0:t−xi0:t
� � ð9Þ

where x0:t={xj,j=0,…, t} is the set of all states up to time t.
After knowing the a posteriori PDF p(x0:t|z1:t), the state

estimate xt can be computed using either the minimummean-
square error (MMSE), the maximum a posteriori probability
(MAP) or other methods.

In the implementation of PFs, the a posteriori PDF
p(x0:t|z1:t) may be obtained recursively through the follow-
ing three basic steps:

1) Prediction generation: the particle xit is drawn by the
importance density q(xt|xt−1, z1:t). The choice of the
importance density plays a fundamental role in the de-
sign of particle filters because generating the particles
and the particle weights is related to this important
density [3]. A standard scheme is to choose the state
transition a priori probability p(xt|xt−1) defined by (1) as
the importance density. The advantage of this scheme is
that it is efficient to implement.

2) Weight calculation: when the likelihood distribution
p(zt|xt) is obtained upon the arrival of the observation
zt, the particle weights can be computed via the weight
update equation as follows:

ωi
t ¼ ωi

t−1
p zt xit



� �
p xit x

i
t−1



� �
q xit x

i
t−1



 ; z1:t
� � : ð10Þ

Normalization is carried out as follows:

ωn
i
t ¼

ωi
tXN

i¼1
ωi
t

: ð11Þ

3) Resampling processing: new particlesex it are drawn from
the set of particles xit based on the particle weights ω i

t

through a resampling scheme. The resampled set of new

particles and their weights is denoted by ex it; eω i
t

� 	
.
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There are many variations of PFs [1, 2]. In this paper,
the analysis of PFs is related to SIR PFs, whose detailed
pseudo-code is shown in Fig. 1. After initialization, the
algorithm iterates through five steps: prediction genera-
tion, weight calculation, weight normalization, resampling,
and estimate calculation. The weight normalization step
can be merged with the resampling and estimation calcu-
lation steps. Such merging can reduce the execution time
of PFs.

2.3 Computational complexity of SIR PFs

2.3.1 Functional view of SIR PFs

The functional blocks of SIR PFs with merged steps
(weight normalization resampling, and estimation) are
shown in Fig. 2. For each observed input, the SIR PFs
sequentially perform three steps: prediction generation,
weight calculation and resampling processing. Prediction
generation is decomposed into two blocks, and weight
calculation is decomposed into three blocks. Resampling
processing is made up of a single block. The three main
steps, decomposed into a total of six blocks, are in the
critical path. Thus, all these blocks are potential optimi-
zation targets when a high performance implementation is
required. The complexity of SIR PFs can be partitioned
into the six considered blocks: Transition Processing
(TP), Random Number Addition (RNA), Particle Measure-
ment Processing (PMP), Distance Calculation (DC), Likeli-
hood Evaluation (LE) and Resampling Algorithm (RA). The
TP and PMP blocks are application-specific blocks and their
respective complexity depends on the application. The other
blocks are algorithm-defined. Their complexity is closely
related to the selected algorithms. For example, the normal
or exponential likelihood evaluation can be used in the LE
block. The choice of the algorithms depends on the type of
operations that must be used to obtain a suitable accuracy, a
suitable complexity or an appropriate trade-off between
them.

There are two additional significant blocks in Fig. 1.
One calculates the estimates for the filter output. The
other generates random numbers used for updating the

states in the prediction generation step. Random number
generation can consume a substantial portion of the over-
all processing time. But due to the fact that it is not in the
critical path, a random number generator implemented as
a co-processor can be employed to operate in parallel and
not affect the speed of PFs. Similarly, the output block is
not in the critical loop.

