Pradipta Mukherjee

Pradipta Mukherjee
Indian Institute of Technology Delhi | IIT Delhi · Centre for Biomedical Engineering

PhD

About

81
Publications
3,327
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
280
Citations
Introduction
As an Assistant Professor at the Center for Biomedical Engineering, IIT Delhi, and with a joint faculty position at the Department of Biomedical Engineering, AIIMS, Delhi, my research focuses on the interdisciplinary field of biophotonics, specifically advancing optical coherence tomography and microscopy systems to decode the functional dynamics of living tissues non-invasively, aiming to transform healthcare.

Publications

Publications (81)
Article
Full-text available
We propose a method for estimating the stiffness of bio-specimens by measuring their linear retardance properties under applied stress. For this purpose, we employ an epi-illumination Mueller matrix microscope and show the procedures for its calibration. We provide experimental results demonstrating how to apply Mueller matrix data to elastography,...
Article
Full-text available
We demonstrate label-free imaging of the functional and structural properties of microvascular complex in mice liver. The imaging was performed by a custom-built Jones-matrix based polarization sensitive optical coherence tomography (JM-OCT), which is capable of measuring tissue’s attenuation coefcient, birefringence, and tiny tissue dynamics. Two...
Preprint
Full-text available
Breast cancer is a leading cause of death in female patients worldwide. Further research is needed to get a deeper insight into the mechanisms involved in the development of this devastating disease and to find new therapy strategies. The zebrafish is an established animal model, especially in the field of oncology, which has shown to be a promisin...
Article
The germination process of radish sprouts was investigated in detail using volumetric dynamic optical coherence tomography (OCT). Dynamic OCT involves the sequential acquisition of 16 OCT images and subsequent temporal variance analysis of each pixel, enabling non‐invasive visualization of the cellular and tissue activities of plants. The radish sp...
Article
Full-text available
We demonstrate a deep-learning-based scatterer density estimator (SDE) that processes local speckle patterns of optical coherence tomography (OCT) images and estimates the scatterer density behind each speckle pattern. The SDE is trained using large quantities of numerically simulated OCT images and their associated scatterer densities. The numeric...
Article
Full-text available
Errata are presented to correct the inconsistencies between the values and their units displayed in the figures and the texts in our published manuscript [Biomed. Opt. Express 13, 168 (2022)10.1364/BOE.443343]. The errors were caused by the unit presentation of the original manuscript, and hence, it does not affect the main results and the conclusi...
Article
Full-text available
We demonstrate label-free dynamic optical coherence tomography (D-OCT)-based visualization and quantitative assessment of patterns of tumor spheroid response to three anti-cancer drugs. The study involved treating human breast adenocarcinoma (MCF-7 cell-line) with paclitaxel (PTX), tamoxifen citrate (TAM), and doxorubicin (DOX) at concentrations of...
Preprint
Full-text available
We demonstrate a deep-learning-based scatterer density estimator (SDE) that processes local speckle patterns of optical coherence tomography (OCT) images and estimates the scatterer density behind each speckle pattern. The SDE is trained using large quantities of numerically simulated OCT images and their associated scatterer densities. The numeric...
Preprint
Full-text available
We demonstrate a deep-learning-based scatterer density estimator (SDE) that processes local speckle patterns of optical coherence tomography (OCT) images and estimates the scatterer density behind each speckle pattern. The SDE is trained using large quantities of numerically simulated OCT images and their associated scatterer densities. The numeric...
Article
Full-text available
Polarization-sensitive optical coherence tomography (PS-OCT) is a promising biomedical imaging tool for the differentiation of various tissue properties. However, the presence of multiple-scattering (MS) signals can degrade the quantitative polarization measurement accuracy. We demonstrate a method to reduce MS signals and increase the measurement...
Preprint
Full-text available
We demonstrate label-free dynamic optical coherence tomography (D-OCT)-based visualization and quantitative assessment of patterns of tumor spheroid response to three anti-cancer drugs. The study involved treating human breast adenocarcinoma (MCF-7 cell-line) with paclitaxel (PTX), tamoxifen citrate (TAM), and doxorubicin (DOX) at concentrations of...
Article
Full-text available
This study aims at demonstrating label-free drug-response patterns assessment of different tumor spheroids and drug types by dynamic optical coherence tomography (D-OCT). The study involved human breast cancer (MCF-7) and colon cancer (HT-29) spheroids. The MCF-7 and HT-29 spheroids were treated with paclitaxel (Taxol; PTX) and the active metabolit...
Article
Full-text available
Renal tubule has distinct metabolic features and functional activity that may be altered during kidney disease. In this paper, we present label-free functional activity imaging of renal tubule in normal and obstructed mouse kidney models using three-dimensional (3D) dynamic optical coherence tomography (OCT) ex vivo. To create an obstructed kidney...
Article
Full-text available
A new formulation of the lateral imaging process of point-scanning optical coherence tomography (OCT) and a new differential contrast method designed by using this formulation are presented. The formulation is based on a mathematical sample model called the dispersed scatterer model (DSM), in which the sample is represented as a material with a spa...
Preprint
Full-text available
