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1. Introduction

Elliptic curve cryptography(ECC) has been an active area of research since
1985 when Koblitz [1] and Miller [2] independently suggested using elliptic
curves for public-key cryptography. A lot of work has been done on elliptic
curve cryptography. Because elliptic curve cryptography offers the same level
of security as compared to RSA with considerably shorter keys, it has replaced
traditional public key cryptosystems, especially, in environments where short
keys are important. In 2009, Koblitz et. al. [3] proposed the serpentine
course of a paradigm shift on ECC in which they described the sometimes
surprising twists and turns in this paradigm shift and compared this study with
the commonly accepted Ideal Model of how research and development function
in cryptography. Very recently Kumar and Gupta [4] obtained cryptographic
schemes based on elliptic curves over the ring Zp[i]. In the present paper, we
introduced a trilinear pairing map on finitely generated free R -modules with
rank three, where R is a commutative ring with unity. We used this pairing map
to generate secret shared key for group communication. In the recent years,
pairing based cryptographic schemes on elliptic curve have been a very deedful
domain of research in cryptography. The concept of pairing in cryptography
was first introduced by Weil [5]. Generally pairings map use of pair of points
on an elliptic curve into the multiplicative group of a finite field. The use
of pairings by the publication of the paper of Joux [6] in cryptography has
developed at an extraordinarypace. The identity-based encryption scheme of
Boneh and Franklin [7] and, the short signature scheme of Boneh et. al. [8]
are important applications of pairings in cryptography. In last four decades
pairing maps are continuously studied by several researchers [9, 10, 11, 12].

Let E with y2 = x3 + bx + c be an elliptic curve defined over a finite field
F , where the coefficients a and b in the elliptic curve equation must satisfy the
non singularity condition 4a3 + 27b2 = 0. Then, we know that [13, 14, 15] each
elliptic curve point can be described by two coordinates x, y ∈ F . Suppose the
coordinates (x, y) of the affine plane A2

F = {(x, y) ∈ F ×F} are mapped to the
coordinates (X,Y,Z) of projective plane P 3

F = {(X,Y,Z) ∈ F × F × F} as

(X,Y,Z) = (x.Zc, y.Zd, 1) or x = X/Zc and y = Y/Zd, (1)

where c, d are integers.

After applying the Jacobian projective transformation with c = 2 and d = 3,
elliptic curve E can be rewritten as

E : Y 2 = X3 + aXZ4 + bZ6.
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If P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) are two distinct points on the
projective plane then their point addition (P3 = (X3, Y3, Z3) = P1 + P2) and
point doubling (P3 = 2P1) can be described as follows:

1.1. Addition of Points on Projective Plane

Case I. If x1 6= x2 then we have
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=
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d
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2)Z
d
2Z
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It is obvious from above expression that λ exist because x1 6= x2. Now the
point P3 can be calculated as

x3 =λ2 − x1 − x2

=
(Y2Z

d
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d
2 )Z

c
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c
1
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1

,

y3 =λ(x1 − x3)− y1

=
(Y2Z

d
1 − Y1Z

d
2 )Z

c
2Z

c
1

(X2Z
c
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c
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(
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1

)

−
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1

,

calculated as
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1

.

Using (1) and jocobian and Jacobian projective transformation with c = 2
and d = 3,P3 is given by

X3 =(Y2Z
3
1 − Y1Z

3
2 )

2 − (X1Z
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1 )(X2Z

2
1 −X1Z

2
2 ),

Y3 =((Y2Z
3
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3
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− (Y2Z
3
1 − Y1Z

3
2 )

3,

and

Z3 =(X2Z
2
1 −X1Z

2
2 )Z1Z2.

Case II. Ifx1 = x2 then we have P3 = P1 + P2 = O, where O is the point
at infinity of the elliptic curve E in projective coordinates. It can be easily
seen that for Jacobian projective coordinates, the point at infinity has the from
(1, 1, 0).

1.2. Point Doubling on Projective Plane

For point doubling we can take P1 = P2 then P3 = P1+P2 = 2P1 = (X3, Y3, Z3)
we have

λ =
3x21 + a

2y1
=

3X2
1Z

d
1 + aZ2c+d

1

2Z2c
1 Y1

.

