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Abstract 

Fly ash was utilized as a potential low-cost adsorbent for the removal of methylene blue, malachite green and rhodamine B 
from artificial textile wastewater. The adsorbent was characterized by its physico-chemical analyses, porosity, surface area, 
ignition loss measurements and scanning electron micrograph. Adsorption studies were carried out in a batch process with 
different concentrations of dyestuffs, pH, temperature and contact time. The removal of methylene blue, malachite green 
and rhodamine B varied from 0.228 to 0.814, 0.219 to 0.644, and 0.184 to 0.618 mgg-1 respectively when the initial dye 
concentration was raised from 5 to 20 mgL-1. The amount of dye adsorbed (mgg-1) was found to increase with increase in 
the contact time; with 80 minutes for malachite green and rhodamine B and 100 minutes for methylene blue. The 
equilibrium data closely followed both Langmuir and Freundlich isotherms, but the latter isotherm fitted the data better. 
The changes in standard free energy (∆G°), standard entropy (∆S°) and standard enthalpy (∆H°) were calculated. The 
adsorption of all the dyes onto fly ash was found to be physical and exothermic in nature.  
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1. Introduction 
The discharge of colored wastewater from paper and pulp, 
textile and dyeing, leather, printing industries and food 
process industries is posing a serious environmental 
concern due to their poor biodegradability, carcinogenicity 
and toxicity [1-4]. Similarly, the disposal of fly ash, which 
is a voluminous by-product of coal burning power plants, 
is posing a major problem as per its storage space and the 
cost involved. The fly ash is abundantly available in India 
and according to one estimate about 125 million tons of fly 
ash is generated per annum and it is expected to increase to 
about 200 million tons in the near future [5] At present 
about 2 % of the total fly ash is gainfully utilized [5]. 
Adsorption [6,7] has emerged as an effective method for 
the removal of many aqueous contaminants. Activated 
carbon, due to its large surface area and the presence of 
many different types of surface functional groups, is a very 
effective adsorbent. However, the high cost of activated 
carbon has led to the development of new cost-effective 
adsorbents with similar adsorption characteristics. 
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A number of low-cost adsorbents such as activated carbon 
prepared from various wastes [8-15], diatomaceous earth 
[16], industrial waste products [17-19], bagasse fly ash 
[20], clay mineral [21], biodegradable waste [22], 
hydrotalcite [23], coffee grounds [24], dusts [25-27], 
kudzu [28], ‘waste’ metal hydroxide sludge [29], 
agricultural waste [30], dolomitic sorbents [31], charcoal 
from extracted residue of coffee beans [32], bentonite and 
polyaluminum hydroxide [33] have been studied for 
adsorption of different dyes from solutions. Fly ash, 
containing about 2-5 % un-burn carbon, has been reported 
to adsorb metals [34-37] and dyes [38-41] from aqueous 
solutions. In the present paper, reports are presented on the 
removal of the most commonly used coloring dyes (i.e. 
three basic dyestuffs methylene blue, malachite green and 
rhodamine B, Fig. 1) from artificial textile wastewater 
using fly ash as low-cost adsorbent. These dyes are chosen 
for the present study because they are the brightest class of 
soluble dyes used in the textile industry [42].  
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Figure 1. Chemical structure of methylene blue, malachite 
green and rhodamine B. 
 
2. Experiments 
 
2.1 Materials and Methods 
Fly ash, obtained from Indraprastha Thermal Power 
Station, New Delhi, India. 10.0 g of fly ash was washed 
with distilled water (50 mL) five times, dried in an oven at 
110 °C for 24 h, sieved to desired particle sizes (75, 150 
and 300 µm) and finally stored in vacuum desiccators.  
Stock solutions of the dyes were prepared in double 
distilled water. The chemical analysis of fly ash was done 
following standard methods [43,44]. Surface area was 
determined by N2-BET method [45] employing a 
Quantasorb surface analyzer, QS/7. Porosity was measured 
by mercury intrusion porosimeter, Micrometric model 
9310 [46] while the mean particle diameter was 
determined [46] with the Laser particle size analyzer, 
Malvern 36000. Absorbance measurements were made 
with a Jasco-7800 UV-VIS spectrophotometer at 
corresponding wavelength for maximum absorbance (λmax) 
665 nm for methylene blue, 615 nm for malachite green 
and 555 nm for rhodamine B. The pH measurements were 
made using a pH-meter. The scanning electron micrograph 
was obtained with a scanning electron microscope (Model 
JEOL JSM 840). 
 
