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Abstract

We describe the design of an autonomous electricity broker
agent, VidyutVanika, the runner-up of the 2018 PowerTAC
competition. The agent uses techniques from reinforcement
learning, dynamic programming and other areas of machine
learning to seek appropriate actions in tariff and wholesale
market of the PowerTAC simulation environment. The nov-
elty of our agent lies in defining the reward functions of
suitably defined Markov decision processes (MDPs), solving
these MDPs, and applying these solutions to real actions in
the market. In addition, VidyutVanika uses a neural network
to predict the energy consumption of various customers us-
ing weather data. The usage forecasts, so obtained, are used
to place orders in day-ahead wholesale market. These fore-
casts also helps in reducing the balancing costs incurred by
the broker.

Introduction
A smart grid is an electrical grid built on an sophisticated
infrastructure to manage electricity demand in a sustainable,
reliable and economical manner using smart meters, smart
appliances and renewable energy sources. An integral com-
ponent of a smart gird is the electricity distributing agen-
cies or brokers who serve retail customers by buying en-
ergy in bulk from generating companies. Brokers handle
supply-demand imbalance through dynamic pricing strate-
gies, suitable use of storage devices and tapping renew-
able energy from small-time producers. There are multi-
ple challenges in the realization of smart grids, like man-
aging highly fluctuating supply-demand scenarios, engaging
stakeholders with ulterior motives, and handling automa-
tion failures of participating entities (Ketter et al. 2016b;
2016a). In order to foresee such problems and examine po-
tential solutions, PowerTAC (Ketter, Collins, and Weerdt
2017) provides an open source simulator platform that repli-
cates crucial elements of a smart grid system and allows
large-scale experimentation. The simulation encourages the
development of autonomous broker agents that aim at mak-
ing a profit by offering electricity tariffs to customers in a
retail (or tariff) market, and trading energy in a competi-
tive wholesale market, while carefully balancing their sup-
ply and demand. To this end, a Power Trading Agent Com-
petition (Power TAC) (Ketter, Collins, and Weerdt 2017) is
held annually.

Since 2012, several research groups have benchmarked,
deployed and published strategies using PowerTAC. Popu-
lar teams include AgentUDE (Özdemir and Unland 2018a)
(2015; 2018a; 2018b), TacTex (Urieli and Stone 2014)
(2016), SPOT (Chowdhury et al. 2017; 2018; Chowdhury
2016) and Maxon (Urban and Conen 2017) to name a
few. These studies have demonstrated that machine learn-
ing and game theory-based strategies are essential for such
broker agents to dynamically price tariffs and predict cus-
tomer usage while simultaneously placing bids in whole-
sale auctions. Broker agents have also used Markov Deci-
sion Process (MDP) to model strategies in the tariff mar-
ket (Cuevas, Rodriguez-Gonzalez, and De Cote 2017), and
wholesale market (Urieli and Stone 2014; 2016; Reddy
and Veloso 2011), while others have employed genetic al-
gorithm, fuzzy-logic and tailored heuristics for the same
(Özdemir and Unland 2018a; Rúbio et al. 2015; Liefers,
Hoogland, and La Poutré 2014).

Our goal is to design a learning broker with the fol-
lowing objectives: (i) React to competing tariffs (ii) In-
crease market share, i.e., subscribed customers (iii) De-
crease transmission capacity costs (iv) Decrease costs of en-
ergy procurement. Taking cue from (Urieli and Stone 2014;
Reddy and Veloso 2011; Cuevas, Rodriguez-Gonzalez, and
De Cote 2017) we formulate our tariff and wholesale mar-
ket problems as separate MDPs. Though our MDP formula-
tions are motivated by (Urieli and Stone 2014) and (Cuevas,
Rodriguez-Gonzalez, and De Cote 2017), our novelty lies in
their reward structure, solution, and application of those so-
lutions. These are supplemented by a neural network based
usage predictor, that also utilizes weather data. Our broker,
VidyutVanika, referred to as V V throughout the paper, was
the runner-up in PowerTAC 2018 Finals. In this note, we de-
scribe the various aspects of our broker and showcase its ef-
ficacy with the help of data gathered from PowerTAC 2018
competition. In the end, we also describe the ongoing im-
provements to the broker design for the 2019 edition of Pow-
erTAC tournament. We note that a detailed version of this
short exposition has appeared elsewhere (Ghosh et al. 2019).

