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Abstract—Non-parametric estimation of an unknown position
parameter in a bandwidth-constrained wireless sensor network
(WSN) is considered in this paper. Due to bandwidth constraint,
each sensor is restricted to send only one bit of information
to a fusion center. We propose a non-parametric estimator
that employs a recently introduced adaptive quantization (AQ)
scheme. Specifically, the position parameter is estimated as
the sample mean of the quantization thresholds used in AQ.
The proposed non-parametric estimator is based on the fact
that the AQ thresholds asymptotically converge (in mean) to
the unknown position parameter, under the condition that the
position parameter is an integer multiple of the stepsize used
in AQ. When the condition is not met, there is a bias which
can, however, be made negligible by choosing the stepsize to be
small (compared with the position parameter). Numerical results
are provided to demonstrate the effectiveness of the proposed
non-parametric estimator.

Index Terms—Wireless sensor network, distributed estimation,
non-parametric estimation.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been receiving
considerable attention. It can be applied for military surveil-
lance, communications and seismic analysis [1]–[3]. Band-
width consumption is a critical issue in WSNs, as limited
communication bandwidth is shared across the entire network
[4]–[7]. As such, a major challenge of the WSN research is
to design bandwidth efficient signal processing techniques. A
number of studies have appeared recently in the context of
distributed detection [8]–[10], distributed estimation [6], [11]–
[13], distributed compression [14], [15], etc.

When the probability density function (PDF) of the sen-
sor noise is known, parametric estimators for bandwidth-
constrained WSNs were proposed in [6], [11]–[13], [15],
[16]. However, in many practical applications, e.g. large-scale
sensor networks operating in time-varying environments, an
accurate parametric noise model is often difficult to obtain.
This motivates distributed non-parametric estimation method
without the knowledge of the PDF of the sensor noise. In [5],
a non-parametric estimation scheme was proposed by letting
a half of the sensors send the first most significant bit (MSB)
of their observations to the fusion center, one fourth of the
sensors send their second MSB, and so on and so forth. In [7],
a non-parametric estimator was introduced by utilizing the fact
that numerically integrating the complementary cumulative
density function (CCDF) using the trapezoidal rule yields an
approximation of the mean.

In this paper, we propose a new distributed non-parametric
estimator for position parameter estimation by utilizing an
adaptive quantization (AQ) scheme recently introduced in [16].
In AQ, the thresholds are adaptively adjusted from one sensor
to another, in a way such that the thresholds converge (in
mean) to the unknown position parameter. By noticing that the
AQ scheme of [16] is a non-parametric quantization scheme,
a non-parametric estimator is introduced by averaging the
AQ thresholds after convergence. When the unknown position
parameter is an integer multiple of the stepsize of AQ, the
proposed estimator is shown to be asymptotically unbiased.
When the position parameter is not an integer multiple of the
stepsize, the proposed estimator has a bias, which can be made
negligible by choosing the stepsize to be small (compared with
the position parameter).

The rest of this paper is organized as follows. In Section
II, the distributed non-parametric estimation problem is for-
mulated. In Section III, we first briefly review the AQ scheme
and then introduce our AQ-based non-parametric estimator.
Numerical results are provided in Section IV, followed by
concluding remarks in Section V.

II. PROBLEM FORMULATION

Consider a WSN consisting of N sensors, where each sensor
makes a noisy observation of an unknown position parameter
θ as

xn = θ + wn, n = 1, 2, · · · , N, (1)

where wn denotes the sensor noise with zero-mean and
variance σ2

w, assumed independent and identically distributed
(i.i.d.) across sensors. The PDF of wn is assumed symmetric
with respect to zero but is otherwise unknown to the estimator.

If local sensors have sufficient power and no bandwidth
constraint, they can send their unquantized observations to
the fusion center. Then, the fusion center can simply use the
sample mean estimator

θ̂ =
1
N

N∑
n=1

xn, (2)

which has a MSE of

E
(
|θ̂ − θ|2

)
=

σ2
w

N
. (3)

1031978-1-4244-2247-0/08/$25.00 ©2008 IEEE.



