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Abstract— The analysis of time series data is of interest to 
many application domains. But this analysis is challenging due to 
many reasons such as missing data in the series, unstructured 
nature of the data and errors in the data collection procedure, 
measuring equipment, etc. The problem of missing data while 
matching two time series is dealt with either by predicting a value 
for the missing data using the already collected data, or by 
completely ignoring the missing values. In this paper, we present 
an approach where we make use of the characteristics of the 
Mahalanobis Distance to inherently accommodate the missing 
values while finding the best match between two time series. 
Using this approach, we have designed two algorithms which can 
find the best match for a given query series in a candidate series, 
without imputing the missing values in the candidate. The initial
algorithm finds the best nonwarped match between the candidate 
and the query time series, while the second algorithm is an 
extension of the initial algorithm to find the best match in the 
case of warped data using a Dynamic Time Warping (DTW) like 
algorithm. Thus, with experimental results we go on to conclude 
that the proposed warping algorithm is a good method for 
matching between two time series with warping and missing data.

Keywords— Time Series; Missing Values; Mahalanobis 
Distance; Similarity Measure

I. INTRODUCTION 

A regular time series is one in which values are collected 
over regular intervals of time. This can often degenerate into 
an irregular time series, due to issues in the collection 
mechanism of data itself or due to human errors in data entry 
and change in collection frequencies of the data. Such data is 
quite common in applications involving financial time series 
data such as stocks and future contracts [1], climate 
monitoring and prediction [2], remote sensing systems [3] and
in the data pertaining to several other fields. The usual 
methods that deal with missing values in time series data 
either fill up the missing values or ignore them. In the former 
case, the missing values are predicted by techniques such as 
Mean/Mode Imputation [4][5][6] or k-Nearest Neighbours 
[4][7] and so on. Techniques like smoothing that make use of 
moving averages [8][9] are also commonly used to handle 
such irregularities in time series data. Other available methods 
of missing data prediction [10] have considerable overhead in 
the data preparation. This paper presents an algorithm that 
handles the data with missing values per se to measure the 
similarity component between two given time series. This 

paper is the result of an effort to reduce the data preparation 
time without compromising the accuracy. The proposed 
algorithms are designed based on the Mahalanobis Distance 
measure. These algorithms extend flexibility to the user to 
control the quality of the matches and also improve overall 
efficiency by pruning the candidate.  

II. RELATED WORK

Analyses dealing with time series data that may contain 
missing data currently employ certain techniques to handle the 
missing values. These techniques can be broadly categorized 
as: i) Case Deletion: The missing point is skipped over 
completely while using the dataset with missing data. ii) 
Interpolation: In a geometric sense, a line is drawn between 
the ends of sequences on either side of the missing data. iii) 
Imputations: These involve the fixing of a value at the point 
where it is missing by using certain algorithms such as k-
means, imputations of most common values in the series, 
Mean/Median Imputations and so on. iv) Smoothing: A 
moving average calculation technique is applied on the data to 
smooth it into one continuous curve over which known 
techniques for processing of regular smooth curves may be 
applied. 

The methods mentioned above are those that are most 
commonly used. Even though many such methods exist to fix 
missing data, each of them do have certain drawbacks 
involving one or more of the following: (i) Information from 
the original data set is lost in the following phases of 
processing of the time series data. (ii) A new value is assumed 
to have been in the spot of the missing one which involves a 
certain amount of error that is difficult to predict as the 
missing value itself may be difficult to predict. (iii) The 
original data representation is completely changed into a new 
one which might not correctly express the same information as 
the original data.(iv) There is a large computational pre-
processing overhead involved in applying the method to 
handle the anomalies in the data. 

The drawbacks of these existing methods strongly suggest 
a need for better methods to process missing data in time 
series. The algorithms presented in this paper neither have the 
overhead of changing the data representation, nor the missing 
values are completely ignored in the matching process. 
Previously, a new distance metric was formulated using the 
Bhattacharyya Distance measure in combination with the k-
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Nearest Neighbours imputation technique [7] to be used on 
time series data that had missing values. However, since it 
does perform an imputation for the missing value, we do not 
compare the technique with the one we propose. There is 
mention, however, of the Bhattacharya Distance degenerating 
to the Mahalanobis distance in certain cases which is an 
affirmation of sorts of our techniques which use this measure. 
An idea of a threshold is also included which manages the 
sensitivity of the analysis of the time series [11]. 

