Qi Dou

Qi Dou
The Chinese University of Hong Kong | CUHK · Department of Computer Science and Engineering

Assistant Professor at The Chinese University of Hong Kong

About

176
Publications
71,729
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,180
Citations
Introduction
Dr. Dou is an Assistant Professor at the Department of Computer Science and Engineering at The Chinese University of Hong Kong (CUHK). Her research is at the interdisciplinary field of medical image analysis and artificial intelligence, for improving lesion detection, anatomical structure computation and surgical robotics perception, with an impact to advance disease diagnosis and robot-assisted intervention via machine intelligence. Her lab currently has opening positions for PhD/RA/Postdoc.

Publications

Publications (176)
Article
Cerebral microbleeds (CMBs) are small haemorrhages nearby blood vessels. They have been recognized as important diagnostic biomarkers for many cerebrovascular diseases and cognitive dysfunctions. In current clinical routine, CMBs are manually labelled by radiologists but this procedure is laborious, time-consuming, and error prone. In this paper, w...
Article
While deep convolutional neural networks (CNNs) have achieved remarkable success in 2D medical image segmentation, it is still a difficult task for CNNs to segment important organs or structures from 3D medical images owing to several mutually affected challenges, including the complicated anatomical environments in volumetric images, optimization...
Preprint
Full-text available
Generalization capability to unseen domains is crucial for machine learning models when deploying to real-world conditions. We investigate the challenging problem of domain generalization, i.e., training a model on multi-domain source data such that it can directly generalize to target domains with unknown statistics. We adopt a model-agnostic lear...
Preprint
Full-text available
Multi-modal learning is typically performed with network architectures containing modality-specific layers and shared layers, utilizing co-registered images of different modalities. We propose a novel learning scheme for unpaired cross-modality image segmentation, with a highly compact architecture achieving superior segmentation accuracy. In our m...
Preprint
Full-text available
Recent advances in adaptive object detection have achieved compelling results in virtue of adversarial feature adaptation to mitigate the distributional shifts along the detection pipeline. Whilst adversarial adaptation significantly enhances the transferability of feature representations, the feature discriminability of object detectors remains le...
Chapter
Reconstruction of the soft tissues in robotic surgery from endoscopic stereo videos is important for many applications such as intra-operative navigation and image-guided robotic surgery automation. Previous works on this task mainly rely on SLAM-based approaches, which struggle to handle complex surgical scenes. Inspired by recent progress in neur...
Chapter
Despite recent progress on semi-supervised federated learning (FL) for medical image diagnosis, the problem of imbalanced class distributions among unlabeled clients is still unsolved for real-world use. In this paper, we study a practical yet challenging problem of class imbalanced semi-supervised FL (imFed-Semi), which allows all clients to have...
Chapter
Medical data often follow imbalanced distributions, which poses a long-standing challenge for computer-aided diagnosis systems built upon medical image classification. Most existing efforts are conducted by applying re-balancing methods for the collected training samples, which improves the predictive performance for the minority class but at the c...
Preprint
In this paper, we present a novel and generic data-driven method to servo-control the 3-D shape of continuum robots embedded with fiber Bragg grating (FBG) sensors. Developments of 3-D shape perception and control technologies are crucial for continuum robots to perform the tasks autonomously in surgical interventions. However, owing to the nonline...
Chapter
Class distribution plays an important role in learning deep classifiers. When the proportion of each class in the test set differs from the training set, the performance of classification nets usually degrades. Such a label distribution shift problem is common in medical diagnosis since the prevalence of disease vary over location and time. In this...
Chapter
Computer-assisted minimally invasive surgery has great potential in benefiting modern operating theatres. The video data streamed from the endoscope provides rich information to support context-awareness for next-generation intelligent surgical systems. To achieve accurate perception and automatic manipulation during the procedure, learning based t...
Article
Purpose: Real-time surgical workflow analysis has been a key component for computer-assisted intervention system to improve cognitive assistance. Most existing methods solely rely on conventional temporal models and encode features with a successive spatial-temporal arrangement. Supportive benefits of intermediate features are partially lost from...