2.3.2 Computational complexity

The computational complexity of SIR PFs depends on the
complexity and dimensionality of the underlying DSS mod-
el. Indeed, that model is updated in the TP and PMP blocks.
Most of the computational effort of the PFs may be spent in
these two blocks if the DSS model is very complex or has a
large number of dimensions. From Table 1, we can see that
the TP block in the UNG model and the PMP block in the
BOT model require 51.5 % and 45.4 % of the overall exe-
cution time in a GPP without floating-point unit (FPU),
respectively. It is in general not possible to analyze and
determine the computational property of the DSS model
without knowing the specific application. In contrast, with
the LG model, the TP and PMP blocks require only about
0.1 % of the whole execution time. In this paper, we focus on
the analysis of the generic blocks that compose the particle
filtering algorithm. Because the TP and PMP blocks are
application specific blocks, we concentrate our efforts on
analyzing the other blocks that are in its critical path: RNA,
DC, LE, and RA.

Tables 1 and 2 present profiling results for an Xtensa
LX2 processor [21] with and without FPU, respectively.
The tables include average cycle counts and percentage
of total execution time consumed by each block for the
LG, UNG, and BOT models, after 50 runs. The Xtensa
LX2 processor is a general-purpose processor with an
optional FPU, some configurable units and that supports
optional customizable instructions that can be added to
improve performance.

From Table 1, we observe that the LE block always
takes a significant portion of the total number of clock
cycles (90 %, 41 %, and 47 % for the LG, UNG, and
BOT models, respectively). Table 2 shows that when a
FPU is employed, the LE block consumes a larger fraction
of the total execution time, and the proportions increase to
98 %, 43 %, and 49 % for the LG, UNG, and BOT
models, respectively. This is remarkable and may appear
to be somewhat counterintuitive. Indeed, it was found that
the FPU provided by the Xtensa LX2 processor does not
support the complex operations (exponentiation, division,
conditional branch, and so on) that the LE block often
uses. The additional hardware complexity introduced by
the FPU option is not very useful for the LE block, which is
either dominant or very significant, as it does not improve

a) Initialization: Generate   i =1……. N. 
b) Prediction generation:  
c) Weight calculation:  .  

d) Weight normalization: . 

e) Resampling processing: 
. 

f) MMSE Estimate calculation: .  
g) Let   and repeat from (b) when observa-

tion is available. 

Figure 1 Pseudo-code of SIR PFs.
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much its performance. According to the results in Tables 1 and
2, when a GPP is used, whether a FPU is present or not, any
attempt at optimizing SIR PFs must consider the LE block.

One popular way to reduce the computation time is to use
a parallel implementation with multiple processing elements
(PEs) or multi-cores. The execution time of all PF blocks,
except the RA block, can be reduced significantly, because
the computations are independent for each particle. In prin-
ciple, the execution time in the LE block can be reduced by a
factor equal to the number of PEs or cores. Due to its
sequential nature, the RA block that performs systematic
resampling (SR) [22], may become the most time consuming
block when many PEs are employed. However, various
efforts [14–16] have been made to derive distributed
resampling algorithms/architectures which let the RA block
partially run in PEs. The execution time of the RA block can
also be reduced. When such distributed resampling
algorithms/architectures are used, the LE block becomes
the most computationally expensive part again. This is a
further motivation to focus on optimizing the LE block,
irrespective of whether PFs are executed in a single GPP or
using a parallel implementation with multiple PEs.

3 Proposed UQLE Algorithm

Most likelihood evaluation algorithms used in PFs are based
on the class of exponential family of distributions, which
includes the normal, exponential, and gamma distributions.
These distributions require the calculation of the exponenti-
ation, division, multiplication and other operations. These
operations make the likelihood evaluation become the most
computationally intensive part in PFs. A simplified likeli-
hood evaluation algorithm is one way to improve the particle
filtering speed.

The proposed UQLE algorithm is based on the assumption
that approximated weight values do not significantly affect the
accuracy of the target application. Under this assumption,
UQLE can employ a uniform quantization method to enable
the use of a simple approximate representation for some
quantity of the output value, the particle weights.

In SIR PFs, the particle weights can be given by the
likelihood evaluation:

ωi
t ¼ exp

−d2i
2*σ2

� �
; ð12Þ

Prediction Generation Weight Calculation

Transition
Processing

(TP)

Random
Number
Addition
(RNA)

Random
Number

Generation
Initial

Likelihood
Evaluation

(LE)

Distance
Calculation

(DC)

Particle
Measurement

Processing
(PMP)

Resampling Processing

Estimate
Calculation

Observation Input

Resampling
Algorithm

(RA)

Figure 2 Functional view of SIR PFs.

