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A B S T R A C T
In recent years, radiomics, defined as the extraction of large amounts of quantitative features from medical images, has gained emerging interest. 
Radiomics consists of the extraction of handcrafted features combined with sophisticated statistical methods or machine learning algorithms 
for modelling, or deep learning algorithms that both learn features from raw data and perform modelling. These features have the potential to 
serve as non-invasive biomarkers for tumor characterization, prognostic stratification and response prediction, thereby contributing to precision 
medicine. However, especially in nuclear medicine, variable results are obtained when using radiomics for these purposes. Individual studies 
show promising results, but due to small numbers of patients per study and little standardization, it is difficult to compare and validate results 
on other datasets. This review describes the radiomic pipeline, its applications and the increasing role of artificial intelligence within the field. 
Furthermore, the challenges that need to be overcome to achieve clinical translation are discussed, so that, eventually, radiomics, combined with 
clinical data and other biomarkers, can contribute to precision medicine, by providing the right treatment to the right patient, with the right dose, 
at the right time.
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In precision medicine, medical decisions and interven-
tions are tailored to the needs of the individual patient 

and based on their susceptibility to a particular disease or 
predicted response to therapy.1 In oncology, the choice 
of therapy for a patient is mostly based upon clinical pa-
rameters and molecular characterization of the tumor tis-
sue, with biopsy as the gold standard.2 However, biopsy 
comes with the risk of a sampling error, which may be 
caused by sampling only a small fraction of a heteroge-
neous tumor, missing the tumor entirely or heterogeneity 
between multiple lesions.3 This might lead to misinterpre-
tations and consequently suboptimal clinical management 

of these patients. The problems related to biopsies might 
be addressed through the use of the less invasive medical 
imaging, particularly given that medical imaging is used in 
routine clinical practice for diagnosis and staging of onco-
logical patients. Due to its less-invasive character imaging 
can be repeated over time during the development of the 
disease and during treatment.

Unlike biopsies, medical imaging can provide informa-
tion about the entire tumor or disease phenotype, includ-
ing intra- and interlesional heterogeneity.4 Traditionally, 
visual interpretation of medical images consists of (quali-
tative) assessment of size, shape, patterns, signal intensity 
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diomic pipeline. This review investigates the promises of 
radiomics in precision medicine, the rise of artificial intel-
ligence (AI) techniques in this field, harmonization strate-
gies, challenges that need to be overcome to achieve clini-
cal translation and the problems that have to be solved to 
be able to move towards validated and clinically accepted 
imaging biomarkers.

Radiomics

Rationale

Before it was found to be useful to support clinical man-
agement decisions in precision medicine, automated im-
age analysis found its way in radiology and nuclear medi-
cine to deal with capacity problems. In the last two de-
cades, the number of diagnostic imaging procedures has 
increased rapidly.11, 12 This is caused by improvements 
of technology (faster hardware and state-of-the-art scan-
ning protocols and post-processing), resulting in lower 
radiation burden; a wider availability of scanners, low-
ering costs; and an increased demand of scans by refer-
ring physicians. However, the number of trained readers 
has not increased proportionately. This leads to excessive 
workloads, which increases the risk of errors.13 Automated 
image analysis and other components using AI have been 
investigated to reduce the workload and resulting errors, 
and may facilitate in tasks like lesion or disease detection, 
classification and diagnosis, segmentation, quantification, 
patient planning and physician order entry.6, 12 Within the 
field of nuclear medicine, compared to other fields of med-
ical imaging, the number of procedures has increased less 
rapidly.14 Nevertheless, also in this field, workloads have 
been increasing due to a demand for more advanced and 
time-consuming image analyses, like PET response crite-
ria in solid tumors (PERCIST)15 and personalized dosim-
etry. Additionally, the introduction of total-body PET is, as 
a result of a lower radiation dose and a faster acquisition 
time, expected to generate higher throughput and eventu-
ally an acceptable cost-to-benefit ratio, probably leading to 
an increase in PET imaging,16 thereby increasing the need 
for automated image analysis.

Qualitative assessment of a medical image by a radi-
ologist or nuclear medicine physician is based on his or 
her training and experience and is therefore rather subjec-
tive and sensitive to recent experiences. When assessing a 
medical image, clinicians need to interpret many indepen-
dent variables at the same time, causing high conceptual 
complexity. Interestingly, Halford et al. found that prob-

(e.g. Hounsfield unit for computed tomography [CT] or 
standardized uptake value [SUV] for positron emission 
tomography [PET]) or intravenous contrast enhancement 
of tumors. However, medical images contain much more 
information hidden in the millions of voxels of both tu-
mors and healthy tissue5 that cannot be assessed visually 
by a human observer. Recent developments in computer 
science have introduced computational methods that can 
capture this concealed information in the interest of lesion 
or disease detection, classification and diagnosis, segmen-
tation and quantification.6

