
Chapter 8
Plant Tocopherols and Phytosterols
and Their Bioactive Properties

Pradip Poudel, Spyridon A. Petropoulos, and Francesco Di Gioia

Abstract Tocopherols and phytosterols are plant-derived fat-soluble bioactive
compounds with several health beneficial properties. Tocopherols are mainly
known for their antioxidant activity, while phytosterols are well known for their
capacity to lower blood cholesterol levels in the human body. Plants produce these
compounds for their own protection against oxidative damages and to maintain cell
integrity. Including plant-based food in the daily meal plan, especially vegetable oil,
fresh vegetables, nuts, and fruits, helps to fulfill our dietary needs for tocopherols
and phytosterols. After briefly describing the biochemistry, biosynthesis and the
important role these two categories of compounds play in the plant physiology, this
chapter provides an overview of (i) the primary plant sources of tocopherols and
phytosterols, summarizing some of the factors that determine their concentration in
plants; and (ii) the main health-promoting effects that have been reported recently for
both categories of bioactive compounds. While more research is needed to unravel
the health effects of tocopherols and phytosterols, additional research effort is
needed to identify alternative low-cost sources of these valuable compounds,
using, for example, by-products and waste of the agri-food industry. Future research
should also focus on the development of functional food products employing
sustainable biofortification techniques that may allow to enhance the content and
bioavailability of tocopherols and phytosterols in commonly consumed plant and
plant-derived food products.

P. Poudel · F. Di Gioia (✉)
Department of Plant Science, Pennsylvania State University, University Park, PA, USA
e-mail: pmp5548@psu.edu; fxd92@psu.edu

S. A. Petropoulos
Department of Agriculture, Crop Production and Rural Environment, University of Thessaly,
Nea Ionia, Magnissia, Greece

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Carocho et al. (eds.), Natural Secondary Metabolites,
https://doi.org/10.1007/978-3-031-18587-8_8

285

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18587-8_8&domain=pdf
mailto:pmp5548@psu.edu
mailto:fxd92@psu.edu
https://doi.org/10.1007/978-3-031-18587-8_8#DOI


286 P. Poudel et al.

8.1 Introduction

Tocopherols and phytosterols are fat-soluble secondary metabolites of plant origin
increasingly studied for their health beneficial properties. These compounds are
generally extracted from the unsaponifiable lipid fraction of plant-based food
(Ryan et al. 2007). As tocopherols and phytosterols are not synthesized in the animal
body, humans fully rely on plant-based food for their daily dietary intake of these
compounds. Vegetable and edible oils are particularly rich in tocopherols and
phytosterols; however, they can also be found in significant amounts in nuts, fresh
vegetables, and fruits. Both compounds have strong antioxidant activity because of
the phenolic head and electron-donating methyl and ethyl group attached to it
(Lesma et al. 2018; Wallert et al. 2019). They can scavenge free radicals through
breaking the oxidation chain reaction. Further, they can protect from lipid peroxi-
dation, oxidative stress, cancer, and neurogenerative diseases. In addition, phytos-
terols are mainly known for the cholesterol-lowering ability in the blood plasma,
thus preventing obesity and cardiovascular diseases (Poli et al. 2021). Including
around 2–3 g of plant sterols in the daily diet could decrease low-density lipoproteins
(LDL) levels by 10–15% and reduce the chance of coronary heart disease over the
lifetime by 20% (MacKay and Jones 2011; Chawla et al. 2016; Yang et al. 2019).
Similarly, a daily intake of 15 mg of α-tocopherol is recommended by the Institute of
Medicine (US) Panel on Dietary Antioxidants and Related Compounds (2000).

