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Abstract

The present article reports on a simple, economical, and green preparative strategy for synthesis silver nanoparticle with Pistacia
atlantica leaf extract as a reductant, stabilizer, and capping agent. The green AgNPs were characterized by ultraviolet-visible (UV-
Vis) spectrometer, energy dispersive X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron micros-
copy (SEM) equipped with energy dispersive spectroscopy (EDX), and Fourier transform infrared (FTIR) spectrophotometer. The
XRD pattern provided evidence for the formation of face-centered cubic structure with an average size of 17-18 nm. UV-Vis and
FTIR were used to identify the biomolecules and capping reagents in the Pistacia atlantica leaf extract that may be responsible for
the reduction of silver ions and the stability of the bioreduced nanoparticles. This work proved the capability of using biomaterial
towards the synthesis of silver nanoparticle, by adopting the principles of green chemistry. In addition, the antibacterial activity of
biologically synthesized nanoparticles was proved against gram-positive (Streptococcus pyogenes and Staphylococcus aureus) and
gram-negative (Salmonella paratyphi B, Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa) bacteria.

Keywords Green synthesis - Silver nanoparticles - Antibactrial activity - Gram-positive bacteria - Gram negative bacteria - Plant
extract - Pistacia atlantica - Capping agent

1 Introduction

Nanotechnology is the fastest growing area of manufacturing
in the world today and there is an increasingly frantic search
for new nanomaterials and methods to make them. The re-
search on synthesized nanomaterials and their characterization
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is an emerging field of nanotechnology, due to their huge
applications in the fields of physics, chemistry, biology, and
medicine [1-3]. The synthesized nanomaterials have been
widely used in medicinal and technological aspects [4].
Silver nanoparticles among various metal nanoparticles have
received significant consideration because they are effective
antimicrobial agents that exhibit low toxicity and have diverse
in vitro and in vivo applications [5, 6]. Silver nanoparticles
(AgNPs) are increasingly used in various fields, including
medical, food, health care, consumer, and industrial purposes,
due to their unique physical and chemical properties [7].
These include optical, electrical, thermal, high electrical con-
ductivity, and biological properties [8—11].

The earliest studies for the preparation of silver nanoparti-
cles with a controlled size and shape are methods including
the following: chemical reduction of silver ions generally in
the presence of stabilizing agents [12] or without stabilizing
[13], thermal decomposition in organic solvents [14, 15], re-
versed micelle processes [16, 17], photoreduction [18], ultra-
sonic radiation [19], and microwave irradiation [20, 21].
However, in most cases, the methods have potential hazards
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to health and environment. The green synthesis of nanoparti-
cles has greatly reduced the use of physical and chemical
methods. The development of green processes for the synthe-
sis of nanoparticles is evolving into an important branch of
nanotechnology [22, 23]. Green synthesis has multiple advan-
tages over classical routes: it is cost effective, co-friendly, and
does not require high pressure, energy, temperature, or the use
of toxic chemical reagents [24, 25]. In recent years, green
chemistry and biosynthetic methods have become more attrac-
tive ways to obtain AgNPs. These unconventional methods
use either biological microorganisms, e.g., bacteria, fungi, ma-
rine algae, yeasts) or different alcoholic or aqueous plant ex-
tracts [26-29].

Plant-mediated synthesis of AgNPs is more advanta-
geous compared to the methods that use microorganisms
especially because they can be easily improved, are less
biohazardous, and do not involve the elaborate stage of
growing cell cultures [30-32]. Most importantly, the pro-
cess can be suitably scaled up for large-scale synthesis of
NPs [33].

Pistacia atlantica is found widely in the Zagrous
Mountains, and particularly in western and northern Iran, east-
ern and northern Iraq, southern Turkey, and northern Syria in
so-called Kurdistan [34]. Pistacia atlantica has antibacterial
effects and is used in eczema treatments, for throat infections,
kidney stones, asthma, and stomach ache and as an astringent,
antipyretic, anti-inflammatory, antiviral, antimicrobial, pecto-
ral, and stimulant [35, 36]. The earliest Phytochemistry studies
and chromatographic fingerprints of this plant show that it may
have fatty acids, flavonoids, phenolic compounds (such as gal-
lic acid, quinic acid, tetragalloylquinic acid, trigalloylglucose
acid) and triterpenoids, «-pinene, terpinolene, and starch
which have been isolated from this species during the past
decades [37, 38].