However, due to bandwidth constraint, the sensor observa-
tions have to be quantized and the estimation can only be
performed using the quantized data. Specifically, we consider
the case where each sensor uses a 1-bit quantizer:

bn = Qn(xn), n = 1, 2, · · · , N, (4)

where Qn denotes a 1-bit quantizer for the nth sensor. The
problem of interest is to determine the binary quantizers and
estimate the unknown parameter θ based on the binary data
{bn}.

III. PROPOSED NON-PARAMETRIC ESTIMATOR

Our non-parametric estimator is based on the AQ scheme
introduced in [16]. In the following, we first provide a brief
review of AQ and then discuss our AQ-based non-parametric
estimator.

A. AQ

In the AQ scheme, each sensor accumulates earlier transmis-
sions from other sensors, and uses the accumulated value as
the threshold for its 1-bit quantizer. Specifically, it is assumed
that the sensors share the communication channel on a time-
sharing basis (e.g., each sensor is polled by a fusion center),
so that the first sensor transmits first, followed by the second
sensor, and so on and so forth. The 1-bit quantizer at the first
sensor uses a zero-threshold (i.e., τ1 = 0) to generate a binary
data b1:

b1 = sgn {x1} . (5)

where sgn(·) denotes the sign function:

sgn(x) =
{

1, if x ≥ 0,
−1, if x < 0.

(6)

Then, b1 is broadcasted to the fusion center as well as the
other N − 1 sensors. After receiving b1, the second sensor
computes the threshold τ2 = ∆b1, where ∆ is a positive
stepsize parameter, and generates b2:

b2 = sgn {x2 − τ2} . (7)

In general, for the nth sensor, it first forms a cumulative sum:

τn = τn−1 + ∆bn−1 = ∆
n−1∑

i=1

bi, (8)

and then it uses τn as a threshold for quantization:

bn = sgn {xn − τn} . (9)

One can easily recognize that the above process is reminis-
cent of the Delta Modulation (DM), but is implemented in a
distributed fashion.
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Fig. 1. Illustration of the convergence of the AQ thresholds.

B. Threshold Analysis

One interesting property of the AQ scheme is that the
thresholds in (8) move towards the unknown parameter θ as
n increases. Fig. 1 depicts the convergence of the thresholds
towards the unknown parameter θ = 2 corrupted by i.i.d.
Gaussian noise with zero-mean and variance σ2

w = 0.5. From
Fig. 1, it is clear that there are two types of states related to the
thresholds: a transient state that moves the thresholds towards
θ and a convergent state where the thresholds oscillate around
θ.

From (8), the thresholds τn can be expressed as

τn = τn−1 + ∆sgn{xn−1 − τn−1}. (10)

Clearly, the thresholds τn, n = 1, · · · , N , form a Markov
chain, since

P{τn|τ1, τ2, · · · , τn−1} = P{τn|τn−1}, n = 1, · · · , N. (11)

Furthermore, the transition probabilities are independent of n
and the Markov chain is homogeneous. Since the thresholds
are modified with an increment of ∆ and −∆ at each step,
the transition probability is given by

P (τn+1 = j∆|τn = i∆)

=





1− Fw(i∆− θ) if i = j + 1
Fw(i∆− θ) if i = j − 1
0 if |i− j| > 1

, (12)

where Fw denotes the CCDF of wn.
Based on the above observation, we have the following

asymptotic result concerning the mean of τn:
Proposition 1: When θ is an integer multiple of ∆, the

threshold τn asymptotically converges in mean to the unknown
θ, i.e.,

lim
n→∞

E{τn} = θ, with probability 1. (13)

Proof: See Appendix.
In practice, since θ is unknown, we cannot ensure θ/∆ is an

integer and, therefore, the above result does not hold exactly.
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Fig. 2. Asymptotical bias of τn versus θ/∆ when θ = 3, n = 5000, and
the sensor noise is i.i.d. Gaussian with zero-mean and variance σ2

w = 1.