Obviously λ exists if y1 6= 0,so we get

x3 =λ2 − 2x1

=
(3X2

1 + aZ2c
1 )2Z2d

1

4Z4c
1 Y 2

1

−
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Zc
1

=
3X2
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,

y3 =λ(x1 − x3)− y1
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=
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2
1 (3X

2
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Using (1) and Jacobian projective transformation with c = 2 and d = 3,
the doubling of point P1 is given by P3(X3, Y3, Z3), where

X3 = (3X2
1+aZ4

1)
2−8X1Y

2
1 , Y3 = 12X1Y

2
1 (3X

2
1 +aZ4

1)−(3X2
1+aZ4

1)
3−8Y 4

1 ,

and Z3 = 2Z1Y1.
Point subtraction can be performed as P3 = P1 − P2 = P1 + (−P2) where

(−P2) is the additive inverse of P2 and −P2 = (X2,−Y2, Z2).
Here it is remarkable that we are no need of division and multiplication

operations for calculating elliptic curve point P3 on the projective plane.
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2. Construction of a Trilinear Pairing on
Finitely Generated Free R-Modulus

In this section we will construct trilinear pairing on finitely generated free R-
modules with rank 3. At the end of this section we will also discuss an auxiliary
result which will be helpful in the next section. According to the terminology
as in the references [16, 17, 18], let R be a commutative ring with unity, P be
a finitely generated free R -module with rank 3 and (l,m, n) be a generating
pair for P . We consider elements a = u1l+v1m+w1n, b = u2l+v2m+w2n, c =
u3l + v3m+ w3n in P , where ui, vi, wi ∈ P for each i = 1, 2, 3.

For some fixed α, β, γ ∈ R where all α, β and γ are not zero at the same
time, we construct a pairing map

fα,β,γ : P × P × P → P (2)

defined by

fα,β,γ(a, b, c) =[u1(v2w3 − v3w2) + v1(u3w2 − u2w3)

+ w1(u2v3 − u3v2)].(αl + βm+ γn).
(3)

It can be easily seen that the pairing map (2) defined by (3) is non- trivial
and well defined map.For this, if a = a′, b = b′ and c = c′ then we have
ui = u′i, vi = v′i and wi = w′

i for each i = 1, 2, 3 by independency of (l,m, n).
This implies fα,β,γ(a, b, c) = fα,β,γ(a

′, b′, c′).Therefore the map is well defined.

2.1. Proposition

The pairing fα,β,γ(a, b, c) has the following properties:

(i) Identity: fα,β,γ(a, a, a) = 0 for all a ∈ P.

(ii) Bilinearity: If a, b, c, d ∈ P then we have

fα,β,γ(a+ b, c, d) = fα,β,γ(a, c, d) + fα,β,γ(b, c, d),

fα,β,γ(a, b+ c, d) = fα,β,γ(a, b, d) + fα,β,γ(a, c, d),

and
fα,β,γ(a, b, c + d) = fα,β,γ(a, b, c) + fα,β,γ(a, b, d).

(iii) Anti-symmetry: fα,β,γ(a, b, c) = −fα,β,γ(b, c, a) for all a, b, c ∈ P.

(iv) Non-degeneracy: If a, b, c ∈ P then

fα,β,γ(a, b, 0) = 0 = fα,β,γ(a, 0, c) = fα,β,γ(0, b, c).
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Also, if fα,β,γ(a, b, c) = 0 for all b, c ∈ P then a = 0. Moreover, if

fα,β,γ(a, b, c) = 0 for all c ∈ P,

then a = kb for some constant k.

Proof. (i) Let a ∈ P. Then we have

fα,β,γ(a, a, a) =[(u1(v1w1 − w1v1) + v1(u1w1 − u1w1)

+ w1(u1v1 − u1v1)](αl + βm+ γn) = 0.

