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Abstract

Breast cancer prevention research has made remarkable progress in the past decade. Much of this progress has come from
clinical trials. However, in the future to test the many promising agents that are now available, pre-clinical models of breast cancer
are needed. Such models are now available. Useful models include rat and mouse models, particularly, the genetically engineered
mice (GEM). Many transgenic mouse models have been generated by manipulating growth factors and their receptors, cell cycle
regulators, signal transduction pathways, cellular differentiation, oncogenes and tumor suppressor genes. The transgenes are
induced to express in the mouse mammary glands under the control of various transgenic promoters, which have respective
characteristics in expression pattern and other biological attributes. These models are providing invaluable insight on the molecular
mechanisms of breast tumorigenesis. In this review, we discuss the relative relevance of the most commonly used transgenic
mouse models for breast cancer prevention studies, and provide examples of how these transgenic models can be used to conduct
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cancer prevention research. Due to the multi-factor, multi-step nature of breast cancer, many factors should be incorpo
a valid prevention study. However, many barriers to progress must be overcome, including access to and availabilit
cancer preventive drugs, and difficulties in conducting studies of combinations of preventive agents.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Each year, there are about 200,000 newly diagnosed
cases of breast cancer in the United States, and around
40,000 patients die of this disease[1]. The incidence
of breast cancer is now steady and is showing a slight
declining trend, suggesting the progressive effect of
the application of mammographic screening, adjuvant
chemotherapy and intensive therapy for the existing
cancer. Recent breast cancer prevention clinical tri-
als demonstrated that the selective estrogen receptor
(ER) modulators (SERMS) tamoxifen and raloxifene
reduced breast cancer incidence in high-risk women
by approximately 50%[2,3]. These studies proved that
it is possible to reduce breast cancer risk by blocking
the effect of estrogen on the human breast. However,
the SERMS cannot prevent all breast cancers. Notably,
there was no decrease in the incidence of ER-negative
breast cancer, which accounts for 30–40% of all breast
cancers. It is therefore imperative to develop effective
therapeutic and preventive agents for both ER-positive
and ER-negative breast cancers.

Breast cancer is considered as a multi-stage, multi-
factor process that involves genetic and non-genetic
factors. Progress in understanding the molecular mech-
anism of breast carcinogenesis comes from in vitro
and in vivo studies done over the last two decades.
O and-
i imal

models of breast cancer. Of the many models that have
been developed, transgenic or genetically engineered
mice (GEMs) are among the most useful. The first re-
ported transgenic mouse model of breast cancer was the
mouse mammary tumor virus (MMTV)-myc model in
which overexpression of the myc transcription factor
in the mammary gland resulted in spontaneous mam-
mary adenocarcinoma[4]. Since then, more than 100
transgenic models (mainly murine) have been gener-
ated for the study of mammary gland biology and breast
cancer therapy and prevention[5,6]. Several extensive
reviews have described the generation, characteristics
and applications of transgenic mouse models in breast
cancer research[7–11]. In this review, we will focus
on those transgenic mouse models suitable for breast
cancer prevention studies. We will also cover major
strategies and recent progress in testing chemopreven-
tive agents. Newly developed applications for mouse
transgenic models will also be discussed.

2. Information resources for breast cancer
prevention research

Electronic access to the established network of the
mouse models will greatly facilitate and enhance the
dissemination of new ideas and results, establish col-
laboration in the mammary gland research community,
and explore new insights for the prevention studies. The
ne of the most important advances in underst
ng breast carcinoma was the development of an
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Table 1
Electronic resources for mammary biology and transgenic mice research

Websites and URL links Main functions Available resources

http://emice.nci.nih.gov NCI sponsored mouse model network Model information, mice repository
http://mammary.nih.gov NIH sponsored mammary gland biology

site
Models, tools, genome, etc.

http://mammary.nih.gov/Annapolis-guidelines/ NIH sponsored mammary gland biology
site

Guidelines for transgenic mice
research, pathology workout, etc.

http://histology.nih.gov NIH sponsored mammary gland
histology database

Data viewing, comparison,
submission, classification

http://romulus.cit.nih.gov/m1/lgp/weblinks/index.html Provide useful links to mammary gland
biology

Various topics and information

http://www.jax.org Mouse model, availability, genome Strain information, model database,
training programs

http://www.criver.com/products/researchmodels/ Animal model information, availability Strain information, various animal
models