Preprint
Multiparametric magnetic resonance imaging (mpMRI) has emerged as a valuable diagnostic tool in prostate lesion assessment, for which many reports conclude the advantageous use of convolutional neural networks (CNNs) in prostate lesion detection and classification (PLDC). However, the network training inevitably involves prostate magnetic resonance...
Preprint
Full-text available
Imaging markers of cerebral small vessel disease provide valuable information on brain health, but their manual assessment is time-consuming and hampered by substantial intra- and interrater variability. Automated rating may benefit biomedical research, as well as clinical assessment, but diagnostic reliability of existing algorithms is unknown. He...
Article
Objective: The computation of anatomical information and laparoscope position is a fundamental block of surgical navigation in Minimally Invasive Surgery (MIS). Recovering a dense 3D structure of surgical scene using visual cues remains a challenge, and the online laparoscopic tracking primarily relies on external sensors, which increases system c...
Preprint
Surgical scene segmentation is fundamentally crucial for prompting cognitive assistance in robotic surgery. However, pixel-wise annotating surgical video in a frame-by-frame manner is expensive and time consuming. To greatly reduce the labeling burden, in this work, we study semi-supervised scene segmentation from robotic surgical video, which is p...
Article
Test-time adaptation (TTA) has increasingly been an important topic to efficiently tackle the cross-domain distribution shift at test time for medical images from different institutions. Previous TTA methods have a common limitation of using a fixed learning rate for all the test samples. Such a practice would be sub-optimal for TTA, because test d...
Article
Full-text available
Background Lung cancer is the leading cause of cancer-related mortality, and accurate prediction of patient survival can aid treatment planning and potentially improve outcomes. In this study, we proposed an automated system capable of lung segmentation and survival prediction using graph convolution neural network (GCN) with CT data in non-small c...
Chapter
Federated learning, which trains a generic model for different institutions without sharing their data, is a new trend to avoid training with centralized data, which is often impossible due to privacy issues. The Federated Tumor Segmentation (FeTS) Challenge 2021 has two tasks for participants. Task 1 aims at effective weight aggregation methods gi...
Preprint
Full-text available
Domain generalization typically requires data from multiple source domains for model learning. However, such strong assumption may not always hold in practice, especially in medical field where the data sharing is highly concerned and sometimes prohibitive due to privacy issue. This paper studies the important yet challenging single domain generali...
Article
Domain generalization typically requires data from multiple source domains for model learning. However, such strong assumption may not always hold in practice, especially in medical field where the data sharing is highly concerned and sometimes prohibitive due to privacy issue. This paper studies the important yet challenging single domain generali...
Preprint
Despite recent progress on semi-supervised federated learning (FL) for medical image diagnosis, the problem of imbalanced class distributions among unlabeled clients is still unsolved for real-world use. In this paper, we study a practical yet challenging problem of class imbalanced semi-supervised FL (imFed-Semi), which allows all clients to have...
Preprint
Full-text available
Test-time adaptation (TTA) has increasingly been an important topic to efficiently tackle the cross-domain distribution shift at test time for medical images from different institutions. Previous TTA methods have a common limitation of using a fixed learning rate for all the test samples. Such a practice would be sub-optimal for TTA, because test d...
Preprint
Full-text available
Deep neural networks have achieved remarkable success in a wide variety of natural image and medical image computing tasks. However, these achievements indispensably rely on accurately annotated training data. If encountering some noisy-labeled images, the network training procedure would suffer from difficulties, leading to a sub-optimal classifie...
Article
Full-text available
Navigating a large swarm of micro-/nanorobots is critical for potential targeted delivery/therapy applications owing to the limited volume/function of a single microrobot, and microrobot swarms with distribution reconfigurability can adapt to environments during navigation. However, current microrobot swarms lack the intelligent behaviour to autono...
Preprint
Full-text available
Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Fede...
Preprint
Full-text available
Federated learning (FL) allows multiple medical institutions to collaboratively learn a global model without centralizing all clients data. It is difficult, if possible at all, for such a global model to commonly achieve optimal performance for each individual client, due to the heterogeneity of medical data from various scanners and patient demogr...
