Qiang Wang

Qiang Wang
  • Doctor of Philosophy
  • Assistant Professor at Harbin Institute of Technology

About

66
Publications
6,977
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,723
Citations
Current institution
Harbin Institute of Technology
Current position
  • Assistant Professor
Additional affiliations
September 2020 - present
Hong Kong Baptist University
Position
  • Professor (Assistant)
December 2019 - August 2020
Hong Kong Baptist University
Position
  • Research Assistant
Education
September 2015 - August 2020
Hong Kong Baptist University
Field of study
  • GPU Computing, Parallel Computing, Deep Learning System, Stereo Vision
September 2010 - June 2014
South China University of Technology
Field of study
  • GPU Computing, OpenCL

Publications

Publications (66)
Article
Recent advancements in Zero-shot Neural Architecture Search (NAS) highlight the ability of zero-cost proxies in identifying superior architecture. However, we identify a critical issue with current zero-cost proxies: they aggregate node-wise zero-cost statistics without considering that not all nodes in a neural network equally impact performance e...
Preprint
Full-text available
Due to the rapid development of panorama cameras, the task of estimating panorama depth has attracted significant attention from the computer vision community, especially in applications such as robot sensing and autonomous driving. However, existing methods relying on different projection formats often encounter challenges, either struggling with...
Preprint
Modern GPUs, with their specialized hardware like tensor cores, are essential for demanding AI and deep learning applications. This study presents a comprehensive, multi-level microbenchmarking analysis of the NVIDIA Hopper GPU architecture, delving into its performance characteristics and novel features. We benchmark Hopper's memory subsystem late...
Preprint
To alleviate hardware scarcity in training large deep neural networks (DNNs), particularly large language models (LLMs), we present FusionLLM, a decentralized training system designed and implemented for training DNNs using geo-distributed GPUs across different computing clusters or individual devices. Decentralized training faces significant chall...
Preprint
Full-text available
In spite of the outstanding performance, Neural Architecture Search (NAS) is criticized for massive computation. Recently, Zero-shot NAS has emerged as a promising approach by exploiting Zero-cost (ZC) proxies, which markedly reduce computational demands. Despite this, existing ZC proxies heavily rely on expert knowledge and incur significant trial...
Preprint
Full-text available
In this paper, we present STBLLM, the first structural binarization framework for compressing Large Language Models (LLMs) to less than 1-bit precision. LLMs have achieved remarkable performance, but their heavy memory requirements have hindered widespread adoption, particularly on resource-constrained devices. Binarization, which quantifies weight...
Preprint
3D multimodal question answering (MQA) plays a crucial role in scene understanding by enabling intelligent agents to comprehend their surroundings in 3D environments. While existing research has primarily focused on indoor household tasks and outdoor roadside autonomous driving tasks, there has been limited exploration of city-level scene understan...
Preprint
Increased reliance on graphics processing units (GPUs) for high-intensity computing tasks raises challenges regarding energy consumption. To address this issue, dynamic voltage and frequency scaling (DVFS) has emerged as a promising technique for conserving energy while maintaining the quality of service (QoS) of GPU applications. However, existing...
Preprint
Deep learning (DL) has demonstrated significant success across diverse fields, leading to the construction of dedicated GPU accelerators within GPU clusters for high-quality training services. Efficient scheduler designs for such clusters are vital to reduce operational costs and enhance resource utilization. While recent schedulers have shown impr...
Preprint
The existing works on object-level language grounding with 3D objects mostly focus on improving performance by utilizing the off-the-shelf pre-trained models to capture features, such as viewpoint selection or geometric priors. However, they have failed to consider exploring the cross-modal representation of language-vision alignment in the cross-d...
Preprint
Full-text available
Despite the remarkable capabilities, Large Language Models (LLMs) face deployment challenges due to their extensive size. Pruning methods drop a subset of weights to accelerate, but many of them require retraining, which is prohibitively expensive and computationally demanding. Recently, post-training pruning approaches introduced novel metrics, en...
Article
Full-text available
Neural Radiance Fields have demonstrated impressive performance in novel view synthesis. However, NeRF and most of its variants still rely on traditional complex pipelines to provide extrinsic and intrinsic camera parameters, such as COLMAP. Recent works, like NeRFmm, BARF, and L2G-NeRF, directly treat camera parameters as learnable and estimate th...
Preprint
The rapid growth of memory and computation requirements of large language models (LLMs) has outpaced the development of hardware, hindering people who lack large-scale high-end GPUs from training or deploying LLMs. However, consumer-level GPUs, which constitute a larger market share, are typically overlooked in LLM due to their weaker computing per...
Preprint
