Prasanna Balaprakash

Prasanna Balaprakash
Argonne National Laboratory | ANL · Mathematics and Computer Science Division & Leadership Computing Facility

PhD

About

220
Publications
27,098
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,741
Citations
Introduction
Prasanna Balaprakash is a computer scientist at Mathematics and Computer Science Division with a joint appointment in the Leadership Computing Facility at Argonne National Laboratory. His research interests span the areas of artificial intelligence, machine learning, optimization, and high-performance computing. Currently, his research focuses on the development of scalable, data-efficient machine learning methods for scientific applications.
Additional affiliations
January 2009 - August 2010
Mentis Consulting Sprl
Position
  • Chief Technology Officer
September 2004 - January 2010
Université Libre de Bruxelles
Position
  • PhD Student
September 2010 - November 2013
Argonne National Laboratory
Position
  • PostDoc Position

Publications

Publications (220)
Article
Ytopt is a Python machine-learning-based autotuning software package developed within the ECP PROTEAS-TUNE project. The ytopt software adopts an asynchronous search framework that consists of sampling a small number of input parameter configurations and progressively fitting a surrogate model over the input-output space until exhausting the user-de...
Article
Full-text available
X-ray Bragg coherent diffraction imaging is a powerful technique for 3D materials characterization. However, obtaining X-ray diffraction data is difficult and computationally intensive, motivating the need for automated processing of coherent diffraction images, with the goal of minimizing the number of X-ray datasets needed. We automate a machine...
Article
Full-text available
We introduce EFIT-Prime, a novel machine learning surrogate model for EFIT (Equilibrium FIT) that integrates probabilistic and physics-informed methodologies to overcome typical limitations associated with deterministic and ad hoc neural network architectures. EFIT-Prime utilizes a neural architecture search-based deep ensemble for robust uncertain...
Article
Deep-learning-based data-driven forecasting methods have achieved impressive results for traffic forecasting. Specifically, spatiotemporal graph neural networks have emerged as a promising class of approaches because of their ability to model both spatial and temporal patterns in traffic data. A major limitation of these methods, however, is that t...
Poster
Full-text available
Large Language Models (LLMs) capture a certain amount of world knowledge spanning many general and technical topics, including programming and performance. Without fine-tuning, the use of In-Context Learning (ICL) can specialize LLM outputs to perform complex tasks. In this work, we seek to demonstrate the regressive capabilities of LLMs in a perfo...
Preprint
Anomaly detection in computational workflows is critical for ensuring system reliability and security. However, traditional rule-based methods struggle to detect novel anomalies. This paper leverages large language models (LLMs) for workflow anomaly detection by exploiting their ability to learn complex data patterns. Two approaches are investigate...
Article
Full-text available
Graph Neural Networks (GNNs) have emerged as a prominent class of data-driven methods for molecular property prediction. However, a key limitation of typical GNN models is their inability to quantify uncertainties in the predictions. This capability is crucial for ensuring the trustworthy use and deployment of models in downstream tasks. To that en...
Preprint
Full-text available
We present our work on developing and training scalable graph foundation models (GFM) using HydraGNN, a multi-headed graph convolutional neural network architecture. HydraGNN expands the boundaries of graph neural network (GNN) in both training scale and data diversity. It abstracts over message passing algorithms, allowing both reproduction of and...
Article
Full-text available
Training an effective deep learning model to learn ocean processes involves careful choices of various hyperparameters. We leverage DeepHyper’s advanced search algorithms for multiobjective optimization, streamlining the development of neural networks tailored for ocean modeling. The focus is on optimizing Fourier neural operators (FNOs), a data-dr...
Preprint
Full-text available
Vision Transformers (ViTs) are pivotal for foundational models in scientific imagery, including Earth science applications, due to their capability to process large sequence lengths. While transformers for text has inspired scaling sequence lengths in ViTs, yet adapting these for ViTs introduces unique challenges. We develop distributed sequence pa...
Article
The canonical solution methodology for finite constrained Markov decision processes (CMDPs), where the objective is to maximize the expected infinite-horizon discounted rewards subject to the expected infinite-horizon discounted costs’ constraints, is based on convex linear programming (LP). In this brief, we first prove that the optimization objec...