The rest of this paper is organised as follows. In Section 
III, we define the Mahalanobis Distance. Section IV presents 
the implementation methodology employed in achieving our 
goal. Section V presents the Nonwarping algorithm and 
Section VI presents the Warping algorithm that extends the 
Nonwarping one. Each of these sections also contains the 
corresponding visualizations and results for the sample dataset 
chosen. We go on to provide the conclusion about the 
proposed algorithm in Section VII and the plans on developing 
these concepts further in Section VIII. Finally, we list out the 
literature that was referred to while working on this 
implementation. 

III. THE MAHALANOBIS DISTANCE

Mahalanobis Distance was first used to find similarities 
between skulls based on measurements [12]. A version of it 
known as asymmetric Mahalanobis Distance was used to 
propose a method for handwritten character recognition [13]. 
It is also widely used in various data mining techniques such 
as clustering and classification techniques. 

The Mahalanobis Distance is a distance measure between a 
point P and a distribution of points D. By definition, it is the 
number of standard deviations the point P is away from the 
mean of the distribution D. 

  (1) 

     (2)

From Equation (1) and Equation (2), we get the bare bones 
representation of the Mahalanobis Distance as 

  
   

(3)

The use of standard deviation in this definition is what 
helps to inherently account for the missing data in the time 
series under question by capturing the dispersion trends on 
either side of the missing values when comparing a point in 
the query to the distribution of a localized section of points 
from the candidate. This crucial property of the Mahalanobis 
Distance measure allows us to do away with any sort of 
processing to explicitly handle missing values in the data. 

Another advantage of the Mahalanobis Distance is that it is 
scale invariant and hence no rescaling of data is required. 

IV. IMPLEMENTATION METHODOLOGY

We develop the algorithm in two phases. In the first phase, 
we assume an exact match between the candidate with missing 
points and the query time series. The results are presented in 
the form of best match and exact match for each algorithm. It 
is seen that Mahalanobis Distance gives the same results as 
exact match with a good number of missing points implying 
that it is a reasonable way to extend matching algorithms for 
missing values. In the second phase, we extend the algorithm 
to also cater to warped time series and propose an algorithm 
that handles warped data using a method similar to the one 
used in DTW [14].

V. NONWARPING ALGORITHM

The algorithm takes in three input parameters i.e. the 
measured data as the candidate time series which may have 
missing data, a regular time series as the query to be matched 
against the candidate and a quality parameter that the resultant 
match provided by the algorithm has to comply with. This 
quality parameter is a threshold value which is set by the user 
as a maximum percentage of points in the matching region of 
candidate that may be missing. If the chosen run of data has 
more percentage of missing points compared to the query, the 
whole selection is skipped over and the next set is chosen.  

The candidate is chosen with a length equal to the number 
of query points. It is chosen in the form a sliding window of 
size equal to the query length through the whole candidate 
series. The query time series is iterated over and a range of 
points in the candidate equal to a window size of 10 is chosen 
which includes any missing points. The Mahalanobis Distance 
is then calculated between the point and this distribution 
window using (3). This is then repeated for every point in the 
query and added. The sum is then compared with a globally 
maintained distance value and the location of match updated 
to the current one if the obtained sum is lesser than that of a 
global value. 

The procedure is then continued for various alignment 
possibilities of the candidate and query and finally the best 
match location is given to the user. Therefore, in a single pass 
over the candidate data with missing values, the best match 
between the candidate and query is obtained.  