2.2 Adsorption Studies 
Batch experiments were carried out using a series of 
Erlenmeyer flask of 50 mL capacity covered with 
aluminum foil to prevent the introduction of any foreign 
particle contamination. The effect of pH, concentration, 
dose, temperature and shaking time was studied. Isotherms 
were run by taking selected different concentrations of 
methylene blue, malachite green and rhodamine B at 
desired temperatures (20, 30 and 40 ºC) and pH. After the 
required experimentation, the solutions were filtered and 
the concentrations of methylene blue, malachite green and 
rhodamine B were determined in filtrate using a UV-
visible spectrometer. For kinetic studies the batch 
technique was used due to its simplicity. A series of 
Erlenmeyer flasks of 50 mL capacity containing a defined 

volume of solutions of methylene blue, malachite green 
and rhodamine B of known concentrations were kept in a 
thermostatic shaking water bath. After attaining the desired 
temperature (30 ºC), a known amount of the adsorbent was 
added to each flask and the flasks were allowed to agitate 
mechanically. At given time intervals, the solutions were 
filtered and the supernatants were analyzed for methylene 
blue, malachite green and rhodamine B as mentioned 
above. 
One gram of fly ash was maintained in contact with 50 mL 
dye solution (initial concentration; 5, 10, 15, 20, 25 mg L-

1) in an Erlenmeyer flask and was shaken in a thermostatic 
water bath (120 cycle/min). After the different contact 
times, the solution was filtered on a Whatman filter paper 
No. 42. The residual dye concentration in each solution 
was measured spectrophotometrically at the corresponding 
λmax (665, 615 and 555 nm for methylene blue, malachite 
green and rhodamine B, respectively). The original pH of 
the dye solution was adjusted to the desired value by 
adding required quantities of decimolar solutions of 
sulphuric acid or sodium hydroxide. Effects of initial dye 
concentration, particle size, and pH at different agitation 
time were also studied following the same experimental 
procedures. In order to eliminate error due to adsorption of 
dyes on filter paper; a parallel control set (without fly ash) 
was run in an identical manner. The percentage removal of 
dye was calculated on the basis of color of wastewater in 
the control set.  
 

 
 

Figure 2. Scanning Electron Micrograph of the fly ash 
sample 
 
2.2.1  Adsorption Isotherms  
The adsorption equilibrium models often provide insight 
into the sorption mechanism, surface properties and 
affinity of adsorbent. The most commonly used 
equilibrium models are Langmuir and Freundlich 
isotherms [47]. The fractional coverage, θ, on an adsorbent 
surface at constant temperature is given by Langmuir 
isotherm. Langmuir isotherm is based on the assumption of 
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uniform energy of adsorption on the surface of the 
adsorbent. The total monolayer capacity of the adsorbent is 
equal to Q°, a Langmuir constant. The rearranged 
Langmuir isotherm is represented by following equation: 
 

Ce/qe   =   1/ Q° b   +   Ce/Q°   (1) 
where, Ce is the equilibrium concentration of dye (mg L-1), 
qe is the amount of dye adsorbed at equilibrium (mgg-1), Q° 
is the monolayer adsorption capacity (mgg-1), and b is the 
constant related to the free energy of adsorption. Hence, a 
plot of Ce/qe versus Ce yields a straight line with Q° 
calculated from the slope and the value of b as its 
intercept. 

 
     Freundlich isotherm is an exponential equation and can 
be written as: 

 
qe   =   KF  Ce

1/n

log qe   =   log KF  +   1/n log  Ce   (2) 
 

where, KF is the constant indicative of the relative 
adsorption capacity of the adsorbent (mg g-1), and 1/n is 
the constant indicative of the intensity of the adsorption. 
The Freundlich equation possesses two constant, KF and 
1/n. High and low values of KF and 1/n indicate high 
adsorption throughout the concentration range studied 
whereas high values of 1/n and low values of KF show low 
adsorption. When 1/n  =  1,  the adsorption is favorable. 
 