Preprint
The ability to learn continuously from an incoming data stream without catastrophic forgetting is critical to designing intelligent systems. Many approaches to continual learning rely on stochastic gradient descent and its variants that employ global error updates, and hence need to adopt strategies such as memory buffers or replay to circumvent it...
Preprint
Full-text available
Hyperparameter optimization (HPO) is crucial for fine-tuning machine learning models but can be computationally expensive. To reduce costs, Multi-fidelity HPO (MF-HPO) leverages intermediate accuracy levels in the learning process and discards low-performing models early on. We compared various representative MF-HPO methods against a simple baselin...
Preprint
Full-text available
Graph Neural Networks (GNNs) have emerged as a prominent class of data-driven methods for molecular property prediction. However, a key limitation of typical GNN models is their inability to quantify uncertainties in the predictions. This capability is crucial for ensuring the trustworthy use and deployment of models in downstream tasks. To that en...
Article
In this paper, we consider the problem of learning a regression function without assuming its functional form. This problem is referred to as symbolic regression. An expression tree is typically used to represent a solution function, which is determined by assigning operators and operands to the nodes. Cozad and Sahinidis propose a nonconvex mixed-...
Article
This archive is distributed in association with the INFORMS Journal on Computing under the GNU GPLv3. The software and data in this repository are a snapshot of the software and data that were used in the research reported on in the paper Learning Symbolic Expressions: Mixed-Integer Formulations, Cuts, and Heuristics by Jongeun Kim, Sven Leyffer, P...
Preprint
A computational workflow, also known as workflow, consists of tasks that must be executed in a specific order to attain a specific goal. Often, in fields such as biology, chemistry, physics, and data science, among others, these workflows are complex and are executed in large-scale, distributed, and heterogeneous computing environments that are pro...
Article
Identifying and addressing anomalies in complex, distributed systems can be challenging for reliable execution of scientific workflows. We model these workflows as directed acyclic graphs (DAGs), where the nodes and edges of the DAGs represent jobs and their dependencies, respectively. We develop graph neural networks (GNNs) to learn patterns in th...
Preprint
Full-text available
Continual learning~(CL) is a field concerned with learning a series of inter-related task with the tasks typically defined in the sense of either regression or classification. In recent years, CL has been studied extensively when these tasks are defined using Euclidean data-- data, such as images, that can be described by a set of vectors in an n-d...
Preprint
Full-text available
As we enter the exascale computing era, efficiently utilizing power and optimizing the performance of scientific applications under power and energy constraints has become critical and challenging. We propose a low-overhead autotuning framework to autotune performance and energy for various hybrid MPI/OpenMP scientific applications at large scales...
Preprint
Full-text available
Classical problems in computational physics such as data-driven forecasting and signal reconstruction from sparse sensors have recently seen an explosion in deep neural network (DNN) based algorithmic approaches. However, most DNN models do not provide uncertainty estimates, which are crucial for establishing the trustworthiness of these techniques...
Preprint
Full-text available
Natural language processing (NLP) is a promising approach for analyzing large volumes of climate-change and infrastructure-related scientific literature. However, best-in-practice NLP techniques require large collections of relevant documents (corpus). Furthermore, NLP techniques using machine learning and deep learning techniques require labels gr...
Article
In data-driven modeling of spatiotemporal phenomena careful consideration is needed in capturing the dynamics of the high wavenumbers. This problem becomes especially challenging when the system of interest exhibits shocks or chaotic dynamics. We present a data-driven modeling method that accurately captures shocks and chaotic dynamics by proposing...
Article
Full-text available
Effective plasma transport modeling of magnetically confined fusion devices relies on having an accurate understanding of the ion composition and radiative power losses of the plasma. Generally, these quantities can be obtained from solutions of a collisional-radiative (CR) model at each time step within a plasma transport simulation. However, even...
Preprint
Robust machine learning models with accurately calibrated uncertainties are crucial for safety-critical applications. Probabilistic machine learning and especially the Bayesian formalism provide a systematic framework to incorporate robustness through the distributional estimates and reason about uncertainty. Recent works have shown that approximat...