Tocopherols are the forms of a molecule that comprise vitamin E. Vitamin E
includes eight different forms of a molecule (α-, β-, γ-, and δ-), among which four are
tocopherols and other four are tocotrienols (Niki and Abe 2019). The basic tocoph-
erols structural units contain a chromanol ring and a hydrophobic carbon chain
(16 C) attached to C2 position (Niki and Abe 2019; Ali et al. 2022). The main
chemical difference among α, β, γ, and δ tocopherol is the number and position of
the methyl group in the chromanol rings (Fig. 8.1). Alpha forms of tocopherols
contain three methyl groups at C5, C7, and C8 position, while β-tocopherols
contains only two methyl group at C5 and C8 position. Similarly, γ-tocopherols
also contain two methyl groups at C7 and C8 positions, while δ-tocopherols only

Fig. 8.1 Chemical structure of tocopherol isomers
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contain one methyl group at C8 position of the chromanol ring. Because of the
presence of the phenyl and electron-donating methyl group, tocopherols (vitamin E)
are mainly known for their neutralizing role in lipid peroxidation and oxidative stress
(Frankel 1989; Wallert et al. 2019; Bora et al. 2022). These structural differences
between the different forms of tocopherols are responsible for their varying antiox-
idant and biological activities (Bora et al. 2022).

Among the four different isomers of tocopherol, α-tocopherol is the most abun-
dant one based on their presence in different plants and plant-based food products.
Comparatively to the other forms, α-tocopherol has higher biological activity as it is
retained at high levels in plasma and body tissues (Szewczyk et al. 2021), due to the
active selection by the α-tocopherol transfer protein (α-TTP) and slow degradation
by the cytochrome P450. In contrast the other isomers of tocopherols are regarded as
xenobiotics and are actively degenerated by the cytochrome P450 and secreted
through bile and urine (Azzi 2018). This higher biological activity makes
α-tocopherol the most important tocopherol and this is why it is generally
recommended or referred to as vitamin E, and tocopherol level is expressed or
measured in the level of α-tocopherol and α-tocopherol equivalent (EFSA Panel
on Dietetic Products, Nutrition, and Allergies (NDA) 2015).

Phytosterols are another important class of bioactive compounds widely studied
because of their cholesterol-lowering activity in the human body. Phytosterols
comprise plant sterols and stanol naturally found in the plant cell membrane. Plant
stanol and sterols have similar chemical structures, with the exception that stanols do
not have a double bond in their chemical structure (Chawla et al. 2016). Hydroge-
nation of plant sterols results in the respective plant stanol; for example, hydroge-
nation of β-sitosterol results in β-sitostanol. The main function of stanols in plants is
the formation of cell membrane structures. There are around two hundred different
phytosterols reported, however, major phytosterols found in different sources are
β-sitosterol, campesterol, and stigmasterol (Lagarda et al. 2006; Wang et al. 2018).
Phytosterols have a similar structure to the cholesterol, however, they have one extra
methyl or ethyl group at C24 position of the sidechain (Chawla et al. 2016). The
chemical structures of the most common phytosterols (β-sitosterol, campesterol, and
stigmasterol) found in plants are shown in Fig. 8.2.

Phytosterols are synthesized mainly in plants and marine animals but cannot be
synthesized in the human body. Phytosterols can be found in different forms in
plants, for example, free phytosterol, esterified with a fatty acid, steryl glycosides,
and acylated glycosides (Yang et al. 2019). The structure and different forms of the
phytosterols affect the biological activity, including their cholesterol-lowering
capacity and antioxidant activity (Wang et al. 2018). Around 50% of the dietary
intake of phytosterols includes β-sitosterol, however, generally, campesterol con-
centration is higher in blood possibly due to higher absorption in the intestine (Schött
et al. 2017; Wang et al. 2018). Plant oils, vegetables, and nuts are rich sources of
phytosterols; therefore, great importance is given to include these plant products in
our daily diet.
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Fig. 8.2 Chemical structures of β-sitosterol, stigmasterol and campesterol

