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Abstract: The Schrodinger equation does not account for the 2n
2
 degeneracy of the 

hydrogen atom which it dismisses as an ‘accidental’ degeneracy. The factor of ‘2’ in the 2n
2
 

degeneracy is well-accounted in the relativistic formulation on account of the two spin states 

of the electron. The n
2
 degeneracy is nevertheless not quite an ‘accident’; it is on account of 

the SO(4), rather than SO(3), symmetry of the hydrogen atom. This result is well known, but 

is often not adequately commented upon in most courses in quantum mechanics and atomic 

physics, leaving the student wondering about the origins of the n
2
 degeneracy of the 

hydrogen atom. A pedagogical analysis of this interesting aspect, which highlights the 

fundamental principles of quantum mechanics is presented in this article. While doing so, 

not only is the n
2
 degeneracy of the hydrogen atom explained, but its energy spectrum and 

eigenfunctions are obtained without even using the Schrodinger equation, employing only 

the fundamental principles of quantum mechanics rather than the Schrodinger equation. 

 

I.    Conservation Principles from the Physical Law 
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One can clearly demark physics before, and after, Albert Einstein [1]. One of his outstanding 

contributions is the recognition of symmetry/invariance as an important principle in physics. 

Symmetry plays a pivotal role in nature. It has an intimate relationship with conservation 

principles, and with the ‘Character of the Physical Law’ [2]. At a fundamental level, physics 

deals largely with the discovery and understanding of the physical law(s) of nature. It thus 

becomes pertinent to ask just what is meant by a/the (physical) law(s) of nature. This quest 

aspires to explain the physical universe in terms of a minimum number of principles/laws. 

One could even perhaps hope that all physical phenomena are comprehensible in terms of 

just one law. We are perhaps far from this goal as yet, nonetheless, it is intriguing that most 

of the physical phenomena can be explained in terms of just a very few number of laws. 

Much of the excitement in physics is the recognition of this approach which seeks to know 

the most, from the least.  

  

One does not know yet if there is then just a single law of nature which really provides the 

‘theory of everything’. It is nevertheless important to inquire just what is meant by a law of 

nature. Following early insights provided by Albert Einstein and Amalie Emmy Noether, 

Eugene Wigner [3] provided deep insights on these fundamental questions and elucidated 

just what is meant by the laws of nature and what are their connections with symmetry and 

invariance principles. Inspired by Wigner’s perceptivity [3], these ideas can possibly be 

summarized in three observations: 

 

(i) The regularities in the phenomena which physical science endeavours to uncover are 

called the laws of nature.  

(ii) The elements of the behaviour which are not specified by the laws of nature are 

called initial conditions. 

(iii) The invariance principles themselves depend on the dividing line between initial 

conditions and laws of nature. 

 

Two questions, apparently opposite to each other, can be asked with regard to the 

connections between invariance/conservation principles and the laws of nature: (a) Are the 

conservation principles consequences of the laws of nature? Or, (b) are the laws of nature 
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the consequences of the symmetry principles that govern them? Following Feynman [2], we 

begin with the universal law of gravity as an illustration of the law of nature. We consider a 

mass 1m at a point whose position vector is 1R
r
 in a state of gravitational interaction with 

another mass 
2m at a point whose position vector is 

2R
r

. The equation of motion which 

describes the gravitational inverse square law for the ‘relative motion’ of the smaller mass 

relative to the larger mass, with its position vector given by 2 1r R R= −
r rr

, is then given by: 

3
  0  

r
r

r
κ+ =

r
rr&&

r ,                                                                       Eq.1 

where ( )1 2 1 1 2
, for G m m Gm m mκ = + ≈ 〉〉 , and has dimensions [ ] 3 2LTκ −= . 