National Cancer Institute (NCI) established the Mouse
Models of Human Cancer Consortium (MMHCC) in
1999 to serve this purpose[5]. Useful links to these
websites are listed inTable 1. From the MMHCC
site (http://emice.nci.nih.gov), researchers can access
Mouse Models and Resources submenus to obtain valu-
able information regarding mouse models, the available
mouse repositories and databases pertaining to mouse
genetics, models, various mouse resources and web-
sites, genes and pathway information. NIH has also cre-
ated a web site listing information important for breast
cancer researchers (http://mammary.nih.gov). From
here, researchers may link to almost everything related
to mammary gland biology, such as experimental mod-
els, tools and technologies, methodology and histol-
ogy atlases, mouse genome and reviews. In addition,
to facilitate transgenic mice research, NIH researchers
established guidelines to define mammary histology,
proliferative lesions, tumor classification and pathol-
ogy of mammary tumors in mice[6]. This information
can be accessed athttp://mammary.nih.gov/Annapolis-
guidelines/. In addition to this website, a CD-ROM is
available for the mammary biology research commu-
nity [5]. Other useful links include a histology database
sponsored by NIH (http://histology.nih.gov), from
which researchers may interactively learn, compare
and submit relevant histological data from breast can-
cer studies. Additional useful information about trans-
genic models in breast cancer prevention research can
be found in the websites of commercial vendors. For
e
p ail-

ability, model database, mouse genome informatics and
a sub-classification of models for cancer research.

3. Transgenic mouse models of mammary
tumorigenesis

Numerous transgenes have been used to generate
mouse models to mimic human breast cancer. Most
mouse transgenic models for prevention studies are
generated through gain of function or knockout of
critical components in oncogenic pathways. The most
commonly used models for breast cancer studies cover
a wide range of various targets such as growth factors,
receptors, cell cycle regulators, signal transduction
pathways, cellular differentiation, oncogenes and
tumor suppressor genes (Table 2). The relevance of
these models to breast cancer prevention studies is
also indicated for reference. The Oncogene journal
had a special issue discussing some important models
in the January issue of 2000.

4. Promoters to drive the expression of
transgenes

We have compiled a list of the promoters com-
monly used to generate mouse mammary tumor models
(Table 3).

1. MMTV promoter: mammary gland-specific expres-
cing
ave
xample, the Jackson Laboratory (http://www.jax.org)
rovides transgenic animal strain information, av
sion of the transgenes is desired to avoid indu
tumors in other organs. Many mouse models h

http://emice.nci.nih.gov/
http://mammary.nih.gov/
http://mammary.nih.gov/annapolis-guidelines/
http://histology.nih.gov/
http://romulus.cit.nih.gov/m1/lgp/weblinks/index.html
http://www.jax.org/
http://www.criver.com/products/research_models/
http://emice.nci.nih.gov/
http://mammary.nih.gov/
http://mammary.nih.gov/annapolis-guidelines/
http://histology.nih.gov/
http://www.jax.org/
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Table 2
Transgenic models for breast tumorigenesis and prevention studies

Target category Transgene Multi-transgene
manipulation

Promoters Species Phenotype Relevance to
prevention
studies

Reference

Growth factors TGFα p52, myc MMTV, WAP, MT Mouse rat Abnormal mammary gland
development, hyperplasia, adenoma,
adenocarcinoma

High [12–17]

TGFβ MMTV, WAP Mouse Impaired lobular development,
inability to produce milk, early
senescence

Median [18–20]

Heregulin myc MMTV Mouse Hyperplasia, adenocarcinoma High [21,22]
IGF-I WAP Mouse Abnormal involution, hyperplasia High [23,24]
IGF-II BLG Mouse Adenocarcinoma High [25]
HGF MT, WAP Mouse Abnormal mammary gland

development, adenocarcinoma,
adenosquamous carcinoma, lung
metastasis

Median [26,27]

FGF3 (Int 2) Wnt-1 MMTV Mouse Hyperplasia, adenocarcinoma High [28]
FGF7 (KGF) MMTV Mouse Hyperplasia, adenocarcinoma High [29]
FGF8 Wnt-1 MMTV Mouse Hyperplasia, adenocarcinoma High [30]
c-src MMTV Mouse Hyperplasia, occasional neoplasia Median [31]

Receptors for
growth factors

ErbB-2 (Neu) p53 MMTV, WAP Mouse rat Hyperplasia, adenocarcinoma, lung
metastasis

High [32–35]

ER� SV40T MMTV, Tet-op Mouse Hyperplasia, adenocarcinoma High [36]
RET-1 MMTV Mouse Hyperplasia, adenocarcinoma High [37]
Tpr-MET MMTV Mouse Hyperplasia, adenocarcinoma High [38]

Signal tranduction
pathways

ras p21, myc, MMTV, WAP Mouse Hyperplasia, adenocarcinoma,
accelerated tumorigenesis and
metastasis

Median [6,39–43]

PTEN MMTV Mouse Fibroadenoma, adenocarcinoma,
metastasis to lung and lymph node

High [44,45]

CK2 MMTV Mouse Hyperplasia, adenocarcinoma Median,
long latency

[46]

Cox-2 MMTV Mouse Hyperplasia, dysplasia,
adenocarcinoma, metastasis to lymph
node

High [47]

c-Rel MMTV Mouse Hyperplasia, adenocarcinoma,
adenosquamous carcinoma, spindle
cell tumor

High [48]