Table 1 Average cycle counts of LG, UNG, and BOT models using SIR PFs with 512 particles in the Xtensa LX2 processor without FPU.

LG Model UNG model BOT model

Cycle counts (K) % Cycle counts (K) % Cycle counts (K) %

Transition processing (TP) 2.01 0.11 2045.86 51.53 34.98 0.90

Random number addition (RNA) 18.38 1.04 18.18 0.46 63.96 1.64

Particle measurement processing (PMP) 2.01 0.11 111.25 2.80 1769.81 45.41

Distance calculation (DC) 56.40 3.19 66.38 1.67 112.04 2.88

Likelihood evaluation (LE) 1593.61 90.01 1639.41 41.29 1827.19 46.88

Systematic resampling algorithm (RA) 98.17 5.54 89.45 2.25 89.27 2.29

Total 1770.56 100 3970.53 100 3897.25 100
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where di, the input to the likelihood evaluation, is the ith
particle distance between the observation and the ith particle
result in the PMP block, and σ2 is the variance of the
observation. The proposed UQLE takes advantage of the
fact that the particle weights are in the range [0, 1]. This
range can be divided intoM intervals of lengthQ, where Q is
the quantization step-size:

Q ¼ 1

M
: ð13Þ

Based on this splitting, the range of the weights consists
of M intervals: {[0,Q),[Q,2Q),[2Q,3Q),…,[(M−2)Q, (M−
1)Q),[(M−1)Q,1]}. Inside each interval, we can choose the
high value, the middle value or the low value to represent the
quantized value as the approximated weight Wm. They are
defined as:

Wm ¼
mQ; lowvalue

mQ þ Q

2
; middlevalue

mþ 1ð ÞQ; highvalue

8><
>: ; ð14Þ

where m=0,1,…,M−1, is the index of the intervals. With
this approach, once the index of the intervals is determined
according to the particle distance di, the approximated
weights Wm are given by Eq. (14).

In accordance with the M intervals of the particle weights,
the data range of the particle distance can also be divided into
M intervals: {[T1,+∞),[T2,T1),[T3,T2),…,[TM−1,TM−2),
[0,TM−1]}, where Tm,m=0,1,…,M−1 is the boundary of
each interval in the particle distance direction. They can be
obtained via the inverse likelihood evaluation. The inverse
normal distribution likelihood evaluation is given by:

Tm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ln mQð Þ*2*σ2

p
: ð15Þ

When the particle distance di is available, the index of the
intervalm can be determined from the interval of the distance
range in which this di falls.

When there are significant deviations from the most re-
cent estimate, the value of all the weights can be very small,

and the distances can all fall in the [T1,+∞) range. This
comes from the fact that all weights are equal to zero when
we use the low value of the intervals as the approximated
weight. In order to avoid this situation, we insert an addi-
tional interval [0,δ),0<δ≪Q into [0,Q). The approximated
weight at the index m=0 needs to be modified as follows:

W 0 ¼
δ ; di∈ T δ;þ∞½ Þ
2δ; low value
Q

2
; middle value

Q ; high value

8>>><
>>>: ; ð16Þ

where Tδ is calculated by Eq. (15) with the input δ . There are
therefore M+1 intervals.

Figure 3 shows an example of the likelihood evaluation
curve for the proposed UQLE. The range of particle weights
is divided into M+1=5 intervals: {[0,δ),[δ,Q),[Q, 2Q),[2Q,
3Q),[3Q,1]}. Then, Tδ,T1,T2,T3 can be calculated by the
inverse likelihood evaluation defined by Eq. (15). The index
m can be determined via the comparison between the particle
distance and Tδ,T1,T2,T3. For instance, for a particle distance
di∈[T3,T2), we can obtain its index m=2. The weight for this
particle distance can be approximated by Eqs. (14) and (16),
which is equal to W2.