2.2.2 Adsorption Thermodynamics 
The adsorption at any interface between two phases can be 
regarded as an equilibrium process, the point of 
equilibrium being dictated by the relative energies of the 
adsorbate in the two phases. These energy values can be 
defined in terms of thermodynamic parameters such as 
change in free energy (∆G°), enthalpy (∆H°), and entropy 
(∆S°). The feasibility of the removal process is often 
evaluated by determining these thermodynamic parameters 
using the following equations: 
 

∆G°    =     -RT  ln b    (3) 
∆H°    =      R(T2 T1) / (T2 – T1) ln (b1 / b2), (4) 
∆S°     =      (∆H°    -    ∆G°) / T  (5) 

 
where b, b1, and b2 are the Langmuir constants at 
temperature T, T1 and T2, respectively.  
 
2.2.3 Adsorption Kinetics 
The study of kinetics of adsorption describes the solute 
uptake rate at the solid-solution interface. The rate constant 
of adsorption of dyes on to fly ash, Kad, has been studied 
using the Lagergren first order rate equation: 

 
log (qe – qt)  =  log qe  -  Kad t /  2.303  (6) 

 

where, qe is the amount of dye adsorbed at equilibrium, 
and qt is the amount of dye adsorbed at time t (both in 
mgg-1). 
 
3.  Results and Discussion 
 
3.1  Characterization of the Adsorbent 
The chemical analyses indicated that the major constituent 
of the fly ash was SiO2, (60.10 %) followed by Al2O3 
(18.60 %) and Fe2O3 (6.40 %). Other constituents included 
CaO (6.30 %) and MgO (3.60 %). The adsorbent had 
surface area of 40.16 m2 g-1; porosity, 0.43 cm3 g-1; bulk 
density, 3.51 g cm-3; and showed an ignition loss of 4.90 
%. The scanning electron micrograph at 1000 x 
magnification (Fig. 2) of fly ash (75 µm) shows typical fly 
ash morphology and surface texture. The adsorbent 
consisted mainly of solid spheres of a wide range of sizes 
with the zero charge of the fly ash being 5.8. Some 
adsorbents such as fly ash and bottom ash contain 2-15 % 
un-burnt carbon, which may attach organic functional 
groups containing oxygen. On contact with the aqueous 
medium, these oxides form surface hydroxyl compounds 
and are amphoteric in nature. The overall interaction of 
metal oxides with water may be described according to 
Ahmed [48]. The charged interface thus formed interacts 
with the charged aqueous pollutant species of the 
wastewater. Electrical charge on the interface is also 
determined by zero point charge (pHzpc), of the adsorbent 
species. It is understood that below pHzpc, the adsorbent 
acquires positive charge and, above it, the surface of the 
adsorbent remains negatively charged. Weber and Morris 
[49] correlated molecular weight of substances with 
capacity of adsorption and concluded that by increasing 
the molecular weight the capacity was significantly 
increased. It is noteworthy that the rate dependence on 
molecular size can be generalized only within a particular 
chemical class of molecules.  For example, large 
molecules of one chemical class of compounds may adsorb 
more rapidly than smaller ones of another class. Further, 
this rate dependence on size is applicable for rapidly 
agitated batch reactors. 
 
3.2.  Effect of Initial Concentrations 
To study the effect of different concentrations of dyes on 
adsorption behavior three concentrations (5, 10 and 20 mg 
L-1) were used and the amounts adsorbed were calculated 
and given in Table 1 and plotted in Fig. 3. Table 1 and Fig. 
3 indicate that the amount of dye adsorbed is increased 
from 0.228 to 0.814 mgg-1, 0.219 to 0.644  mgg-1 and 
0.184 to 0.618 mgg-1 when the initial concentration was 
increased from 5 to 20 mg L-1, for methylene blue, 
malachite green and rhodamine B, respectively. The 
observed increase in the adsorption of dyestuffs with 
increasing concentration may be due to sufficient 
adsorption sites at adsorbent [50].  
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Table 1. Amount (mg g-1) and percentage of dyes 
adsorbed at 30±1 oC 