The scalar product of the equation of motion, Eq.1, with velocity vector v r=
r r&  gives 

0

20

lim
v

v lim
t

t

r

t

t r

δ

δ

δ
κδ δ

δ
→

→
= − .        Eq.2 

Integrating Eq.2 with respect to time yields the conservation of energy: 

2v

2
E

r

κ
− = ,           Eq.3 

E  being the specific (i.e. per unit mass) energy, which has emerged as the constant of 

integration. Integration with respect to time as the mathematical operation that yields the 

conservation of energy is no accident; it comes from the fact that energy and time are 

canonically conjugate variables. Likewise, cross product of the equation of motion with the 

position vector r
r
, together with the recognition that the gravitational force is a central field 

force, immediately yields the conservation of (‘specific’, i.e. per unit mass) angular 

momentum  = vH r r r= × ×
r r r r r& . We see that it essentially stems from the isotropy of the 

interaction. Furthermore, cross product of the equation of motion with the specific angular 

momentum H
r
 yields, after some straight forward manipulation, the conservation of yet 

another vector, namely the Laplace-Runge-Lenz
 
[4] (LRL) vector, 

( ) ˆvA H eρκ= × −
r rr

,                                                                                   Eq.4a 

where êρ  is a unit vector along the radial line toward the object in motion, drawn from the 

origin of a plane polar coordinate system located at the centre of mass. 
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The LRL vector is sometimes alternatively (but equivalently) defined as 

( )
ˆ

p L
A eρκ

µ

×
= −

rr
r

,          Eq.4b 

wherein the new κ now has dimensions 3 2MLT − . 

 

The constancy of the LRL vector, directed always from the focus to the perigee of the 

ellipse, explains the fact that in the gravitational two-body problem whose closed orbits are 

described by an ellipse, the major axis of the ellipse is fixed; there is no rosette motion (i.e., 

there is no precession). The necessary and sufficient condition that the LRL
 
[5] vector is 

fixed is the fact that the gravitational potential goes as 
1

r
, and the force as 

2

1

r
. Since the 

inverse square law of the force appears as a necessary condition, the symmetry related to the 

constancy of the LRL vector and associated fixation of the ellipse’s major axis is often 

called as the ‘dynamical’ symmetry. It is almost startling that straight-forward mathematics 

such as integration, scalar and vector products, as described above reveal the intimacy 

between symmetry and conservation laws. One can only perhaps attribute this to the 

“unreasonable power of mathematics”, as Wigner
 
[6] would say, in explaining physical laws. 

 

We note from the above discussion that the symmetry associated with respect to temporal 

evolution of an isolated system (whose Lagrangian has no explicit dependence on time) is 

associated with the conservation of energy, symmetry associated with the isotropy of the 

gravitational interaction is associated with the conservation of angular momentum, and the 

‘dynamical’ symmetry of the 
1

r
 gravitational interaction is connected with the constancy of 

the LRL vector and the associated fixation of the Kepler-ellipse in the two-body problem. 

We find that conservation principles are derivable, quite simply, from the physical law. In 

the next section we ask if the reverse process is possible. 

 

II. Physical Laws from the Conservation Principles 
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We consider a system of N particles in a medium that is homogenous. An infinitesimal 

virtual
 
[4] instantaneous displacement of the entire N-particle system through Sδ

uur
in this 

medium would result in a new configuration that would find itself in an environment that is 

completely indistinguishable from the previous one. No external force is applied in the 

virtual displacement. Denoting the force on the k
th
 particle by the i

th
 by ikF

ur
, we find, since 

internal forces do no work toward the virtual displacement, that 

1 1,1

0 ,
N N N

k ik

k i i kk

W F s F sδ δ δ
= = ≠=

     
= = • = •   

      
∑ ∑ ∑

ur uur ur uur
     Eq.5 

 being the force on the  particle due to the  -1 particlesth
kF k remaining N

ur
. 

The necessary and sufficient condition that Eq.5 holds for an arbitrary displacement is that 

1 1 1

0
N N N

k
k k

k k k

dp d dP
F p

dt dt dt= = =

 
= = = = 

 
∑ ∑ ∑

rrurr r
.      Eq.6 

We have used, to arrive at Eq.6 from Eq.5, the first two laws of Newton, but of course not 

the third. Rather, the third law follows from Eq.6 since application of Eq.5 to a two-body 

system results in  

2 1
12 21,  i.e., ,  

d p d p
F F

dt dt
= − = −

uur uur
ur ur

       Eq.7 

which of course is Newton’s III law, that action and reaction are equal and opposite. We see 

here that the physical law has followed from an invariance/symmetry principle. Likewise, 

from the fact that the LRL vector is a constant if and only if  the interaction is governed by 

the inverse square law, one could have deduced the 
1

r
  form of the gravitational interaction.  