ALGORITHM I. 

mahalDist ← ∞ 
q ← length(query) 
for i in 1 to length(candidate)-q+1 do 
 if i in range(5) then 

 block ← candidate[i:i+q] 
  else do 

 block ← candidate[i-5:i+q] 
  dist_local ← 0  
  count_missingpoints ← count(block) 
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  if((count_missingpoints/q)>threshold)   
 go to next block 
 

 for j in range(5) then 
 temp←mahalanobis(block[0:10],query[j]) 
 if temp not equal to ∞ then 
  dist_local←dist_local + temp 

 start ← 5 
 end ← 15 

 
 for j in 5 to q do 

 temp←mahalanobis(block[start:end],qu
ery[j]) 
    start++ 
    end++ 
    if temp not equal to ∞ then 
       dist_local ← dist_local + temp 
    
for j in (q-4) to q do 
 temp←mahalanobis(block[start:end],qu
ery[j]) 
 if temp not equal to ∞ then 
     dist_local ←dist_local + temp   
 
if dist_local < mahalDist then 
 mahalDist ← dist_local 
    location ← i 

A. Best match results of Nonwarping Algorithm 
The best match results of both algorithms are presented 

using a standard EEG trace corpus recorded in the ECT Lab at 
Duke, on a patient undergoing ECT therapy for clinical 
depression [15]. The candidate dataset consists of 3600 points 
of electric potential recordings. Another segment of EEG data 
of 400 recordings was used as the query dataset to find the 
best match. Missing points in the data are obtained by 
removing the recorded values at random locations in the time 
series. After removing 30% of the data points missing from 
the candidate time series with a threshold value of 50%, the 
two proposed algorithms were run and the results are 
displayed graphically in Fig1. The first 200 points of the 
match are displayed in the image. 

B. Exact match results for Nonwarping Algorithm 

For an exact match, we have taken 400 points from the 
EEG candidate series to be the query and used it to match it 
against the EEG candidate dataset to establish a relationship 
between the threshold and the missing values present in the 
data set. 
The exact match results were tested for three cases.

Case A: This denotes a low number of missing points and high 
threshold or tolerance value. In this case, we can expect a 
match at the region of the candidate from which the query was 
chosen. Our results showed the Location of match and actually 
observed results are the same.  

Case B: This denotes a case where a larger number of missing 
values is present in the dataset and the threshold value is 
reasonably low. For this case, the result is highly dependent on 
the spread of missing values in the data. It depicts the quality 
control of the match. It may or may not find the exact match 
depending on the number of missing values present in the 
match area. This is because the region is populous with a 
number of missing values due to which the region was not 
considered for matching as in the result presented in case B 
 and whereas it will match if there is a different spread of 
missing values and hence continue to match in a similar 
manner as in Case A. This makes the best match highly 
dependent on the spread of missing values in the candidate 
time series.  

Case C: In this case, we give a high number of missing points 
and a high tolerance value which again must behave as in Case 
A as the skipping criteria applied in Case B has been relaxed 
by a higher threshold value. However, for this combination we 
can see that the Nonwarping algorithm works better than the 
Warping approach presented later. This is mostly due to the 
fact that a distribution of points, including missing points in 
the candidate, are mapped to a point in the query whereas in 
warping we are choosing a distribution by ignoring the 
missing points and considering a warped mapping. The 
expected match was to be found at location 800.

VI. WARPING ALGORITHM

This method proposes an incremental warping approach to 
search for the closest match in the candidate time series with 
respect to the query. Similar to the Nonwarping method, the 
query time series is iterated over and data of length equal to 

TABLE I. EXACT MATCH RESULTS FOR NONWARPING ALGORITHM

Case
Observations

Missing 
Points (%) Threshold (%) Location

A 30 70 800

B 50 50 995

C 70 70 800

Fig. 1. Best Match Result of Nonwarping Algorithm
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the query length is considered from the candidate. A threshold 
value is also taken as in the previous algorithm to control 
quality of the resultant matching regions. In this algorithm, 
however, the window size is determined with respect to the 
threshold value provided by the user. The window is then filled
with considered points from the candidate without the missing 
points. For the first and last pairs of points present in the 
window, Euclidean distance is calculated as warping is not 
possible for them. The remaining points of the query are then 
iterated over starting from the second one. 