 
 
3.3  Effect of Contact Time 
The adsorption experiments were also carried out at 
different time intervals (from 15-200 minutes) and the 
results of these findings are plotted in Fig. 4. The effect of 
contact time was also studied at different values of pH (pH 
3, 5, 7 and 9). The uptake of adsorbate species was rapid in 
the initial stages of the contact period and became slow 
near the equilibrium. In between these two stages of the 
uptake, the rate of adsorption was found to be nearly 
constant. This result is expected because a large number of 
surface sites are available for adsorption at the initial 
stages and after a lapse of time, the remaining surface sites 
are difficult to occupy because of repulsion between the 
solute molecules of the solid and bulk phases [50]. The 
structure of dyes indicates the presence of secondary and 
tertiary amines, carboxylic group, and oxygen and sulphur 
atoms and adsorbents contains silica, iron and calcium 
oxides. Therefore, adsorption may be due to hydrogen 
bonding, van der Waal forces, and others. Examination of 
dye structure indicates that malachite green should absorb 
strongly but methylene blue adsorbed the most. This 
behavior may be explained on the basis of steric effect in 
malachite green and rhodamine B dyes versus methylene 
blue that has no steric effect  
 
3.4  Effect of pH 
The effect of pH and contact time on removal of dyestuffs 
is shown in Fig. 5 and it is evident from this figure that 
maximum adsorption of malachite green is at pH value of 
7.0 while the adsorption of methylene blue and rhodamine 
B was maximum at high pHs (7-9). But due to pH of 
natural water being in the range of 7 to 8, 7.5 was 
considered as the optimum pH for maximum adsorption of 
these dyes. The effect of variation of pH can be seen in 
Fig. 4  and it is clear from this figure that adsorption of 
dyes increases from 0.426 to 0.467, 0.232 to 0.394 and 
0.286 to 0.367 mg g-1 for methylene blue, malachite green 
and rhodamine B, respectively as the pH is increased from 
3 to 9. It appears that silica and alumina, which are chief 
constituents of fly ash, form metal-hydroxide complexes in 
solution and the subsequent acidic or basic dissociation of 
these complexes at the solid-solution interface leads to 
either positive or negative surface charge [51]. At acidic 
pH, the dissociation of the metal-hydroxide complexes 

causes the surface to become positively charged. However, 
with increasing pH, the surface becomes negatively 
charged as in the alkaline medium the silica and alumina 
get converted into SiO2

- and Al2O3
- type of functional sites 

and, therefore, the binding of positively charged dyes onto 
these surfaces become much favorable resulting in 
enhanced adsorption of dyes [38,52].The variation of 
adsorption with pH can be explained by considering the 
difference in the structure of the dyes, as well as the point 
of zero charge of the fly ash (which is 5.8). The main 
constituents of fly ash are silica and alumina. The ZPC (a 
concept; related to the adsorption process; describes the 
condition when the electrical charge density on a surface is 
zero) of silica is 2.3, while that of alumina is 8.2, and as 
such the surface of fly ash would have high positive charge 
density below pH value of  5.8, i.e. ZPC of the fly ash 
[48]. Under these conditions the uptake of positively 
charged dyes would be low; with increasing pH, the 
negative-charge density on the surface increases resulting 
in enhanced removal.  

Concn. of 

dyes 

Methylene blue Malachite green Rhodamine B 

(mgL-1) (mg g-1) (%) (mg g-1) (%) (mgg-1) (%) 

5.0 0.228 91.20 0.219 87.60 0.184 73.64 

10.0 0.434 86.80 0.387 77.38 0.334 66.80 

20.0 0.814 81.38 0.644 64.42 0.618 6178 

 
3.5  Effect of Particle Size 
The relationship between the amounts of dye adsorbed at 
75, 150 and 300 µm particle sizes is shown in Fig. 6, 
which shows that the adsorption capacity increases with 
decreasing particle size of the adsorbent. This could be due 
to substantial increase in the surface area for small particle 
[53,54].  Adsorption capacity at 300 µm is very low and 
for particle sizes between 75 and 150 µm, adsorption 
capacity is 12.4, 15.8 and 12.6 percent higher than that at 
75 µm for methylene blue, malachite green and rhodamine 
B respectively. Therefore, 75 µm is considered as optimum 
particle size.  