 

We thus find that indeed it is possible to get a physical law from a symmetry/conservation 

principle, just as we saw in Section I that conservation principles follow from the physical 

law. In fact, the role of ‘symmetry’ as a guiding principle became firmly established when 

Einstein recognized that the symmetry in the expressions for the curl of the electric field and 

that of the magnetic field seen in Maxwell’s equations was pivotal to the recognition of the 

constancy of the speed of light in vacuum in all inertial frames of reference and thus for the 

fundamental principles of the special theory of relativity. 
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III. Symmetry of the Atomic Hamiltonian, and Spectra of the I Group Atoms 

 

In Section I we saw that conservation principles are derivable from the physical law, and in 

Section II we saw that the physical law is obtainable from the underlying symmetry 

associated with the conservation principles. As to which way the relationship has its most 

natural flow is best explained by Wigner
 
[7,8]: “ It is now natural for us to derive the laws of 

nature and to test their validity by means of the laws of invariance, rather than to derive the 

laws of invariance from what we believe to be the laws of nature”.  

 

We now examine the importance of symmetry with regard to specific interest in atomic 

physics. The discrete symmetries, namely parity (P), charge conjugation (C) and time-

reversal (T) symmetry constitute an important cornerstone of the standard model of physics. 

PCT symmetry has important implications in atomic physics
 
[9,10,11,12]. Also, important 

physical processes to probe the atom, namely electron-atom collisions and atomic 

photoionization, are related to each other by the time-reversal symmetry, discussed 

elsewhere
  
[11].  

 

In the present article, we focus on an interesting consequence of the so-called ‘dynamical 

symmetry’ of the Coulomb interaction, also described by the 
1

r
 attraction between the 

electron and the proton in the hydrogen atom. This symmetry, and/or its breakdown, has an 

important consequence on the spectra of the atoms belonging to the I Group of the periodic 

table. 

 

The importance of studying the symmetry aspects of the hydrogen atom is best illustrated in 

the context of the well-known D1, D2 lines (Fig.1) of the sodium vapour lamp. For the 

present purpose, we do not get into the complexities of the alkali atom spectra arising out of 

the hyperfine structure and the Lamb shift. The yellow doublet lines of the sodium atom 

occur due to transitions from the relativistic spin-orbit split 3p3/2 and 3p1/2 levels to the 3s 

level; and the fact that the energy of the 3p level is different from that of the 3s in the sodium 

atom is of fundamental consequence to these spectral line. Similar lines are seen in all the 
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alkali atoms of the I Group of the periodic table, except the hydrogen atom, in which the 3p 

and 3s levels are degenerate; and this is because of the fact that the symmetry of the 

hydrogen atom is essentially different from that of the other atoms of the I Group elements, 

as explained below. Transitions resulting from the relativistic and Lamb shift splitting in the 

hydrogen atom would fall in the microwave region of the electromagnetic spectrum, not in 

the optical region. 

 

 

 

Fig.1: There would be no 

D1,D2 lines in the sodium 

atom’s spectrum if the energy 

of the 3p state were the same 

as that of the 3s state. 

 

The reason why the spectrum of the hydrogen atom is fundamentally different amongst all 

elements of the I group is the degeneracy of the hydrogen atom’s eigen-states with different 

values of the orbital angular momentum, l , for a given value of the principal quantum 

number n . The hydrogen atom’s eigenvalues are given by the famous Balmer-Rydberg-

Bohr 
2

1

n
 law, independent of l , whereas the eigenvalues of states of other atoms in the 

Group I depend not just on the principal quantum number as per the Balmer-Rydberg-Bohr 

law, but also on the orbital angular momentum quantum number. This l dependence−  

enables the transitions that generate the D lines, and along with the relativistic spin-orbit 

splitting, we get the D1,D2 transitions. What connects this problem to the symmetries in 