Here, we report a simple and eco-friendly antibacterial ef-
fects, procedure for the green synthesis of AgNPs, using
Pistacia atlantica (originated from Rawanduz region of
Kurdistan Regional Government, Iraq) leaf extract as a reduc-
tant, stabilizer, and capping agent. The choice of Pistacia
atlantica leaves was made because of its benign nature and
the presence of important functional groups allows AgNPs to
be very stable and prevents the agglomeration of anchoring
nanoparticles. The method used is simple, clean, free from
toxic chemicals, and required only non-hazardous reactants
like plant extract, water, and silver nitrate and is advantageous
in large-scale production of silver nanoparticles. Silver nano-
particles were characterized by FE-SEM, EDX, TEM, XRD,
and FTIR. Also, the optical absorption properties were mea-
sured by UV—-visible spectrophotometer and an absorption
peak observed in 445 nm due to surface plasmon resonance
(SPR) of the silver nanoparticles. Finally, its antibacterial ac-
tivity was investigated by the disk diffusion method for gram-
positive (Streptococcus pyogenes and Staphylococcus aureus)
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and gram-negative (Salmonella paratyphi B, Klebsiella
pneumonia, Escherichia coli, and Pseudomonas aeruginosa)
bacteria.

2 Experimental

2.1 Materials

All chemical reagents used as starting materials were of ana-
lytical grade and purchased without any further purification.
Silver nitrate (AgNOs), hydrochloride acid (HCI), and ethanol
(C,HsOH) were purchased from SD fine chemicals Pvt. Ltd.,
India company. The Pistacia atlantica leaves used in this
study originated from Rawanduz region of Kurdistan
Regional Government (KRG), Iraq. Distillated deionized wa-
ter was used during this research. We have taken several bac-
terial species, gram-positive (Streptococcus pyogenes
(ATCC19615) and Staphylococcus aureus (ATCC25923))
and gram-negative (Salmonella paratyphi B (ATCC8759),
Klebsiella pneumonia (ATCC25922), Escherichia coli
(ATCC25922), and Pseudomonas aeruginosa
(ATCC27853)) from the Department of Biology, Soran
University in KRG, Iraq.

2.2 Preparation of the Plant Extract

About 100 g of dried powder of Pistacia atlantica leaves
transferred into a 1000-mL Erlenmeyer flask with 500 mL
of distilled water along with boiling for 30 min. The aqueous
extract was filtered and stored at 4 °C [34, 35, 37].

2.3 Green Synthesis of Silver Nanoparticles Using
Pistacia atlantica Leaf Extract

In a typical synthesis of Ag NPs, 50 mL of Pistacia atlantica
leaf extract was added dropwise to 50 mL of 0.003-mL/L
aqueous solution of AgNO; with constant stirring at 80 °C
and the color of the solution was changed from whitish to
yellowish brown during the heating process due to excitation
of surface plasmon resonance which indicates the formation of
Ag nanoparticles [39, 40].

2.4 Screening of Antibacterial Activities

The well-diffusion technique [41] was used. Three hundred
microliters of microbe cultures of age 18—24 h were added to
Petri plates and nutrient agar was poured. Once the medium
was solidified, holes were made and each hole was packed
with different concentrations of nanoparticles ranging from
2.0 to 30.0 mg/mL. The plates were wrapped in parafilm tape
and transferred to incubator and maintained at 37 °C for 24 h.
The inhibition zones were then recorded in centimeters.
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Fig. 1 UV-Vis spectrum of the LY,
aqueous extract leaves of the

Pistacia atlantica at wavelength

300 to 700 nm
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3 Measurement Techniques

The silver nanoparticles (AgNps) were characterized by
FE-SEM, TEM, EDS, XRD, FTIR, and UV-Vis
spectrometry.

