About
338
Publications
112,943
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,416
Citations
Publications
Publications (338)
Automatic Post-Editing (APE) systems often struggle with over-correction, where unnecessary modifications are made to a translation, diverging from the principle of minimal editing. In this paper, we propose a novel technique to mitigate over-correction by incorporating word-level Quality Estimation (QE) information during the decoding process. Thi...
Pre-trained language models (PLMs) are known to be susceptible to perturbations to the input text, but existing works do not explicitly focus on linguistically grounded attacks, which are subtle and more prevalent in nature. In this paper, we study whether PLMs are agnostic to linguistically grounded attacks or not. To this end, we offer the first...
This exploratory study investigates the potential of multilingual Automatic Post-Editing (APE) systems to enhance the quality of machine translations for low-resource Indo-Aryan languages. Focusing on two closely related language pairs, English-Marathi and English-Hindi, we exploit the linguistic similarities to develop a robust multilingual APE mo...
In recent years, automatic disease diagnosis has gained immense popularity in research and industry communities. Humans learn a task through both successful and unsuccessful attempts in real life, and physicians are not different. When doctors fail to diagnose disease correctly, they re-assess the extracted symptoms and re-diagnose the patient by i...
Machine Translation (MT) between linguistically dissimilar languages is challenging, especially due to the scarcity of parallel corpora. Prior works suggest that pivoting through a high-resource language can help translation into a related low-resource language. However, existing works tend to discard the source sentence when pivoting. Taking the c...
In the digital world, memes present a unique challenge for content moderation due to their potential to spread harmful content. Although detection methods have improved, proactive solutions such as intervention are still limited, with current research focusing mostly on text-based content, neglecting the widespread influence of multimodal content l...
In the digital world, memes present a unique challenge for content moderation due to their potential to spread harmful content. Although detection methods have improved, proactive solutions such as intervention are still limited, with current research focusing mostly on text-based content, neglecting the widespread influence of multimodal content l...
In an era of rapidly evolving internet technology, the surge in multimodal content, including videos, has expanded the horizons of online communication. However, the detection of toxic content in this diverse landscape, particularly in low-resource code-mixed languages, remains a critical challenge. While substantial research has addressed toxic co...
Though social media helps spread knowledge more effectively, it also stimulates the propagation of online abuse and harassment, including hate speech. It is crucial to prevent hate speech since it may have serious adverse effects on both society and individuals. Therefore, it is not only important for models to detect these speeches but to also out...
Over the past few years, the use of the Internet for healthcare-related tasks has grown by leaps and bounds, posing a challenge in effectively managing and processing information to ensure its efficient utilization. During moments of emotional turmoil and psychological challenges, we frequently turn to the internet as our initial source of support,...
Automatic Disease Diagnosis (ADD) has gained immense popularity and demand over the past few years, and it is emerging as an effective diagnostic assistant to doctors. Diagnosis assistants assist clinicians in conducting a thorough symptom investigation and identifying possible diseases. Doctors correctly diagnose patients by observing only a few s...
Medical Question Answering (MedQA) is one of the most popular and significant tasks in developing healthcare assistants. When humans extract an answer to a question from a document, they first (a) understand the question itself in detail and (b) utilize relevant knowledge/experiences to determine the answer segments. In multi-span question answerin...
Cyberbullying has become a big issue with the popularity of different social media networks and online communication apps. While plenty of research is going on to develop better models for cyberbullying detection in monolingual language, there is very little research on the code-mixed languages and explainability aspect of cyberbullying. Recent law...
Storytelling is the lifeline of the entertainment industry -- movies, TV shows, and stand-up comedies, all need stories. A good and gripping script is the lifeline of storytelling and demands creativity and resource investment. Good scriptwriters are rare to find and often work under severe time pressure. Consequently, entertainment media are activ...
We propose a knowledge-based approach for extraction of Cause–Effect (CE) relations from biomedical text. Our approach is a combination of an unsupervised machine learning technique to discover causal triggers and a set of high-precision linguistic rules to identify cause/effect arguments of these causal triggers. We evaluate our approach using a c...
We aim to investigate whether UNMT approaches with self-supervised pre-training are robust to word-order divergence between language pairs. We achieve this by comparing two models pre-trained with the same self-supervised pre-training objective. The first model is trained on language pairs with different word-orders, and the second model is trained...
Relation Extraction is an important task in Information Extraction which deals with identifying semantic relations between entity mentions. Traditionally, relation extraction is carried out after entity extraction in a “pipeline” fashion, so that relation extraction only focuses on determining whether any semantic relation exists between a pair of...