PPAR� PyV-mT Mouse Accelerated mammary tumorigenesis High [49]

Viral oncogenes PyV-mT Shc/Grb2 PPAR� MMTV Mouse Hyperplasia, adenocarcinoma, lung
metastasis

High [49–52]

SV40T Bcl-2, p53, bax, maspin,
K-ras

C3(1),WAP Mouse rat Hyperplasia, adenocarcinoma, lung
metastasis, osteosarcoma, soft tissue
sarcoma

High [53–63]
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Cell cycle regulators p53 Wnt-1, Brca1, p53172-H Null, WAP, MMTV,
Cre/loxP

Mouse Rare mammary tumor in p53−/− mice,
increased tumor incidence in
p53−/−/Wnt-1, -Brca1 mice

High [35,64–68]

p53 p53 somatic mutation Cre/loxP Mouse ER-positive and ER-negative tumors,
high metastasis

High [69]

Myc Bcl-2 MMTV, WAP Mouse Hyperplasia, adenocarcinoma,
accelerated tumorigenesis

High [4,70,71]

Cyclin D1 MMTV Mouse Hyperplasia, adenocarcinoma High [72]
Cyclin D3 MMTV Mouse Squamous metaplasia Low [73]
CDK4 Knock-in Mouse Adenocarcinoma, adenosquamous

carcinoma
Median [74]

MNT MMTV Mouse Adenocarcinoma High [75]
Cyclin E BLG Mouse Hyperplasia, adenocarcinoma Median [76]
HCCR-2 Constitutive Mouse Mammary tumors and metastasis Median [77]

Differentiation Wnt-1 FGF3, p53, pRB, ER MMTV Mouse Hyperplasia, adenocarcinoma High [65,66,78]
Wnt10b MMTV Mouse Hyperplasia, adenocarcinoma High [79]
�-Catenin MMTV Mouse Hyperplasia, adenocarcinoma High [80]
NOTCH4 (INT3) TGF�, pRB WAP, MMTV Mouse Displasia, adenocarcinoma, lung

metastasis
High [81,82]

Miscellaneous
targets

Stromelysin WAP Mouse Hyperplasia, adenocarcinoma,
carcinosarcoma, metastasis to lung
and kidney

Median [83]

MTS-1 MMTV Mouse Adenocarcinoma, lung metastasis High [84]
MMP-1 (membrane type) MMTV Mouse Hyperplasia, dysplasia,

adenocarcinoma
High [85]

CDC37 Myc, cyclin D1 MMTV Mouse Hyperplasia, adenocarcinoma,
adenosquamous carcinoma

Median [86]

Prolactin Neu-related
lipocalin (NRL)

Mouse Hyperplasia, adenocarcinoma,
adenosquamous carcinoma

High [48]

CSF-1/c-fms
colony-stimulating factor
and its receptor

MMTV Mouse Hyperplasia, dysplasia, increased
tumorigenesis

Median [87]

Aromatase DMBA treatment Constitutive Mouse Hyperplasia, dysplasia, increased
tumorigenesis with DMBA treatment

High [88–91]
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Table 3
Promoters commonly used in transgenic mouse models

Promoter name Expression pattern in
mammary gland

Dependence on
hormone/pregnancy

Advantages/drawbacks Suitability for
prevention
study

Reference

Mouse mammary tumor virus
longternimal repeat
(MMTV-LTR)

Ductal, alveolar cells Expressed in all
developmental stages,
high expression in
pregnancy

Patchy, mosaic expression ++++ [92,93]

Whey acidic protein (WAP) Preferentially alveolar
cells

Mainly during
lobularalveolar
differentiation

Hormone/pregnancy
dependent

++ [8]

C3(1) promoter from rat
PSBP

Ductal, alveolar cells Independent of estrogen
and/or pregnancy

Unaffected by hormone ++++ [54,95]

Bovine�-lactoglobulin
(BLG)

Specific to MG Activated in late
pregnancy and lactation

Hormone/pregnancy
dependent

++ [101]

Metallothionein (MT) Most mammary cells No Inducing transgene
expression with heavy
metal treatment

++ [15]

Tet-on, tet-off inducible
systems

Ductal, alveolar and
myoepithelial cells

Dependent on the
collaborating promoter

May induce at any time,
need at least two
transgenes

++++ [70,98,99]

Neu-related lipocalin (NRL) Most mammary cells Independent of hormone
stimulation

Unaffected by hormone +++ [48]

Cre/loxP system Dependent on the
promoter in transgene

Dependent on the
collaborating promoters

May induce to delete
genes at any time

++++ [100]

K14 Most mammary cells Independent of hormone High expression in skin + [102]

used the MMTV long terminal repeat to drive
transgene expression in the mammary gland. The
MMTV promoter drives transgene expression
in ductal and alveolar cells in all developmental
stages of the mammary gland. Importantly, the
MMTV promoter is regulated hormonally and
is dramatically enhanced during pregnancy[92].
This promoter has been very useful for studies of
mammary gland development and tumorigenesis.
However, one potential drawback of this promoter
is that the transgene is expressed in a non-uniform,
mosaic pattern[93]. In addition, there is some em-
bryonic expression of genes regulated by this pro-
moter, which can lead to developmental problems
[94].