3.1 Fast Emission Scanning Electron Microscopy
with Energy Dispersive Spectroscopy

The morphology, particle dispersion, and chemical com-
position of the prepared nano-structures were investigat-
ed by fast emission scanning electron microscopy (FE-
SEM) (Quanta 450) equipped with EDS at accelerating
voltage 30 kV. Cross cut samples were prepared by frac-
turing the membranes in liquid nitrogen. A thin layer of
gold was coated on all the samples before microscopic
analysis.
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Fig. 2 UV—Vis spectrum of synthesized AgNPs using the Pistacia
atlantica leaf extract at 300 to 640 nm
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3.2 Transmission Electronic Microscopy

Bright field TEM images are recorded on a (Philips EM 120)
transmission electron microscope at an accelerating voltage of
80 kV. The samples for TEM analysis are cut into slices of a
nominal thickness of 100 nm using an ultra-microtome with a
diamond knife at ambient temperature. The cut samples are
supported on a copper mesh for this analysis.

3.3 X-Ray Diffraction

The X-ray diffraction (XRD) patterns of the sample were re-
corded at room temperature on a Philips powder diffractome-
ter type (PW1373 goniometer) using Cu Ko (A = 1.54060 A)
radiation with scanning rate of 2° min™" in the 26 range from
0° to 80°. Scanning was made for the selected diffraction
peaks which were carried out in step mode (step size 0.01°,
measurement time 0.5 s, accelerating voltage of 45 kV, and
emission current of 40 mA measurement).

3.4 UV-Vis Spectroscopy

The periodic scans of the optical absorbance between 300 and
700 nm with a double-beam UV-Visible spectrophotometer
(Carry 100 with tungsten halogen light sources) were per-
formed to investigate the reduction of silver ions by leaf ex-
tract. The presented results were obtained at room
temperature.

3.5 Fourier Transform Infrared Spectrophotometer
The binding properties of nanoparticles synthesized by co-
precipitation method were investigated by Shimadzu FTIR

spectroscopy (IRAffinity-1 Shimadzu Corp. A213750,
Japan). Dried and powdered nanoparticles were pelleted with
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potassium bromide (KBr). The spectra were recorded in the
wavenumber range of 400-4000 cm ™' and analyzed by
subtracting the spectrum of pure KBr.

4 Results and Discussion
4.1 Characteristic of the Silver Nanoparticle

In this study, Pistacia atlantica leaf extract has been used as a
reducing and stabilizing agent for the synthesis of silver nano-
particles. As can be seen in Fig. 1, the UV spectrum of leaf
extract of the Pistacia atlantica shows absorption bonds at
around 350 nm while AgNPs formed by leaf extract has a
peak wavelength of 445-450 nm (Fig. 2). Reduction of silver
ion to silver nanoparticles during exposure to the plant extracts
could be followed by color change and spectroscopic

1/em

techniques. Following the mixing of extract with aqueous so-
lution of silver nitrate, it started to change the color from
watery to dark brown due to the rapid change of the surface
plasmon resonance phenomenon indicating the formation of
silver nanoparticles. This change is denoted by the broadening
of the peak which indicates the formation of polydispersed
large nanoparticles due to slow reduction rates.

FTIR measurements were carried out to identify the possi-
ble biomolecules responsible for the capping and efficient
stabilization of the silver nanoparticles synthesized by the
plant extracts. The FT-IR spectra of Pistacia atlantica extract
(Fig. 3) show several major peaks at 3385, 2926, 2854, 1616,
1375, 1095, and 1033 cm ' and some other peaks approxi-
mately at around 510 to 1000 cm™'. The broad and intense
peak at 3385 cm ! represents the —OH stretching vibration
from phenolic compounds in the extract. The peaks observed
at 2956, 2926, and 667 cm ' are due to C—H stretching of
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Fig. 5 SEM images of silver

nanoparticles formed by Pistacia

atlantica leaf extract

alkanes [42, 43]. The peak at 2854 cm ™' assigned to the N-H
stretching vibration of amide II, while the three peaks at 1616,
1375, and 1033 cm ' are probably attributable to the C=C
aromatic stretch, C—O stretch, and C—O—C bending mode,

Fig. 6 Energy-dispersive X-ray
spectroscopy EDS results of
silver nanoparticles formed by
Pistacia atlantica

cps/eV

respectively [44]. Furthermore, the FT-IR of AgNPs shows
demonstrative differences in the shape and location of signals
indicating the interaction between AgNOj; and involved sites
of biomolecules for production of nanoparticles (Fig. 4). After
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Table 1 Elemental composition of AgNPs formed by Pistacia atlantica leaf extract from EDX