Preprint
With the growing popularity of robotic surgery, education becomes increasingly important and urgently needed for the sake of patient safety. However, experienced surgeons have limited accessibility due to their busy clinical schedule or working in a distant city, thus can hardly provide sufficient education resources for novices. Remote mentoring,...
Preprint
Automatic laparoscope motion control is fundamentally important for surgeons to efficiently perform operations. However, its traditional control methods based on tool tracking without considering information hidden in surgical scenes are not intelligent enough, while the latest supervised imitation learning (IL)-based methods require expensive sens...
Preprint
Industrial bin picking is a challenging task that requires accurate and robust segmentation of individual object instances. Particularly, industrial objects can have irregular shapes, that is, thin and concave, whereas in bin-picking scenarios, objects are often closely packed with strong occlusion. To address these challenges, we formulate a novel...
Article
Objectives: We proposed a new approach to train deep learning model for aneurysm rupture prediction which only uses a limited amount of labeled data. Method: Using segmented aneurysm mask as input, a backbone model was pretrained using a self-supervised method to learn deep embeddings of aneurysm morphology from 947 unlabeled cases of angiograph...
Preprint
Full-text available
This paper presents the design and results of the "PEg TRAnsfert Workflow recognition" (PETRAW) challenge whose objective was to develop surgical workflow recognition methods based on one or several modalities, among video, kinematic, and segmentation data, in order to study their added value. The PETRAW challenge provided a data set of 150 peg tra...
Article
Deep neural networks have achieved remarkable success in a wide variety of natural image and medical image computing tasks. However, these achievements indispensably rely on accurately annotated training data. If encountering some noisy-labeled images, the network training procedure would suffer from difficulties, leading to a sub-optimal classifie...
Preprint
The demand of competent robot assisted surgeons is progressively expanding, because robot-assisted surgery has become progressively more popular due to its clinical advantages. To meet this demand and provide a better surgical education for surgeon, we develop a novel robotic surgery education system by integrating artificial intelligence surgical...
Article
Full-text available
The emerging graph neural networks (GNNs) have demonstrated impressive performance on the node classification problem in complex networks. However, existing GNNs are mainly devised to classify nodes in a (partially) labeled graph. To classify nodes in a newly-collected unlabeled graph, it is desirable to transfer label information from an existing...
Article
To realize a higher-level autonomy of surgical knot tying in minimally invasive surgery (MIS), automated suture grasping, which bridges the suture stitching and looping procedures, is an important yet challenging task needs to be achieved. This paper presents a holistic framework with image-guided and automation techniques to robotize this operatio...
Article
Full-text available
Data privacy mechanisms are essential for rapidly scaling medical training databases to capture the heterogeneity of patient data distributions toward robust and generalizable machine learning systems. In the current COVID-19 pandemic, a major focus of artificial intelligence (AI) is interpreting chest CT, which can be readily used in the assessmen...
Article
In this paper, we propose a novel method of Unsupervised Disentanglement of Scene and Motion (UDSM) representations for minimally invasive surgery video retrieval within large databases, which has the potential to advance intelligent and efficient surgical teaching systems. To extract more discriminative video representations, two designed encoders...
Preprint
Generalizing federated learning (FL) models to unseen clients with non-iid data is a crucial topic, yet unsolved so far. In this work, we propose to tackle this problem from a novel causal perspective. Specifically, we form a training structural causal model (SCM) to explain the challenges of model generalization in a distributed learning paradigm....
Article
Multimodal learning usually requires a complete set of modalities during inference to maintain performance. Although training data can be well-prepared with high-quality multiple modalities, in many cases of clinical practice, only one modality can be acquired and important clinical evaluations have to be made based on the limited single modality i...
Preprint
The computation of anatomical information and laparoscope position is a fundamental block of robot-assisted surgical navigation in Minimally Invasive Surgery (MIS). Recovering a dense 3D structure of surgical scene using visual cues remains a challenge, and the online laparoscopic tracking mostly relies on external sensors, which increases system c...