The extraction of a variety of quantitative features 
from standard medical imaging is studied in the field of 
radiomics. Radiomics consists of: 1) the extraction of pre-
defined, handcrafted features that can be combined with 
sophisticated statistical methods or machine learning al-
gorithms for modelling; 2) deep learning algorithms that 
both learn features from raw data and perform modelling.7 
Radiomic analysis aims to find stable and clinically rel-
evant image-derived biomarkers, also known as radiomic 
features, that provide a non-invasive way of quantifying 
and monitoring tumor characteristics in clinical practice.8 
Radiomics hypothesizes that certain features may reflect 
biological heterogeneity of the microenvironment in a tu-
mor and consequently provides information about specific 
tissue characteristics.9

Although many quantitative imaging features have been 
developed in different fields, feature extraction from medi-
cal imaging (i.e. radiomics) was introduced in 2012 and 
expectations have been high ever since.10 Radiomics is 
believed to have the potential to improve knowledge of 
tumor biology and, combined with clinical data and other 
biomarkers, guide clinical management decisions.5 Imag-
ing features would serve as non-invasive biomarkers for 
tumor characterization, prognostic stratification and re-
sponse prediction, thereby contributing to precision medi-
cine. However, especially in nuclear medicine, conflicting 
results are obtained in different studies and association of 
different radiomic features with patient outcome is still 
rather preliminary. Difficulties that researchers and clini-
cians are facing when developing and validating these po-
tential image-derived biomarkers are mainly related to the 
small numbers of patients per study, ultimately limiting 
the possibility to develop and explore robust imaging fea-
tures that are unequivocally related to relevant tumor char-
acteristics and patient outcome. While individual studies 
show promising results, it is still challenging to combine, 
compare and reproduce results of different studies due to 
little to no standardization in the different steps of the ra-
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radiomics assesses the association of radiomic features 
with biological and clinical endpoints, resulting in prog-
nostic and predictive models.23 At the moment, the field 
of radiomics can be divided into two areas: handcrafted 
radiomics and deep learning radiomics.24 Both principles 
are illustrated in Figure 1.

Handcrafted radiomics

The traditional, handcrafted, approach consists of im-
age acquisition and reconstruction, possible image post-
processing, volume of interest (VOI) segmentation, pre-
defined feature extraction, signature development and 
validation on one or several datasets.25 Therefore, large 
numbers of predefined handcrafted or engineered features 
are extracted from the VOI of the medical images.26 These 
features or selections of features are analyzed in statistical 
analysis or machine learning models that are trained for 
patient classification.

Three types of radiomic features, quantitatively describ-
ing shape, intensity and texture, are extracted. Shape fea-
tures, also known as geometric or morphological features, 
describe the size and outline of a lesion (i.e. VOI), for ex-
ample whether it is a perfect sphere or it is flattened. In-
tensity features describe the amount of tracer uptake: this 
class includes the commonly used SUV features such as 
maximum, peak or mean SUV, but also metrics like the 
range and skewness of the voxel values determined from 
histogram statistics. While intensity features express the 
amount of tracer uptake, they do not capture spatial tracer 
uptake heterogeneity. Texture features interpret relations 
in voxel values of neighboring voxels, thereby illustrating 
spatial (uptake) heterogeneity. Examples of texture fea-
tures classes are grey level co-occurrence matrix features, 
expressing how combinations of voxel values of neighbor-
ing voxels are distributed, and grey level run length matrix 
features, expressing the length of a consecutive sequence 
of voxels with the same grey level.27 Since there is no ab-
solute definition of heterogeneity, neither from a physical, 
nor from a biological perspective, many features are ex-
tracted, all describing a specific form of heterogeneity.

Harmonization of radiomic features

Especially in the early years of radiomics, promises were 
high. The realization that medical images contained much 
more information than could be assessed visually was rev-
olutionary and radiomics was expected to provide insights 
in disease processes and contribute to medical decision 
making on a large scale.10, 28 However, it turned out that 
radiomic features were sensitive to all kinds of technical 

lems defined with four variables are the limit of the human 
information processing capacity.17 The subjectivity is fur-
ther increased by inter- and intra-observer variability18 and 
sensitivity to mental and physical fatigue.19 AI algorithms 
can consider a large number of complex quantitative vari-
ables together, while being consistent, fast, tireless and ef-
ficient.6 Thereby, AI bears the potential to reduce variation 
in clinical practice, improve efficiency and prevent avoid-
able medical errors.20

The automated analysis of medical images already start-
ed in the 1970s with computer-aided detection or diagno-
sis (CAD). These algorithms used a limited set of image 
features and machine learning classifiers for localization 
of lesions and distinction between benign and malignant 
lesions. CAD systems have, for instance, been adopted for 
the detection and diagnosis of lung nodules on chest ra-
diographs and CT,21 and for the detection of breast cancer 
on mammograms.22 Radiomics differs from CAD on two 
facets: the number of image features has increased from 
8-20 in CAD to a few hundred or thousand for radiomics 
and while CAD mostly focuses on the detection of lesions, 

Figure 1.—Handcrafted and deep learning radiomic pipeline. A) In the 
handcrafted pipeline predefined features are extracted from a manu-
ally or (semi-) automatically defined volume of interest (VOI). Feature 
selection or dimension reduction is performed and these features are 
consecutively introduced in a statistical or machine learning model. B) 
Deep learning radiomics does not require VOI delineation, but processes 
the images in their raw form. The deep learning architecture consists of 
several hidden layers including convolutional and pooling layers, that 
extract increasingly complex features and perform feature selection and 
classification (courtesy of Gerrit Kracht).
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Image processing factors also influence the reproduc-
ibility of image biomarkers. These factors include SUV 
normalization, image interpolation method, voxel harmo-
nization, image discretization method, image discretiza-
tion levels and added noise sensitivity,32 but are beyond 
the scope of this review.