The pseudo-code for UQLE is given in Fig. 4. The whole
algorithm is divided into two parts: a pre-calculation part and
an on-line execution part. After defining the number of in-
tervals and the weight value, which is a low, middle or high
value as the representation, the pre-calculation part provides
the boundary in the distance direction Tm and the approxi-
mated weights for each interval according to Eqs. (14) and
(16). These results are used for the on-line execution part
later. In the on-line execution part, the approximated weights
can be obtained by comparing the input, i.e. the particle
distance, with the boundary in the distance direction Tm.
Using the proposed procedure, the execution time is re-
duced significantly since we obtain the weights from com-
parisons instead of complex arithmetic for exact likelihood
evaluation.

Table 2 Average cycle counts of LG, UNG, and BOT models using SIR PFs with 512 particles in the Xtensa LX2 processor with FPU.

LG model UNG model BOT model

Cycle counts (K) % Cycle counts (K) % Cycle counts (K) %

Transition processing (TP) 2.01 0.13 1996.68 53.68 7.02 0.20

Random number addition (RNA) 5.52 0.35 5.52 0.15 10.04 0.28

Particle measurement processing (PMP) 2.01 0.13 83.24 2.24 1767.56 49.77

Distance calculation (DC) 5.52 0.35 5.52 0.15 5.52 0.16

Likelihood evaluation (LE) 1552.50 97.55 1604.82 43.14 1734.22 48.85

Systematic resampling algorithm (RA) 23.72 1.49 23.77 0.64 26.09 0.74

Total 1591.27 100 3719.55 100 3550.45 100
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4 UQLE Accuracy Evaluation

4.1 Implementation Environment and Accuracy Metrics

In this section, we simulate SIR PFs using UQLE for the LG,
UNG, and BOT models in the MATLAB environment.
According to the UQLE algorithm, the particle distance
needs to be compared with pre-calculation boundaries Tm.
We can then find the index of the intervals m and obtain the
particle weight directly from the pre-calculation weight Wm.
The input and output do not have any numerical calculation
relationships. It is not necessary to set all the data in UQLE in
floating-point arithmetic. In order to be consistent with the
implementation in the Xtensa processor, we implemented
UQLE with floating-point arithmetic for the input, the parti-
cle distance, and fixed-point arithmetic with 16-bit represen-
tation for the output, the particle weight. Thus, we set the
range [0, 65535] for the particle weight and δ equal to 1.
Under this situation, we compare the resultant accuracy to
SIR PFs using ELE. For the LG and UNG models, the

accuracy is measured by the Root-Mean-Square Error
(RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1
xt−bxt� 
2

r
ð17Þ

where xt is the true simulated state and bxt is the estimated
state. For the BOT model, in order to obtain a better illustra-
tion for the performance, the accuracy is measured by the
combined Mean-Squared-Error (MSE) (where MSE=
RMSE2) of the x and y positions:

MSExy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEXð Þ2 þ MSEYð Þ2

q
ð18Þ

whereMSEX andMSEYare theMSE for the x and y positions,
respectively. The smaller the value of the combined MSE is,
the better the performance we obtain. Furthermore, simula-
tion for a lost track situation is conducted for the BOTmodel,
as suggested in [14]. The track is considered lost if all
particles have zero weight in the ELE or if all the particle
weights are equal to δ in the UQLE.

In order to obtain stable performance results, 10,000 sim-
ulations were performed with 50 observation inputs for the
LG and UNGmodels and 25 observations for the BOTmodel.

4.2 Accuracy for the LG Model

Table 3 shows average RMSE results for SIR PFs using ELE,
for 16, 128, 512, 1,024, 2,048, and 4,096 particles.We use these
results as the reference to compare the results generated by
UQLE.

In Fig. 5, RMSE results of SIR PFs using UQLE are
plotted. The dashed line gives RMSE results of SIR PFs
using ELE as summarized in Table 3. From Fig. 5, we can
see that even for a small number of particles N=16, SIR PFs
using UQLE can produce RMSE performance close or
equivalent to SIR PFs using ELE when M, the number of
intervals, exceeds 32. Hence, UQLE can replace ELE in SIR
PFs in the LG model.