Sections I and II is the fact that degeneracy and symmetry go together in quantum 

mechanics. The symmetry and invariance principle responsible for the peculiar degeneracy 

in the hydrogen atom is that of the LRL vector describing the 
1

r
 Coulomb potential in the 

electron-proton interaction. It seems not known if it is merely a coincidence that the form of 
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the Coulomb interaction is similar to that of the gravitational interaction, both governed by 

the inverse square law. As discussed in this article, it is however understood that if it were 

not so, planetary orbits would not really be stable, so perhaps this was natural selection by 

nature. Regardless, the constancy of the LRL vector has important consequences for the 

quantum mechanics of the hydrogen atom. However, unlike the Kepler orbit of ‘classical 

mechanics’, the quantum hydrogen atom does not have any ‘orbit’. An orbit can be defined 

only if position and momentum are simultaneously measurable. We therefore do not talk 

about (Bohr-type) orbits, but quantize the LRL vector, following Pauli
 
[13], now referred to 

as the Pauli-Lenz operator: 

1
ˆ 

2
QMA A p L L p rκ

µ
 = = × − × − 

ur ur urr r r
.       Eq.8 

We note that quantization results in A
r
of Eq.8 to be a vector operator. In contrast, the 

corresponding term in classical mechanics represented by Eq.4 is not an operator; it is only a 

vector. The Pauli-Lenz quantum operator commutes with the Hamiltonian for the hydrogen 

atom. 

 

It should be noted that the 1-dimensional radial Schrödinger equation for the hydrogen atom 

does not explain the degeneracy of the hydrogen atom, as can be seen directly from it: 

[ ]2

2 2 2

1 ( 1) 2
( ) 0

d dR l l m
r R E V r R

r dr dr r

+  − + − = 
  h

.     Eq.9 

 

It is well known that in a 1-dimensional problem, none of the energy values of the discrete 

spectrum is degenerate. Hence, it seems natural, from Eq.9, that the energies of all states 

with quantum numbers ,n l  corresponding to different values of l  have different energies. 

Eq.9 does not therefore account for the degeneracy in the hydrogen atom with regard to the 

different values of l . One can count this degeneracy easily. It is given by: 

( )
1 1 1

2 2

0 0 0

( 1)
2 1 2 1 2

2

n n n

l l l

n n
l l n n n n n

− − −

= = =

−
+ = + = + = − + =∑ ∑ ∑ .    Eq.10 
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The 2n fold−  degeneracy of the hydrogen atom follows from the geometric (isotropic) 

symmetry of the Hamiltonian which provides for (2 1)l fold+ − degeneracy for each allowed 

value of l , together with an additional symmetry responsible for the fact that all states with 

0,1,2,3,..., ( 1)l n= −  of the hydrogen atom are degenerate, but not so for other atoms of the I 

Group atoms.  The radial Schrödinger equation does not account for the degeneracy in the 

hydrogen atom. It is therefore often referred to as ‘accidental’ degeneracy.  

 

To explain the 2n fold− degeneracy of the hydrogen atom, we must examine the symmetry 

group of the hydrogen atom, inclusive of the Pauli-Lenz operator of Eq.8. The three 

components of the Pauli-Lenz vector operator A
ur
, along with the three components of the 

angular momentum operator l
r
provide, a closed algebra even if only over the subspace of 

Hilbert space of eigenvectors belonging to a particular bound state energy eigenvalue E . 

This follows from the fact, as can be verified with some bit of patient algebra, that the 

following relations hold: 

,
i j ijk k
L L i Lε  =  h ,         Eq.11a 

,
i j ijk k

A L i Aε  =  h ,         Eq.11b 

and , 2i j ijk kA A i H Lε
µ

  = − 
h

.        Eq.11c 

The appearance of the Hamiltonian operator on the right hand side of Eq.11c restricts the 

algebra of ,L A
rr
 to be closed only over the subspace of Hilbert space of eigenvectors 

belonging to a particular bound state energy eigenvalue E . The three components of the 

angular momentum operator L
r
, together with the three components of the Pauli-Lenz vector 

operator A
r
, constitute a set of six generators of the Lie Group of dimensions six, known as 

the SO(4) group, of Rank 2. Now, as per Racah’s theorem, the number of Casimir
 
[14] 

operators for the group is equal to the rank of the group. The two Casimir operators of the 

SO(4) group can be written as: 