 

3.6  Adsorption Dynamics 
The adsorption of dyes onto the fly ash at different time 
intervals is depicted in Fig. 4. The adsorption of dye  
increased with lapse of time and gradually attained 
equilibrium at 80 minutes. The adsorption rate constant, 
Kad at 20, 30 and 40 oC, is calculated from the slope of the 
linear plots of log (qe - q) vs. t (Fig. 7), based on Lagergren 
first order rate equation 6 [55] The adsorption rate 
constants were determined from the slopes of the plots and 
were found to be 6.45, 5.01 and 4.51 ×102 min-1 for 
methylene blue, 4.70, 4.42 and 4.23 ×102min-1 for 
malachite green and 4.79, 4.65 and 4.61 × 102 min-1 for 
rhodamine B at 20, 30 and 40 °C respectively (Table  2). 
The plots were found to be linear with significant 
regression coefficients in the range 0.923-0.975, indicating 
that Lagergren’s equation is applicable to the dye 
adsorption process with first order process. 
 
3.6.1  Adsorption Isotherms 
Both Langmuir and Freundlich isotherm models have been 
employed  to  evaluate  the  adsorption  data  for methylene  
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Figure 3. Effect of concentration on the adsorption of dyes, 
(Temp. 30ºC, Particle size 75 µm) 
 

Table 2. The values of Langmuir constants 
Adsorbate 

(Dyes) 
Temp. 
(oC) Qo B r2 RL

Kad x 
102/min-

1

20 4.2793 0.0123 0.9758 0.0242 6.45 
30 2.9434 0.0183 0.9230 0.0770 5.01 Methylene 

blue 
40 2.6868 0.0197 0.9251 0.0749 4.51 
20 1.5805 0.0358 0.9661 0.0339 4.70 
30 1.3717 0.0407 0.9694 0.0306 4.42 Malachite 

green 
40 1.2290 0.0455 0.9669 0.0334 4.23 
20 2.3257 0.0190 0.9230 0.0770 4.79 
30 1.8706 0.0231 0.9492 0.0508 4.65 Rhodamine 

B 
40 1.3045 0.0317 0.9461 0.0539 4.61 

 
blue, malachite green and rhodamine B. Langmuir 
isotherm is based on the assumption of uniform adsorption 
energy throughout the surface of the adsorbents. When  

  
 
Figure 4.  Effect of contact time at different pHs 
(Temp. 30ºC, Particle size 75 µm, Conc. 10 mgL-1) 
 
adsorption is in accordance with the Langmuir equation, 
the total monolayer capacity of the adsorbent is equal to 
Qo, a Langmuir constant. When the amount adsorbed at 
equilibrium is quite small, the equilibrium concentration 
shows a linear relationship with the amount of adsorption 
at equilibrium. The experimental data on the uptake of 
dyestuffs at 20, 30 and 40º C have been fitted in the 
rearranged Langmuir equation (equation no. 1). 
Adsorption is in accordance with the Langmuir equation, 
the total monolayer capacity of the adsorbent is equal to 
the plot of Ce/q versus Ce at different temperature is linear 
(Fig. 8). This suggests the applicability of the Langmuir 
adsorption model, and is indicative of monolayer coverage 
of the adsorbate at the outer surface of the adsorbent. The 
values of Qo and b, at different temperatures, determined 
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from the slopes and intercepts of the respective plots, and 
the  
 
Table 3. The values of Freundlich constants 

Adsorbate 
(Dyes) 

