
DOCKEMU - A Network Emulation Tool

Marco Antonio To, Marcos Cano and Preng Biba
RLICT

Universidad Galileo

7a. Av. Final, calle Dr. Eduardo Suger Cofiño, Zona 10

Guatemala, Guatemala.

{marcoto, marcos.cano, prengsen}@galileo.edu

Abstract
Dockemu is developed because of the need for a well

designed tool for emulating networks. The tool utilizes
technologies that are tailored to a current researcher’s
needs, delivering a robust and dynamic framework. In the
past, most emulation tools have tried to provide solutions
without taking into consideration that the installation and
configuration of the software can be very time consuming,
not to mention, the complexity of setting up and running
an actual experiment can become also a very complex
task. Our approach provides the researcher the flexibility
to rapidly create networks (wired or wireless), up to date
operating systems and a user friendly method of installa-
tion and configuration, that translates into a streamlined
workflow for the emulation of experiments. Also, the
development of applications or prototypes can be made
directly into a real world OS. This saves time, because the
prototypes will only be developed once (not for a simulator
first and then for a final OS) but the results will also be
more accurate. Dockemu utilizes virtualization with Linux
Containers through Docker and Linux Bridging along with
NS-3 for the emulation of layers 1 and 2 of the OSI model.

Index Terms—Emulation, linux containers, network simulator
3, ad hoc networks, virtualization, tap bridge, Docker.

I. INTRODUCTION

The research community is in constant need of new tools

in order to ensure better and faster deployments for their

experiments. These experiments usually are validated with

network simulators, like the Network Simulator 2 (NS-2)1,

the Network Simulator 3, (NS-3)2, OMNET++3, among

others. Although many protocols have been developed and

implemented in simulators, there is still a need in the research

community to take those experiments and generate results as

accurate as possible. As outlined in [1], network simulators

do not provide the sufficient accuracy, but are great for a

first step in protocol testing. Also, the work of [2] and [3]

provide some insightful information about the current state of

Mobile Ad hoc Network (MANET) simulation and how we

must reconsider the validity of the results obtained through

simulators.

Network Emulation provides the means to an experiment

to be as close to a real environment, but without the need

1NS-2: http://nsnam.isi.edu/nsnam/
2NS-3: http://www.nsnam.org/
3OMNET++: http://www.omnetpp.org/

of actually setting up real networks. In a broader sense,

the experiments and scenarios tested through the network

emulators should comply with the following requirements [4]:

• Realism. The framework should provide the most real

conditions available, minimizing the error between the

simulated and the real, leading better and more valuable

results.

• Reproducibility. The scenarios must be reproducible so

they can be compared among them. Reproducibility does

not mean that the results of a network emulator should

always be the same. We must take under consideration

that the closer we are to reality, another variables can

introduce changes in the experiments.

• Representativeness. The framework should provide the

desired environmental factors in order for the results to

be valid.

The Dockemu tool bases its design in the previous re-

quirements, but complies to the emulation benefits mentioned

at Puzar et al. [5], which are usage, low costs, scalability,

portability, routing and comparability. Furthermore, Dockemu

will extend the benefits with the following items:

• The tool is able to handle real world OS and applications.

• The tool is IPv4 and IPv6 capable.

• The tool can emulate wired and wireless networks.

• The tool has a smooth installation and configuration.

• The tool provides a fast scenario deployment.

The main contributions of this paper are:

• An emulation tool that meets current and future needs of

the research community utilizing Linux Containers with

the Docker framework and Network Simulator 3 (NS-3).

• The Dockemu tool provides a fast and user friendly

workflow, from the installation to the configuration of

scenarios, providing the accuracy and flexibility of a real

world environment.

• A tool that is portable and scalable.

This paper is organized as follows. Section II presents

the State of the Art in this area, getting a closer look at

past implementations of network simulators and emulators.

Section III details the Dockemu tool and its architecture.

Section IV explains the implementation of the tool. Section

V shows some scenarios and their results and finally Section

VI will give our Conclusions and Future Work.