8.2 Biosynthesis and Physiological Role in Plants

The biosynthesis of tocopherols in plants involves different pathways: cytosolic
shikimate, plastid methylerythritol phosphate and tocopherol-core pathways as
shown in Fig. 8.3. Tocopherols derive from two precursors:
2,5-dihydroxyphenylacetate (HGA) and phytyldiphosphate (PDP) which are derived
from two different pathways. The HGA forms the aromatic head of the tocopherols
and is derived from the cytosolic shikimate pathway, while PDP forms the hydro-
phobic carbon chain of the tocopherols, and is derived from the plastid
methylerythritol phosphate pathway (Lushchak and Semchuk 2012; Vinutha et al.
2017). HGA and PDP condensation is the following step forming 2-Methyl-6-
phytyl-1,4-benzoquinone (MPBQ), which is catalyzed by the homogentisate phytyl
transferase (VTE2). This marks the starting of the tocopherol-core pathway. Tocoph-
erol cyclase (VTE1) converts the MPBQ to the δ-tocopherol, and from δ-tocopherol
to the β-tocopherol via γ-tocopherol methyl transferase (VTE4). On the other hand,
the formation of the 2,3-dimethyl-5-phytylbenzoquinonol (DMPBQ) is facilitated by
the MPBQ/MSBQ methyltransferase (VTE3), and from DMPBQ to γ-tocopherol by
the VTE1. Gamma-tocopherol is converted into α-tocopherol by the VTE4
(Lushchak and Semchuk 2012; Vinutha et al. 2017; Kusajima et al. 2021; Ali
et al. 2022).

Tocopherols play an important role in plants both during stress and non-stress
conditions. They help to maintain the integrity and fluidity of the photosynthetic cell
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Fig. 8.3 Biosynthetic pathway of tocopherols in plants. VTE1, tocopherol cyclase; VTE2,
homogentisate phytyltransferase; VTE3, MPBQ/MSBQ methyltransferase; VTE4, γ-tocopherol
methyl transferase

membrane throughout the plant life cycle through its free radical quenching capacity
(Sadiq et al. 2019). Biosynthesis of tocopherols may vary throughout the plant life
cycle based on growth and development stages. Plants produce tocopherols in
presence of various biotic and abiotic stress conditions, as a mechanism of self-
protection from oxidative damages. For example, Kusajima et al. (2021) reported an
increase in tocopherols concentration in Arabidopsis thaliana plants after the appli-
cation of heat shock, through the activation of the corresponding biosynthetic
pathways. Similarly, tocopherols level increased in A. thaliana when plants were
subjected to drought stress by overexpressing VTE1 ((Liu et al. 2008). Plant
tocopherols levels could also increase during other environmental stress conditions
determined by high light levels, salinity stress, heavy metal ion, ozone, and UV-B
radiation as they play a critical role in protecting plants from oxidative damages
(Lushchak and Semchuk 2012). Stahl et al. (2019) reported an increased expression
of genes involved in the tocopherol’s biosynthesis and increased concentration of
γ-tocopherol and δ-tocopherol when they inoculated A. thaliana leaves with Pseu-
domonas syringae. Another important example of the antioxidant function of
tocopherols in plants is given by the presence of α-tocopherol in the leaf chloro-
plasts. Alpha-tocopherols present in leaf chloroplasts trap the reactive oxygen
species (ROS) produced during photosynthesis and further prevent the lipid perox-
idation in thylakoid membranes by scavenging lipid peroxyl radicals (Munné-Bosch
2005). Other than its antioxidant role in plants, tocopherols also play a role in plant
cell signaling activities. Munné-Bosch (2019) have discussed the stress sensing and
signaling activities of tocopherols. Tocopherols signal the accumulation of
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3′-phosphoadenosine 5′-phosphate in chloroplasts which helps preventing the deg-
radation of primary messenger RNA and promotes the production of mature mes-
senger RNA in nucleus. According to Munné-Bosch (2019), the mechanism behind
the modulation of 3′-phosphoadenosine 5′-phosphate by tocopherols is still
unknown. Further, tocopherols present in vegetable oils, exert their anti-oxidation
function protecting the oil from oxidation processes, thus contributing to increase the
stability and shelf-life of the oil (Kamal-Eldin 2006; Mishra et al. 2021).