(ii) Let a, b, c, d ∈ P. Then we have

fα,β,γ(a+ b, c, d) =[(u1 + u2)(v3w4 − v4w3) + (v1 + v2)(u4w3 − u3w4)

+ (w1 + w2)(u3v4 − u4v3)].(αl + βm+ γn)

=[(u1(v3w4 − v4w3) + v1(u4w3 − u3w4)

+ w1(u3v4 − u4v3)](αl + βm+ γn)

+ [u2(v3w4 − v4w3) + v2(u4w3 − u3w4)

+ w2(u3v4 − u4v3)](αl + βm+ γn)

=fα,β,γ(a, c, d) + fα,β,γ(b, c, d).

Similarly, it can be easily verified that

fα,β,γ(a, b+ c, d) =fα,β,γ(a, b, d) + fα,β,γ(a, c, d),

fα,β,γ(a, b, c + d) =fα,β,γ(a, b, c) + fα,β,γ(a, b, d).

(iii) Let a, b, c ∈ P. Then we have

fα,β,γ(a, b, c) =[u1(v2w3 − v3w2) + v1(u3w2 − u2w3)

+ w1(u2v3 − u3v2)](αl + βm+ γn)

=− [u2(v1w3 − v3w1) + v2(u3w1 − u1w3)

+ w2(u1v3 − u3v1)].(αl + βm+ γn)

=− fα,β,γ(b, c, a).

(iv) Leta, b ∈ P. Then we have

fα,β,γ(a, b, 0) = [(u1(0− 0) + v1(0− 0) + w1(0− 0)].(αl + βm+ γn) = 0.

In a similar manner we can show that fα,β,γ(a, 0, c) = 0 and fα,β,γ(0, b, c) =
0 for all a, b, c ∈ P.
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If fα,β,γ(a, b, c) = 0 for all b, c ∈ P then we have

[u1(v2w3 − v3w2) + v1(u3w2 − u2w3) + w1(u2v3 − u3v2)].(αl + βm+ γn) = 0,

for all b, c ∈ P .
This implies u1 = v1 = w1 = 0. Therefore a = 0.
Let fα,β,γ(a, b, c) = 0for all c ∈ P. Then we have

[u1(v2w3 − v3w2) + v1(u3w2 − u2w3) + w1(u2v3 − u3v2)].(αl + βm+ γn) = 0

On rearranging the terms in above expression, we get

[u3(v1w2 − v2w1) + v3(u1w2 − u2w1) + w3(u1v2 − u2v1)].(αl + βm+ γn) = 0

This implies that u1

u2
= v1

v2
= w1

w2
= k for some constant k i.e. a = kb.

3. Construction of a Trilinear Pairing on Elliptic Curves

In this section, we will extend the trilinear pairing (constructed in previous
section) on elliptic curve over the finite fields. At the end of this section we will
also discuss an auxiliary result which will be useful in the next section.

3.1. Torsion Points on An Elliptic Curve, see [10]

Let E be an elliptic curve. Then a point P ∈ E is said to be a torsion point if
there exist a positive integer m such that mP = O. The smallest such integer is
called the order of P . An n -torsion point is a point P ∈ E satisfying nP = O.

Let K be a field with characteristic zero or a prime p ( p is relatively prime
to n ) and let E = E(K) be an elliptic curve over K where K is an algebraic
closure ofK. Also let E(K)[n] denote the subgroup of n -torsion point in E(K),
where n 6= 0.

For our simplicity we will denote E(K)[n] by E[n].
Let {U, V,W} for some fixed generating pair for E[n]. Then the points

P,Q,R ∈ E[n] can be expressed as P = a1U + b1V + c1W,Q = a2U + b2V +
c2W,R == a3U + b3V + c3W where ai, bi, ci for each i = 1, 2, 3 are integers in
[0, n − 1].

Now for some fixed integers α, β, γ ∈ [0, n−1], where all α, β, γ are not zero
at the sme time, we construct a map

fn
α,β,γ : E[n]×E[n]× E[n] → E[n], (4)
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defined by

fn
α,β,γ(P,Q,R) = [a1(b2c3 − b3c2) + b1(a3c2 − a2c3)

+c1(a2b3 − a3b2)].(αU + βV + γW ). (5)

It can be easily checked the map (4) defined by (5) is well defined.

3.2. Proposition

The pairing map fn
α,β,γ(P,Q,R) constructed as above, satisfies the following

postulates:

(i) Identity: fn
α,β,γ(P,P, P ) = O for all P ∈ E[n].