It can also be observed that with the number of particles N
increasing, UQLE with M=16 or M=8 can achieve equiva-
lent accuracy to ELE. Decreasing the number of intervals
implies reducing the computation time. UQLE outperforms
ELE in speed without sacrificing the accuracy. Concerning
the choice between the low, middle or high value, UQLE
with the low value is slightly better than other choices except
for the case of N=16 particles.

Figure 3 Likelihood evaluation curve for the proposed UQLE with
M+1=5 intervals.

Pre-calculation part: 
Define ,  

. 
  

On-line execution part: 
 

If ( ) 
          . 

else 
          Find  the index of the intervals,  

such that  ,  
          . 

end 
end 

Figure 4 Pseudo-code of the proposed UQLE algorithm.

Table 3 Average RMSE of SIR PFs using ELE for the LG model.

# of particles 16 128 512 1,024 2,048 4,096

Average RMSE 0.854 0.791 0.785 0.784 0.783 0.783
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4.3 Accuracy for the UNG Model

Figure 6 compares the average RMSE results for 16, 128,
512, 1,024, 2,048 and 4,096 particles for the UNG model.
The dashed line displays the reference accuracy of SIR PFs
using ELE, with the values summarized in Table 4. Except for
the case of N=16 particles, Fig. 6 shows that UQLE achieves
an accuracy similar to ELE even for a small number of in-
tervals (M=16) when the low or middle values are used. The
results for the case of N=16 show that UQLE outperforms

ELE in accuracy when the middle or high values are used with
any number of intervals. In addition, the accuracy of UQLE in
the UNGmodel is similar to that in the LGmodel, with UQLE
using fewer intervals and achieving equivalent accuracy to
ELE when the number of particle increases.

4.4 Accuracy for the BOT Model

In Table 5, we show the average combined MSE and the
number of times when the track is lost versus the number of
particles for SIR PFs using ELE. From Table 5, with the
increase of the number of particles, the combined MSE de-
creases from 0.27 for 128 particles to 0.14 for 4,096 particles.
Meanwhile, the number of lost tracks drops from about 9,500
for 128 particles to below 2,700 for 4,096 particles. It should
be noted that in ELE we assume that the weights are clamped
to δ=2−16 when their value is smaller than 2−16, which is the
same as for UQLE, because the lost track situation signifi-
cantly depends on the smallest weights considered.

Figure 7 shows the average combined MSE and the lost
track situation for SIR PFs using UQLE. The dashed lines are
the corresponding results obtained by SIR PFs using ELE.
From Fig. 7, although UQLE employing the low value of the
intervals has poor performance in our experiments, UQLE
with the high value or the middle value of intervals signifi-
cantly outperforms SIR PFs using ELE, even for the smallest
number of intervals M=2 in our experiments. This means that
the speed using the proposed UQLE can increase significantly
in the BOT model because each particle only needs to be
compared with two boundaries in the UQLE algorithm.
Figure 8 displays a representative trajectory and the tracking
obtained by SIR PFs using ELE and SIR PFs using UQLE
with 2 intervals and high value. It shows again that UQLE
with few intervals can replace ELE in the BOT model.

In summary, simulation results show that UQLE can
achieve equivalent or better accuracy than ELE for SIR PFs
when the number of intervals and the representation of the
output value are suitably chosen. In our experiments, in order
to obtain comparable accuracy to ELE, the minimum number
of intervals is M=32, 16 and 2 for the LG, UNG, and BOT
models, respectively.

Figure 5 Average RMSE results of SIR PFs using UQLE for the LG
model.

Figure 6 Average RMSE results of SIR PFs using UQLE for the UNG
model.

Table 4 Average RMSE of SIR PFs with ELE for the UNG model.

# of particles 16 128 512 1,024 2,048 4,096

Average RMSE 5.85 3.88 3.78 3.76 3.76 3.76

Table 5 Average combined MSE and Lost track of SIR PFs with ELE
for the BOT model.