A recent study revealed that exogenous application of tocopherols in wheat via
foliar application not only enhanced wheat tolerance to drought stress but also
increased plant growth, yield, seed phenolics and flavonoids content, activity of
antioxidant enzymes, and content of α-, β- and γ-tocopherols (Ali et al. 2019).
Similarly, seed priming of carrots with α-tocopherol increased growth parameters,
yield, chlorophyll, proline, ascorbic acid and total phenols content, and also the
antioxidant activity in carrots (Hameed et al. 2021). This also suggests a potential
application of tocopherols for the potential agronomic biofortification of food crops.

The biosynthesis of plant sterols is a multi-stage complex process, which mostly
occurs in the endoplasmic reticulum. A simplified biosynthesis pathway of common
phytosterols in plant is presented in Fig. 8.4. The biosynthesis of the plant sterols
starts with acetyl-CoA, which later converts into the squalene through mevalonate
(MVA) pathway (Zhang et al. 2020). It involves an important enzyme, HMGR
(3-hydroxy-3-methylglutaryl-CoA reductase), which catalyzes the conversion of
3-hydroxy-3-methylglutaryl-CoA to mevalonic acid (Valitova et al. 2016). The
following process is the formation of cycloartenol through the cyclization of squa-
lene facilitated by the squalene epoxidase and cycloartenol synthase, respectively.
C24 methylation of the cycloartenol is the other important process of sterol forma-
tion which is catalyzed by the SMT (C24-sterol methyltransferase). SMT has two
different forms, SMT1 and SMT2, which are involved in primary and secondary
methylation activities. SMT1, SMT2, and DWF1 (Dimunito/Dwarf1) catalyze the
synthesis of campesterol and β-sitosterol from the cycloartenol as shown in Fig. 8.4.
Conversion of the β-sitosterol to the stigmasterol is facilitated by the enzyme protein
CYP710A1. Plant sterols concentration and their composition differ in different
plant species, and is potentially modulated by the enzymes SMT and CYP710A
(Zhang et al. 2020).

An important function of phytosterols in plants is to maintain the cell membrane
integrity and fluidity (Grosjean et al. 2015). The importance of phytosterols becomes
even more critical for plants during stress conditions. Plants respond to stress
through different biochemical and physiological changes, which includes the
increased production of phytosterols. Kumar et al. (2018) reported an increase in
the sterol and steryl ester concentration in drought-stressed plants. The importance of
phytosterol in seeds for storage and germination was discussed by Zhou et al. (2019).
Yu et al. (2021) have reported reduced lipids droplets in seeds with lower phytosterol
levels which are critical for energy storage and lipid metabolism in seeds. This
suggests an important role of sterols in seed growth and development. Similarly,
excess phytosterol accumulation in seeds delayed the seed germination due to
thicker seed coats and irregular seed coat formation in Arabidopsis thaliana
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Fig. 8.4 Simplified biosynthesis pathway of plant sterols. HMGR, 3-hydroxy-3-methylglutaryl-
CoA reductase; SQE, squalene epoxidase; CAS, cycloartenol synthase; SMT, C24-sterol
methyltransferase; DWF, Dimunito/Dwarf1; CYP710A, cytochrome P710 A

(Shimada et al. 2021). Further, the effect of phytosterol composition on cotton fiber
length and secondary cell wall deposition was studied by Niu et al. (2019) who
found a decrease in fiber cell length and promotion of secondary cell wall formation
in cotton with high sitosterol and a low ratio of campesterol to sitosterol. Phytosterol
also helps to promote plant innate immunity against biotic stress factors. Wang et al.
(2012) reported an increased resistance of the plant to external pathogens by
restricting the nutrient flow to the apoplast. Maintenance of cell membrane integrity
and fluidity contributes to protect plants from external stress. Other studies have also
shown the potential role phytosterols plays on plant reproductive growth, seed
formation, and ultimately in determining crop yield (Du et al. 2022).