Over the last few years, dozens of healthcare surveys have shown a shortage of doctors and an alarming doctor-population ratio. With the motivation of assisting doctors and utilizing their time efficiently, automatic disease diagnosis using artificial intelligence is experiencing an ever-growing demand and popularity. Humans are known by the compan...
Named Entity Recognition (NER) is a foundational NLP task that aims to provide class labels like Person, Location, Organisation, Time, and Number to words in free text. Named Entities can also be multi-word expressions where the additional I-O-B annotation information helps label them during the NER annotation process. While English and European la...
This paper describes additional aspects of a digital tool called the 'Textual History Tool'. We describe its various salient features with special reference to those of its features that may help the philologist digitize commentaries and sub-commentaries on a text. This tool captures the historical evolution of a text through various temporal stage...
Wordnets are rich lexico-semantic resources. Linked wordnets are extensions of wordnets, which link similar concepts in wordnets of different languages. Such resources are extremely useful in many Natural Language Processing (NLP) applications, primarily those based on knowledge-based approaches. In such approaches, these resources are considered a...
Cyberbullying is a malady of social media, and its automatic detection is critically important considering its virulence, velocity of spreading, and the scale of the havoc it can wreak. However, the problem is challenging due to its disguised behavior, noise in the content, and, in recent times, introduction of code-mixing. In this work, we propose...
Automatic Cognate Detection (ACD) is a challenging task which has been utilized to help NLP applications like Machine Translation, Information Retrieval and Computational Phylogenetics. Unidentified cognate pairs can pose a challenge to these applications and result in a degradation of performance. In this paper, we detect cognate word pairs among...
Dense word vectors or 'word embeddings' which encode semantic properties of words, have now become integral to NLP tasks like Machine Translation (MT), Question Answering (QA), Word Sense Disambiguation (WSD), and Information Retrieval (IR). In this paper, we use various existing approaches to create multiple word embeddings for 14 Indian languages...
Gaze behaviour has been used as a way to gather cognitive information for a number of years. In this paper, we discuss the use of gaze behaviour in solving different tasks in natural language processing (NLP) without having to record it at test time. This is because the collection of gaze behaviour is a costly task, both in terms of time and money....
Cognates are present in multiple variants of the same text across different languages (e.g., "hund" in German and "hound" in English language mean "dog"). They pose a challenge to various Natural Language Processing (NLP) applications such as Machine Translation, Cross-lingual Sense Disambiguation, Computational Phylogenetics, and Information Retri...
Cognates are variants of the same lexical form across different languages; for example 'fonema' in Spanish and 'phoneme' in English are cognates, both of which mean 'a unit of sound'. The task of automatic detection of cognates among any two languages can help downstream NLP tasks such as Cross-lingual Information Retrieval, Computational Phylogene...
Automatic detection of cognates helps downstream NLP tasks of Machine Translation, Cross-lingual Information Retrieval, Computational Phylogenetics and Cross-lingual Named Entity Recognition. Previous approaches for the task of cognate detection use orthographic, phonetic and semantic similarity based features sets. In this paper, we propose a nove...
Unsupervised Neural Machine Translation (UNMT) approaches have gained widespread popularity in recent times. Though these approaches show impressive translation performance using only monolingual corpora of the languages involved, these approaches have mostly been tried on high-resource European language pairs viz.English–French, English–German, et...
Prepositions are frequently occurring polysemous words. Disambiguation of prepositions is crucial in tasks like semantic role labelling, question answering, text entailment, and noun compound paraphrasing. In this paper, we propose a novel methodology for preposition sense disambiguation (PSD), which does not use any linguistic tools. In a supervis...
Computational Humour (CH) has attracted the interest of Natural Language Processing and Computational Linguistics communities. Creating datasets for automatic measurement of humour quotient is difficult due to multiple possible interpretations of the content. In this work, we create a multi-modal humour-annotated dataset (∼40 hours) using stand-up...
Computational Humour (CH) has attracted the interest of Natural Language Processing and Computational Linguistics communities. Creating datasets for automatic measurement of humour quotient is difficult due to multiple possible interpretations of the content. In this work, we create a multi-modal humour-annotated dataset ($\sim$40 hours) using stan...
We explore the impact of leveraging the relatedness of languages that belong to the same family in NLP models using multilingual fine-tuning. We hypothesize and validate that multilingual fine-tuning of pre-trained language models can yield better performance on downstream NLP applications, compared to models fine-tuned on individual languages. A f...