Preprint
Full-text available
Distributed data storage services tailored to specific applications have grown popular in the high-performance computing (HPC) community as a way to address I/O and storage challenges. These services offer a variety of specific interfaces, semantics, and data representations. They also expose many tuning parameters, making it difficult for their us...
Article
Using the data from loop detector sensors for near-real-time detection of traffic incidents on highways is crucial to averting major traffic congestion. While recent supervised machine learning methods offer solutions to incident detection by leveraging human-labeled incident data, the false alarm rate is often too high to be used in practice. Spec...
Preprint
Full-text available
Accurate traffic forecasting is vital to an intelligent transportation system. Although many deep learning models have achieved state-of-art performance for short-term traffic forecasting of up to 1 hour, long-term traffic forecasting that spans multiple hours remains a major challenge. Moreover, most of the existing deep learning traffic forecasti...
Conference Paper
Deep neural networks are powerful predictors for a variety of tasks. However, they do not capture uncertainty directly. Using neural network ensembles to quantify uncertainty is competitive with approaches based on Bayesian neural networks while benefiting from better computational scalability. However, building ensembles of neural networks is a ch...
Preprint
Bayesian optimization (BO) is a widely used approach for computationally expensive black-box optimization such as simulator calibration and hyperparameter optimization of deep learning methods. In BO, a dynamically updated computationally cheap surrogate model is employed to learn the input-output relationship of the black-box function; this surrog...
Preprint
In many computational science and engineering applications, the output of a system of interest corresponding to a given input can be queried at different levels of fidelity with different costs. Typically, low-fidelity data is cheap and abundant, while high-fidelity data is expensive and scarce. In this work we study the reinforcement learning (RL)...
Preprint
Full-text available
Deep neural network ensembles that appeal to model diversity have been used successfully to improve predictive performance and model robustness in several applications. Whereas, it has recently been shown that sparse subnetworks of dense models can match the performance of their dense counterparts and increase their robustness while effectively dec...
Article
Full-text available
The problem of phase retrieval underlies various imaging methods from astronomy to nanoscale imaging. Traditional phase retrieval methods are iterative and are therefore computationally expensive. Deep learning (DL) models have been developed to either provide learned priors or completely replace phase retrieval. However, such models require vast a...
Article
Recent progress in the application of machine learning (ML) / artificial intelligence (AI) algorithms to improve EFIT equilibrium reconstruction for fusion data analysis applications is presented. A device-independent portable core equilibrium solver capable of computing or reconstructing equilibrium for different tokamaks has been created to facil...
Article
Full-text available
Data assimilation (DA) in geophysical sciences remains the cornerstone of robust forecasts from numerical models. Indeed, DA plays a crucial role in the quality of numerical weather prediction and is a crucial building block that has allowed dramatic improvements in weather forecasting over the past few decades. DA is commonly framed in a variation...
Preprint
Full-text available
I/O efficiency is crucial to productivity in scientific computing, but the increasing complexity of the system and the applications makes it difficult for practitioners to understand and optimize I/O behavior at scale. Data-driven machine learning-based I/O throughput models offer a solution: they can be used to identify bottlenecks, automate I/O t...
Preprint
Full-text available
The Multi-Sampling Ionization Chamber (MUSIC) detector is typically used to measure nuclear reaction cross sections relevant for nuclear astrophysics, fusion studies, and other applications. From the MUSIC data produced in one experiment scientists carefully extract an order of $10^3$ events of interest from about $10^{9}$ total events, where each...
Preprint
Full-text available
Deep-learning-based data-driven forecasting methods have produced impressive results for traffic forecasting. A major limitation of these methods, however, is that they provide forecasts without estimates of uncertainty, which are critical for real-time deployments. We focus on a diffusion convolutional recurrent neural network (DCRNN), a state-of-...
Article
Advanced nuclear reactors often exhibit complex thermal-fluid phenomena during transients. To accurately capture such phenomena, a coarse-mesh three-dimensional (3-D) modeling capability is desired for modern nuclear-system code. In the coarse-mesh 3-D modeling of advanced-reactor transients that involve flow and heat transfer, accurately predictin...