Consider i as the current chosen point of the query. The 
distance is calculated between this point in and a run of the 
candidate time series. The run of the candidate time series is 
constructed by taking points from 0 to i-2 and then selecting 
either the (i-1)th,  ith or (i+1)th value for the final position based 
on which one gives a lower value for Mahalanobis Distance in 
that position. The algorithm does not consider the points in 
previous windows as the nonlocalised trends captured in cases 
where they are considered tend to hamper the performance of 
the algorithm. All the minimum distances chosen for each point 
in the query for the window are added. The same procedure is 
applied for the corresponding windows until we have reached 
the end of the chosen portion of the candidate series. All these 
distances calculated are summed up. If this sum is less than a 
globally maintained minimum value, the corresponding index 
value in the candidate data is saved as the location identifying 
the best match so far, which also accounts for possible 
distortions between the two sequences under consideration. 

ALGORITHM II. 

Winsize←(((1threshold)/2)x(length(query)) 
mahalDist ← ∞ 
q ← length(query) 

 
for i in 0 to (length(candidate)-q+1) do 
 block ← candidate[i to (i+q)] 

dist_local ← 0 
count_missing_points ← count(block) 

 if((count_missing_points/q)>threshold)   
     go to next block 
while end of block not reached do 

 dist_local←0 
candidate_window← data block of winsize 
query_window ← query data of winsize 
candidate_temp←[]           
d←ED(candiate_window[firstpoint],query_
window[firstpoint])+ED(candiate_window[
lastpoint],query_window[lastpoint]) 
dist_local ← dist_local + ed 

  candidate_temp ← data_slice 
   
  for j in 1 to length(candidate_temp)-1 
do 

 back ← ∞ 
 straight ← ∞ 
 forward ← ∞ 

templist←candidate_temp[0 toj-1] 
 back←mahalanobis(templist,query_wind
ow[j]) 

  templist←candidate_temp[0 to j 
without j-1] 
 straight←mahalanobis(templist,query_win
dow[j]) 

        templist ← candidate_temp[0 to 
j+1 without j-1 and j]   

        forward ← 
mahalanobis(templist,query_window[j]) 

        minval ← 
minimum(back,straight,forward) 

        if minval equals ∞ then 
           go to next calculation 
        else do 
           dist_local ← dist_local + 

minval 
 if dist_local < mahalDist then 
    mahalDist ← dist_local 
    location ← i 
 

A. Best match results for Warping Algorithm 

The best match results for the Warping algorithm is 
presented in Fig. 3, with the same dataset and tested with the

Fig. 3. Best Match Result of Warping Algorithm

Fig. 2. Exact Match Result of Nonwarping Algorithm
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same parameters in the best match results for the Nonwarping 
algorithm. 

B. Exact match results for Warping Algorithm 
The exact match results for the Warping algorithm is 

presented with the same dataset and tested with the same 
parameters as in the best match results for the Nonwarping 
algorithm. It is visually represented in Fig. 4. 

The Warping algorithm takes longer to compute the best 
match compared to the Nonwarping method as the 
Mahalanobis Distance needs to be computed thrice for each 
point in the query in order to achieve the warping effect, as 
opposed to a single computation in the case of the 
Nonwarping algorithm.

From the above experiments, one may infer that the two 
proposed algorithms produce good results even when the time 
series has missing points. However, the quality of the matches 
does reduce as the number of missing values in the matching 
regions increase as there is lesser data to capture trends from. 
Comparing the performance of both our algorithms, the 
Nonwarping algorithm is more stable to the changes in number 
of missing data values. However, the Warped algorithm caters 
to time series where the sampling rate at certain locations may 
not be identical. Both algorithms give the corresponding best 
match between the candidate and query time series, one 
assuming the best case of uniform sampling rates, and one 
assuming the worst case of localised nonuniform sampling 
rates. 

TABLE II. EXACT MATCH RESULTS FOR WARPED ALGORITHM

Case
Observations

Missing 
Points (%) Threshold (%) Location

A 30 70 800

B 50 50 468

C 70 70 1257

VII. CONCLUSION

From the above findings, we conclude that the Warping 
algorithm that we have presented is a good method to find the 
match between two time series without performing any 
imputations in the candidate to handle missing values. The 
Nonwarping algorithm, which accounts for missing data is 
extended to a warping algorithm by using ideas from DTW. 
The Warping algorithm can also be considered an extension of 
DTW to fit missing data. In a single pass over the data, the 
algorithm finds the best match between the two time series as 
opposed to two or more passes that are necessary in the 
existing implementations. Hence, the computationally 
expensive preprocessing methods that are involved in handling 
missing data are not necessary to find the match. 