Weight of elements %
Spectrum
(0] Mg Ag

Ag 933 13.38604 3.463942 83.15002
Ag 934 10.87635 4.016734 85.10692
Ag 935 12.84705 3.162684 83.99026
Ag 936 9.763588 2.338785 87.89763
Mean 11.71826 3.245536 85.0362
Sigma 1.691669 0.700359 2.069174
Sigma Mean | 0.845834 0.350179 1.034587

the Ag NPs formation, there are some shifts of valuable peaks
such as the O—H, C—H, N-H vibration, and C—-O stretch indi-
cating that reduction occurred. Biomolecules could be

Fig. 7 a—d TEM image of silver

nanoparticles at different

resolutions 20 and 50 nm. ¢, d
TEM images show organic layer
surrounding silver nanoparticle as
a capping agent. d TEM image

shows clearly that the

nanoparticle is having spherical

shape
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MAG: 32.6kx HV:25kV WD:9mm Px:25nm

adsorbed on the surface of metal nanoparticles, possibly by
interaction through 7-electrons interaction in the absence of
other strong ligating agents.
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Fig. 8 Particle size distribution histogram of silver nanoparticles
determined from TEM image

The SEM micro-graphs show the aggregate formation of
AgNPs with spherical-like formation (Fig. 5). The surface com-
position of sample was qualitatively determined by energy dis-
perse X-ray spectroscopy (EDS) as shown in Fig. 6. The EDS
analysis confirms that the aggregates are silver nanocrystals in
that typical optical absorption peak is shown at approximately
3 keV. As can be seen in Fig. 6, the EDS spectra showed the
strong peak of Ag and weaker signals for Mg and O were from
biomolecules of Pistacia atlantica. This confirms the existence
of only Ag content indicating no silver oxide formation in the
sample. The composition components of AgNPs formed by co-
precipitation synthesis are shown in Table 1.

The morphology of the biosynthesized AgNPs was
displayed by TEM images in Fig. 7a—d. Most of the AgNPs
are in spherical shape with a size less than 50 nm. Also from
the images (Fig. 7c, d), thin layer of organic material from

shows the histogram of particle size versus number of particles
observed on TEM grid.

It is clear from the histogram that the mean particle size of
AgNPs is 18.86 nm.

The silver molecules formed are necessarily subjected to
XRD analysis for the measurement of size of these particles;
Fig. 9 represents the XRD analysis of AgNPs nanoparticles. As
can be seen in the Fig. 9, the peaks placed on diffraction angles
at 37.94°, 44.12°, 64.28°, and 77.28° represent the synthesis of
AgNPs with face-centered cubic structure that is, respectively,
the reflex of crystalline planes (111), (200), (220), and (311)
planes of face-centered cubic silver, which are closely matched
with the reported reference value of JCPDS, file No. 98-018-
0878. The strongest reflection comes from (111) plane, which
denotes that the nanocrystals are (111) oriented as confirmed by
SEM measurements in addition to the Bragg peak representa-
tive of face-centered cubic (FCC) silver nanocrystals. Hence,
XRD pattern thus clearly illustrated that the silver nanoparticles
formed in this present synthesis are crystalline in nature.

The crystallite size of the nanocrystalline samples was
measured from the X-ray line broadening analyses using
Debye-Scherrer formula after accounting for instrumental
broadening (Eq. 1) [47, 48]:

0.9\

D =—
ARD (cos

(1)

where ) is the wavelength of X-ray used in A, 3 is the line
broadening at half the maximum intensity (FWHM in radians
in the 20 scale), 6 is the Bragg angle, Dxgrp is the crystallite
size in nm. The average of the particle size of AgNps was
found to be 17.01 nm using Scherrer equation from (111)
plane. The lattice parameter “a” and interplanar spacing dj,
are determined by Bragg’s law (Eq. 2) and (Eq. 3) [49, 50].