8.3 Tocopherols and Phytosterol Content in Plants

Plant-derived products and foods are the major sources of tocopherols and phytos-
terols required for the human body, as both classes of compounds are not synthe-
sized de novo in the human body (Chen et al. 2009; Chawla et al. 2016; Azzi 2018).
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Interconversion of different forms of tocopherols through methylation and demeth-
ylation also does not take place inside the human body (Azzi 2018; Bora et al. 2022).
Tocopherols are produced exclusively by photosynthetic organisms like plants,
algae, and cyanobacteria, while major sources of tocopherols and phytosterols are
seeds of oleaginous crops such as sunflower and canola, soybean seeds, nuts, leafy
vegetables, and some fruits.

The amounts and types of tocopherols intake throughout the world are different
and are influenced by different dietary habits. For example, around 70% of the
vitamin E uptake from food sources in the USA is in the form of γ-tocopherol due to
the consumption of high proportions of soybean and other vegetable oils like canola
oil rich in γ-tocopherol (Dietrich et al. 2006). Likewise, the Mediterranean diet
which is regarded as one of the healthiest dietary habits includes olive oil (extra-
virgin olive oil) as an important ingredient that is rich in α-tocopherol (Shahidi and
De Camargo 2016; Chatzopoulou et al. 2020). In addition, the Mediterranean diet
includes different diverse vegetable species and fulfills one-tenth or more calories
required by vegetables and fruits, which are rich in different micronutrients along
with tocopherols. However, the bio-accessibility of the tocopherol present in vege-
tables is comparatively low due to the low level of lipid content, considering that the
presence of fat components in the food matrix increases the bio-accessibility of the
tocopherols (Azzi 2018; Bora et al. 2022). For example, raw vegetables consumed
along with canola oil or eggs increase the absorption of tocopherols compared to the
consumption without any fat component (Bora et al. 2022). Different commonly
used vegetable oil, fresh vegetable, and fruits that are rich in tocopherols content are
summarized in Table 8.1. The range of tocopherols concentration varies not only
between species but also within the same species in function of the crop cultivar or
variety, maturity stage, and is influenced by environmental conditions including
pedoclimatic and light conditions, as well as by crop management practices and
harvesting procedures (Bauernfeind and Desai 1977; Chun et al. 2006). Even in
post-harvest stages, factors like vegetable processing, storage, samples preparation,
and laboratory analysis procedures were found to affect tocopherols level in vege-
table oil, fruits, and vegetables (Bauernfeind and Desai 1977; Chun et al. 2006;
Knecht et al. 2015).

Olive oil, canola oil, and sunflower oil are commonly used and important sources
of tocopherols as they contain high levels of α-tocopherols. They contain 3.7–27.7,
11.7–41.85 and 43.23–91.6 mg α-tocopherol/100 mg of oil, respectively (Table 8.1).
Soybean generally contains high amounts of total tocopherols (73.61–171.5 mg/
100 g oil) compared to olive (4.99–31.81 mg/100 g oil), canola (26.58–113.15 mg/
100 g oil), and sunflower oil (45.3–111.48 mg/100 g oil); however, it is not
considered an excellent source of tocopherols and vitamin E compared to sunflower,
canola, and olive oil (Chun et al. 2006) because a large proportion of total tocoph-
erols in soybean is in γ-tocopherol form and only a small fraction is represented by
α-tocopherol. When considering what are the best sources of tocopherols and
vitamin E, particular attention has been dedicated to α-tocopherol being the isomer
with the highest retention in the blood plasma and tissues compared to other
tocopherol isomers that are metabolized faster and are excreted out of the human
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body system by the liver. However, recently the scientific community devoted more
attention toward other tocopherols like γ- and δ-tocopherols, aiming to investigate
further their possible antioxidant activity and physiological functions (Wagner et al.
2004; Dietrich et al. 2006; Blair 2018; Zheng et al. 2020). Oils from peanuts,
cottonseeds, hazelnuts, almonds, macadamia, and rice brans are other excellent
sources of α-tocopherols (Table 8.1). Other edible oils like maize oil, sesame oil,
linseed oil, hemp oil, and walnut oil are richer in γ-tocopherol. In general, seed oils
are the major sources of tocopherols and vitamin E for the human body. Neverthe-
less, people obtain significant amounts of tocopherols also through the inclusion of
vegetables in their diet.