2. Whey acidic protein (WAP) promoter: WAP
promoter drives expression of transgenes pref-
erentially in alveolar cells during lobuloalveolar
differentiation. The WAP promoter is also regulated
by hormones in pregnancy[8].

3. C3(1) promoter: the 5′ flanking region of the C(3)1
component of the rat prostate steroid binding

protein has been used to express SV40 Large T
antigen in the mammary gland of female mice
that resulted in mammary tumors[54]. The C(3)1
promoter-driven transgene is activated in mammary
ductal and alveolar cells, and is independent of
estrogen and/or pregnancy regulation[95]. In
addition, this promoter also drives expression in the
prostate gland in male mice resulting in prostate
cancer.

4. Bovine �-lactoglobulin (BLG) promoter: this
promoter is activated in late pregnancy and during
lactation. It has been used to drive the expression
of growth factors and cell cycle regulators in
mammary alveolar cells. Since pregnancy reduces
the risk of breast cancer in humans[96], this
promoter may not be the best choice for mammary
cancer prevention studies.

5. Metallothionein (MT) promoter: the MT promoter
is not a mammary gland-specific promoter. How-
ever, it can be used to induce transgene expression
in most cell types, particularly when induced by
heavy metals. Thus, treatment with heavy metals
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such as zinc will induce increased expression of the
transgene and has been shown to cause mammary
tumors in transgenic models[97].

6. Inducible expression systems: inducible expression
of transgenes has been used for mammary gland
studies for almost a decade[98]. The MMTV
promoter was used to express the tet-responsive
transactivator, tTA. The tTA protein can activate the
expression of a second transgene that is controlled
by a tet-off operator in the absence of tetracycline.
However, because the tet-off system only directs
the expression of transgenes in a small fraction
of mammary epithelial cells, its application in
mammary biology is somewhat limited. More
recently, Chodosh developed a reverse tetracycline-
dependent transcriptional activator (rtTA) system
with MMTV promoter to achieve mammary
specific, tightly regulated homogeneous transgene
expression in the presence of tetracycline or its
derivative doxycycline. Using this system, the
c-myc transgene was specifically induced in mam-
mary epithelial cells[70,99]. This system, although
cumbersome because of the requirement of at least
two transgenes, is highly mammary gland-specific
and inducible, and has great potential for future
cancer prevention studies.

7. Conditional knockout: the recently developed Cre-
loxP system is another inducible and regulatable
mammary gland-specific expression system. In
this approach, the Cre gene is under the control
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5. Commonly used mouse models for breast
cancer prevention studies

A number of mouse models are particularly relevant
for prevention studies of breast cancer.

5.1. TGFα models

The transcription factor TGF� plays an important
role in mammary development and is overexpressed in
30–70% of breast cancer cases as reviewed by Rud-
land [103]. TGF� expression has been driven under
MMTV-LTR, WAP and MT promoters[12,13,15,104].
The WAP-TGF� model has been shown to have diffuse
mammary epithelial hyperplasia in pregnancy, multi-
focal hyperplastic alveolar nodules at latency of 2–6
months and mammary tumors at 6–12 months[15,105].
Yet, the TGF�-induced mammary tumors are focal and
relatively fewer in number[15], indicating that addi-
tional tumorigenic mechanisms are needed to promote
tumor development.

5.2. ErbB-2 (wild-type and activated forms)
models

ErbB-2(HER2, Neu) is one of the most intensively
studied genes in breast cancer biology. The gene is
amplified in 15–20% of human breast cancers, and is
overexpressed in approximately 30% of breast cancers
[106,107]. ErbB-2 is an indicator for clinical progno-
s
E TV
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[

of MMTV or WAP promoters. Activation of th
Cre gene causes conditional deletion of spe
target genes. Deletion of Brca1 gene by this sys
resulted in abnormal ductal development
activated apoptosis[100]. This system, like th
rtTA system described above, offers great prom
for future studies of mammary gland biology a
tumorigenesis.