Overview of Broker Agent
This section presents an overview of our broker agent, V V .
The broker consists of two main modules, namely, Tariff
Module (TM) and Wholesale Module (WM). TM is respon-



sible for publishing and revoking tariffs in the tariff (or re-
tail) market. WM generates bids/asks to purchase/sell en-
ergy contracts in the wholesale market. V V doesn’t actively
participate in the balancing market. Tariff design is accom-
plished by formulating a MDP (Puterman 1994), which we
approximately solve using Q-learning (Watkins and Dayan
1992). We model the bidding problem in the wholesale mar-
ket as a separate MDP, which we solve using dynamic pro-
gramming (Bellman 2013). In addition to these two mod-
ules, V V incorporates a Customer Usage Predictor (CUP)
sub-module built using neural networks (NN) to predict the
usage of all subscribed customers in a future time slot, by
using weather forecasts and past usage pattern of each cus-
tomer. V V aggregates the predicted usage across all its sub-
scribed customers to estimate the amount of energy to be
procured in the wholesale market. Doing so helps V V re-
duce the imbalance on its portfolio.

Tariff Module (TM)
The tariff module of V V , maintains two active time-of-use
(TOU) tariffs, namely, (i) MDPTOU and (ii) WeeklyTOU.
MDPTOU is the result of solving an MDP problem for re-
tail market using Q-learning, and is revised every twenty-
four hours. WeeklyTOU is an empirically determined, fixed
weekly TOU tariff, which remains active throughout the du-
ration of the game.

Generating MDPTOU is a two-step process - (1) Gener-
ate a Fixed Price Tariff (FPT) by solving an MDP using Q-
learning; (2) Convert the FPT to a TOU tariff for consump-
tion customers by predicting the overall demand profile for
the tariff market over the next 24 time slots.

Our Tariff MDP formulation is primarily motivated from
the work of (Cuevas, Rodriguez-Gonzalez, and De Cote
2017). At any simulation time t, the state of the MDP is
a quadruple that captures four features of the tariff market.
The first feature is rationality of the tariff market which is de-
cided based on whether the highest production tariff is lower
or higher than the lowest consumption tariff. The second is
the portfolio status of our broker agent V V which could be
surplus, balanced or deficit depending on the difference be-
tween the amount of energy acquired and committed in the
tariff market at time t. The third and fourth features rank the
V V ’s current consumption and production tariffs with re-
spect to prevailing tariffs of other competing broker agents.
In total, there are 96 possible states in the MDP. The action
set is discrete and consists of 8 actions, each of which lets
V V modify its previous production and consumption tariff
in a specific fashion. These include different combinations
of increasing, decreasing or tempering the latest prevailing
production or consumption tariff of broker V V . A detailed
description of the state and action space of the MDP can be
found in (Cuevas, Rodriguez-Gonzalez, and De Cote 2017).

The key novelty in our MDP formulation is the reward
structure c.f. Cuevas, Rodriguez-Gonzalez, and De Cote.
The idea behind the reward structure is to capture the net
profit made by V V when it incurs no balancing charge.
Thus, the reward at time t is given by:

rt = θt,CPt,C − θt,PPt,P − θt,WWt (1)

The first term in Equation 1 represents the revenue gener-
ated by selling energy θt,C at the tariff Pt,C to consumers
of V V at time t. Similarly, the second term represents the
amount paid to producers of V V for procuring energy θt,P
at the tariff Pt,P . The third term represents the amount paid
in the wholesale market to satisfy the net unfulfilled demand
θt,W = θt,C − θt,P at unit wholesale procurement cost Wt.