2015 29th International Conference on Advanced Information Networking and Applications Workshops

978-1-4799-1775-4/15 $31.00 © 2015 IEEE

DOI 10.1109/WAINA.2015.107

593

II. RELATED WORK

The research community has many choices at their reach

to perform their experiments. Unfortunately not all software

satisfies the requirements mentioned before, leading to partial

accuracy on the results. There are various tools for simulation

or emulation, from open source (NS-2, NS-3, OMNET++)

to commercial software (QualNet4, OPNET5), each one with

special characteristics and specialities. The Dockemu tool will

be distributed to the research community as one more option

for emulation of wired or wireless networks, which will

follow the guidelines of OpenSource Software community6.

Due to the benefits that Dockemu will provide the users,

were have high expectations that it will be welcomed.

Among other works that have been done, Grajzer et al. [6],

do a good job highlighting the current problematic of simu-

lators and emulators. Their work states that (in most cases)

simulation is used for testing performance and scalability.

As of emulation is used for the final stages of verification

of the solution. Grajzer et al. also suggest that given that

emulation is “closer” to a real world environment, it would

be better not to use it only at the end for validation, but

it would save time and effort to use this tools from the

beginning, leading to more accurate results. Also, they do a

very nice job on stating their experience in implementing IPv6

capable Mobile Ad hoc Network (MANET) routing protocols

in simulators and how this time consuming job has to be

duplicated later for real world OSs. One of the motivations

of creating Dockemu, was in fact the same experience of

encountering many out of date MANET routing protocols, or

protocols that exist only in simulators that never made it to

a real world OS implementation. Moreover, works done by

Andel et al. [3] and Hiranandani et al. [2] in the case of

MANETs simulation, discuss some of the flaws of tens of

dozens of research papers where the simulation results fail to

provide the sufficient information so their experiments can be

independently repeatable or have tested their experiments with

scenarios with default configurations, which do not come close

to real life mobility patterns (Example: “Random Waypoint

Mobility”).

Taking the previous under consideration, many research

teams have also created new tools that take network simulation

one step further and head towards network emulation. Their

goal is to fulfil most of the requirements for simplicity,

accuracy, scalability and performance. To name a few of

these tools are MobiREAL [7], NEMAN [5], TapRouter [8],

JiST [9], Mesh Linux Containers (MLC) [10], among others.

MobiREAL and JiST are speciality simulators, being only

used for a specific area of expertise. These two softwares

bring specific characteristics for the simulation of wireless ad

hoc networks and their scalability. JiST in particular can scale

4Qualnet: http://web.scalable-networks.com/content/qualnet
5OPNET: http://www.riverbed.com/
6OpenSource Website: http://opensource.org/

up to millions of nodes. As we have seen, this simulators

test the dynamics of new protocols in isolation from external

factors, doing their best in introducing interference, speed, etc.

Moving to emulation frameworks, NEMAN, TapRouter and

MLC provide similar characteristics of our proposed tool

Dockemu, but with slight differences. TapRouter is depre-

cated because their implementation can now be done directly

between Linux Bridges and Tap devices, without the need

of a middle layer. MLC uses Linux Containers for node

virtualization, but “simulates” the network through the use of

a Linux Application called Traffic Control (TC). Even tough,

TC can add delay, jitter, bandwidth shaping, among others,

it does not provide support for more complex scenarios and

mobility patterns. NEMAN is a very good implementation of

Linux Containers along with a Simulator, in this case NS-2.

NEMAN is very close of what we are trying to achieve but

delivers an inherited complexity from NS-2 and its OTCL with

C++ implementation. NS-2 can be very time consuming when

trying to add or modify existing protocols. Moreover, it is not

a modular simulator and fails to scale due to high consumption

of computing resources [1].

The NEMAN paper [5] presents a property comparison table

between existing emulators. In Table I we have added Dock-

emu to it.

TABLE I
PROPERTIES OF VARIOUS NETWORK EMULATORS

MobiEmu EMWIN Mobinet NEMAN DOCKEMU
Usage X X X
Low Cost X X X
Scalability X X X X
Portability X X X X X
Routing X X X
Comparability X X X

Table I shows that the Dockemu tool matches one by one

the NEMAN tool but has more characteristics that are not

mentioned in Table I. For example, NEMAN uses NS-2,

a more complex development environment. Dockemu uses

NS-3 and is capable of providing not only environments for

wireless ad hoc networks, but also is capable of emulating

regular ethernet connectivity, making Dockemu a more

comprehensive tool for emulating network scenarios. Also,

Dockemu (to the best of our knowledge) is the only emulation

tool to incorporate the Docker framework for linux container

management. As we will describe in the rest of this work,

Dockemu requirements are broader, making it a tool capable

of satisfying current and future needs of the scientific

community.