To date, almost all promoters used in transg
odels for mammary tumor development induce tr
ene expression in the mammary gland. However, t

s no specific promoter for mammary stroma. Con
ring that stromal structure has an important impac
ammary gland development and tumorigenesis

dentification and characterization of a stroma-spe
romoter would be a major advance in mammary g
iology.
is, metastasis and tamoxifen resistance[108–110].
rbB-2 had been engineered to express under MM
nd WAP promoters. Wild-type and mutated Erb

ransgenic mice develop mammary tumors in sev
trains around 7 months of latency[32,33,111–114.
ultiple transgenic models have confirmed that
arly ErbB-2 model carries a valine to glutam
cid substitution in the transmembrane domain
onfers constitutive activation of the receptor in
bsence of ligand[8]. More relevant to human brea
athology, a late wild-type ErbB-2 model develo
ammary tumors that carry sporadic mutations

he transgene in the tumor, but not in the adja
ormal mammary tissue[114]. The mammary tumo

n ErbB-2 transgenic mice are ER-negative and t
athologic appearance resembles lobular and alv
henotypes found in about 5% of human breast can

114].
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5.3. Wnt-1 model

Wnt-1 was originally found to be activated after
MMTV infection, and the resulting mice had a high
incidence of mammary tumors. Wnt-1 is a glycopro-
tein that signals through the�-catenin pathway. Its
expression is seen throughout mammary gland de-
velopment, but not in the adult gland. Deregulation
of the downstream effectors in the Wnt-1 signaling
pathway is involved in the tumorigenesis of several
tumor types including breast cancer[115]. MMTV-
Wnt-1 expression causes ductal hyperplasia in late
gestation and in prepubertal mice[78]. The Wnt-
1 mice develop adenocarcinoma at 6–12 months of
age [78,116]. These tumors demonstrated a moder-
ately differentiated ER-negative phenotype, and are
heterogeneous in ER-positive and/or ER-negative sta-
tus. The MMTV-Wnt-1 mice have been crossed with
MMTV-Fgf3, Sky−/−, p53−/−, ER�−/− and TGF�
[117]. There is a synergistic effect between Wnt-1 and
Fgf3 [116], as these bigenic animals showed short-
ened latency to develop mammary tumors. The p53
KO mice bred with Wnt-1 mice develop mammary
tumors significantly faster than the p53+/− counter-
part [66]. Metastasis in Wnt-1 mice occurs to lymph
node and lung, even after the primary tumors are re-
moved. Therefore, Wnt-1 model is more relevant to
human breast cancer in two aspects: stroma signal-
ing is important in breast tumorigenesis since hu-
man mammary gland has a significant proportion of
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5.5. c-myc model

c-myc is a transcription factor that dimerizes with
Max and regulates target gene promoters. A defined
role for c-myc has been shown in cell cycle regulation
and apoptosis. c-myc regulates normal mammary
development and hormone-related proliferation, and
also controls involution and remodeling[121]. Further,
c-myc is deregulated in many human breast cancers.
c-mycgene is amplified in approximately 15–20% of
all human breast cancers and is overexpressed in up to
70% of breast cancers[122]. Several c-myc transgenic
models have been developed in which thec-mycgene
is expressed using MMTV or WAP promoters. The
mice for each of these models develop mammary
tumors at a high rate[4,15,123]. MMTV-c-myc mice
develop spontaneous mammary adenocarcinomas
within 4–8 months[4]. WAP-c-myc mice develop ade-
nocarcinomas or solid carcinomas in 80% of female
transgenic mice after multiparity, at latency of 5–10
months [15,123]. These c-myc-induced mammary
tumors are ER-negative tumors. It is important to
note that c-myc overexpression does not transform
all mammary epithelial cells, as suggested by the
long latency. This suggests that additional events are
required for c-myc-induced transformation of mam-
mary cells. In this regard, the c-myc model reflects the
attributes of human breast carcinogenesis, and hence is
a potentially ideal mouse model for cancer preventive
intervention.

5

40
T p53
a is ex-
p roid
b car-
c ors
i ral
u tion
s rse
f esis:
a ep-
i at
1 age
[ op
t nal
tromal structure; and metastatic route is simila
hat of human breast cancer. In addition, Wnt-1
ors may be heterogeneous in ER status, ren

ng it a unique model for breast cancer preven
tudies.

.4. Ras models

Rasmutation is infrequent in breast cancer[118].
owever, wild-type ras is significantly activated
reast cancers overexpressing EGFR and/or E
[119]. Ras driven by WAP and MMTV is suffi

ient to induce hyperplasia, adenocarcinoma, acc
ted tumorigenesis and metastatic mammary tu

41–43,120]. The MMTV-h-ras transgenic mice d
elop mammary gland tumors from 5 weeks to
onths of age[39].
.6. SV40 T-antigen models

Simian virus 40 large and small T-antigens (SV
ag) induce mammary tumors by inactivating the
nd Rb tumor suppressor genes. When SV40 Tag
ressed using the promoter C3(1) from prostate ste
inding protein, the transgene induces mammary
inomas in 100% of female mice and prostate tum
n all male mice[53–55]. The C3(1) model has seve
nique characteristics for breast cancer preven
tudies. The model mimics a well-defined time cou
or progressive mammary lesions and tumorigen
typical ductal epithelia at 8 weeks, mammary intra

thelial neoplasia (similar to human DCIS lesion)
2 weeks and invasive carcinoma by 16 weeks of