Among vegetables, leafy vegetables like kale and spinach, or sweet pepper and
broccoli are major sources of α-tocopherols. Kale contains 3.4–5.8 mg of
α-tocopherol per 100 g fresh weight, while spinach, sweet red pepper, and broccoli
contain 1.3–5.9, 2.72–3.78, and 1.22–3.75 mg of α-tocopherol per 100 g fresh
weight, respectively. Similarly, spices and condiments like red chili, coriander,
turmeric leaves, cassava leaves, and fenugreek leaves are also found to have a higher
level of α-tocopherol and with possible applications in diet and pharmaceutical uses
as a source of tocopherols. Among fruits, avocado, cranberries, red raspberries, and
kiwi (1.33–2.66, 1.03–1.43, 0.66–1,04, and 1.28–1.34 mg/100 g fresh weight,
respectively) have relatively high concentration of α-tocopherols. Tree fruits like
apple, peach, and plum also contain α and γ-tocopherol but at relatively lower
concentrations. Further, a recent study suggested the possibility to use tree fruit
leaves as a low-cost source of tocopherols (Wojdyło et al. 2022). These authors
studied α-tocopherol content in the leaf of tree fruits like apples, pears, plums, and
cherries. The time the leaves were collected, and the species affected the content of
tocopherols more than the cultivars. Apricot leaves (203.34–260.86 μg/g dry weight
in spring and 23.83–235.62 μg/g dry weight in autumn) had the highest tocopherols
content, followed by peach, plum, and apple (Wojdyło et al. 2022). Different dry
fruits and nuts are also excellent sources of tocopherols and vitamin E. Hazelnuts,
macadamia nuts, and peanuts have a higher proportion of α-tocopherols, whereas
walnut, cashew nuts, pistachios, Brazil nuts, and pecans have comparatively higher
γ-tocopherols content.

Vegetable oils are also rich in phytosterols. Daily intake of phytosterol varies
based on regional and country dietary patterns. For example, within China, total
phytosterols intake varies between 257.7–473.7 mg/day in different regions (Wang
et al. 2018). Similarly, the Mediterranean diet usually includes phytosterol within the
range of 377–550 mg/day due to the inclusion of vegetable oil (olive oil) and a
variety of vegetables. The phytosterol content in different edible and vegetable oil,
fresh vegetable, and fruits are presented in Table 8.2. Concentration level widely
varies as it depends on many factors like species, variety, management practices,
environmental conditions, extraction, and analysis method just like for the tocoph-
erols’ level.

Rice bran oil contains the highest amount of total phytosterols among the
commonly studied edible oils followed by sesame oil (Table 8.2). Rice bran oil
total phytosterol concentration ranges between 1230.9 and 2392.58 mg/100 g fresh
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Table 8.2 Content range of phytosterols in different plant and plant-derived sources

β-sitoserol Campesterol Stigmasterol
Total
phytosterola

(mg/100 g)

Vegetable and edible oils
Sunflower
seed oil

182.4–
245.8

13.1–65.73 15.9–41.8 197–440.6 Ayerdi Gotor et al.
(2015), Wang et al.
(2018), Yang et al.
(2019), Xu et al.
(2020), Almeida
et al. (2020)