Temperature, 
(oC) KF 1/n r

2

20 0.0619 0.8703 0.9969 
30 0.0655 0.8277 0.9894 

Methylene 
blue 

40 0.0650 0.8183 0.9873 
 

20 0.0777 0.7103 0.9812 
30 0.0797 0.6777 0.9824 

Malachite 
green 

40 0.0796 0.6626 0.9720 
    

20 0.0552 0.8150 0.9906 
30 0.0556 0.7856 0.9892 

Rhodamine 
B 

40 0.0575 0.7214 0.9855 
 
regression coefficients, r2 are summarized in Table 2. The 
values of Qo (i.e. maximum uptake) decrease with increase 
in temperature, thereby confirming that the process is 
exothermic. The dimensionless separation factor or 
equilibrium parameter [38], RL (RL = 1/1+bCi) at different 
temperature is calculated from the Langmuir isotherms. 
The values of RL lie between zero and one, suggesting that 
the adsorption process is favorable [56,57]. Freundlich, 
isotherm has been widely used for determining the 
adsorption capacity of different unconventional adsorbents 
The equilibrium adsorption data at different dye 
concentrations are fitted in the linear form of Freundlich 
isotherm model (equation no. 2). The plots of log qe 
against log Ce, shown in Fig. 9 are linear and the values of 
KF and 1/n, calculated from intercept and slope of the plot 
(Figure 9), respectively, are given in Table 3. The 
calculated values of 1/n are less than 1, which suggest the 
favorable adsorption of dyestuffs onto the fly ash [58]. The 
values of the regression coefficients at different 
temperatures indicate that the data satisfactorily follow 
both Langmuir and Freundlich models but the Freundlich 
isotherm fits the experimental data better. The values of Qo 
and KF are observed to be higher for methylene blue and 
malachite green dyes, respectively. 
 
3.6.2  Thermodynamic Parameters  
The amount of dye adsorbed decreased from 0.234 to  
0.221 mg g-1 (methylene blue), 0.223 to 0.209 mg g-1 
(malachite green) and 0.193 to 0.173 mg g-1  (rhodamine 
B) with rise in temperature from 20 to 40 oC and at 5.0 mg 
L-1 concentration, suggesting the exothermic nature of the 
adsorption process. It has been reported by several authors 
[38, 59, 60] that the chemical potential of the adsorbates 
are the main controlling factor in the adsorption process. If 
the solubility of adsorbates increases with an increase in 
temperature, the chemical potential is decreased, thereby 
causing a decrease in adsorption. The steady decrease in 

Qo values with increase in temperature indicates that the 
adsorption is governed by the same factor. 
Thermodynamic data for the adsorption of methylene blue, 
malachite green and rhodamine B onto fly ash are 
summarized in Table 4. The change in standard free 
energy (∆G°), standard enthalpy (∆Ho) and standard 
entropy (∆S°) are calculated using equations 3, 4 and 5. 
The negative values of ∆G° show the spontaneous nature 
of the adsorption process while the small negative values 
of ∆Ho indicate adsorption process physical in nature. The 
positive values of ∆S° suggest favorable affinity of the 
adsorbent for the dyes. 
 
     Table 4. The values of thermodynamic parameters 

Adsorbate 
(Dyes) 

Temperature, 
(oC) 

-∆Go 

(kJmol-1) 
-∆Ho 

(kJmol-1) 
∆So 

(kJmol-1) 

20 10.719 29.354 63.57 
30 10.083 5.818 14.07 

Methylene 
blue 

40 10.224 59.778 18.76 
 

20 8.115 9.478 4.65 
30 8.069 8.799 2.41 

Malachite 
green 

40 8.045 5.273 16.58 
 

20 9.65 14.43 16.30 
30 9.49 24.97 51.05 

Rhodamine 
B 

40 8.98 55.775 17.52 
 
 
3.7  Mechanism of Adsorption 
The variation in the adsorption of cations may be 
explained on the basis of the surface hydroxylation of 
oxides at the solid-solution interface. It is established that 
hydroxylated oxides surfaces are influenced by minute 
concentrations of potential determination ions, H+ and OH- 
and develops positive and negative charges at the surface. 
The acid-base dissociation of solid surface may be 
represented in the following manner [59,61]. 
 