Renal tubule has distinct metabolic features and functional activity that may be altered during kidney disease. In this paper, we present label-free functional activity imaging of renal tubule in normal and obstructed mouse kidney models using three-dimensional (3D) dynamic optical coherence tomography (OCT) ex vivo. To create an obstructed kidney...
Article
Full-text available
An organoid is a three-dimensional (3D) in vitro cell culture emulating human organs. We applied 3D dynamic optical coherence tomography (DOCT) to visualize the intratissue and intracellular activities of human induced pluripotent stem cells (hiPSCs)-derived alveolar organoids in normal and fibrosis models. 3D DOCT data were acquired with an 840-nm...
Preprint
Full-text available
A new formulation of lateral optical coherence tomography (OCT) imaging process and a new differential contrast method designed by using this formulation are presented. The formulation is based on a mathematical sample model called the dispersed scatterer model (DSM), in which the sample is represented as a material with a spatially slowly varying...
Conference Paper
We demonstrate OCT-based intracellular motility imaging method, so-called dynamic-OCT (D-OCT), and its application for tumor spheroid-based drug testing. The volumetric tomography is captured in 52.4 s using our custom-designed scanning protocol, which repeatedly capture 32 frames at each location in the tissue. Two algorithms including logarithmic...
Conference Paper
We present three-dimensional, label-free renal tubular metabolism imaging by functional optical coherence tomography (OCT) including dynamics imaging method so-called “logarithmic intensity variance (LIV)” and OCT angiography (OCTA). Normal mouse kidneys and obstructed kidney models were investigated ex vivo. In the normal kidney, several vertical...
Preprint
Full-text available
An organoid is a three-dimensional (3D) in vitro cell culture emulating human organs. We applied 3D dynamic optical coherence tomography (DOCT) to visualize the intratissue and intracellular activities of human induced pluripotent stem cells (hiPSCs)-derived alveolar organoids in normal and fibrosis models. 3D DOCT data were acquired with a 840-nm...
Preprint
Full-text available
We demonstrate label-free drug response evaluations of human breast (MCF-7) and colon (HT-29) cancer spheroids via dynamic optical coherence tomography (OCT). The MCF-7 and HT-29 spheroids were treated with paclitaxel (PTX, or Taxol) and the active metabolite of irinotecan (SN-38), respectively. The drugs were applied using 0 (control), 0.1, 1, and...
Article
Full-text available
Breast cancer is a leading cause of death in female patients worldwide. Further research is needed to get a deeper insight into the mechanisms involved in the development of this devastating disease and to find new therapy strategies. The zebrafish is an established animal model, especially in the field of oncology, which has shown to be a promisin...
Article
Full-text available
Label-free metabolic imaging of non-alcoholic fatty liver disease (NAFLD) mouse liver is demonstrated ex vivo by dynamic optical coherence tomography (OCT). The NAFLD mouse is a methionine choline-deficient (MCD)-diet model, and two mice fed the MCD diet for 1 and 2 weeks are involved in addition to a normal-diet mouse. The dynamic OCT is based on...
Article
Full-text available
This publisher’s note amends the spelling of the sixth author’s name in [Biomed. Opt. Express 13(5), 2975 (2022).10.1364/BOE.454975].
Article
Full-text available
Here we demonstrate a long-depth-of-focus imaging method using polarization sensitive optical coherence tomography (PS-OCT). This method involves a combination of Fresnel-diffraction-model-based phase sensitive computational refocusing and Jones-matrix based PS-OCT (JM-OCT). JM-OCT measures four complex OCT images corresponding to four polarization...
Preprint
Full-text available
Label-free metabolic imaging of non-alcoholic fatty liver disease (NAFLD) mouse liver is demonstrated ex vivo by dynamic optical coherence tomography (OCT). The NAFLD mouse is a methionine choline-deficient (MCD)-diet model, and two mice fed MCD diet for 1 and 2 weeks are involved in addition to a normal-diet mouse. The dynamic OCT is based on repe...
Article
Full-text available
The zebrafish is a valuable vertebrate animal model in pre-clinical cancer research. A Jones matrix optical coherence tomography (JM-OCT) prototype operating at 1310 nm and an intensity-based spectral-domain OCT setup at 840 nm were utilized to investigate adult wildtype and a tumor-developing zebrafish model. Various anatomical features were chara...
Article
Full-text available
Significance: The scattering and polarization characteristics of various organs of in vivo wildtype zebrafish in three development stages were investigated using a non-destructive and label-free approach. The presented results showed a promising first step for the usability of Jones-matrix optical coherence tomography (JM-OCT) in zebrafish-based r...
Article
Full-text available
We present deep convolutional neural network (DCNN)-based estimators of the tissue scatterer density (SD), lateral and axial resolutions, signal-to-noise ratio (SNR), and effective number of scatterers (ENS, the number of scatterers within a resolution volume). The estimators analyze the speckle pattern of an optical coherence tomography (OCT) imag...
Article
Full-text available
We present a completely label-free three-dimensional (3D) optical coherence tomography (OCT)-based tissue dynamics imaging method for visualization and quantification of the metabolic and necrotic activities of tumor spheroid. Our method is based on a custom 3D scanning protocol that is designed to capture volumetric tissue dynamics tomography imag...
Preprint
Full-text available
We demonstrate label-free imaging of the functional and structural properties of microvascular complex in mice liver. The imaging was performed by a custom-built Jones-matrix based polarization sensitive optical coherence tomography (JM-OCT), which is capable of measuring tissue’s attenuation coefficient, birefringence, and tiny tissue dynamics. Tw...