Image segmentation or volume of interest (VOI) delin-
eation, including manual and (semi)automatic approaches, 
is also an important source of variation. The choice of seg-
mentation method is often a compromise between accu-
racy and reproducibility.33 Manual delineation encounters 
large inter- and intraobserver variability. Semiautomatic 
approaches are preferred, since they are more reproduc-
ible. Still, the influence of delineation methods on the pre-
dictive value of the radiomic features remains unclear.33

Furthermore, the feature extraction itself was a major 
impediment for the reproducibility, validation and clinical 
translation of radiomics as a result of a lack of standardiza-
tion of (both implementation and extraction of) radiomic 
features. In the early years of radiomic research, large 
variation in feature values and feature definitions was 
seen between different radiomic software packages.34 In 
response, the Image Biomarker Standardisation Initiative 
(IBSI) provided common nomenclature and (mathemati-
cal) definitions for image biomarkers, benchmarks for im-
age processing and feature extraction, and reporting guide-
lines.27 Iteratively, nineteen software implementations that 
started with large initial differences, managed to converge 
to common reference values for radiomic features, first us-
ing a simulated phantom (initial strong or better consen-
sus: 7% of features, final strong or better consensus: 95%), 
later on CT images (initial strong or better consensus: 3%, 
final strong or better consensus: 91%).34

In a search for robust radiomic features that show mini-
mal variations at different time points, under different con-
ditions and with different feature definitions, repeatability 
(same subject, same conditions) and reproducibility (same 
subject, different scanners) studies have been performed to 
assess the effect of all above-mentioned technical factors 
on the predictive value of the radiomic features.26, 35-37 In 
general, intensity features (especially entropy) are assumed 
more reproducible than shape and texture features.36

Feature selection

As the -omics suffix, also used in terms as genomics, 
metabolomics and proteomics, suggests, radiomics com-
prises large amounts of features. In most studies, several 
hundreds of radiomic features are exploratively extracted 
from medical images. The term explorative indicates that, 

factors. These variations should be reduced in order to at-
tribute differences in feature values to tumor biology in-
stead of technical causes.8 To date, limited reproducibility 
(external validation) is still one of the major limitations of 
radiomics, hampering its clinical translation.

Image acquisition and reconstruction are the first steps 
in the radiomic pipeline. The factors that could affect these 
steps encompass, among others, patient preparation (in-
cluding the amount of injected activity, the time between 
activity injection and acquisition and radiopharmaceu-
tical-specific factors such as fasting glucose and insulin 
levels for the most commonly used tracer 2-[18F]fluoro-2-
deoxy-D-glucose — [18F]FDG), acquisition settings (e.g. 
scan duration per bed position), equipment characteristics 
(e.g. effective sensitivity of the scanner, and cross calibra-
tion between activity calibrator and scanner), reconstruc-
tion settings (e.g. attenuation and scatter correction algo-
rithms, reconstruction algorithm, number of iterations and 
subsets, post-reconstruction filter, partial volume correc-
tion/resolution modelling and voxel size). All these fac-
tors should be performed under the same or at least highly 
similar conditions, i.e. standardized, so that differences in 
radiomic feature values can be attributed to differences 
in tumor biology instead of technical variation. In prac-
tice, inhomogeneity of imaging data is a problem, since 
radiomic analysis often consists of retrospective analysis 
of standard-of-care images and reanalysis of previously 
published cohorts, where scanners and scan protocols may 
vary widely between different manufacturers and medical 
centers. This inhomogeneity complicates absolute quan-
tification of tracer uptake. For traditional quantification 
metrics used in PET imaging, i.e. the mean, peak and max-
imum SUV, the European Association of Nuclear Medi-
cine (EANM) has established guidelines for acquisition 
and reconstruction,29 which are shaped by an accreditation 
program set up by the EANM Research Limited (EARL). 
These guidelines are also used for radiomic analysis, and 
leads to a larger number of reliable, repeatable, and repro-
ducible features when the most recent EARL accreditation 
protocol is followed (EARL 2.0).30

Another harmonization strategy was proposed by Orl-
hac et al. to perform post-reconstruction harmonization 
for multicenter radiomic studies.31 This method intends to 
standardize features obtained using different image proto-
cols by means of preserving patient-specific effects, while 
removing center effects (batch effects). This approach, 
also known as ComBat harmonization, was first described 
in 2007 to address the batch effect in the field of genomics 
and was found suitable for radiomics as well.