(ii) Bilinearity: If P,Q,R, S ∈ E[n], then we have

fn
α,β,γ(P +Q,R, S) = fn

α,β,γ(P,R, S) + fn
α,β,γ(Q,R, S),

fn
α,β,γ(P,Q+R,S) = fn

α,β,γ(P,Q, S) + fn
α,β,γ(P,R, S),

and

fn
α,β,γ(P,Q,R + S) = fn

α,β,γ(P,Q,R) + fn
α,β,γ(P,Q, S).

(iii) Bilinearity: fn
α,β,γ(P,Q,R) = −fn

α,β,γ(Q,P,R) for all P,Q,R ∈ E[n].

(iv) Non-degeneracy: If P,Q,R ∈ E[n] then fn
α,β,γ(P,Q,O) = O =

fn
α,β,γ(P,O, R) = fn

α,β,γ(O, Q,R).

Also if fn
α,β,γ(P,Q,R) = O for all Q,R ∈ E[n], then P = O.

Moreover if fn
α,β,γ(P,Q,R) = O for all R ∈ E[n], then P = kQ for some

constant k.

(v) Compatibility: If P ∈ E[nk], Q ∈ E[n] and R ∈ E[n] then

fn
α,β,γ(kP,Q,R) = kfn

α,β,γ(P,Q,R).

If P ∈ E[n], Q ∈ E[nk] and R ∈ E[n] then

fn
α,β,γ(P, kQ,R) = kfn

α,β,γ(P,Q,R),

also if P ∈ E[n], Q ∈ E[n] and R ∈ E[nk], then

fn
α,β,γ(kP,Q, kR) = kfn

α,β,γ(P,Q,R).
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Proof. (i) Let P ∈ E[n]. Then we have

fn
α,β,γ(P,P, P ) =[a1(b1c1 − b1c1) + b1(a1c1 − a1c1)

+ c1(a1b1 − a1b1)](αU + βV + γW ) = O.

(ii) Let P,Q,R, S ∈ E[n]. Then we have

fn
α,β,γ(P +Q,R, S) =[(a1 + a2)(b3c4 − b4c3) + (b1 + b2)(a4c3 − a3c4)

+ (c1 + c2)(a3b4 − a4b3)](αU + βV + γW )

=[a1(b3c4 − b4c3) + b1(a4c3 − a3c4) + c1(a3b4 − a4b3)

(αU + βV + γW )

+ [a2(b3c4 − b4c3) + b2(a4c3 − a3c4) + c2(a3b4 − a4b3)

(αU + βV + γW )

=fn
α,β,γ(P,R, S) + fn

α,β,γ(Q,R, S),

Similarly, it can be easily verified that

fn
α,β,γ(P,Q+R,S) = fn

α,β,γ(P,Q, S) + fn
α,β,γ(P,R, S),

and
fn
α,β,γ(P,Q,R + S) = fn

α,β,γ(P,Q,R) + fn
α,β,γ(P,Q, S).

(iii) Let P,Q,R ∈ E[n]. Then we have

fn
α,β,γ(P,Q,R) =[a1(b2c3 − b3c2) + b1(a3c2 − a2c3)

+ c1(a2b3 − a3b2)](αU + βV + γW )

=− [a2(b1c3 − b3c1) + b2(a3c1 − a1c3)

+ c2(a1b3 − a3b1)](αU + βV + γW )

=− fn
α,β,γ(Q,P,R).

(iv) Let P,Q ∈ E[n]. Then we have

fn
α,β,γ(P,Q,O) = [a1(0− 0) + b1(0− 0) + c1(0− 0)].(αU + βV + γW ) = O

In a similar manner we can show that

fn
α,β,γ(P,O, R) = O

and
fn
α,β,γ(O, Q,R) = O
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for all P,Q,R ∈ E[n].

If fn
α,β,γ(P,Q,R) = O for all Q,R ∈ E[n] then we write

[a1(b2c3 − b3c2) + b1(a3c2 − a2c3) + c1(a2b3 − a3b2)].(αU + βV + γW ) = O

for all Q,R ∈ E[n] this implies a1 = b1 = c1 = 0. Therefore P = O.

