TREATMENT EFFICACY OF KAUMA WASTEWATER TREATMENT WORKS IN LILONGWE, MALAWI FOR POLLUTION CONTROL AND WASTEWATER REUSE

Principal Mdolo (NRC)

INTRODUCTION

Wastewater management is a challenge facing city authorities

Blantyre (Mdolo 2013)

Lilongwe (Mdolo 2017)

Discharge of poor quality effluent causes pollution

Surface water is a source of domestic water supply and irrigation for low income communities

Discharge of poor quality effluent negatively impacts on their livelihoods

Climate change has increased the pressure on s/waters by reducing its quality and quantity

Properly treated wastewater could be used for irrigation and other purposes

Mdolo 2014

This would reduce the pressure on fresh water resources

➤ This paper evaluated the performance of Kauma wastewater treatment works by determining the performance of the respective treatment units through assessment of physico-chemical characteristics of influent and effluent wastewater.

➤ This approach is important in determining the pollutant load in the next process

METHODOLOGY

The system has 15 ponds as follow;

Pond system	No of ponds	Perimeter (m)	Depth (m)	DT (days)	BOD loading (g/m³)
Anaerobic	3	62 X 54	4	2.1	160
Facultative	4	105 X 144	1.5	16.7	192
Maturation	6	71 X 94	2	3	-
Septage	2	28.2 X 42.2	3	2	-

- Four sampling stations were identified
- ➤ One grab sample was collected in a 1 liter bottle
- > Samples were analyzed for BOD₅, COD and TSS using standard methods (APHA)
- > A questionnaire was used to collect data on O & M activities
- ➤ MS Excel 2016 and SAS were used for statistical analysis

RESULTS AND DISCUSSION

Influent and effluent wastewater quality characteristics at Kauma

Treatment pond	BOD ₅ (mg/L)	COD (mg/L)	TSS (mg/L)
Anaerobic pond influent	117	432	133
Anaerobic pond effluent	49	110	45
Facultative pond effluent	23	98	66
Maturation pond effluent	17	87	58

- ➤ Wastewater received at Kauma is of low strength with respect to BOD₅
- ➤ It is of low to medium strength with respect to COD and TSS
- > TSS increased in the facultative pond effluent

Final effluent concentration of BOD₅, COD and TSS compared against WHO and Malawi standards

Parameter	BOD ₅	COD	TSS	
UQ	19	97	84	
Median	15	67	58	
LQ	13	39	21	
Mean	16	87	58	
CV	39	76	65	
MBS	20	60	30	
WHO	20	60	30	

- > COD and TSS of 75% of the data (UQ) was above the standard
- > Discharge of such effluent can cause pollution in Lilongwe river
- > High variability in effluent COD could be a result of mixing of the effluent of AP and SP

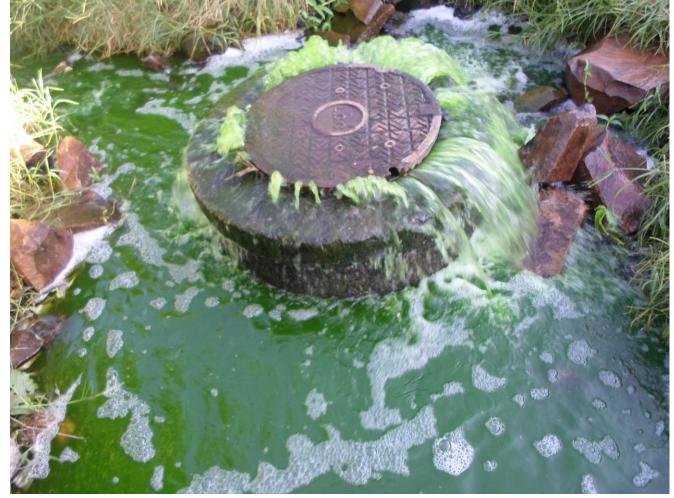
Performance efficiency (%) of Kauma WWTP

Parameter/Treatment process	Anaerobic pond (%)	Facultative pond (%)	Maturation pond (%)
BOD ₅	52	47	2
COD	33	-77	
TSS	50	13	11

- ➤ The efficiency of anaerobic and facultative ponds in BOD₅ and TSS removal is lower than design (60% and 80%)
- > Low efficiencies could be a result of the low strength influent wastewater
- Mixing of septage pond and anaerobic pond effluent could also impact on biological treatment in facultative ponds
- Further, low biodegradability index (0.3) signaled presence of inorganics in influent wastewater

Operation and Maintenance Works at Kauma

- ➤ Inspection of the whole sewer line and cleaning of bar screens were adequately carried
- ➤ Grit chambers and distribution chambers were cleaned less frequently than desired
- > Effluent discharge pipes were not cleaned at all
- ➤ Greasing of gate valves and movable weir spindle shafts was not done
- ➤ Monitoring of effluent quality was not done


Maintenance of pond embankments, cutting of grass on site, clearing roads and footpaths were done as required

- Desludging of anaerobic ponds was done once every two years
- Filling of a pond maintenance record sheet was not done
- Equipment and materials for O & M works were reported not working
- Lack of resources was reported as the main cause for not carrying out some O & M activities

CONCLUSION/RECOMMENDATIONS

- > Effluent discharged at Kauma is of poor quality
- > The efficiency of the pond system is poor in removing pollutants
- > The effluent can impact negatively on public health and the environment
- ➤ O & M works at Kauma are inadequate
- > Therefore, further treatment is required to make the effluent reusable

A training plan for staff be developed and implemented

It is therefore recommended that;

- ➤ All broken and blocked pipes be repaired
- Effluent quality be monitored regularly
- An O & M plan be developed and followed
- Records of all O & M activities be maintained