III. DOCKEMU FRAMEWORK

Dockemu is based on current technologies that are paving

the way for future generations, which already have proven

to be successful in optimizing computing resources as of

generating research scenarios.

594

A. Preliminaries

The Dockemu tool is designed to get scenarios up and

running as fast as possible, spending the least time on

installing, configuring and getting to know the software.

The fact that today, a good part of the research community

first develops for a specific simulator and later they have to

develop it again for a real world implementation (many times

using different Programming Languages) raises the question

of how efficient is this method. Dockemu provides the user

the benefit of developing applications on current OSs which

can be tested on larger networks, leading to more accurate

results and saving time in duplicity of the implementation.

In order to satisfy the requirements mentioned before, we

use the following technologies and glue them together for a

final research tool:

• Virtualization through Linux Containers using Docker.

• Emulation through Linux Network Bridges and Network

Simulator 3 (NS-3).

• Dockemu framework which binds the previous together.

Linux Containers provide the userspace necessary for

the applications to run. Linux Network Bridges and NS-3

provide the emulation needed for wired or wireless hosts to

communicate with a chosen layer 2 technology, for example,

802.3 Ethernet for wired scenarios or 802.11 CSMA/CA for

wireless scenarios, and finally our implementation which

creates the scenarios utilizing the previous two components.

B. Linux Containers

Linux Containers is a form of server-level virtualization

which gives the flexibility of “partitioning” the Host Operating

System into independent smaller systems. These smaller sys-

tems are called Containers. Containers provide resource isola-

tion and control for a specific application or system [11]. This

technology brings to the researcher a great deal of benefits,

including portability, better usage of host resources, allowing

to generate hundreds to thousands of nodes (depending on

the host hardware), compared to regular OS virtualization

technologies like Virtual Box (vBox), VMWare, Citrix, among

others.

The fact that Linux Containers can scale experiments to a

larger set of nodes, is by itself one of the most important

characteristics on why other frameworks ([8], [10], [12]) use

them also.

Figure 1 shows the architecture for traditional OS Virtual-

ization on which the Hypervisor sits on top of the host OS.

It’s important to notice that each Guest OS’ resources have to

be provisioned beforehand. As contrary to Linux Containers,

each container runs only the application needed, not a full OS.

Figure 2 shows the architecture of Linux Containers.

C. Docker framework

The Docker Framework “...is an open platform for de-
velopers and sysadmins to build, ship, and run distributed
applications.” [13]. Docker builds on the capabilities of LXC

Fig. 1. Traditional OS Virtualization

Fig. 2. Linux Container Virtualization

and “supercharges” the benefits of Linux Containers. Docker

benefits over LXC are (the most important):

• Portable. Docker can make any Linux container portable

so it can be migrated between host machines.

• Versioning. Docker enables a history of the changes in a

particular Linux container.

• Shared Libraries. The Docker community is uploading

to a central repository the containers everyone has made

already, leading to less time in implementation.

As Figure 3 shows, Docker takes the place of LXC, but

instead of replacing it completely, it uses LXC and converts

it to a more powerful, flexible and easier framework for

managing Linux Containers.

Fig. 3. Linux Container Virtualization

D. Linux Network Bridges

Linux Network Bridges provides a component which be-

haves like a virtual network switch. Meaning, that it can

595

connect two or more interfaces together. Moreover, these

interfaces can either be real interfaces inside the OS (Ex. eth0)

or can be virtual interfaces (Ex. tap).

Typing the following command in a Linux OS using a Shell

or Command Line Interface (CLI) shows the current active

bridges in the system and which interfaces are connected to

them:

root@ubuntu:˜# brctl show

In this first example, the bridge lxbr0 has associated the

interface eth0 only.

bridge name bridge id interfaces
lxcbr0 8000.000c297bbed4 eth0

The output for the second example, the bridge lxbr0 has

associated two interfaces eth0 and veth032. This means that

a real interface like eth0 can communicate with a virtual

interface veth032 through a virtual bridge lxcbr0.

bridge name bridge id interfaces
lxcbr0 8000.000c297bbed4 eth0

veth032

E. Network Simulator 3

The Network Simulator 3 or NS-3 “...is a discrete-event
network simulator, targeted primarily for research and edu-
cational use. ns-3 is free software, licensed under the GNU
GPLv2 license, and is publicly available for research, devel-
opment, and use” [14].