# of particles 128 512 1,024 4,096

Average combined MSE 0.27 0.21 0.17 0.14

Lost track 9,503 8,052 6,824 2,637
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5 UQLE Throughput Evaluations

5.1 UQLE Software Implementation and its Performance

We implemented the proposed UQLE in the Xtensa proces-
sor in order to compare its speed performance to ELE’s. We
used the same configuration simulated in the MATLAB
environment, with the particle distance expressed with float-
ing point precision and the particle weights expressed in
fixed point with 16 bits. In order to reduce the execution
time, we still evaluate the performance when setting the
particle distance in fixed-point arithmetic.

Table 6 shows the average speedup results for UQLE for the
BOT model with the particle distance expressed with floating-
point and fixed-point accuracy when compared to ELE.
Adding a co-processor FPU in the Xtensa LX2 processor
increases the processor size by approximately 50 K gates
without improving performance, since the FPU does not sup-
port conditional branch instructions that are heavily used in the
UQLE. The maximum execution time for the ELE in Table 1 is
chosen as a baseline. UQLE using 64 intervals achieves 5.6×
and 19.5× average speedup over ELE when executed in
floating-point and fixed-point arithmetic for the particle dis-
tance, respectively. The speedup is greater when the number of
intervals for UQLE is smaller than 64. UQLE with 4 intervals
in fixed-point arithmetic can achieve 295.2× average speedup
over the software implementation of ELE in a GPP.

As shown in Figs. 5, 6 and 7, in order to achieve the same
accuracy as ELE, the UQLE requires 32, 16 and 2 intervals
for the LG, UNG and BOT models, respectively. UQLE for
the LGmodel is therefore the most computationally demand-
ing of the three. Still, it achieves almost 40× speedup over
the software implementation of ELE.

5.2 UQLE ASIP Implementation and Its Performance

We designed a custom instruction for UQLE to improve the
speed of SIR PFs in ASIPs. As shown in Fig. 4, the UQLE
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Figure 7 Average combined MSE and lost track for SIR PFs using
UQLE.

Figure 8 Tracking of a moving target in two dimensions with SIR PFs
using ELE and SIR PFs using UQLE with 2 intervals and high value.

Table 6 Execution time of UQLE in PFs with 512 particles with
different number of intervals in Xtensa LX2 processor.

Likelihood
Evaluation
(LE)

Particle
distance
representation

# of M Average
execution
time (cycle
counts)

Average
speedup

ELE Floating point – 1827.19 K 1.0×

UQLE Floating point 64 327.34 K 5.58×

32 164.67 K 11.10×

4 21.96 K 83.21×

Fixed point 64 93.78 K 19.48×

32 46.24 K 39.52×

4 6.19 K 295.18×
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algorithm has one input dit and one outputω
i
t. This situation is

favorable for the generation of a custom instruction because
there are no extra input/output data that could create a bot-
tleneck preventing effective acceleration.

The proposed logic organization of the custom instruction is
shown in Fig. 9. In a typical configuration of that instruction, 4
quantization intervals are supported and the output is the high
value of the intervals expressed with 8 bits. The critical path
consists of a comparator, an XOR gate, an encoder and a
multiplexer. When a particle distance is available, this value
is compared with distance boundaries {T0,T1,T2,T3}, which
are stored in the state registers. For example, if d∈[T1,T2],
which means d<T0,d<T1, d>T2 and d>T3, the outputs of the
comparators are {0,0,1,1}. Through the XOR gates, the en-
coder input is changed to {0,1,0,0}. At the output of the
encoder, the interval index is equal to 01, which means d is
in the second interval. The weight can be set to {01111111},
which corresponds to the high value of the second interval. The
number of intervals supported is a parameter of the architecture
that can easily be changed as a function of the specific re-
quirements. We implemented the instruction for five numbers
of intervals (4, 8, 16, 32 and 64) and three choices ofWm (low,
middle and high value of the quantization intervals).