This paper proposes a technique for efficiently modeling dynamic humans by explicifying the implicit neural fields via a Neural Explicit Surface (NES). Implicit neural fields have advantages over traditional explicit representations in modeling dynamic 3D content from sparse observations and effectively representing complex geometries and appearanc...
Article
Full-text available
Existing learning-based multi-view stereo (MVS) methods rely on the depth range to build the 3D cost volume and may fail when the range is too large or unreliable. To address this problem, we propose a disparity-based MVS method based on the epipolar disparity flow (E-flow), called DispMVS, which infers the depth information from the pixel movement...
Article
Energy conservation of large data centers for high performance computing workloads, such as deep learning with Big Data, is of critical significance, where cutting down a few percent of electricity translates into million-dollar savings. This work studies energy conservation on emerging CPU-GPU hybrid clusters through dynamic voltage and frequency...
Preprint
Full-text available
Existing learning-based multi-view stereo (MVS) methods rely on the depth range to build the 3D cost volume and may fail when the range is too large or unreliable. To address this problem, we propose a disparity-based MVS method based on the epipolar disparity flow (E-flow), called DispMVS, which infers the depth information from the pixel movement...
Chapter
Recent advanced studies have spent considerable human efforts on optimizing network architectures for stereo matching but hardly achieved both high accuracy and fast inference speed. To ease the workload in network design, neural architecture search (NAS) has been applied with great success to various sparse prediction tasks, such as image classifi...
Article
Cloud service providers are deploying Transformer-based deep learning models on GPU servers to support many online inference-as-a-service (IAAS) applications, given the predominant performance of Transformers in natural language processing (NLP) tasks. However, Transformers’ inherent high complexity and large model size (e.g., billions to hundreds...
Preprint
Full-text available
The panorama image can simultaneously demonstrate complete information of the surrounding environment and has many advantages in virtual tourism, games, robotics, etc. However, the progress of panorama depth estimation cannot completely solve the problems of distortion and discontinuity caused by the commonly used projection methods. This paper pro...
Preprint
Recent advanced studies have spent considerable human efforts on optimizing network architectures for stereo matching but hardly achieved both high accuracy and fast inference speed. To ease the workload in network design, neural architecture search (NAS) has been applied with great success to various sparse prediction tasks, such as image classifi...
Preprint
Full-text available
Deep neural networks (DNNs) have achieved great success in the area of computer vision. The disparity estimation problem tends to be addressed by DNNs which achieve much better prediction accuracy than traditional hand-crafted feature-based methods. However, the existing DNNs hardly serve both efficient computation and rich expression capability, w...
Preprint
Full-text available
Energy conservation of large data centers for high-performance computing workloads, such as deep learning with big data, is of critical significance, where cutting down a few percent of electricity translates into million-dollar savings. This work studies energy conservation on emerging CPU-GPU hybrid clusters through dynamic voltage and frequency...
Article
Contemporary graphics processing units (GPUs) support dynamic voltage and frequency scaling to balance computational performance and energy consumption. However, accurate and straightforward performance estimation for a given GPU kernel under different frequency settings is still lacking for real hardware, which is essential to determine the best f...
Preprint
Multiplication of a sparse matrix to a dense matrix (SpDM) is widely used in many areas like scientific computing and machine learning. However, existing works under-look the performance optimization of SpDM on modern many-core architectures like GPUs. The storage data structures help sparse matrices store in a memory-saving format, but they bring...
Article
Erasure codes have been used extensively in large-scale storage systems to reduce the storage overhead of triplication-based storage systems. One key performance issue introduced by erasure codes is the long time needed to recover from a single failure, which occurs constantly in large-scale storage systems. We present ESetStore, a prototype erasur...
Preprint
Deep neural networks (DNNs) have achieved great success in the area of computer vision. The disparity estimation problem tends to be addressed by DNNs which achieve much better prediction accuracy in stereo matching than traditional hand-crafted feature based methods. On one hand, however, the designed DNNs require significant memory and computatio...
Preprint
Distributed Deep Learning (DDL) has rapidly grown its popularity since it helps boost the training performance on high-performance GPU clusters. Efficient job scheduling is indispensable to maximize the overall performance of the cluster when training multiple jobs simultaneously. However, existing schedulers do not consider the communication conte...
Preprint
Indoor robotics localization, navigation and interaction heavily rely on scene understanding and reconstruction. Compared to monocular vision which usually does not explicitly introduce any geometrical constraint, stereo vision based schemes are more promising and robust to produce accurate geometrical information, such as surface normal and depth/...