Rapeseed
(canola oil)

109.1–
394.1

46.2–270.79 2.2–25.67 290–673 Yang et al. (2019),
Xu et al. (2020),
Almeida et al.
(2020)

Soybean 165.3–
174.89

62.4–96.7 62.81–87.28 100.4–
355.67

Wang et al. (2018),
Yang et al. (2019),
Almeida et al.
(2020)

Maize oil 251–
540.62

39.6–219.02 22.9–56.72 343.1–
743.65

Yang et al. (2019),
Xu et al. (2020),
Almeida et al.
(2020)

Sesame oil 322.73–
467.7

41.4–90.4 48.1–86.89 457.01–
818.19

Mariod et al.
(2011), Wang et al.
(2018), Yang et al.
(2019), Xu et al.
(2020)

Linseed oil 97.3–162 33.1–65.2 16.7–26.5 171–363.5 Wang et al. (2018),
Xu et al. (2020)

Rice bran
oil

590.8–
735.17

20.7–226.43 21.8–132.9 1230.9–
2392.58

Wang et al. (2018),
Yang et al. (2019)

Peanut oil 136.33–
189.12

19.83–41.19 16.33–48.16 243.25–
395.9

Maguire et al.
(2004), Wang et al.
(2018), Yang et al.
(2019)

Camelia oil 48.1–
50.09

16.5–16.52 22.11–23 91.78–193.5 Wang et al. (2018),
Yang et al. (2019)

Olive oil 152.05–
185.61

14.31–25.85 7.4–21.13 195.42–
380.62

Yang et al. (2019),
Almeida et al.
(2020)

Walnut oil 66.2–
165.23

3–31.53 0.7–32.80 80.6–379.45 Wang et al. (2018),
Yang et al. (2019)

Flaxseed oil 133.42–
182.16

88.32–
142.72

5.03–20.21 406.08–
527.38

Yang et al. (2019)

Cottonseed
oil

402.8–
403.8

43.6–44.2 5.2–5.4 492.4 Mariod et al. (2011)

Grapeseed
oil

131.96–
161.3

24.04–34.46 31.8–39.74 234.95–
312.65

Yang et al. (2019)
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Table 8.2 (continued)

β-sitoserol Campesterol Stigmasterol
Total
phytosterola

(mg/100 g)

Penoy oil 240.27–
277.16

7.02–35.62 0.34–4.8 325.06–
409.32

Yang et al. (2019)

Hazelnut oil 48.5–99.1 2.5–6.67 0.6–3.81 70.0–117.99 Maguire et al.
(2004), Wang et al.
(2018)

Almond oil 58.2–
207.1

0.7–8.1 0–5.17 109.5–
221.87

Maguire et al.
(2004), Wang et al.
(2018)

Macadamia
oil

45.3–
152.5

2.8–9.2 0.5–3.83 114.1–
177.04

Maguire et al.
(2004), Wang et al.
(2018)

Fresh vegetables
Lettuce 29.7 2.5–29.9 0.6–6.2 25.5–50.3 Wang et al. (2018)

Celery 0.6–13.2 1.44–29 0.5–6.0 0.74–38.0 Kaloustian et al.
(2008), Han et al.
(2008), Wang et al.
(2018)

Green
pepper

26.4–45.9 3.0–4.9 14.8–26 46.8–79.6 Wang et al. (2018)

Sweet
potato

22.4 23.3 15.2 85.7–195.1 Wang et al. (2018)

Eggplant 10.2–19.4 7.1–17.1 1.8–4.4 25.5–50.7 Wang et al. (2018)

Bamboo
shoot

53.2–55.6 65.7–71.1 15.7–18.5 147.1–158.3 Wang et al. (2018)

Cabbage 1.5–14.5 0–1.1 0–6.8 6.89–13.4 Kaloustian et al.
(2008), Wang et al.
(2018)