NS-3 has many advantages compared to other simulators,

being one of them the use of C++ for development of

experiments which makes a perfect companion with another

OpenSource projects. For example, NS-2 (which is still widely

used), has the drawback of having a complex environment to

develop new experiments, due to the fact that uses a mix of

OTcl with C++.

The role of NS-3 in Dockemu is to provide the means for

network scenario generation, which is also the final piece of

the Dockemu framework. The Tap Bridge Model allows the

interface of a node inside NS-3 to be mapped directly into a

Tap device (also called interface) in the Host OS.

Fig. 4. Tap Bridge Architecture - Simplified Model

Figure 4 shows the flow of information from/to a Virtual

Machine (in this case a Linux Container) to/from a node inside

the NS-3 simulator.

F. Dockemu Architecture

The Dockemu tool merges the technologies that we

mentioned before into a software capable of satisfying

the requirements presented at the beginning of this paper.

Dockemu has the ability of creating scenarios and then

emulating them depending on the need of the experiment.

From wired to wireless networks, wireless ad hoc networks

and MANETs, which can be further tested by the advantages

of using real OSs. For example, most MANET routing

protocols are implemented for simulators (NS-2, NS-3,

OMNET++, etc.) but most fail to provide an implementation

that can handle IPv6. Moreover, there are only a few wireless

ad hoc routing protocol implementations in real OSs that are

constantly maintained by their authors.

As showed in Figure 5, the Dockemu tool will deploy the

corresponding Linux Containers, Linux Bridges, Tap Bridges,

Virtual Interfaces (veth) and the needed NS-3 script, in order

for the experiment to work properly. Once the experiment is

deployed, the user can “attach” to any container and perform

metric tests with common and familiar tools, like tcp-dump,

ping, ping6, Iperf, etc. If needed, the user can create its

customized Container Template, which can later be replicated

to the number of nodes needed. As we can see, Dockemu is

very powerful because of its flexibility and endless options

that can be added directly to the containers.

Fig. 5. Dockemu Framework - Top Level View

IV. IMPLEMENTATION

The Dockemu tool was implemented using the Python high-

level programming language and bash scripting. The tool is

invoked using the dockemu command in a CLI environment.

The Dockemu gets configured through a text file called dock-
emu.conf which provides all the variables needed to define

the scenarios. It is out of scope of this paper to name all of

the variables available for the Dockemu tool, were a tutorial

596

will be available at the URL of the Research Lab7, but some

examples are:

• layer2. Defines what kind of layer 2 technology will be

used. Ex. Ethernet, CSMA 802.11, among others.

• number.networks. The number of simultaneous networks.

• number.nodes. The number of nodes per network.

• ipv4.network. Defines the IPv4 network.

• ipv4.ipaddr.range. Defines the range of IPv4 addresses.

• ipv4.mask. Defines the mask for the IPv4 address range.

• ipv6.network.prefix. Defines the IPv6 network.

• ipv6.ipaddr.range. Defines the range of IPv6 addresses.

• ipv6.ipaddr.mask. Defines the mask for the IPv6 address

range.

• adhoc.routing.proto. Defines the which ad hoc routing

protocol the wireless network will use. By default Dock-

emu comes with OLSR and BMX6.

• NS-3.adhoc.mobility.pattern. Defines the node movement

inside NS-3.

• NS-3.time.exp. Defines for how long the NS-3 scenario

should run.

Once the configuration file is set up with the variables

needed, the user will type:

root@ubuntu:˜# ./dockemu -f dockemu.conf

The Dockemu tool will take care of the rest, meaning

it will configure, create and start the number of “nodes”

described in the configuration file. Then, it will create the

corresponding networking layer (linux bridges, tap interfaces,

virtual interfaces and so on), finishing with the creation

of the layers 1 & 2 through NS-3. The experiment will

run for the time specified in the configuration file or until

it is manually stopped with the keyboard combination Crtl+C.

It is important to state at this point, that in order for the

Dockemu tool to comply with being easy to install, the team

is providing to its users a preconfigured Virtual Machine, based

on Ubuntu 14.04 LTS. This VM can be downloaded and added

easily to a vBox o VMWare framework, so the user can be up

and running as fast as possible.