However, the bias, i.e., |E{τn} − θ|, for large n can be made
negligible by choosing ∆ sufficiently small such that ∆/θ ¿ 1
(therefore θ/∆ is an approximate integer). To show this, Fig. 2
depicts the bias versus θ/∆ when θ = 3 and n = 5000, which
is chosen large enough to mimic an “asymptotic” scenario,
when the sensor noise is i.i.d. Gaussian with zero-mean and
variance σ2

w = 1. Note that the bias is computed numerically
using the distribution of τn given in [16]. It is seen that when
θ/∆ is an integer, the bias drops lower than 10−14, suggesting
τn is effectively unbiased in such a case. On the other hand,
the bias is noticeable larger when θ/∆ is not an integer, and
eventually becomes non-negligible when ∆ is comparable to
θ. Nevertheless, it is interesting to note that when ∆ is small
enough, say θ/∆ ≥ 25 (i.e., ∆/θ ≤ 0.04), the bias is less
than 10−13 irrespective of whether θ is an integer multiple of
∆ or not. Hence, by choosing ∆ sufficiently small, the bias
of τn for large n is negligible.

C. AQ-Based Non-Parametric Estimator

The above asymptotic result motivates us to use the mean
of the thresholds, i.e., E{τN}, as a non-parametric estimate of
the unknown θ. A reasonable estimate of E{τN} is the sample
mean of the thresholds after convergence, i.e.,

θ̂ =
1

N −M

N∑

n=M+1

τn, (14)

where M is the sensor index where the threshold hits on θ
(i.e., τM = θ) or practical convergence to θ has been achieved.
Since M is unknown, we need to find an estimate of M and
replace it in (14)

θ̂ =
1

N − M̌

N∑

n=M̌+1

τn, (15)

where M̌ denotes an estimate of M . In Section III-D, we will
discuss how to obtain M̌ .

Since we estimate M using the binary data bn, M̌ is a
random variable. To gain an insight into the behavior of the
non-parametric estimator, we consider two cases when M is
overestimated (i.e., M̌ > M ) and when it is underestimated
(M̌ < M ), respectively. It is easy to verify that, when M̌ ≥
M , the proposed non-parametric estimator is asymptotically
unbiased, i.e., E{θ̂|M̌ ≥ M} = θ. On the other hand, when
M̌ < M , we take expectation on both sides of (15)

E{θ̂|M̌ < M} =
1

N − M̌

N∑

n=M̌+1

E{τn},

=
1

N − M̌




M∑

n=M̌+1

E{τn}+ (N −M)θ




=θ, N →∞ (16)

where the last equation is based on the fact that {τn}M
n=M̌+1

are bounded and, thus, the corresponding summation is
bounded. By combining both cases, we have

E{θ̂} =
∑

M̌<M

E{θ̂|M̌ < M}P{M̌ < M}

+
∑

M̌≥M

E{θ̂|M̌ ≥ M}P{M̌ ≥ M}

=θ, N →∞. (17)

Therefore, we conclude that the proposed non-parametric
estimator is unbiased in the asymptotical sense.

Remark: Clearly, the choice of ∆ is crucial to the perfor-
mance of the proposed non-parametric estimator. While the
above asymptotic analysis suggests choosing a small ∆ such
that τn is asymptotically unbiased, choosing ∆ too small when
the total number of sensors N is limited may cause τn not
reaching the convergent state, in which case the asymptotic
analysis is no longer valid. Hence, the choice of ∆ should be
made with a tradeoff by considering both effects. Meanwhile,
the previous discussion may also suggest overestimation of
M may be acceptable (e.g., by choosing M close to N to
avoid underestimation) since it does not affect the asymptotic
result. However, when N is finite as in practical applications,
excessively overestimating M leads to inadequate averaging
in (15) and, in turn, a large variance in the estimate θ̂.