(v) Let P ∈ E[nk], Q ∈ E[n] and R ∈ E[n]. Then we have

fn
α,β,γ(kP,Q,R) =[ka1(b2c3 − b3c2) + kb1(a3c2 − a2c3)

+ kc1(a2b3 − a3b2)].(αU + βV + γW ),

fn
α,β,γ(kP,Q,R) =k[a1(b2c3 − b3c2) + b1(a3c2 − a2c3)

+ c1(a2b3 − a3b2)].(αU + βV + γW ),

fn
α,β,γ(kP,Q,R) =kfn

α,β,γ(P,Q,R).

Similarly, it can be easily verified that

fn
α,β,γ(P, kQ,R) = kfn

α,β,γ(P,Q,R)

and

fn
α,β,γ(kP,Q, kR) = kfn

α,β,γ(P,Q,R).

4. Application of Trilinear Pairing to Cryptography

In this section we will apply trilinear pairing (constructed in previous section)
to elliptic curve cryptography. A protocol defined by a sequence of steps ab-
solutely specifying the actions required by three or more parties in order to
achieve a specified objective. In cryptography, A key agreement protocol is a
key establishment technique in which a shared secret is derived by three (or
more) parties as a function of information contributed by, or associated with,
each of these, such that no party can predetermine the resulting value. It is
contributory if each party equally contributes to the key and guarantees its
freshness. Key authentication is the property whereby one party is associated
that no other party aside from an especially identified second party may gain
access to a particular secret key. Key authentication is said to be implicit if
each party sharing the key is assured that no other party can learn the secret
shared key.

For a large prime number p and a positive integer r, we denote q = pr. Let
E be an elliptic curve over a finite field Fq, given P ∈ E(Fq) with order n and
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Q ∈< P >, to find k such that Q = kP, is known as elliptic curve discrete log
problem (ECDLP) in E(Fq). Also for given P, aP, bP to find abP is known as
DiffieHellman problem for elliptic curves. Actually it is known as Diffie Hellman
key exchange protocol for elliptic curves.

Now the proposed cryptographic schemes can be described as follow:

(i) We Select a large prime s such that E[s] ⊆ E(Fqk for some smallest
integer k.

(ii) Next we select a generating pair {U, V,W} in E[s] and integers α, β, γ ∈
[0, l−1] which determine the pairing f s

α,β,γ(P,Q,R). Let the parameters (P,Q,R,
f s
α,β,γ) be publicly known and let h : E(Fq) → Z/l be hash functions. Now our
proposed f s

α,β,γ− pairing can be apply to cryptographic scheme namely au-
thenticated key agreement on elliptic curves. To apply the proposed scheme,
we assume that three communication parties Alice, Bob and Carol wish to share
a common secret information.

4.1. Authenticated Elliptic Curve Diffie Hellman Key
Agreement for 3-Parties

It consists of the following phases

Phase 1: Key generation Phase

• Alice, Bob and Carol randomly select secret integers a, b, c ∈ (1, s − 1)
respectively.

• They respectively compute aP, bP, cP.

• They broadcast the above computed values. Now the public values of the
system are (P,Q,R, aP, bP, cP, f s

α,β,γ).

Phase 2: Transmission Phase

• Alice computes SA = a.bP.cP = abcP (because P ∈ E[n]) and f s
α,β,γ(aP,Q,

R). She sends h(SA)f
s
α,β,γ(aP,Q,R) to Bob and Carol.

• Bob computes SB = b.aP.cP = abcP and f s
α,β,γ(bP,Q,R). He sends

h(SB)f
s
α,β,γ(bP,Q,R) to Alice and Carol.

• Carol computes SC = c.aP.bP = abcP and f s
α,β,γ(cP,Q,R). He sends

h(SC)f
s
α,β,γ(cP,Q,R) Alice and Bob.

It is evident that SA = SB = SC = abcP = SABC (say).

Phase 3: Authenticated secret share key generation Phase

• Alice receives IA = h(SB)f
s
α,β,γ(bP,Q,R) ‖ h(SC)f

s
α,β,γ(cP,Q,R). Using

the bilinearity of pairing f s
α,β,γ, Alice obtains

IA = h(SABC)bcf
s
α,β,γ(P,Q,R). Alice computes h(SA)

−1(mods) to obtain

her secret share key as KA = ah(SA)
−1IA.