V. TESTS AND RESULTS

We have tested the Dockemu tool with various scenarios,

which will be available at the Dockemu repository. In this

work we will present two different scenarios, one wired and

another wireless.

A. Scenario 1

In this scenario Dockemu was set up to provide a simple

Ethernet network within the same broadcast domain, with the

following characteristics:

• Network IPv4 = 172.17.0.0/24.

• Network IPv6 = 2800:1a0::/64.

• Number of nodes 50.

7RLICT Website: http://rlict.galileo.edu/

• Type of layer 2 = Ethernet.

• Use NS-3 = no.

It is important to notice that because we wanted only and

Ethernet network, all nodes were configured in the same

Linux Bridge, so no NS-3 is necessary. Once the experiment

is running we can manage the containers with the docker

framework commands. For example, if we would like to show

which containers are running, we would type:

root@ubuntu:˜# docker ns -a

This will list all the containers currently running. Then, to

get into a container and start measuring network metrics, we

would type:

root@ubuntu:˜# docker attach <nameofcontainer>

Once inside the container we can do a throughput test using

a well know tool called iperf.
root@d049153612bc:/# iperf -c 172.17.0.7
--
Client connecting to 172.17.0.7, TCP port 5001
TCP window size: 340 KByte (default)
--
[3] local 172.17.0.6 port 38465 connected

with 172.17.0.7 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 27.1 GBytes 23.3 Gbits/sec

The results give a very high throughput due to the fact that

it is not going through any physical interfaces, just virtual

interfaces inside the same OS.

B. Scenario 2

In this scenario Dockemu was set up to provide a wireless

CSMA network, with the following characteristics:

• Network IPv4 = 10.0.0.0/24.

• Network IPv6 = 2800:1a0::/64.

• Number of nodes 20.

• Type of layer 2 = CSMA.

• Use NS-3 = yes.

Given the fact that we need to simulate a wireless CSMA

network, Dockemu passes through the task to the NS-3

simulator and then Dockemu binds the containers with the

nodes inside NS-3. Contrary to Scenario 1, this scenario puts

each container in a different Linux Bridge an attaches only

two interfaces to each bridge, the virtual interface of the

container (veth) and the tap bridge interface which is the link

to the NS-3 node. In other words, this scenario creates 20

linux containers, 20 bridges and 20 nodes inside NS-3.

As of the previous scenario, we can attach to a given

container and then perform a regular ping between nodes. In

this case, we will attach to node2:

root@ubuntu:˜# docker attach node2

First we check the connectivity with another node using the

ping command:

root@3ce162a28e95:/# ping 10.0.0.2 -c 5 -vvv
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.534 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.523 ms

597

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.462 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.855 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.531 ms

--- 10.0.0.2 ping statistics ---
5 packets transmitted, 5 received,
0% packet loss, time 8999ms
rtt min/avg/max/mdev = 0.462/0.549/0.855/0.109 ms

We check the throughput using also iperf. This is the output

from the Client side:

root@794f0113e606:/# iperf -c 10.0.0.1
--
Client connecting to 10.0.0.1, TCP port 5001
TCP window size: 85.0 KByte (default)
--
[3] local 10.0.0.2 port 37166 connected

with 10.0.0.1 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.1 sec 86.2 MBytes 71.7 Mbits/sec

And the output from the Server side:

root@3ce162a28e95:/# iperf -s
--
Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)
--
[4] local 10.0.0.1 port 5001 connected

with 10.0.0.2 port 37166
[ID] Interval Transfer Bandwidth
[4] 0.0-10.2 sec 86.2 MBytes 71.2 Mbits/sec

The previous results show that even though we are still

using containers in the same computer and OS, the NS-3

simulator gives the characteristic of a CSMA network, limiting

the throughput to 71 Mbps approximately.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the Dockemu tool for

emulation of wired and wireless networks. The tool glues

together state of the art technologies of virtualization (Docker

and Linux Containers), Linux Bridging and NS-3 in order to

provide a complete solution for the research needs of today

and tomorrow. Dockemu is limited only by the hardware it

is running, but with contemporary PC’s processing power, it

is capable of creating complex scenarios. Moreover, we have

given the user the choice of downloading a VM, so the time

of installation and configuration of the tool itself is reduced

dramatically, being in a position to start running experiments in

a very short time. Also, to the best of our knowledge, Dockemu

is the only emulation tool that utilizes the Docker framework

for the creation of Linux Containers.