Preprint
Full-text available
In data-driven modeling of spatiotemporal phenomena careful consideration often needs to be made in capturing the dynamics of the high wavenumbers. This problem becomes especially challenging when the system of interest exhibits shocks or chaotic dynamics. We present a data-driven modeling method that accurately captures shocks and chaotic dynamics...
Preprint
Full-text available
The information bottleneck framework provides a systematic approach to learn representations that compress nuisance information in inputs and extract semantically meaningful information about the predictions. However, the choice of the prior distribution that fix the dimensionality across all the data can restrict the flexibility of this approach t...
Preprint
Deep reinforcement learning (DRL) is a promising outer-loop intelligence paradigm which can deploy problem solving strategies for complex tasks. Consequently, DRL has been utilized for several scientific applications, specifically in cases where classical optimization or control methods are limited. One key limitation of conventional DRL methods is...
Article
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond. In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks, where IoT devices contend for accessing the shared wireless channel u...
Preprint
Full-text available
Using the data from loop detector sensors for near-real-time detection of traffic incidents in highways is crucial to averting major traffic congestion. While recent supervised machine learning methods offer solutions to incident detection by leveraging human-labeled incident data, the false alarm rate is often too high to be used in practice. Spec...
Preprint
Full-text available
Data assimilation (DA) in the geophysical sciences remains the cornerstone of robust forecasts from numerical models. Indeed, DA plays a crucial role in the quality of numerical weather prediction, and is a crucial building block that has allowed dramatic improvements in weather forecasting over the past few decades. DA is commonly framed in a vari...
Preprint
Full-text available
Reliable plasma transport modeling for magnetic confinement fusion depends on accurately resolving the ion charge state distribution and radiative power losses of the plasma. These quantities can be obtained from solutions of a collisional-radiative (CR) model at each time step within a plasma transport simulation. However, even compact, approximat...
Article
We develop a ytopt autotuning framework that leverages Bayesian optimization to explore the parameter space search and compare four different supervised learning methods within Bayesian optimization and evaluate their effectiveness. We select six of the most complex PolyBench benchmarks and apply the newly developed LLVM Clang/Polly loop optimizati...
Preprint
Full-text available
Deep neural networks are powerful predictors for a variety of tasks. However, they do not capture uncertainty directly. Using neural network ensembles to quantify uncertainty is competitive with approaches based on Bayesian neural networks while benefiting from better computational scalability. However, building ensembles of neural networks is a ch...
Preprint
Full-text available
We formulate the continual learning (CL) problem via dynamic programming and model the trade-off between catastrophic forgetting and generalization as a two-player sequential game. In this approach, player 1 maximizes the cost due to lack of generalization whereas player 2 minimizes the cost due to catastrophic forgetting. We show theoretically tha...
Preprint
Full-text available
The problem of phase retrieval, or the algorithmic recovery of lost phase information from measured intensity alone, underlies various imaging methods from astronomy to nanoscale imaging. Traditional methods of phase retrieval are iterative in nature, and are therefore computationally expensive and time consuming. More recently, deep learning (DL)...
Article
Full-text available
To enable personalized cancer treatment, machine learning models have been developed to predict drug response as a function of tumor and drug features. However, most algorithm development efforts have relied on cross-validation within a single study to assess model accuracy. While an essential first step, cross-validation within a biological data s...
Preprint
Full-text available
Advanced nuclear reactors often exhibit complex thermal-fluid phenomena during transients. To accurately capture such phenomena, a coarse-mesh three-dimensional (3-D) modeling capability is desired for modern nuclear-system code. In the coarse-mesh 3-D modeling of advanced-reactor transients that involve flow and heat transfer, accurately predictin...
Conference Paper
Deep neural networks (DNNs) have demonstrated good performance in learning highly non-linear relationships in large datasets, thus have been considered as a promising surrogate modeling tool for parametric partial differential equations (PDEs). On the other hand, quantifying the predictive uncertainty in DNNs is still a challenging problem. The Bay...