D. Estimate of Convergence Index

The estimate of M is based on the following observation:
during the transient phase, the binary data {bn}M

n=1 are more
likely to be 1 since the thresholds {τn}M

n=1 are lower than
θ (suppose θ > 0), while, during the convergent state,
{bn}N

n=M+1 tend to be 1 and −1 equally likely. A simple
strategy to differentiate these two states is to employ win-
dowed summation of these binary data. In the transient state,
the windowed summation of the binary data is approximately
equal to the window size, while it oscillates around zero
after convergence. Hence, to determine the convergence index
or estimate M , an algorithm counting the number of zero-
crossings of the windowed summation is proposed as follows:
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Fig. 3. MSEs of three non-parametric estimators in (a) i.i.d. Gaussian noise with σ2
w = 1 and (b) Uniform noise within [-2, 2].

Step 1. Choose the window size Lw and stopping thresh-
old on the number of zero-crossings λ.
Step 2. Set Nzc = 0, set m = 1 and calculate T (m) =
m+Lw−1∑

n=m
b(n).

Step 3. If T (m) = 0, then Nzc = Nzc+1. If Nzc = λ, stop
the algorithm and set M̌ = m; otherwise, set Nzc = Nzc,
m = m + 1 and go to Step 2.

From our numerical study, the threshold λ is better to be a
small number, e.g., λ ∈ {2, 3, 4, 5}.

IV. NUMERICAL RESULTS

In the following, we compare the proposed non-parametric
estimator with the estimators in [5] and [7] in terms of the
mean squared error (MSE). The number of sensors N is from
50 to 200, θ = 3, and the noise is Gaussian with zero-mean
and σ2

w = 1 and, respectively, Uniform noise within [−2, 2]. In
both the Gaussian and uniform cases, the parameters used to
estimate the convergence index are Lw = 20 and λ = 2. Fig. 3
(a) shows the MSEs of the three non-parametric estimators as
a function of the number of sensors. It is observed that the AQ-
based non-parametric estimators with ∆ = 0.13 and ∆ = 0.2
outperform the other two estimators for all N . Note that θ is
not an integer multiple of ∆ = 0.13. Also, we observe that,
when the WSN consists of a limited number of sensors, i.e.,
N ≤ 200, a larger ∆ gives better performance than that with
a smaller ∆.

For the Uniform noise, Fig. 3 (b) shows the MSEs of these
non-parametric estimators as a function of N . It is observed
that, for a moderate number of sensors, the AQ-based non-
parametric estimator with ∆ = 0.13 and ∆ = 0.2 provides
a lower MSE, compared to the other two estimators. As
far as the AQ-based non-parametric estimator, performance
degradation from Fig. 3 (a) to Fig. 3 (b) can be observed. The
reason behind this effect is that, the thresholds converge faster
in the Gaussian noise case than in the Uniform noise case.

V. CONCLUSION

We have proposed a distributed non-parametric estimator,
using the recently introduced adaptive quantization (AQ)
scheme, for position (mean) parameter estimation in a
bandwidth-constrained WSN. Based on an asymptotic analysis
of the quantization threshold of AQ, the proposed estimator is
approximately unbiased when the stepsize of AQ is small and
the number of sensors is large. In practice when the number
of sensors is limited, the choice of the stepsize cannot be
made too small to avoid the threshold of AQ not achieving
convergence. We have also examined how to estimate when
the AQ threshold reaches practical convergence.

APPENDIX

Since θ is an integer multiple of ∆, it belongs to the set of
possible thresholds (i.e., ±k∆, where k is an integer) of AQ.
Proposition 1 is proved in a two-step approach. The first step
is to show that, conditioned on the event that there exists one
sensor, say sensor m, whose threshold τm takes the value of θ,
i.e., τm = θ, the subsequent thresholds τn, n ≥ m, converge
in mean to θ. Then we complete the proof by showing that
the probability of the event that at least one threshold hitting
on θ is one, i.e.,

∑∞
m=1 P (τm = θ) → 1. In other words, we

can express the asymptotical mean of τn as

E{τn} =
∞∑

m=1

E{τn|τm = θ}P{τm = θ}, as n →∞. (18)

Conditioned on the event τm = θ, we can determine the
possible subsequent thresholds: τm+1 ∈ {θ − ∆, θ + ∆},
τm+2 ∈ {θ − 2∆, θ, θ + 2∆}, and so on and so forth. The
possible thresholds taken after the mth sensor can be expressed
in a tree diagram, shown in Fig. 4, which is symmetric
with respect to the initial state, i.e., τm = θ. In addition to
the symmetric structure of the tree, we note that the branch
probabilities (which are also the transition probabilities of the
Markov chain (12)) are also symmetric, due to the assumption
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Fig. 4. Tree diagram for the AQ thresholds after the event τm = θ.