53]. Most interestingly, the C3(1) mice all devel
umors in virgin animals without the need of additio
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hormonal stimulation from pregnancy, a superior at-
tribute over several other transgenic models. Another
valuable feature of this model is that the C3(1) pro-
moter itself is not stimulated by estrogen or pregnancy,
and the tumors are ER-negative and estrogen-
independent. Therefore, C3(1) model is especially
useful for studying ER-negative mammary tumorige-
nesis. The SV40T has also been expressed using the
WAP promoter[56,57,59]. In this model, all female
mice develop mammary tumors by 8–9 months of age.
Histologic appearance of the tumor varies from well- to
poorly-differentiated phenotypes. Pregnancy enhances
the tumor development due to the WAP promoter, and
the first tumors appear at 6 months of age after one
pregnancy. Similar to C3(1) model, the tumorigenesis
in this model is characterized by three distinct stages:
initial proliferation, hyperplasia and adenocarcinoma
[58]. An interesting attribute of this model is the high
level of proliferation, apoptosis and fibrosis in the
tumor. This model is potentially useful to explore the
early events during mammary tumorigenesis, partic-
ularly with respect to cellular proliferation and cell
death.

5.7. p53 models

Alterations of the p53 tumor suppressor gene are
frequently detected in human breast cancer, with
up to 40–50% of all human breast cancers having
p53 mutations[124]. Several animal models have
b t p53
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tency[126]. An important characteristic of this model
is that it develops mammary tumors similar to human
high-grade breast adenocarcinoma in the presence of
carcinogens and oncogenes. Thus, WAP-p53172R-H

accelerates carcinogen- and oncogene-mediated
tumorigenesis, and is useful for cancer preventive
intervention.

5.8. Cyclin D1 model

CyclinD1is amplified in about 20% of human breast
cancers[127], while the cyclin D1 protein is overex-
pressed in more than 50% of human breast cancers
[128–130]. In addition, loss of cyclin D1 interferes
with mammary tumorigenesis. Sicinski and cowork-
ers crossed cyclin D1−/− KO mice to four different
mammary oncomice and found that cyclin D1 mediated
the MMTV-c-neu and MMTV-v-Ha-ras induced mam-
mary tumors, but not MMTV-c-myc and MMTV-Wnt-
1 induced mammary tumors, suggesting that cyclin D1
is essential for the Neu-Ras pathway and the tumors
dependent on cyclin D1[131]. Cyclin D1 overexpress-
ing breast cancers have been modeled by Wang et al.
who developed an MMTV-cyclin D1 transgenic model.
These mice have enhanced proliferation of mammary
epithelial cells, and develop mammary carcinomas at
a mean age of 18 months[72]. Therefore, the cyclin
D1 transgenic mouse models a significant proportion
of human breast cancers, and thus may be useful to
study mammary carcinogenesis.
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ene deleted or disrupted in mammary gland c

35,65,125,126]. Mammary tumors are infrequen
bserved in p53null mice because the mice fi
evelop lymphoma and die of these tumors be
evelopment of mammary gland tumors. Med
eveloped a transplantable BALB/c-p53null mammary
pithelium and demonstrated that lack of p53 func

s sufficient to cause mouse mammary tumorigen
hough hormone stimulation is an effective enhan
or the p53null-induced tumorigenesis[64]. A WAP-
53172R-H transgenic mouse model was develo

n which p53172R-H functions as a dominant-negat
utant [35,126]. The WAP-p53172R-H mice develop

umors in shorter latency after DMBA treatment. T
ice developed by crossing MMTV-ErbB-2 w
AP-des-IGF-1 have shown significantly reduced
. Considerations in choosing models for breast
ancer prevention studies

As mentioned earlier, breast cancer is a com
isease caused by dysregulation of many diffe
ncogenes, tumor suppressor genes and gr

actor pathways. The currently available models
aluable tools for the elucidation of the mechanism
ammary tumorigenesis. However, it is importan

ecognize that no one model can represent all the
erent forms of human breast cancer. There are un
equirements for the models if one wishes to con
revention studies. Hence, when choosing an appr
te model for cancer prevention studies from the l
epository, one should consider the following as gen
uidelines:
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1. General relevance to human breast cancer: a num-
ber of models such as ErbB-2, myc or p53−/− and
Brca1 or Brca2 models are highly relevant to hu-
man breast cancer, in terms of comparing gene
expression profiles in mRNA and protein levels,
and pathological presentations. Other models may
be less relevant to human breast cancer (e.g., ras
models).

2. Effect of chemopreventive agents on transgene ex-
pression: transgenic models are excellent choices
for testing the efficacy of chemopreventive agents.
However, because chemopreventive agents may
have an effect on expression of the transform-
ing transgene, it is imperative that studies using
transgenic mouse models rule out this possibil-
ity. To be a useful study, the researcher must first
demonstrate that the chemopreventive agent does
not reduce the expression of the transgene. It is
important to note that carcinogen-induced mod-
els and gene knockout models do not have this
problem.