2 2

1C I K= +          Eq.12a 

and 
2 2

2C I K= − ,         Eq.12b 
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where ( )1
'

2
I L A= +

rr r
 and  ( )1

'
2

K L A= −
rr r

,      Eq.12c 

with '
2

A A
E

µ−
=

r r
.         Eq.12d 

 

Both the Casimir operators commute with each of the six generator of the SO(4) group. The 

operators I
r
and K

r
satisfy the commutation algebra for quantum angular momentum vector 

operators as can be verified: 

,  etc.x y zI I i I
−

  =  h  and ,  etc.x y zK K i K
−

  =  h     Eq.13 

I
r
and K

r
are referred to as quantum ‘pseudo’ angular momentum vector operators since they 

combine the polar vector A
r
 with the axial vector L

r
. The eigenvalues of 2 2  I and K are thus 

given respectively by 
2 ( 1)i i +h and 

2 ( 1)k k +h  as is well-known from angular momentum 

algebra. 

 

Now,  i k= , since it can be seen that 2 ' 0C L A= =
rr

� .    Eq.14a  

The eigenvalue of the operator 1C  is therefore: 

2 2

12 ( 1) 2 ( 1)k k c i i+ = = +h h .        Eq.14b 

2 2

1,  since ,Again C I K= +  we get 

( ) ( )1

2 2 2 21 1
' ' ' ' ' '

4 4
c L L A A L A L L A A L A= + + + + − − +

r r r r r rr r r r r r
� � � � ,  Eq.15a 

i.e., ( )1

2 2 2 2 2 21 1 1 1 1
' '

2 2 2 2 2 2
c L A L A L A

E

µ− = + = + = +  
 

r r rr r r
.   Eq.15b 

 

Now, using the fact that ( )2 2 22
A A H L κ

µ
= + +

r r r
� h ,     Eq.16a 

we get: 
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( )2 2 2

1

21 1 2

2 2 2

H
c L L

E

µ
κ

µ
 − = + + +  

  

r
h ,     Eq.16b 

i.e., 
2 2 2 2

1

1 1 1

2 2 2 4 2
c

E E

µ µ
κ κ   = − − = − −   

   
h h .    Eq.16c 

We have recognized in Eq.16 that 1
H

E
= , since over the domain of our exercise, which is 

the subspace of eigenvectors belonging to a given bound state energy eigenvalue E , the 

Hamiltonian H would always return essentially the same eigenvalue E  . 

 

From Eq.14 and 16, it follows that: 

2 2 2 2

1

1
2 ( 1) 2 ( 1)

4 2
c k k i i

E

µ
κ = + = + = − − 

 
h h h ,    Eq.17 

which gives the Balmer-Rydberg-Bohr expression (as shown, for example, in Ref [15], 

Eq.14.35 and [16], Eq.12.85): 

{ }

2 2

2 2 22 4 ( 1) 1 2
E

i i n

mk mk
= - = -

+ +h h
,      Eq.18a 

 (2 1)with n i= + ,          Eq.18b 

recognized immediately as the principal quantum number. 

 

Now, i , being a (‘pseudo’) angular momentum quantum number as per Eq.13, has a 

degeneracy which is (2 1)i fold+ − . Likewise, k  has a degeneracy which is (2 1)k fold+ − . 

The principal quantum number n  can get its integer value 2 1 2 1n i k= + = + , either from i , 

or from k  (with i k= ). The quantum state with a given value of the principal quantum 

number n  therefore has a degeneracy given by ( ) ( ) 22 1 2 1i i n+ × + = , very much in 

accordance with Eq.10. The 2n fold− degeneracy which is peculiar only to the hydrogen 

atom amongst all the atoms of the I Group elements, regarded earlier only as ‘accidental 

degeneracy’ in the Schrödinger formulation, is thus not quite an ‘accident’; it has a proper 

explanation in its SO(4) symmetry. This symmetry does not hold for any of the other atoms 

of the I Group elements, since they have 1Z > protons and for them only in the asymptotic 
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limit, r → ∞ , does the potential seen by the outer ,n l  electron goes as 
1

r
− ; but as 0r → , 

the potential goes as 
Z

r
− . The potential is no longer strictly described by the 

1

r
−  law in the 

entire region of space, as required for the Pauli-Lenz operator to represent a constant of 

motion, as discussed earlier.  