that the sensor noise wn has a symmetric PDF. For example,
we can easily verify

P0,1 = P{τm+1 = θ + ∆|τm = θ} = Fw(0) =
1
2
,

P0,−1 = P{τm+1 = θ −∆|τm = θ} = 1− Fw(0) =
1
2
,

=⇒ P0,1 = P0,−1;
P1,2 = P{τm+2 = θ + 2∆|τm+1 = θ + ∆} = Fw(∆),

P−1,−2 = P{τm+2 = θ − 2∆|τm+1 = θ −∆} = 1− Fw(−∆),
=⇒ P1,2 = P−1,−2;

P1,0 = P{τm+2 = θ|τm+1 = θ + ∆} = 1− Fw(∆),
P−1,0 = P{τm+2 = θ|τm+1 = θ −∆} = Fw(−∆),

=⇒ P1,0 = P−1,0. (19)

A path is a set of connecting branches that move the state
variable (i.e., the threshold of AQ) from the initial state τm = θ
to a final state. For example, there exists a unique path that
moves τm = θ to τm+3 = θ + 3∆:

τm = θ → τm+1 = θ+∆ → τm+2 = θ+2∆ → τm+3 = θ+3∆.

The path probability is the product of the corresponding
branch probabilities. For example, the path probability of the
above path is P0,1P1,2P2,3. For a given path, there exists a
unique symmetric path that moves from the initial state to the
symmetric final state of the original path. For example, the
symmetric path of the previous path is given by

τm = θ → τm+1 = θ−∆ → τm+2 = θ−2∆ → τm+3 = θ−3∆.

with path probability P0,−1P−1,−2P−2,−3 which is identical
to the previous path probability, since the branch probability
is symmetric.

The number of paths that move from one initial state to a
final state may be more than one. For example, there are 3
(and only 3) paths that travels from τm = θ to τm+3 = θ+∆,

and the probability of τm+3 = θ + ∆ is given by the sum of
the path probabilities of the 3 paths:

P (τm+3 = θ + ∆|τm = θ) =P0,1P1,2P2,1 + P0,1P1,0P0,1

+ P0,−1P−1,0P0,1.

Due to the symmetric structure of the tree, the number of the
paths starting from the initial state τm = θ to a final state
τn = θ + k∆, n > m, is the same as that from τm = θ to
τn = θ − k∆ (i.e., the symmetric final state). Furthermore,
every path in one group is associated with a symmetric path
in the other group with the same path probability. As such,
we can conclude that

P{τn = θ + k∆|τm = θ} = P{τn = θ − k∆|τm = θ},
(20)

where

k ∈
{ {0,±2, · · · ,±(n−m)}, if (n−m) is even

{1,±3, · · · ,±(n−m)}, if (n−m) is odd ,

Therefore, the conditional mean of τn is

E{τn|τm = θ} =
∑

k

(θ + k∆)P{τn = θ + k∆|τm = θ}

=θ
∑

k

P{τn = θ + k∆|τm = θ} = θ, (21)

where the second equation is based on (20).
From (18), the asymptotical mean of τn can be rewritten as

E{τn} = θ

∞∑
m=1

P (τm = θ), n →∞. (22)

Note that
∞∑

m=1
P (τm = θ) = 1 means that there exists one

threshold hitting on θ when n goes to infinity. It is equivalent
to say that the probability that no thresholds hit on θ is zero. In
this case, the thresholds can only pass through the states that
are less than θ. As n →∞, the probability that the thresholds
pass through the states less than θ is zero due to the fact that
path probability diminishes (each of such a non-hitting path
has an infinite length with branch probability less than 1/2).
Therefore, we conclude that

∞∑
m=1

P (τm = θ) → 1, n →∞. (23)

Taking (23) into (22) completes the proof.
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