NOORTMAN  NUCLEAR MEDICINE RADIOMICS IN PRECISION MEDICINE

282 THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING September 2020 

ally in high values for the median SUV. Also, between dif-
ferent feature classes, multicollinearity might occur, which 
is less obvious than for features from the same class, e.g. 
Tixier et al. found that grey level run length matrix and 
grey level size zone matrix features were strongly corre-
lated (r>0.9).43 Multicollinearity is a problem when fitting 
a regression model and can be seen in many early radiomic 
studies. Unsupervised feature selection, also known as 
dimensionality reduction, restrains multicollinearity. Un-
supervised methods use unlabeled data (no outcome) to 
create clusters of features showing similar patterns, for 
instance by calculating the distance between them in high 
dimensional space, thereby maintaining interactions be-
tween features.42 Clustering bears the potential to identify 
previously unknown associations between features and 
thereby provide new insights in diseases. An example of 
unsupervised dimension reduction is redundancy filtering, 
removing highly correlating features based on a threshold 
using a correlation matrix.44

Model building and validation

Subsequently, the (selected) features serve as an input for 
a predictive model. There are two categories of predictive 
models: classification models that are able to predict dis-
crete or categorical variables (e.g. benign vs. malignant) 
and regression, where a model is fitted to continuous vari-
ables (e.g. survival time). Modelling is a supervised learn-
ing task where a hypothesis (function) is fitted to the input 
data, and compared with the desired output value (clini-
cal characteristics, tumor phenotype, etc.).45 A predictive 
model could be created using AI that allows computers 
the ability to learn without being explicitly programmed. 
Examples of these so-called machine learning algorithms 
are logistic regression, support vector machines, decision 
trees and neural networks (deep learning).45 Currently, 
random forest is a popular supervised learning algorithm 
in medicine, since it is based on decision trees and hence 
resembles human “if-then” reasoning.23

Although there are many machine learning methods for 
classification and regression, there is no consensus yet on 
which one to prefer for radiomic analysis. Parmar et al. 
tested performance variability for several classification 
methods, feature selection methods and different numbers 
of features on two datasets of non-small cell lung carcino-
ma, demonstrating that the choice of classification method 
is the most dominant source of performance variability 
and, by that, being a crucial step towards stable radiomic 
biomarkers.4 They showed that random forest, bootstrap 
aggregating and Naïve Bayes algorithms showed relative-

for most features, there is no biological rationale that the 
feature represents certain tissue characteristics. There-
fore, many features are investigated, assuming that some 
features show association with underlying biology. This 
explorative nature makes radiomics data-driven research 
instead of hypothesis-driven research, making it difficult 
to maintain statistical power of individual studies. In this 
regard, challenges in radiomics differ from hypothesis-
driven biomarker research.38

The number of investigated features is generally large 
compared to the number of patients, scans or events in an 
average study. This introduces the curse of dimensionality, 
a problem that arises when data points (patients or scans) 
are analyzed in high-dimensional spaces (i.e. the hundreds 
of radiomic features per scan).4 The data space increases 
exponentially with the number of radiomic features, while 
the number of data points stays the same. Therefore, over-
fitting occurs and the generalization performance of the 
statistical model is negatively impacted.39 In this case, 
the model is specifically tuned to the training dataset and 
merely reflects its noise and random fluctuations, whereby 
it cannot be applied to other datasets. In standard biomark-
er research, only a few parameters would be tested for their 
association with outcome measures, while in radiomics, 
several tens or hundreds of features are tested simulta-
neously. This leads to multiple testing and increases the 
false discovery rate, since it could be expected that some 
of these features can show and association with clinical or 
biological parameters only based on chance.40

To reduce the problem of data dimensionality and mul-
tiple testing effects, a smaller number of features should 
be brought into a model. Therefore, a selection of features 
has to be made before they are used to create a model 
predicting specific patient or disease characteristics. Su-
pervised and unsupervised feature selection methods are 
applied.41, 42 Supervised approaches use data labelled with 
outcome and a selection of features is based on the dis-
criminative value of outcomes. Only the features with the 
best association with outcome are selected and introduced 
in the regression model. Supervised feature selection is 
prone to overfitting and ignores the interaction of features 
among themselves (multicollinearity),42 while, especially 
in radiomics, multicollinearity is an important challenge 
due to its explorative nature: many radiomic features show 
high correlations with other features. The intensity feature 
class contains many features based on the SUV: maximum 
SUV, peak SUV, mean SUV, etcetera. In this example, 
there is a strong correlation between the different SUV-
based features, given that a high mean SUV results gener-
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availability of more training data and an increase in com-
puting power with graphic processing units (GPU).51 Deep 
learning techniques also quickly gained interest in medical 
imaging for diagnosis support, image quality optimization, 
image reconstruction, segmentation, data visualization, re-
sponse assessment and report generation, and in healthcare 
in general for drug discovery, remote patient monitoring, 
medical diagnostics, risk management, wearables and hos-
pital management.24, 53-55 In recent years, the number of 
publications of deep learning in medical imaging has in-
creased exponentially.56