12 M. Kumar, P. Gupta, A. Kumar

• Next Bob receives

IB =h(SB)f
s
α,β,γ(aP,Q,R) ‖ h(SC)f

s
α,β,γ(cP,Q,R)

=h(SABC)acf
s
α,β,γ(P,Q,R).

To obtain secret share key, Bob calculates h(SB)
−1(mods) and compute his

shared secret key as KB = bh(SB)
−1IB.

• Finally Carol receives

IC =h(SA)f
s
α,β,γ(aP,Q,R) ‖ h(SB)f

s
α,β,γ(bP,Q,R)

=h(SABC)abf
s
α,β,γ(P,Q,R).

To obtain secret share key, Carol calculates h(SC)
−1(mods) and compute

his shared secret key as KC = ch(SC)
−1IC . It can be easily verified that KA =

KB = KC = abcf s
α,β,γ(P,Q,R) = K (say). Thus there has been established an

authenticated common secret key among multiparty Alice, Bob and Carol.

5. Authenticity of the Proposed Scheme

It is obvious from the proposed authenticated elliptic curve Diffie Hellman
protocol that the common secret key K = abcf s

α,β,γ(P,Q,R) is designed by
the contribution of each involved party (Alice, Bob, Carol). This results in
the complexity for the attacker.For this suppose an active adversary is ca-
pable to reform, delay or interpose the message. Now possible attacks on
Bob and Carol can be described as: If KB or KC secret common key cal-
culated by Bob or Carol, then it can be represented as KB = bf s

α,β,γ(d1P,Q,R)
or KC = cf s

α,β,γ(d2P,Q,R) where d1 or d2 are introduced by adversary. It
means that adversary can alter the first flow of the proposed protocol with
f s
α,β,γ(d1P,Q,R)orf s

α,β,γ(d2P,Q,R). To compute

bf s
α,β,γ(d1P,Q,R) or cf s

α,β,γ(d2P,Q,R)

adversary requires to calculate bf s
α,β,γ(P,Q,R) or cf s

α,β,γ(P,Q,R) respectively.
But in the second flow, the only expression calculating bf s

α,β,γ(P,Q,R) or
cf s

α,β,γ(P,Q,R) is h(SB)f
s
α,β,γ(bP,Q,R) or h(SC)f

s
α,β,γ(cP,Q,R) respectively.

This shows that for adversary to compute bf s
α,β,γ(P,Q,R) or cf s

α,β,γ(P,Q,R)
respectively from h(SB)f

s
α,β,γ(bP,Q,R) or h(SC)f

s
α,β,γ(cP,Q,R) is intractable

without the knowledge of KB or KC .
Similarly attack on Alice can be described as: Suppose key calculated

by Alice is KA = ah(SA)
−1f s

α,β,γ(d3P,Q,R) where d3 is introduced by the
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adversary. Now if assume that d3 = d4h(SA) where d4 is known by adver-
sary and independent of h(SA), then KA = ah(SA)

−1f s
α,β,γ(d4h(SA)P,Q,R) =

af s
α,β,γ(d4P,Q,R). Also to calculate d4h(SA)f

s
α,β,γ(P,Q,R), where d4 is known

by adversary, is intractable without calculating h(SA)f
s
α,β,γ(P,Q,R). Further if

d3 is independent of h(SA), then it is impossible to calculate the key of Alice
because KA depends upon h(SA)

−1.

6. Conclusion

In the present paper we proposed a trilinear pairing map fα,β,γ : P×P×P → P
where P is a finitely generated free- R module with rank three and R is a
commutative ring with unity. We apply the structure of this trilinear pairing
map to the elliptic curves. Further we show that this trilinear pairing map on
elliptic curve is applicable to the current cryptographic schemes. We expect
that the proposed trilinear pairing to be more useful in cryptography or in pure
mathematics. Thus f s

α,β,γ pairing with only public values is very difficult as
solving the discrete logarithm problem on elliptic curves. Our protocol include
only one random secret key per user. This is more efficient and secure than
using two random secret keys in the known schemes existing in the literature.
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