In this paper, we identify an interesting kind of error in the output of Unsupervised Neural Machine Translation (UNMT) systems like \textit{Undreamt}(footnote). We refer to this error type as \textit{Scrambled Translation problem}. We observe that UNMT models which use \textit{word shuffle} noise (as in the case of Undreamt) can generate correct w...
Recent advances in Unsupervised Neural Machine Translation (UNMT) have minimized the gap between supervised and unsupervised machine translation performance for closely related language pairs. However, the situation is very different for distant language pairs. Lack of lexical overlap and low syntactic similarities such as between English and Indo-...
In this paper we explore neural machine translation (NMT) for Indian languages. Reported work on Indian language Statistical Machine Translation (SMT) demonstrated good performance within the Indo-Aryan family, but relatively poor performance within the Dravidian family as well as between the two families. Interestingly, by common observation NMT g...
We propose a knowledge-based approach for extraction of Cause-Effect (CE) relations from biomedical text. Our approach is a combination of an unsupervised machine learning technique to discover causal triggers and a set of high-precision linguistic rules to identify cause/effect arguments of these causal triggers. We evaluate our approach using a c...
Relation Extraction is an important task in Information Extraction which deals with identifying semantic relations between entity mentions. Traditionally, relation extraction is carried out after entity extraction in a "pipeline" fashion, so that relation extraction only focuses on determining whether any semantic relation exists between a pair of...
Automatic essay grading (AEG) is a process in which machines assign a grade to an essay written in response to a topic, called the prompt. Zero-shot AEG is when we train a system to grade essays written to a new prompt which was not present in our training data. In this paper, we describe a solution to the problem of zero-shot automatic essay gradi...
Most research in the area of automatic essay grading (AEG) is geared towards scoring the essay holistically while there has also been some work done on scoring individual essay traits. In this paper, we describe a way to score essays holistically using a multi-task learning (MTL) approach, where scoring the essay holistically is the primary task, a...
Witness testimonies are important constituents of a court case description and play a significant role in the final decision. We propose two techniques to identify sentences representing witness testimonies. The first technique employs linguistic rules whereas the second technique applies distant supervision where training set is constructed automa...
A noun compound is a sequence of contiguous nouns that acts as a single noun, although the predicate denoting the semantic relation between its components is dropped. Noun Compound Interpretation is the task of uncovering the relation, in the form of a preposition or a free paraphrase. Prepositional paraphrasing refers to the use of preposition to...
Languages with insufficient digitally available resources, such as, Indian–Indian and English–Indian language Machine Translation (MT) system developments, faces the difficulty to translate various lexical phenomena. In this paper, we present our work on a comparative study of 440 phrase-based statistical trained models for 110 language pairs acros...
Essay traits are attributes of an essay that can help explain how well written (or badly written) the essay is. Examples of traits include Content, Organization, Language, Sentence Fluency, Word Choice, etc. A lot of research in the last decade has dealt with automatic holis-tic essay scoring-where a machine rates an essay and gives a score for the...
Most of the past work in relation extraction deals with relations occurring within a sentence and having only two entity arguments. We propose a new formulation of the relation extraction task where the relations are more general than intra-sentence relations in the sense that they may span multiple sentences and may have more than two arguments. M...
The gaze behaviour of a reader is helpful in solving several NLP tasks such as automatic essay grading, named entity recognition, sarcasm detection $\textit{etc.}$ However, collecting gaze behaviour from readers is costly in terms of time and money. In this paper, we propose a way to improve automatic essay grading using gaze behaviour, where the g...
Domain adaptation is a useful technique to combat the problem of data scarcity. It has been used for multiple NLP tasks like part of speech tagging, dependency parsing, named entity recognition, etc. Cross-domain sentiment analysis (CDSA) is one such application of domain adaptation where a classifier is trained on one domain (referred to as ‘sourc...
Cross-domain sentiment analysis (CDSA) helps to address the problem of data scarcity in scenarios where labelled data for a domain (known as the target domain) is unavailable or insufficient. However, the decision to choose a domain (known as the source domain) to leverage from is, at best, intuitive. In this paper, we investigate text similarity m...
In this work, we present an extensive study of statistical machine translation involving languages of the Indian subcontinent. These languages are related by genetic and contact relationships. We describe the similarities between Indic languages arising from these relationships. We explore how lexical and orthographic similarity among these languag...