3. ER status of the tumors: human breast cancers can
be categorized as ER-positive or ER-negative tu-
mors. Yet, most mouse models produce ER-negative
mammary tumors. For example, ErbB-2 model pro-
duces ER-negative tumors. While this model is use-
ful to study ER-negative tumorigenesis, other mod-
els will need to be used to study ER-positive tu-
morigenesis. Useful models to study ER-positive
breast cancer include the DMBA-induced rat model,
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7. Examples of chemopreventive drug trials
using transgenic mouse models

7.1. SERMS

While classic SERMs such as tamoxifen and ralox-
ifene are now being compared in the NSABP STAR
trial to compare their efficacy and safety profiles, other
hormone-regulating agents are also being tested in
animal models. The human clinical trials show that
SERMs are only able to prevent ER-positive tumor
formation. However, in pre-clinical studies using
MMTV-ErbB-2 mice, the mammary tumor incidence
was reduced significantly in mice given tamoxifen
at an earlier age (8–18 weeks of age)[132,133]. In
addition, a combination of tamoxifen and angiostatin
cDNA delivery achieved greater suppression of tumor
growth than tamoxifen or angiostatin alone[134].
A further combination of tamoxifen, angiostatin and
TIMP-2 achieved 90% reduction of tumor incidence
in the MMTV-ErbB-2 model [135]. These results
suggest that in some cases, anti-estrogen SERMs can
suppress the development of ER-negative cancers.
The underlying mechanism is unknown at this time.

7.2. Aromatase inhibitors

Aromatase is a key enzyme in synthesizing en-
dogenous estrogen in peripheral tissue. The trans-
genic model overexpressing aromatase demonstrates
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estrogen-induced ACI rat model and the p53null

mouse model. Each of these develops mammar
mors that are ER-positive. So the choice of wh
animal model to use will depend on whether on
attempting to prevent ER-positive, or ER-nega
breast cancer, or both.

. Other factors: each individual transgenic model
its own unique characteristics in transgene exp
sion (which is dependent on the promoter cho
and kinetics of tumorigenesis. Therefore, the t
of tumor development, tumor multiplicity, path
logical presentation, critical molecular pathwa
biomarkers and metastatic potentials vary am
models. When designing a prevention study, the
netics of tumorigenesis, as well as the tendenc
develop pre-invasive, invasive and metastatic
cers, need to be integrated into the planning o
experiments.
ncreased tissue estrogenic activity and inductio
yperplastic and dysplastic lesions in mammary gla
ith or without circulating estrogen[90,91]. These pre
eoplastic changes appear to be further stimulate

he carcinogen DMBA, leading to an increased i
ence of mammary tumors in mice. Low dose le
ole, an aromatase inhibitor, inhibits expression of
R and cell cycle regulators, and reduces mamm
ell hyperplasia and the index of proliferation mar
CNA [88–91]. These studies have provided a vi
xample of how to use a transgenic mouse mod
lucidate important tumorigenic mechanism.

.3. Retinoids

Retinoids are Vitamin A analogs that mediate
ranscriptional regulation with their receptors RAR a
XR. Studies in our laboratory have demonstra

hat RXR-selective retinoids are much less toxic t
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RAR-selective retinoids. LGD1069 (Bexarotene, Tar-
gretin), an RXR-selective retinoid, prevents ER-
negative mammary tumors in C3(1) SV40T and
MMTV-ErbB-2 transgenic mouse models[136,137].
Another newer RXR-selective retinoid, LG100268, has
been reported recently by Suh and colleagues to reduce
tumor incidence in the NMU rat model by promoting
TGF�-dependent apoptosis[138,139]. The most strik-
ing finding in these studies is that when LG 100268 was
used in combination with a third generation SERM, ar-
zoxifene, only very low dosages of both arzoxifene and
LG100268 were needed to cause significant reduction
of tumor burden[138]. Similar results were obtained
using the MMTV-ErbB-2 model.

7.4. Tyrosine kinase inhibitors (TKIs)

EGFR (HER1, ErbB-1) or other members of its
receptor family (HER2, 3, 4) are overexpressed in a
portion of human breast cancers and are highly ex-
pressed in ER-negative tumors[140,141]. TKIs can
effectively block the tumorigenic potentials that arise
from the EGF signaling pathway. ZD1839 (IRESSA) is
the prototype of this class of drugs[142]. Recent work
in our laboratory has demonstrated that this drug pre-
vents ER-negative tumor formation in MMTV-ErbB-2
mice. The median time to tumor formation was approx-
imately 230 days in vehicle-treated mice and more than
310 days in mice treated with ZD1839 at 100 mg/kg
(P< 0.001). This effect was achieved by reducing pro-
l cle
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given at 500 ppm, celecoxib significantly suppresses
tumor incidence and PGE2 levels in the MMTV-ErbB-
2 model[147]. This drug is also under evaluation in
our laboratory using other transgenic models.