The energy of all atoms with 1Z > is then expressed by a modified law, which goes as 

( )

( )
1

2,

1Z

l

n n l
E E

n µ
> → →

−
whereas for the hydrogen atom we have

( )1
2

1ZE
nn

= → , independent 

of l . lµ is called as the ‘quantum defect’ and it depends on the orbital angular momentum 

quantum number. Finally, and not surprisingly, the fact that I
r
and K

r
are pseudo angular 

momentum vector operators which combine a polar with an axial vector,  is responsible for 

the fact that in the hydrogen atom, states with opposite parity are degenerate. 

 

It may be noted that for atoms with Z>1, two types of semi-empirical modifications to the 

hydrogenic formula were employed in the early days of quantum mechanics. The 

modifications were made to both the numerator and to the denominator in the hydrogenic 

Balmer-Rydberg-Bohr expression for energy. Correction due to screening was indicated by 

screening parameters, with Z replaced by Z σ− , σ  being the screening parameter. The 

screening accounted for the effective shielding of the attractive nuclear potential by the 

electron cloud generated by the remaining electrons. On the other hand, modification was 

also introduced by replacing the principal quantum number n  by n µ− , with the quantum 

defect µ accounting for the departure from the strict 
1

r
 potential which makes the Pauli-

Lenz vector operator a constant of motion in the hydrogen atom. The potential seen by an 

outer electron becomes 
1

r
 only in the asymptotic limit, r → ∞  for all atoms having more 

than a single electron. The hydrogen atom is the only one in the periodic table for which the 

potential is 
1

r
 in the entire space, 0 r≤ < ∞ . The fact that states with different orbital 

angular momentum l  for all atoms of the first group of the periodic table, other than the 
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hydrogen atom, have different energies is then due to the fact that the SO(4) symmetry of 

the hydrogen atom is broken for them. Earlier works on electronic shielding and quantum 

defects was based on semi-empirical considerations [17,18]; these important results are now 

integrated comprehensively in the quantum defect theory of the atomic spectra
 

[19,20,21,22]. 

 

The present approach underscores an important point regarding just what is meant by 

quantization. Explaining ‘quantization’ merely in terms of ‘discrete energy states’ is of 

course misleading, since the very same Schrodinger equation which admits discrete energy 

state solutions for bound states also admits continuum solutions for unbound states; the 

difference merely being in the boundary conditions imposed to solve the differential 

equation. Furthermore, explaining ‘quantization’ as a set of phenomena that require the 

Schrodinger equation is also inadequate, since the Schrodinger equation does not explain the 

degeneracy with respect to the l  quantum number of the hydrogen atom. Quantum 

mechanics is deeper than the Schrodinger equation; it requires employing operators 

( ),op opq p  instead of the classical dynamical variables ( ),q p , followed by extraction of 

physical information about the system from the operator algebra by developing it further
 

[23]. 

 

It is interesting to emphasize in this context, that since the present approach rests on the 

fundamental tenets of quantum theory, it explains the energy spectrum of the hydrogen atom 

and also its degeneracy without using the Schrodinger equation. This is akin to getting the 

elliptic orbit shape for the trajectory of a planet’s trajectory around the sun, from the 

properties of the Laplace-Runge-Lenz vector, without
 
[4] even solving the classical equation 

of motion. In fact, one gets not only the energies of the bound states and account for the 

degeneracy as explained above, one can also get
 
[24,25,26] the hydrogen atom’s 

wavefunctions without using the Schrodinger equation, as shown in the next Section. 