Preprint
To reduce the long training time of large deep neural network (DNN) models, distributed synchronous stochastic gradient descent (S-SGD) is commonly used on a cluster of workers. However, the speedup brought by multiple workers is limited by the communication overhead. Two approaches, namely pipelining and gradient sparsification, have been separate...
Preprint
Deep learning has become widely used in complex AI applications. Yet, training a deep neural network (DNNs) model requires a considerable amount of calculations, long running time, and much energy. Nowadays, many-core AI accelerators (e.g., GPUs and TPUs) are designed to improve the performance of AI training. However, processors from different ven...
Conference Paper
Gradient sparsification is a promising technique to significantly reduce the communication overhead in decentralized synchronous stochastic gradient descent (S-SGD) algorithms. Yet, many existing gradient sparsification schemes (e.g., Top-k sparsification) have a communication complexity of O(kP), where k is the number of selected gradients by each...
Conference Paper
Over the past years, great progress has been made in improving the computing power of general-purpose graphics processing units (GPGPUs), which facilitates the prosperity of deep neural networks (DNNs) in multiple fields like computer vision and natural language processing. A typical DNN training process repeatedly updates tens of millions of param...
Preprint
Over the past years, great progress has been made in improving the computing power of general-purpose graphics processing units (GPGPUs), which facilitates the prosperity of deep neural networks (DNNs) in multiple fields like computer vision and natural language processing. A typical DNN training process repeatedly updates tens of millions of param...
Preprint
Distributed synchronous stochastic gradient descent (S-SGD) with data parallelism requires very high communication bandwidth between computational workers (e.g., GPUs) to exchange gradients iteratively. Recently, Top-$k$ sparsification techniques have been proposed to reduce the volume of data to be exchanged among workers and thus alleviate the ne...
Preprint
Full-text available
With huge amounts of training data, deep learning has made great breakthroughs in many artificial intelligence (AI) applications. However, such large-scale data sets present computational challenges, requiring training to be distributed on a cluster equipped with accelerators like GPUs. With the fast increase of GPU computing power, the data commun...
Article
Full-text available
Recently, erasure coding has been extensively deployed in large-scale storage systems to replace data replication. With the increase in disk I/O throughput and network bandwidth, the performance of erasure coding becomes a major bottleneck of erasure-coded storage systems. In this paper, we propose a graphics processing unit (GPU)-based implementat...
Article
Full-text available
With the increasing installation of Graphics Processing Units (GPUs) in supercomputers and data centers, their huge electricity cost brings new environmental and economic concerns. Although Dynamic Voltage and Frequency Scaling (DVFS) techniques have been successfully applied on traditional CPUs to reserve energy, the impact of GPU DVFS on applicat...
Conference Paper
To address the ever-increasing demand for computing capacities, more and more heterogeneous systems have been designed to use both general-purpose and special-purpose processors. On the other hand, the huge energy consumption of these heterogeneous systems raises new environmental concerns and challenges. Besides performance, energy efficiency is n...
Article
Full-text available
Markov Clustering algorithm provides an effective method for network clustering problem, especially including community problem and bioinformatics. However, the expansion operation is the most time-consuming procedure, since the multiplication of two large-scale phalanxes can cause the time complexity of Θ (n³). Considering that each element value...
Article
Full-text available
Graphics Processing Units (GPUs) support dynamic voltage and frequency scaling (DVFS) in order to balance computational performance and energy consumption. However, there still lacks simple and accurate performance estimation of a given GPU kernel under different frequency settings on real hardware, which is important to decide best frequency confi...
Article
Full-text available
Energy efficiency has become one of the top design criteria for current computing systems. The dynamic voltage and frequency scaling (DVFS) has been widely adopted by laptop computers, servers, and mobile devices to conserve energy, while the GPU DVFS is still at a certain early age. This paper aims at exploring the impact of GPU DVFS on the applic...
Preprint
Energy efficiency has become one of the top design criteria for current computing systems. The dynamic voltage and frequency scaling (DVFS) has been widely adopted by laptop computers, servers, and mobile devices to conserve energy, while the GPU DVFS is still at a certain early age. This paper aims at exploring the impact of GPU DVFS on the applic...
Article
Full-text available
Deep learning has been shown as a successful machine learning method for a variety of tasks, and its popularity results in numerous open-source deep learning software tools coming to public. Training a deep network is usually a very time-consuming process. To address the huge computational challenge in deep learning, many tools exploit hardware fea...

Network

Cited By