VIII. FUTURE WORK

The DTW algorithm has a set of optimization techniques 
to improve its performance. The UCR Suite [14] further added 
to this set of algorithms and highly optimized the performance 
of the DTW algorithm such that it could handle much larger 
datasets in a shorter time period without compromising on 
accuracy. As part of our future work, we plan to extend our 
algorithm to cater to the needs of Big Data by devising 
techniques along similar lines. We also plan to make a 
parallelized implementation of the proposed algorithm to 
further improve its performance with the aim of it becoming 
the norm in dealing with matching of time series that may 
contain missing values. 

REFERENCES

[1] Boetticher, Gary D. "Teaching financial data mining using stocks and 
futures contracts." Journal of Systemics, Cybernetics and Informatics 3, 
no. 3 (2006): 26-32. 

[2] Ferrari, G. Tatiana, and V. Ozaki. "Missing data imputation of climate 
datasets: implications to modeling extreme drought events." Revista 
Brasileira de Meteorologia 29, no. 1 (2014): 21-2 

[3] Kandasamy, Sivasathivel, F. Baret, A. Verger, P. Neveux, and M. 
Weiss. "A comparison of methods for smoothing and gap filling time 
series of remote sensing observations–application to MODIS LAI 
products."Biogeosciences 10, no. 6 (2013): 4055-4071 

[4] Myrtveit, Ingunn, E. Stensrud, and U. H. Olsson. "Analyzing data sets 
with missing data: an empirical evaluation of imputation methods and 
likelihood-based methods." Software Engineering, IEEE Transactions 
on 27, no. 11 (2001): 999-1013. 

[5] AbdAllah, Loai. "Unsupervised Distances over Complete and 
Incomplete Datasets and Their Applications." PhD diss., University of 
Haifa, 2014 

[6] Little, Roderick JA, and D. B. Rubin. Statistical analysis with missing 
data. John Wiley & Sons, 2014. 

[7] AbdAllah, Loai, and I. Shimshoni. "A Distance Function for Data with 
Missing Values and its Application." In Proceedings of the 2013th 
International Conference on Data Mining and Knowledge Engineering. 
2013. 

[8] A. Eckner. "A framework for the analysis of unevenly-spaced time 
series data." Preprint. Available at: http://www. eckner. 
com/papers/unevenly_spaced_time_series_analysis (2012). 

[9] A. Eckner. Algorithms for unevenly-spaced time series: Moving 
averages and other rolling operators. Working Paper, 2012. 

[10] J. Scheffer. "Dealing with missing data." (2002).  
[11] Rita Faria, Manuel Gomes, David Epstein, Ian. R. White (2014); A 

guide to handling missing data in Cost-Effective Analysis Conducted 

Fig. 4. Best Match Result of Warping Algorithm

626



within Randomised Controlled Trials, PharmacoEconomics, Vol 32 
Issue 12, pp. 1157-1170. Springer 2014  

[12] Mahalanobis, P. Chandra (1927); Analysis of race mixture in Bengal,
Journal and Proceedings of the Asiatic Society of Bengal, 23:301–333 

[13]  Kato, Nei, M. Suzuki, S. Omachi, H. Aso, and Y. Nemoto. "A 
handwritten character recognition system using directional element 
feature and asymmetric Mahalanobis distance." Pattern Analysis and 
Machine Intelligence, IEEE Transactions on 21, no. 3 (1999): 258-262 

[14] Rakthanmanon, Thanawin, B. Campana, A. Mueen, G. Batista, B. 
Westover, Q. Zhu, J. Zakaria, and E. Keogh. "Searching and mining 

trillions of time series subsequences under dynamic time warping." 
In Proceedings of the 18th ACM SIGKDD international conference on 
Knowledge discovery and data mining, pp. 262-270. ACM, 2012.  

[15]  EEG (ElectroEncephaloGram) recordings. 
https://stat.duke.edu/~mw/ts_data_sets.html

627