Deep learning radiomic methods differ from the hand-
crafted pipeline in the way that it is not necessary to define 
the VOI and to extract handcrafted features. Deep learning 
processes data in their natural raw form, contrary to ma-
chine learning approaches (like in handcrafted radiomics), 
where careful engineering and considerable domain exper-
tise were needed to build suitable features for the model.49 
The data-driven approach of deep learning is favored over 
the feature-driven approach, since the handcrafted fea-
tures set is finite and not necessarily represents the optimal 
quantification approach for the discrimination task.24 Deep 
learning networks, on the other hand, provide more ab-
stract and unconstrained feature definitions driven by data, 
resulting in a more informative and generalizable model.24 
In addition, the feature extraction and classification are 
partially or completely connected through the global opti-
mization process. However, a CNN usually needs a large 
labelled dataset for (supervised) classification.57 It is pre-
viously reported that CNNs do not necessarily result in 
significantly higher accuracies than handcrafted radiomics 
in combination with classification machine learning, but 
they are more user-friendly, since they require less data-
handling and are less labor intensive than VOI delinea-
tion.58

While the diagnostic performance of deep learning 
models is reported to be similar to that of handcrafted 
radiomic models58 and human observers,59 deep learning 
methods currently face some difficulties. Similar to hand-
crafted radiomics, deep learning radiomics suffers from a 
lack of standardization. There are no reporting standards, 
which limits reliable interpretation and replication of the 
studies.59 Also, (external) validation is limited and not all 
studies used the same samples to compare performance of 
the algorithm and the human observers.59

A disadvantage of radiomics in general, but of the deep 
learning approach in particular, is that clinicians struggle 
with inadequate comprehension of the capabilities of al-
gorithms. The large number of parameters (often millions) 

ly high performances. Deist et al. investigated the perfor-
mance of six classifiers on twelve clinical (non-radiomic) 
datasets, where random forest showed the best discrimina-
tion in six of 12 datasets and elastic net logistic regression 
the best in four of 12 datasets, but there was no single best 
classifier for all datasets.46 These studies indicate that there 
is no optimal algorithm for radiomic classification. The 
performance of a model might improve when different 
algorithms are combined, e.g. by using different machine 
learning algorithms for different random subsamples of the 
data, that are ultimately integrated to an overall decision 
(bagging). Model improvement could also be achieved 
by feeding subsequent algorithms data that previous algo-
rithms found difficult to classify (boosting).45

After the model is optimized to the training dataset, it 
can be utilized to predict outcomes for unseen observations 
(new patients). The performance of the model should be 
validated on a new, independent, dataset to assess whether 
the model is predictive for the target population as a whole 
or only for a specific subset of patients, e.g. patients with a 
specific demographic profile or patients who underwent a 
scan on a specific scanner. Validation could be performed 
using a dataset from the same institute, or preferably us-
ing one or more datasets from different institutes (external 
validation).47

Deep learning radiomics

More recently, deep learning methods in medical imaging 
gained interest. Deep learning is a form of machine learn-
ing (which is a form of AI), defined for the first time in 
1943.48 It is based on a statistical neural network struc-
ture, inspired by the human brain.24 Deep learning has the 
ability to learn non linear discriminative features directly 
from raw data.49 A convolutional neural network (CNN) 
is the most common deep learning architecture used in 
medical imaging. The CNN architecture comprises many 
convolutional and pooling layers with nonlinear activation 
functions that map image inputs to outcome measures. Ab-
stract imaging features are learned during the optimization 
(training) process.49 The first successful and commercial-
ized application of deep learning was already established 
in 1998, when LeCun et al. developed a CNN for hand-
written character recognition,50 but only in 2012 the use of 
CNNs took a leap.51 That year, at the ImageNet competi-
tion a CNN (AlexNet, developed by Krizhevsky et al.)52 
outperformed all machine learning approaches with half 
the error rate in an image recognition contest consisting of 
1000 object classes.49 This turn of events was enforced by 
the development of new techniques for efficient training, 
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these can be quantified using radiomics.69 In PET imaging, 
quantitative analysis of tracer uptake has been performed 
for several decades, for instance for response monitoring, 
by means of SUV, which is the radiopharmaceutical activ-
ity concentration (Bq/mL) normalized for injected activity 
per unit measure of distribution volume of the radiophar-
maceutical in a patient (e.g. body mass). For mass-based 
measures of volume of distribution the unit of the SUV 
therefore is g/mL.70 However, the commonly-used SUV 
metrics do only partially express heterogeneity in tracer 
uptake.71 Radiomic shape, intensity and texture features 
are computed to capture tracer uptake heterogeneity and/
or other tumor characteristics.