The values obtained are shown in Table 2:

plant is observed as well as reported by some previous reports dr — A 2)
utilizing plant extracts [40, 45, 46]. As can be seen, Fig. 8 " 2sinf
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Table 2 The values of observed ‘d’, crystalline size, dislocation density, strain, and 4, k, / of AgNPs

Observed 20 (°)  Observed d (A°) a=5.417 A° Crystalline size Dislocation density (8) (x 10%) lines/m?  Strain (¢) (x 107°) lines/m* 4 k I
37.94 2.36939 28.47 1.20 0.0204 1 11
44.12 2.05086 63.30 2.49 0.0416 2 0 0
64.28 1.44794 1473 0.460 0.0036 2 20
77.26 1.23385 357.2 0.00783 0.0060 31 1

Table3  Zone of inhibition for gram-positive and gram-negative bacterial strains in the presence of different AgNP concentrations at room temperature

Bacterial strains

Concentration of AgNPs (mg/mL)

2 mg/mL 13 mg/mL 22 mg/mL 30 mg/mL
Zone of inhibition (cm)
Streptococcus pyogenes 0.6 0.6 1 1.5
Salmonella paratyphi B 0.7 0.8 0.8 1
Staphylococcus aureus 0.8 1.1 1 1.4
Klebsiella pneumonia 0.6 1.4 1.3 1.3
Escherichia coli 0.8 1 1.5 14
Pseudomonas aeruginosa 2.5 2.5 3 32

a

/12 L 12 1 P2 (3)
h* + k" +1

dpa =

Dislocation density (0) is calculated with the crystalline
size [50].
0= @)
Micro strain arises due to the lattice misfit which varies on
the deposition conditions and thus it is calculated by the for-
mula [48, 49].

_ (Bcosh)
. 5)

We have observed that dislocation density has decreased
with the increase in the crystallite size. Similarly, the micro
strain has increased with the decrease in the crystallite size.
These results are shown in the Table 2.

4.2 Bactericidal Activity of Silver Nanoparticle

The antibacterial activities of the AgNPs evaluated against sev-
eral pathogenic bacteria (gram positive and gram negative) at
concentration range (2.0 to 30.0 mg/mL in H,O) of AgNPs are
presented in Table 3 and Figs. 10 and 11. The result of

@ Springer

antibacterial activity of AgNPs with different concentrations
(2, 13, 22, and 30 mg/mL in H,O) showed moderate antimi-
crobial activity against every of this pathogenic strains with
zone of inhibition ranging from 0.6 to 3.2 cm (Table 3 and
Fig. 11). The zone of the clearance around each well after the
incubation period confirms the antimicrobial activity of the
AgNPs extract.

35
Bl 2 mg/ml
13 mg/ml
307 22 mg/ml
B35 30 mg/ml

Centimeters

E. coli

Strepto. sp  Salmon. parat Staphy. aureus  Klebsi. sp Pseudo. aer

Microorganisms

Fig. 10 Effect of antibacterial activities of the silver nanoparticle at
different concentrations on zone of inhibition of microorganisms
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Fig. 11 Study of antibacterial
activity (zone of inhibition) of
silver nanoparticles formed by
Pistacia atlantica. a
Pseudomonas aeruginosa, b
Staphylococcus aureus, ¢
Streptococcus pyogenes, d
Escherichia coli, e Salmonella
paratyphi B, and f Klebsiella
pneumonia

According to literature, antibacterial properties of the nano-
particles are attributed to the structural changes in the bacterial
cell membrane and consequently facilitation of cell permeabil-
ity by nanoparticles [51]. AgNPs might have been attached to
the surface of the cell membrane of microorganisms, leading
to the disturbance of its functions like permeability and respi-
ration [52]. In this way, AgNPs with higher surface area and
smaller size than the bacteria membrane pores cross them and
have a significant effect on bacteria [52, 53]. In general, small
nanoparticles have a larger surface area for interaction with
bacteria, as compared to that of bigger particles, due to greater
antibacterial activity.

5 Conclusion

Green silver nanoparticles were synthesized with a facile and
rapid method by Pistacia atlantica leaf extract as a reducing
and stabilizing agent. The green AgNPs were characterized by
various techniques. The XRD result and TEM results con-
firmed that AgNP has the crystallite size about 17-18 nm.
The dislocation density has decreased with the increase in
the crystallite size. Similarly, the micro strain has increased
with the decrease in the crystallite size. In this work, we pres-
ent that the AgNPs have the potential to inhibit the growth of
both gram-positive and gram-negative bacteria. In this way,
AgNPs with higher surface area and smaller size than the
bacteria membrane pores cross them and have a significant
effect on bacteria.
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