The aforementioned MDP is solved using Q-learning
(Watkins and Dayan 1992). Specifically, we construct a Q-
table for possible state-action pairs using suitable discount
rate γ by playing several offline games with multiple brokers
as opponents. The Q-table thus learnt, is then used to arrive
at suitable tariffs, while playing games in the real tourna-
ment.

Whereas, for production customers, the tariff suggested
by the MDP agent is published without any change, for con-
sumption customers, the FPT tariff is converted to a TOU
tariff before being published. To this end, the agent first pre-
dicts the net demand in the PowerTAC market for the next
twenty-four hours of the simulation. Thereafter, at each of
the next twenty-four timeslots, the FPT is modified by an
amount that is proportional to the excess estimated net de-
mand at that timeslot over the mean estimated demand for
the twenty-four hour period. For details, the reader is re-
ferred to (Ghosh et al. 2019). The TOU tariffs, thus pub-
lished, helps in offsetting some of the peak demand charges.

Wholesale Module (WM)
In order to balance the future net usage in its tariff portfolio,
V V participates in the wholesale market auctions by placing
bids/asks of the form (energy amount, limit-price). Neural
networks (NN) are used to predict the net usage of a future
timeslot. A MDP is formulated and solved using dynamic
programming to determine a suitable limit-price for auctions
in wholesale market. Further, V V procures the predicted net
usage for a timeslot t + 24 by participating in twenty-four
possible auctions from {t, . . . , t + 23}. This is done with
the aim of buying more and selling less in those auctions in
which the prices are expected to be low, and vice-versa.

The customer usage prediction module (CUP) is respon-
sible for predicting the net usage of the broker’s tariff port-
folio for a future target time-slot t, by summing over the
predicted usage of each customer subscribed to the broker
for that target time-slot t. To this end, for each customer, we
deploy a small feed forward neural net with input data con-
sisting of the actual weather data, time of day (0-23), and
day of week (1-7), while the target variable is the actual us-
age of the customer. During prediction, the weather forecast
is used in place of the actual weather data to predict the us-
age for the next 24 hours. The model is improved as more
data points become available during the game.
V V ’s Limit Price Predictor is primarily motivated by the

work of (Urieli and Stone 2014) on MDP-based wholesale
bidding strategy, which in turn is based on (Tesauro and
Bredin 2002). Although we use a similar MDP structure, the
novelty lies in the reward, solution and application to place
bids. First, we do not the bid for entire predicted energy
requirement in a single auction as proposed by Urieli and
Stone. Rather we participate in twenty-four possible auc-



tions to procure the required amount of energy for a future
time slot with the aim of buying more and selling less in
those auctions in which the prices are expected to be low,
and vice-versa. Second, we use the limit-prices obtained by
solving the MDP to place several small bids to purchase
small quantities of energy. These small bids help in calcu-
lating better estimates for the probability of a bid getting
cleared for a given limit price.
V V maintains two instances of the MDP at all times - one

for bids, another for asks. The state of the wholesale MDP
is the number of bidding opportunities left to buy energy for
a future time slot. The action is a limit price that would be
used in the bidding process. The reward is the amount of cost
incurred in obtaining the total amount of energy required for
a future time-slot. The detailed description of the MDP can
be found in (Ghosh et al. 2019). The solution to the MDP
is a sequential bidding strategy that minimizes the cost per
unit energy procured. It is given by a value function which
equals the balancing-price at the terminal state and is recur-
sively solved at other states using dynamic programming.
The solution gives an optimal limit-price for each state auc-
tion.