Between 2012 and the beginning of 2019, an exponen-
tial growth of articles with the term radiomics was ob-
served with a total of about 1000 papers, whereof approxi-
mately 27% concerned PET or PET/CT.72 CT remains the 
most frequently used modality for radiomic analysis, since 
it has a high spatial resolution and it is relatively easy to 
acquire large datasets, as a result of the number of patients 
for whom CT is indicated and the speed of imaging. [18F]
FDG is the most widely applied radiopharmaceutical in 
clinical practice, since it is an important tool in detection 
and staging of cancer and active inflammation, and also 
constitutes the majority of PET radiomic studies. Several 
studies showed the prognostic or predictive abilities of 
handcrafted radiomic features derived from [18F]FDG-
PET in different tumor types.73-78 These studies illustrate 
the discriminating capabilities of [18F]FDG-PET radiomic 
features for the stratification of histology, tumor grades 
or stages and clinical outcome. As an example, Li et al. 
created a radiomic signature, an outcome-specific combi-
nation of a few radiomic features, that could discriminate 
between mutant and wild-type epidermal growth factor 
receptor non-small cell lung carcinoma (accuracy: 80.8%, 
sensitivity: 82.6%, specificity: 78.3%).78 When combined 
with clinical characteristics, the predictive performance of 
the radiomic model even increased (accuracy: 82.7%, sen-
sitivity: 82.1%, specificity: 82.3%).

The field of handcrafted radiomics is evolving and new 
applications are being developed constantly. As an exam-
ple, delta radiomics, the monitoring of radiomic features 
over two or more time points, was identified as indicator 
for treatment response.79, 80 Furthermore, more recent ra-
diomic studies extract features from the PET as well as 
from the low-dose CT component of the hybrid images81 in 
order to gain the most information from integrated PET/CT 
studies. Also, radiomic features derived from other tissues 
than the primary tumor like peritumoral radiomics in CT,82 

in a deep learning model are not directly interpretable. In 
contrast to qualitative assessments by physicians, quan-
titative handcrafted or deep learning (radiomic) features 
lack an easy and intuitive interpretation.60 In this sense, 
algorithms can be regarded as black-boxes; even if we un-
derstand the mathematical definitions of the features, these 
features do often not represent knowledge we can interpret 
in the domain of biology or radiology.61 Radiogenomic ap-
proaches investigate relationships between imaging phe-
notypes and genomics,62 thereby contributing to the bio-
logical or clinical context of imaging features.

Also, comprehensive solutions, focusing on linking the 
features to underlying biological mechanisms, contribute 
to the confidence and interpretability of the algorithms. 
Therefore, especially in medicine, explainable AI (XAI) 
is gaining terrain to interpret the data in the context of a 
specific application and to retrace the results on demand.61 
Being able to reproduce and comprehend the knowledge 
extraction process is crucial, since causality is often nec-
essary for clinical decision making and might provide 
new insight in disease processes.63 This is an interesting 
trade-off, since the best models in terms of accuracy might 
be the least transparent and vice versa.64 XAI remains a 
technically challenging field and complete solutions have 
not been found yet.61 XAI can be divided into post-hoc ap-
proaches, explaining predictions in terms of what is read-
ily interpretable, and ante-hoc approaches, that represent 
explainability by design.63 Paul et al. presented an exam-
ple of a post-hoc XAI approach, where some deep learn-
ing features were successfully related to semantic features, 
i.e. features that are commonly used by a radiologist, in 
patients with lung cancer.65 An example of an ante-hoc, or 
intelligible, approach was introduced by Caruana et al. and 
presented an accurate model for the prediction of hospi-
tal readmission based on 4,000 variables, while still being 
able to explain predictions for individual patients.66

Applications

Automated image analysis using radiomics is performed 
on CT, magnetic resonance imaging (MRI) and PET imag-
es and is, more recently, also investigated for single-photon 
emission tomography (SPECT) and ultrasound (US).67, 68 
Whereas CT, US and, to some extent, MRI, are morphol-
ogy-based imaging modalities, PET and SPECT images 
represent biological and molecular characteristics using 
radiopharmaceuticals that target specific receptors or path-
ways. In these molecular imaging techniques, biological 
processes are quantitatively expressed by the (spatial dis-
tribution of) radiotracer uptake and it is hypothesized that 
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and immunohistochemical images, genomic data, etc. As 
a result of technological advancements, such as the devel-
opment of CNN and natural language processing,95 these 
large datasets could be used for extensive predictive mod-
elling, thereby bearing the potential to optimize clinical 
decision making and advance precision medicine. Several 
initiatives have been established to combine big data of 
different sources. Multiomics initiatives combine molecu-
lar profiling of tumors using genomics, epigenomics, tran-
scriptomics and proteomics.96 Radiogenomics focuses on 
relationship between imaging phenotypes and genomics, 
hypothesising that imaging features will be more informa-
tive when interpreted by taking into account their genetic 
context.62 Holomics refers to the combination of all avail-
able patient data for predictive modelling,97 thereby inte-
grating radiomic data with previously mentioned types of 
data. Integration of all the data in a data warehouse could 
lower current restraints in individual patient management 
imposed by trial designs and fragmented evidence.