8. Barriers to progress

Tremendous progress has been made in the last 20
years in the field of breast cancer prevention. The most
important advance came from the observation from
clinical trials that anti-estrogen SERMs prevent the de-
velopment of breast cancer. Although SERMs are ef-
fective in reducing the incidence of ER-positive breast
cancer, there are no effective strategies to prevent ER-
negative breast cancer. Identification of novel targets
and development of effective cancer preventive agents
will be necessary to prevent all breast cancers. While
many investigators are attempting to develop effective
strategies to prevent breast cancer, there remain several
major barriers that slow the progress. These include:

1. The Dupont Patents
On 12 April 1988, Drs. Philip Leder and Timothy

Stewart patented the “OncoMouse”. This is the first
time that a living animal was given patent protection
by the US Patent and Trademark Office. This mouse
was created by inserting a cancer-causing gene into
its genomic DNA. Thus, the mouse is cancer-prone,
and is suitable for cancer biology and cancer pre-
vention studies. The patent was extremely broad
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iferation and increasing expression of the cell cy
egulator p27[143].

.5. Cox-2 inhibitors

One of the most promising new class of chemo
entive agents is the Cox-2 inhibitors. Cox-2 is
f the rate-limiting enzymes in converting free arac
onic acid to PGG2. The two downstream prod
GE1 and PGE2 enhance mitogenesis in mam
ells stimulated with EGF[144]. Cox-2 is overex
ressed in 56% of breast cancers including D
s well as infiltrating ductal and lobular carcino

145,146]. Mammary glands from transgenic MMT
ox-2 mouse model demonstrate hyperplasia, dy
ia and development of metastatic tumors[47]. The
pecific Cox-2 inhibitor, celecoxib, is currently be
ested for its ability to prevent cancer in humans. W
in terms that it coversall genetically engineere
non-human mammals[148]. DuPont subsequent
purchased the rights for this patent and othe
lated patents for $6 million dollars. The OncoMo
portfolio now contains three patents, and DuP
sells licenses to use transgenic mice in biomed
research. DuPont has attempted to patent the
coMouse in Europe, Canada and Japan. The E
pean Patent Office has recently restricted the p
to “transgenic mice” only[149]. On 5 Decembe
2002, the Supreme Court of Canada ruled tha
OncoMouse cannot be patented in Canada, ma
Canada the only Western country to deny a pa
of a cancer-prone mouse. Because these pa
[148,150,151]could slow the progress of cancer
search, NIH reached an agreement with DuPon
NIH staff and grantees can use transgenic mice
non-profit use. Although this agreement does fa
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itate NIH-funded research, the DuPont OncoMouse
patents certainly impede collaborative studies with
industry. Thus, these patents do slow the pace of
progress in cancer prevention research[152–154].

2. Access and availability of new agents and drugs
Prevention studies frequently involve the testing

of new agents or drugs in pre-clinical models. These
new agents are developed in academic laboratories,
in federal laboratories and by pharmaceutical com-
panies. Certainly, the largest number of novel agents
is held by pharmaceutical companies. To make rapid
progress, these agents will need to be tested rapidly
and effectively. Thus, collaboration between phar-
maceutical companies and translational researchers
is essential. Unfortunately, legal concerns over in-
tellectual property and licensing issues often im-
pede or delay these collaborative activities. To make
rapid progress and identify the most effective agents
for the prevention of breast cancer, these barriers
must be overcome.

3. Combination of preventive agents and drugs
Considering that cancer is a genetic disease com-

posed of multiple stages and factors, the combined
use of several preventive agents to block multiple
oncogenic pathways is likely to be necessary to pre-
vent cancer. Recent data from Sporn and coworkers
has demonstrated that the combination of arzox-
ifene and an RXR-selective retinoid has achieved
convincing results in preventing breast cancer[138].
However, the testing of this combination in humans
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mary biology research community with new tools to
understand breast tumorigenesis mechanisms. Using
these models, several important classes of chemopre-
ventive agents have already been shown to have impres-
sive preventive effects (SERMs, RXR retinoids, TKIs
and Cox-2 inhibitors). In addition, recent studies have
shown synergism between drugs with different targets
(e.g., arzoxifene and LG100268[138]). In the future,
the study of a combinatorial approach using multiple
chemopreventive agents will need to be undertaken to
effectively prevent breast cancer.

New transgenic models will also be needed to better
represent human breast cancer. The majority of avail-
able models represent either ER-positive breast can-
cers or ER-negative breast cancers. Clearly, models
that mimic human breast cancer etiology in developing
bothER-positive and ER-negative breast cancers are
needed. Several recent transgenic models fulfill this
need[64,69,155], and more models will be developed
in the future. The long-term goal of animal model re-
search is to develop and use animal models to identify
effective strategies for the treatment and prevention of
human cancer.
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. Future directions

In the past decade, the generation of transgenic
ls for breast cancer research has provided the m
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