IV. Hydrogen atom wave functions from the Pauli-Lenz vector operator 

For the ground state 1n =  , represented as 1 , we have from Eq.18b 0 .i k= =  
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Thus:  1 0,     and also,   1 0.I K= =
r r

                  Eq.19 

Hence, 

 ( ) ( )1 1 0    ' 1 1 0,L I K and A I K= + = = − =
ur urr r r r

           

( )1
ˆ. .       1  1 0

2
QMi e A p L L p κρ

µ
 = × − × − = 
 

ur ur urr r
.                Eq.20 

Now, the i
th
 component of ( )L p×

r r
is given by: 

( ) ( ) ( ) ( )
3 3

1 1

 r pijk j k ijk j k ijk jlm l m k jik jlm l k m
i

j k

L p L p L p p r p p
= =

× = ∈ ≡ ∈ =∈ ∈ = −∈ ∈∑∑
r r

      Eq.21 

i.e.  ( ) ( )   jik jlm lk k l m
i

L p i p r pδ× = − ∈ ∈ +
r r

h , on account of the uncertainty principle 

commutation property of the position and the momentum operators. 

Hence, ( )     (2 )  L  .ijk jlm lk m jik k j im m jik k j
i

L p i p p L i p pδ δ   × = ∈ ∈ −∈ = −∈   
r r

h h      Eq.22 

Inserting Eq.22 in Eq.20, we get an equivalent form of the Pauli-Lenz vector operator: 

( )1
ˆA p L i p rκ

µ
 = × − − 

r rr r
h ,                                                Eq.23 

Hence:  { }ˆ 1 0p L i p rµκ× − − =
ur ur r

h ,            

or, { }
2 2

1,02 2
ˆ ˆ ˆ1 0       i.e. 1 ( ) 0

e e
i p r r r r r

µ µ
µκ ψ

   
+ = ∇ + = ∇ + =   

   

r rr r r
h

h h
.        Eq.24 

Eq.24 is a first order differential equation; it is of course not the Schrodinger equation nor 

has it been obtained using the Schrodinger equation. It has been obtained completely from 

the properties of the Pauli-Lenz vector operator. As seen readily, the Eq.24 admits the 

solution 0

2
/

1,0 0 23

0

1
( ) ,    with 

r a
r e a

ea
ψ

µπ
−= =

hr
, which is the familiar ground state of the 

hydrogen atom. We thus see that not merely do we get the energy states from the Pauli-Lenz 

vector operator, we also get the ground state wave function – without using the Schrodinger 

equation! In fact, one can get the excited states also following similar technique [24,25,26]. 
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V. Conclusions 

Symmetry plays a pivotal role in nature. From the conservation laws of energy, momentum 

and angular momentum that are determined by the invariance of the physical 

system/processes with respect to translations in time, and in homogeneous and isotropic 

space respectively, to the symmetry in Maxwell’s equations with regard to the electric and 

magnetic fields, through the symmetry in nature revealed as the wave-particle duality, the 

subject of invariance in nature becomes only increasingly mindboggling. Other forms of 

symmetries such as the dynamical symmetry, discrete symmetries such as parity, time-

reversal and charge conjugation, also impact physical processes in the universe. The 

reduction of the 3-dimensional Schrödinger equation to 1-dimensional radial equation 

explains why the energies of states with different l values have different energies in atoms 

such as sodium, but their degeneracy in the hydrogen atom requires the recognition of the 

SO(4) symmetry of the Hamiltonian for the hydrogen atom. This important difference 

between the symmetry of the hydrogen atom and that of the other atoms of the I Group 

elements is responsible for the appearance of the D1,D2 lines in all I Group atoms except the 

hydrogen atom. In the past few years, there is renewed interest in the SO(4) symmetry of the 

hydrogen atom, reflected in its relativistic
 
[27] formulation. The present approach not merely 

generates the eigenvalues of the hydrogen atom and explains its degeneracy without using 

the Schrödinger equation, it also provides the radial wavefunctions of the hydrogen atom. 

That one obtains the eigenvalues and the eigenfunctions without even using the Schrödinger 

equation is not surprising, since we have of course used the essentials of quantum 

mechanics, which is to use the state vectors and the quantum operators instead of the 

classical representation of a system by a point in phase space. 

 

Finally, we mention that a deviation from the inverse square law in gravitation generates 

apsidal precession
 
[28,29,30]; it is a result of different reasons such as three-body 

interactions and/or relativistic effects.  

 

The interested reader may go beyond the pedagogical treatment discussed above by 

referencing some well-known books [15,16,26,31,32]. Unfortunately, this exciting topic is 
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often not introduced in many courses on atomic physics and on quantum theory and thus 

merits, in our opinion, a pedagogical revisit.  
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