The custom instruction was described in the Tensilica
Instruction Extension (TIE) language [23] to generate a
specific functional unit in the Xtensa LX2 processor. The
special instruction for UQLE is:

ωi
t ¼ likelihood dit

� �
: ð19Þ

Profiling results are shown in Table 7. With the custom
instruction, the speedup can reach up to an average of
909.1× and 865.8× over the implementation of ELE in a
GPP without FPU and with FPU, respectively. The maxi-
mum average cycle counts for ELE in our experiments are
extracted to calculate this speedup. In addition, the cycle
count for UQLE is independent of the number of intervals.
Increasing the number of intervals only increases the proces-
sor size. The additional size for UQLE with 4, 32, 64 in-
tervals, respectively only occupies 0.7 %, 4.7 %, 8.4 % of the
reference processor that consumes 79 K gates.

From Table 7, the execution time can be significantly
reduced from 1827.2 K cycles to only 2.0 K cycles on
average when the UQLE instruction is used. For the LG
model, the likelihood evaluation dominates the execution
time of the whole application. It is significant that using only
3.75 K additional gates for UQLE instruction with 32 quan-
tization intervals can achieve almost 10× speedup as shown
in Table 8. These additional gates only occupy 4.7 % of the
reference processor. If a processor with multiple PEs is used
to implement the LG model, at least 10 PEs are required to
achieve 10× average speedup. But the number of additional
gates to build 10 PEs is much larger than the number of gates
that the UQLE instruction uses. Hence, for those applications
using PFs where the DSS model is not complex, using
UQLE is a powerful first step to reduce the execution time
and energy consumption.

For applications using PFs like the UNG and BOTmodels,
where the DSS model is rather complex, simplifying the
algorithm or using hardware implementation must be shifted
to the DSS model. Finding the bottleneck in Fig. 2 requires a
careful consideration of the PF application. For instance, we
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Figure 9 Custom UQLE logic organization with 4 intervals.

Table 7 Execution time and ad-
ditional area of UQLE in PFs
with 512 particles in the Xtensa
LX2 processor.

Implementation
method

Likelihood
Evaluation (LE)

# of M Average execution time
(clock cycle counts)

Average
speedup

Additional area
(gates)

Software ELE – 1827.19 K 1× 0

Software with FPU ELE – 1734.22 K 1.05× 49 K

ASIPs UQLE in Fixed-point 4 2.01 K 909.05× 0.57 K

32 2.01 K 909.05× 3.75 K

64 2.01 K 909.05× 6.60 K

Table 8 Speedup between running in GPP and in GPP with UQLE
instruction for the LG, UNG, and BOT models.

Applications Average
execution
time (GPP)

Average execution time
(GPP with UQLE
Instruction)

Average
speedup

LG 1770.56 K 179.20 K 9.88×

UNG 3970.53 K 2333.37 K 1.70×

BOT 3897.25 K 2072.31 K 1.88×
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know that the bottleneck of the UNGmodel is in the TP block.
The BOT model has a complex operation, the triangle func-
tion, in the PMP block. With this approach, we can focus on
optimizing the TP block in the UNG and the PMP block in
BOT model. Regardless, the likelihood evaluation is still a
time consuming algorithm. For applications that require very
high throughput, the UQLE instruction is a promising step to
improve the throughput and reduce the energy consumption.
From Table 8, using the UQLE instruction results in 1.7× and
1.9× average speedup over the software implementations of
the UNG and BOT models, respectively.

6 Conclusion

In this paper, a novel PF functional view is constructed. It
focuses on distinguishing the blocks defined by the applica-
tion, the algorithms or others. Under this characteristic, we
demonstrate that the likelihood evaluation is a time consum-
ing block and is not affected by the target applications. In
order to speed up the execution of the likelihood evaluation,
we presented an efficient uniform quantization likelihood
evaluation algorithm. We then built an ASIP UQLE instruc-
tion to improve its throughput in a custom processor. Simu-
lation results demonstrate that PFs using the proposed UQLE
can achieve equal or better performance than particle filters
using the exact likelihood evaluation. They also demonstrate
that the proposed ASIP UQLE instruction for the BOT
model can achieve an average speedup of 910× in compar-
ison with ELE implemented in a GPP, while the processor
size only increases 4.7 % for UQLE with 32 intervals.
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