The Dockemu tool turns out to be an efficient and accurate

tool for the emulation of wired and wireless networks.

Moreover, the potential experiments that can be deployed

by the tool are endless because of the flexible nature of

it. Furthermore, we have satisfied our initial requirements,

proving that our tool can emulate accurately different kind of

scenarios.

Although Dockemu has a very strong first version, there is

always room for improvement. Our perspective is to keep on

developing and refining the tool in various ways. Dockemu

will have to consolidate and keep up to date with the Docker

framework for the creation of templates for experiments, after

all, the emulation of applications and protocols depend on the

implementation on Linux Containers. Another improvement,

is the switch to a faster form of development, along with

being in sync with the Docker framework. This is expected

to result in the adoption of the Go programming language.

Also, the introduction of a GUI would definitely have a cordial

welcome by the research community. Finally we have set up

the server architecture to deliver the Dockemu Tool. In the

future, if the adoption of the tool is welcomed by the research

community, we can move forward to a Cloud Based Dockemu

Tool, in order to take advantage of the elastic features of

Cloud Computing. This would add the benefits of scaling up

to a number of nodes which could only be achieved by huge

computing resources. Also, this will remove the installation

tasks by the end user and a researcher’s benefit of being able

to access it over any device.

REFERENCES

[1] L. Hogie, P. Bouvry, and F. Guinand, “An overview of manets
simulation,” Electron. Notes Theor. Comput. Sci., vol. 150, no. 1,
pp. 81–101, Mar. 2006. [Online]. Available: http://dx.doi.org/10.1016/j.
entcs.2005.12.025

[2] D. Hiranandani, K. Obraczka, and J. Garcia-Luna-Aceves, “Manet
protocol simulations considered harmful: the case for benchmarking,”
Wireless Communications, IEEE, vol. 20, no. 4, pp. 82–90, August 2013.

[3] T. Andel and A. Yasinsac, “On the credibility of manet simulations,”
Computer, vol. 39, no. 7, pp. 48–54, July 2006.

[4] Improvement of IP-based MANET Emulation. Proceedings of the
International Military Communication Conference, 2009.

[5] M. Pužar and T. Plagemann, “Neman: a network emulator for mobile
ad-hoc networks,” in Telecommunications, 2005. ConTEL 2005. Pro-
ceedings of the 8th International Conference on, vol. 1, June 2005, pp.
155–161.

[6] M. Grajzer and M. Glabowski, “On ipv6 experimentation in wireless
ad hoc networks,” Journal of Telecommunications and Information
Technology, 2014.

[7] K. Konishi, K. Maeda, K. Sato, A. Yamasaki, H. Yamaguchi, K. Ya-
sumoto, and T. Higashinoz, “Mobireal simulator-evaluating manet ap-
plications in real environments,” in Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, 2005. 13th IEEE Inter-
national Symposium on, Sept 2005, pp. 499–502.

[8] J. Zhang and Z. Qin, “Taprouter: An emulating framework to run real
applications on simulated mobile ad hoc network,” in Proceedings of the
44th Annual Simulation Symposium, ser. ANSS ’11. San Diego, CA,
USA: Society for Computer Simulation International, 2011, pp. 39–46.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2048370.2048376

[9] R. Barr, Z. J. Haas, and R. van Renesse, “Jist: An efficient approach
to simulation using virtual machines: Research articles,” Softw. Pract.
Exper., vol. 35, no. 6, pp. 539–576, May 2005. [Online]. Available:
http://dx.doi.org/10.1002/spe.v35:6

[10] A. Neumann, E. Lopez, and L. Navarro, “An evaluation of bmx6 for
community wireless networks,” in Wireless and Mobile Computing,
Networking and Communications (WiMob), 2012 IEEE 8th International
Conference on, Oct 2012, pp. 651–658.

[11] Ubuntu-Documentation-Team, “Ubuntu linux containers man page,”
http://manpages.ubuntu.com/, 2015.

[12] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 3, pp. 275–287, Mar. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1272998.1273025

[13] Docker-Staff, “Docker official website,”
https://www.docker.com/whatisdocker/, 2015.

[14] NS-3-Team, “Network simulator 3 website,” http://www.nsnam.org,
2015.

598