Results
The Power TAC 2018 Finals had 7 brokers from research
groups across the globe. The tournament had a total of 324
games, with all possible combinations of 7-broker games
(100 games), 4-broker games (140 games; 80 games for each
broker), and 2-broker games (84 games; 24 games for each
broker). Table 1 shows the net profit of all brokers across dif-
ferent game configurations, percentage of profit in compari-
son to the winning agent, AgentUDE, and the corresponding
normalized scores. Despite winning more games than Agen-
tUDE, V V was placed next to AgentUDE in overall ranking
of Power TAC 2018. This is because, the determination of
the winner is made based on normalized cumulative prof-
its in each configuration across all games in the tournament.
Specifically, AgentUDE netted high profits against compet-
ing agents (excluding V V ) in 2-player games that helped in
cementing its place as the winner of the tournament.

Table 2 shows the number of 1st and 2nd place finishes
by each broker across all three configurations. As seen, V V
won the most number of games in the tournament with 112
wins out of the 204 it participated in, with AgentUDE com-
ing second with 92 wins out of 204. V V had the most wins
in 7-broker and 4-broker games, and had the second high-
est number of wins, behind AgentUDE, in 2-broker games.
It is important to note that, overall, V V finished in the top
two, 72% of the time whenever it played in a game with
more than 2 brokers. In comparison, AgentUDE stood at
65%. On a head-to-head comparison with AgentUDE, out
of 100 7-broker games, AgentUDE and V V both shared 39
wins each. However in 4-Broker games in which both V V
and AgentUDE participated, V V won 31 times out 40, with
AgentUDE winning the remaining 9. In the four 2-broker
games involving both brokers, AgentUDE ended up winning
three games. V V led in all these three lost games almost till
the end, only to fall behind finally due to transmission ca-
pacity fees. We also looked at the number of games in which

each broker ended up with a negative profit. CrocodileAgent
had the fewest games with negative profits, with V V coming
second in this category with four times the average market
share. Thus, V V managed to make up for its losses on a
consistent basis, and rarely ended up being non-profitable.

The tariff module played a crucial role in V V ’s suc-
cess, offering tariffs which were attractive to majority of
the customers and contributed the most in revenue. V V had
the highest market share on average in 2-broker games, 7-
broker games and overall, and the second highest in 4-broker
games. In contrast, AgentUDE had only a quarter of the
overall average market share of V V . While one may ex-
pect a greater market share to lead to more profits, it usually
leads to higher transmission capacity fees and distribution
costs, which can cause higher losses unless managed prop-
erly. As a result, agents with lower market share often tend
to make less losses, and end up winning. V V also had one of
the best tariff market income-to-cost ratio (1.14), with only
AgentUDE (1.43) and CrocodileAgent (1.32) having better
ratios. However, both AgentUDE and CrocodileAgent had
very low average market share compared to V V . Thus, V V
is very efficient at making profits despite having a higher
market share. Finally, although there was no explicit strat-
egy for balancing market, V V had less imbalance costs even
with high market share which exhibits the effectiveness of
net usage prediction strategy using neural networks.

Conclusion
We described the critical elements of the strategy used by
our broker VidyutVanika (VV), the runner-up in Power TAC
2018 Finals. In particular, we described details of our two
modules, TM and WM. TM and WM were responsible for
VidyutVanika’s actions in the tariff and wholesale market,
respectively. The novelty of VidyutVanika lay in (i) defin-
ing reward functions for the MDPs, (ii) solving the MDPs,
(iii) applying the MDP solutions to actions in the markets,
and (iv) NN based usage predictor incorporating available
weather data for better customer usage prediction.

Future work
We wish to bring in the following improvements to V V in
the 2019 version of PowerTAC competition. The customer
usage predictor will contain sophisticated neural nets like
LSTM to be able to do p-step ahead prediction of the usage.
The tariff module is being designed to roll out price-based
demand response (PBDR) tariffs (Valogianni and Ketter
2016) to mitigate the effects of capacity transaction charges.
Other changes that are being contemplated include a clever
use of storage and electric vehicle customers (Kahlen, Ket-
ter, and van Dalen 2018) in balancing market. The effective-
ness of these modules in a multi-agent setting will be studied
during the 2019 PowerTAC tournament.
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