M2+ H+

OH-
 M+

OH

H+

OH- M
OH

OH OH-

H+
 M

O-

OH

OH-

H+
M

O-

O-

 
(Basic Dissociation) (Acidic Dissociation) 

 
where M denotes Si, Ca, Fe etc. It is evident from the 
above equilibrium that with a decrease in the pH of the 
solution, the positive charge density on the surface 
increases and, hence, the adsorption of cations decreases. 
A decrease in pH lowers the dissociation of acid and a high 
pH produces negatively charged surfaces which would 
favor the removal of cations from the bulk. The increase in 
adsorption with pH is attributed due to the development of 
negative charges on the surface of different adsorbents. 
Thus, it is obvious that the adsorption of the cationic dyes 
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would be maximal at high (alkaline) pH ranges; due to 
coulomb attraction [38]. The surface charge of the major 
constituents of the adsorbents used plays an important role 
in the removal of methylene blue, malachite green and 
rhodamine B. The polar functional groups of the 
adsorbents are involved in the formation of bonds with 
cationic dyes. The observed decrease in the removal of  
dyes at lower pH is apparently due to the higher 
concentration of H+ ions present in the reaction mixture, 
which compete with dye cations for the adsorption sites 
[62,63]. The determining ions are H+ and OH-. Generally, 
the solid surfaces adsorb anions favorably at low pH due to 
association of H+ ions, whereas cations are adsorbed at 
high pH due to deposition of OH- ions on the adsorbent 
surface. The mechanism of adsorption may be described 
as: 

S
 H

 A
S  +    H+  +   A-

 
and 

S
 OH

 A
S  +    OH-  +  A+  

 
where S and A denote the surface of the adsorbent and 
adsorbate, respectively [64,65].  Oxides of metal and non-
metals are the main constituents of many unconventional 
adsorbents like clays, minerals, soils, fly ash, furnace slag, 
etc. Such oxides are first hydroxylated in contact with 
water and then develop either positive or negative charges 
on the interface, according to pH of the solution as 
follows: 
 
 

 

M
O-

OH

OH-

-H2O
M

OH

OH
M+

OH

H+

-H2O

 
     
In such systems, charged species of the aqueous phase are 
withheld on the surface of the adsorbent by columbic 
forces. 
 
3.8  Validation of the Method 
The developed adsorption method was validated by 
carrying out seven sets (n = 7) of the experiments. The 
regression analysis was carried out using Microsoft Excel 
program. The values of standard deviation (SD) and 
correlation coefficients (R2) ranged from ±0.10 to ±0.50 
and 0.9997 to 0.9999 respectively. In addition, the 
confidence levels ranged from 99.5 to 99.8 for all the 
experiments.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
       Figure 5. Adsorption versus pH (Temp. 30 ºC, Particle   
       size 75 µm,  Conc. 10 mgL-1). 
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Figure 6. Effect of particle size on adsorption of dyes 
(Temp. 30ºC, Particle size 75 µm, Conc. 10 mgL-1) 
 
 

 

 

 
 
 
Figure 7. Lagergren plots for the adsorption of dyes at different 
temperatures (Temp. 30ºC, Particle size 75 µm, Conc. 10 mgL-1) 
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Figure 8. Langmuir plots for the adsorption of dyes at different 
temperatures  (Temp. 30º C, Particle size 75 µm) 
 
4. Conclusions 
 
 
The results of the present sorption studies indicate that the 
maximum adsorption of malachite green and rhodamine B 
was obtained at 5.0 mg L-1, 80 minutes, 1.0 g L-1, 7.5, 75 
µm and 30 ºC initial concentration, contact time, dose, pH, 
particle size and temperature respectively. On the other 
hand, the maximum adsorption of methylene blue was  

 

 

 

 
 
Figure  9. Freundlich plots for the adsorption of dyes at different 
temperatures (Temp. 30º C, Particle size 75 µm) 
 
observed at 100 minutes contact times with other similar 
conditions as in case of malachite green and rhodamine B 
dyes. The adsorption process was of first order; physical 
and exothermic in nature. The adsorption data was 
analyzed by Langmuir and Freundlich models and fitted 
well; slightly better fitted with Freundlich adsorption 
isotherms; indicating the appropriateness of the 
experiments. The fitness of Langmuir’s model indicated 
the formation of monolayer coverage of the adsorbate on 
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the outer surface of the adsorbent.  The fly ash adsorbent 
was capable of adsorbing basic dyes with high affinity and 
capacity indicating its potential as a low cost alternative 
adsorbent. The negative values of ∆Go and ∆Ho indicated 
that adsorption was a spontaneous and exothermic process. 
The developed adsorption system is useful and can be used 
for the removal of the reported dyes from contaminated 
water.  
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