Article
Background and objective: Automatic surgical workflow recognition is an essential step in developing context-aware computer-assisted surgical systems. Video recordings of surgeries are becoming widely accessible, as the operational field view is captured during laparoscopic surgeries. Head and ceiling mounted cameras are also increasingly being us...
Preprint
Full-text available
PURPOSE: Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical assistance systems. These systems could increase the safety of the operation through context-sensitive warnings and semi-autonomous robotic assistance or improve training of surgeons via data-driven feedback. In surgical workflow analysi...
Chapter
Reconstructing the scene of robotic surgery from the stereo endoscopic video is an important and promising topic in surgical data science, which potentially supports many applications such as surgical visual perception, robotic surgery education and intra-operative context awareness. However, current methods are mostly restricted to reconstructing...
Chapter
Real-time surgical phase recognition is a fundamental task in modern operating rooms. Previous works tackle this task relying on architectures arranged in spatio-temporal order, however, the supportive benefits of intermediate spatial features are not considered. In this paper, we introduce, for the first time in surgical workflow analysis, Transfo...
Chapter
Federated learning (FL) has emerged with increasing popularity to collaborate distributed medical institutions for training deep networks. However, despite existing FL algorithms only allow the supervised training setting, most hospitals in realistic usually cannot afford the intricate data labeling due to absence of budget or expertise. This paper...
Chapter
Full-text available
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data. However, in many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue. This paper studies the practical yet challenging so...
Preprint
Full-text available
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data. However, in many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue. This paper studies the practical yet challenging so...
Article
The scarcity of annotated surgical data in robot-assisted surgery (RAS) motivates prior works to borrow related domain knowledge to achieve promising segmentation results in surgical images by adaptation. For dense instrument tracking in a robotic surgical video, collecting one initial scene to specify target instruments (or parts of tools) is desi...
Preprint
Autonomous surgical execution relieves tedious routines and surgeon's fatigue. Recent learning-based methods, especially reinforcement learning (RL) based methods, achieve promising performance for dexterous manipulation, which usually requires the simulation to collect data efficiently and reduce the hardware cost. The existing learning-based simu...
Article
Full-text available
The coronavirus disease 2019 (COVID-19) has become a severe worldwide health emergency and is spreading at a rapid rate. Segmentation of COVID lesions from computed tomography (CT) scans is of great importance for supervising disease progression and further clinical treatment. As labeling COVID-19 CT scans is labor-intensive and time-consuming, it...
Preprint
Video prediction methods generally consume substantial computing resources in training and deployment, among which keypoint-based approaches show promising improvement in efficiency by simplifying dense image prediction to light keypoint prediction. However, keypoint locations are often modeled only as continuous coordinates, so noise from semantic...
Article
Surgical workflow recognition is a fundamental task in computer-assisted surgery and a key component of various applications in operating rooms. Existing deep learning models have achieved promising results for surgical workflow recognition, heavily relying on a large amount of annotated videos. However, obtaining annotation is time-consuming and r...
Article
Full-text available
PurposeAutomatic segmentation of surgical instruments in robot-assisted minimally invasive surgery plays a fundamental role in improving context awareness. In this work, we present an instance segmentation model based on refined Mask R-CNN for accurately segmenting the instruments as well as identifying their types.Methods We re-formulate the instr...
Preprint
Full-text available
Federated learning (FL) has emerged with increasing popularity to collaborate distributed medical institutions for training deep networks. However, despite existing FL algorithms only allow the supervised training setting, most hospitals in realistic usually cannot afford the intricate data labeling due to absence of budget or expertise. This paper...
Chapter
Predicting future frames for robotic surgical video is an interesting, important yet extremely challenging problem, given that the operative tasks may have complex dynamics. Existing approaches on future prediction of natural videos were based on either deterministic models or stochastic models, including deep recurrent neural networks, optical flo...
Preprint
Full-text available
The superior performance of CNN on medical image analysis heavily depends on the annotation quality, such as the number of labeled image, the source of image, and the expert experience. The annotation requires great expertise and labour. To deal with the high inter-rater variability, the study of imperfect label has great significance in medical im...