The effort required for the curation of data is a ma-
jor roadblock to holomics and predictive modelling and 
makes it a labor-intensive process, since curated predic-
tor variables should often be manually extracted from the 
electronic health records (EHR) or imaging archives.98 
The process of data extraction usually focuses on a lim-
ited number of variables, as described in medical ethics 
protocols, whereas the vast majority of the information in 
the patient record is disregarded.98 However, ethical use of 
large amounts of data already stored in data repositories 
is a complex issue, particularly given that there is usually 
no standard informed consent of the patient. Furthermore, 
data are unstructured and suffer from poor standardiza-
tion, i.e. events are not registered in the same way and at 
the same point in time or not at all; data lack information 
about treatment outcomes; and data are not centrally col-
lected in the EHR, but are also stored in other programs 
like picture archiving and communication systems.60 The 
latter requires better integration of EHRs and other infor-
mation systems, and could be established by standardized 
communication formats like Fast Healthcare Interoper-
ability Resources (FHIR). Rajkomar et al. demonstrated 
that deep learning models using entire raw EHR records 
of 261,221 adult patients based on FHIR format outper-
formed traditional, clinically-used predictive models for 
multiple medical events like in-hospital mortality and pro-
longed length of admission.98

To reach the full potential of our data warehouses, good 
data management and standardization is of utmost impor-
tance to forward discoveries and innovation. We should 

as well as radiomics extracted from the bone marrow83 and 
metastatic lymph nodes84 in PET, were promising predic-
tors of clinical outcome. Additionally, radiomic features 
derived from parametric PET images were assessed for ad-
ditional information compared to radiomic features derived 
from static images, but were found to be strongly correlat-
ed between both imaging datasets.85 Lastly, handcrafted ra-
diomics has, to some extent, also been evaluated for tracers 
other than [18F]FDG. Radiomic analysis has been applied 
to [18F]fluorothymidine ([18F]FLT) PET86 and [68Ga] pros-
tate-specific membrane antigen-11 ([68Ga]Ga-PSMA-11) 
PET.87 Also, radiomics holds potential for more accurate 
characterization of different aspects of tumor biology, for 
example by gaining insight in tumor hypoxia using PET-
tracers like [18F]fluoromisonidazole ([18F]FMISO) and 
[18F]fluoroazomycin arabinoside ([18F]FAZA).88

Non-oncology applications of handcrafted radiomics 
can mostly be found in SPECT. Radiomics was success-
fully applied in cardiology for the prediction of coronary 
artery calcification in myocardial perfusion SPECT with 
[99mTc]sestamibi.67 In neurology, radiomics were exploited 
for outcome prediction in Parkinson’s disease on dopa-
mine transporter (DaT) [123I]ioflupane SPECT.89

While handcrafted radiomics is extensively studied, the 
use of deep learning radiomics is limited in nuclear imag-
ing. In [18F]FDG-PET, there are some examples of studies 
comparing CNNs with handcrafted radiomic analyses. Yp-
silantis et al. showed how a CNN outperformed the hand-
crafted radiomic approach for the prediction of response to 
neoadjuvant chemotherapy in oesophageal cancer.90 Wang 
et al. found similar performances for the CNN, handcrafted 
radiomics, and nuclear medicine physicians for the classi-
fication of mediastinal lymph nodes in non-small lung car-
cinoma.91 In this case a CNN is preferred over the hand-
crafted radiomic analyses, since it is more convenient and 
suffers less from selection bias. CNNs were also used for 
to diagnose thyroid diseases on scintigraphy92 and for the 
diagnosis of Parkinson’s disease on dopamine transporter 
(DaT) in SPECT.93 Compared with nuclear medicine, deep 
learning radiomics is more established in radiology; there 
are several examples of successful applications of deep 
learning radiomics in CT and MRI, demonstrating compa-
rable performance to human readers.94

Future perspectives

Hospitals accumulate large amounts of patient data: not 
only radiological images, but also clinical and demo-
graphic characteristics, laboratory results, pathological 
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greater clinical impact, but from an ethical perspective, 
negative results need to be published as well. Buvat et al. 
propose stricter editorial standards, focusing on among 
other things well-designed (statistical) methodologies and 
biologically relevant research questions. In this way, not 
publishing false-positive results caused by overanalysis 
of the data, could leave room for well-designed radiomic 
studies with true negative results. Furthermore, results 
could be published in journal sections dedicated to nega-
tive results or public repositories. Altogether, this would 
prevent unnecessary and expensive repeats of studies that 
were already conducted in different institutes.

Distributed learning might facilitate the investigation of 
stable and clinically relevant biomarkers. Individual insti-
tutes encounter problems collecting satisfactory datasets 
in terms of size and diversity to create a model. The vast 
majority of the algorithms is built on retrospective data 
and its performance is likely to be worse on data from 
other institutes with different characteristics of data and 
patient population. Simply combining data from different 
institutes is not sufficient to create a generalizable model, 
since these isolated data collection efforts suffer from in-
homogeneity of data caused by technological, human and 
organizational factors.101 Also, data sharing is hampered 
by legal and ethical concerns.101 To overcome these issues, 
Deist et al. developed a distributed learning algorithm that 
enables data sharing for machine learning without identifi-
able patient data leaving an institute, so that the institute 
remains in control of their data to preserve data privacy.101 
This is executed by a central server, located outside the 
institutions, containing the master algorithm, and for each 
institution a local algorithm, situated at their server. The 
master and local algorithms interact. With every patient, 
the local model of the institution updates, thereby also up-
dating the master algorithm. The master performs some 
checks and afterwards updates the local algorithms at indi-
vidual institutions. In this manner, local algorithms differ 
slightly from the master algorithm, in such a way that the 
models suit the patient population of an institution.

The potential of radiomics and AI has not remained un-
noticed: the number of start-ups focused on AI in medical 
imaging is rapidly growing. In 2018, McKinsey identified 
32 start-ups in this field,102 albeit in 2020, the number of 
companies tripled to 113, with total investments of $1.17 
billion.13 It is noteworthy that the share of nuclear medicine 
in this matter is less clear, since in 2018 only 3% (1/32) of 
these start-ups was focused on nuclear medicine.102

Despite industry being a booster of AI, to date, AI has 
not yet been adopted into clinical practice on a large scale. 

start to collect patient data systematically on a dedicated 
platform. Therefore, guidelines should be established on 
which information is required for a decision or medical 
intervention. Also, it should be pointed out when data are 
missing or of poor quality, so that it could be collected or 
corrected accordingly. Subsequently, additional data, like 
radiomic features, could be extracted from existing data, 
emphasizing the requirement of automated processing 
pipelines. Data should be collected according to the FAIR 
Guiding Principles, a framework contributing to scientific 
data management and stewardship, based upon Findable, 
Accessible, Interoperable, and Reusable data.99 However, 
good data management and stewardship are not intrinsic 
goals, but rather pre-conditions supporting knowledge dis-
covery and innovation.99 Starting with this prerequisite, 
we need well-trained bioinformaticians and computational 
biologists to analyze the large amounts of data. Only then, 
the thousands or even millions of data points could be used 
for predictive modelling and have the potential to provide 
new knowledge on disease characteristics and patient 
management.

A major impediment of radiomic as well as holomic 
research, especially when applying deep learning, is the 
collection of sufficient amounts of data with sufficient 
variation to answer research questions on specific diseases 
in precision medicine. Especially within nuclear medi-
cine, institutes struggle to collect homogeneous patient 
cohorts for radiomic studies, causing the development 
of a radiomic signature to be a challenge. Nevertheless, 
the development of the signature is only the beginning, 
since many hurdles will follow validating the signature 
and bringing it in clinical practice as image-derived bio-
markers. Validation is currently a large roadblock for the 
clinical translation of radiomic features. Due to the limited 
size of their datasets, most radiomic research focuses on 
the development of radiomic signatures. However, even 
more patients are needed for internal or (preferably) ex-
ternal validation, which both handcrafted and deep learn-
ing radiomic research lack.59, 88 It should be noted that it 
is also of great value to perform external validation of a 
radiomic signature from another center in a new patient 
population.47

In addition, the field of radiomics experiences a publica-
tion bias, addressed by Buvat et al. as ‘the dark side of ra-
diomics’.100 Their study showed that only 6% of radiomic 
studies concluded negative results, while these results 
might even have a larger impact and might challenge ex-
isting paradigms. Undoubtedly, positive results are more 
rewarding, increase journal influence metrics and have a 
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where probabilities of receiving different treatments are 
increased, proportional to the expected effectiveness of 
the treatment, conceptually proposed by Thomson et al. in 
1933.104 In this way, learning and earning are balanced, re-
sulting in the best choice for a specific patient given all the 
available information and knowledge.103 Further informa-
tion on these schemes are beyond the scope of this review 
but can be found in Kaptein’s review.103 While allocation 
schemes seem promising, it should be noted that scientific 
evidence is a delicate topic, with the RCT the undisputable 
best measure of evidence. The healthcare sector is reluctant 
to accept other forms of evidence, which might hamper the 
use of AI for precision medicine in clinical practice.

Conclusions

In the next decade, radiomics should redeem its promises 
in the field of radiology and nuclear medicine. The trans-
lational gap should be overcome and it should be dem-
onstrated that radiomic features could safely replace ex-
isting biomarkers. Developments are ongoing, including 
standardization and harmonization initiatives, integration 
with other datatypes in holomic approaches and initiatives 
for data or model exchanges. All these improvements to-
gether might lead to validated and explainable AI models 
capable of medical decision making that goes beyond the 
performance of a physician, thereby improving efficiency, 
reducing variation in clinical practice and reducing the 
chance of medical errors. Along these lines, radiomics and 
holomics can contribute to precision medicine by provid-
ing the right treatment to the right patient, with the right 
dose, at the right time.
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