Carrot 4.8–14 0.99–10.9 0.8–4.8 7.35–26.5 Kaloustian et al.
(2008), Han et al.
(2008), Wang et al.
(2018)

Cauliflower 1.2–6.9 0.2–2.31 0.7–0.56 26.82–27.98 Kaloustian et al.
(2008), Wang et al.
(2018)

Cucumber 0.5–3.8 0.2–0.9 1.1–2.9 35.0–106.2 Han et al. (2008),
Wang et al. (2018)

Onion 3.66–9.4 0.21–0.9 0.028–2.2 1.22–16.4 Kaloustian et al.
(2008), Han et al.
(2008), Wang et al.
(2018)

Radish 3.6–23.4 0.2–1.0 1.4–8.6 6.2–35.4 Wang et al. (2018)

Tomato 2.9–6.6 0.6–7.2 1–1.9 9.6–19.1 Han et al. (2008),
Wang et al. (2018)

Fruits
Apple 0.1 ND 0.3 2.4–3.6 Wang et al. (2018)
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Table 8.2 (continued)

β-sitoserol Campesterol Stigmasterol
Total
phytosterola

(mg/100 g)

Lemon 11.9–18.7 35.8–46.2 6.5–8.1 59.4–79.8 Wang et al. (2018)

Pomelo 1–4.4 19.3–20.3 9.4–16.2 36–40 Wang et al. (2018)

Peach 0.9–11.6 0–0.5 0–1.6 1.0–13.7 Han et al. (2008),
Wang et al. (2018)

Plum 0.5–0.7 0–0.2 0–0.2 0.7–0.9 Wang et al. (2018)

Blueberries 0.1–0.3 0.5–1.1 0–0.2 5.9–7.5 Wang et al. (2018)

Kiwi 13.4 1.1 2.0 17.5 Han et al. (2008)

Oranges 8.8–19.6 30.8–43 6.2–9.2 49.0–73.4 Han et al. (2008),
Wang et al. (2018)

Strawberries 10.9 0.3 0.2 11.8 Han et al. (2008)
aTotal phytosterols content is the range of sum of plant sterols reported in the cited manuscript and
not the sum of the three phytosterols reported in this table

weight of oil, and β-sitosterol holds the highest share, followed by campesterol and
stigmasterol. Sesame, flaxseed, maize, canola, and cottonseed oil contain total
phytosterol in the range of 457.01–818.19, 406.08–527.38, 343.1–743.65,
290–673, and 492.4 mg/100 g fresh weight of oil, respectively. All the above-
mentioned vegetable oils are rich in β-sitosterol followed by campesterol. Soybean
oil which is the most consumed oil in North America contains 100.4–355.67 mg
total phytosterols/100 g fresh weight of oil, while olive oil which is one of the main
ingredients of the Mediterranean diet contains total plant sterols in the range of
195.42–380.62 mg /100 g fresh weight of oil. Other vegetable oils like sunflower,
linseed, camelia, grapeseed oil, and nut oils also contain a significant amount of
phytosterols (Table 8.2).

Fresh vegetables and fruits also contribute to the daily intake of phytosterols.
They contain a relatively small concentration of plant sterols on a fresh weight basis,
however, could play a significant role in human health due to a relatively higher
consumption in the human diet compared to vegetable oil. Sweet potato, bamboo
shoot, cucumber, green pepper, eggplant, and lettuce are the major phytosterol-
containing vegetables (Table 8.2). Sweet potato and bamboo shoots contain
85.7–195.1 and 147.1–158.3 mg phytosterol/100 g of fresh weight, respectively,
where campesterol is more abundant followed by the β-sitosterol and stigmasterol.
Cucumber, green pepper, eggplant, and lettuce have phytosterol concentrations in
the range of 35.0–106.2, 46.8–79.6, 25.5–50.7, and 25.5–50.3 mg/ 100 g of fresh
weight, respectively. Other vegetables that are rich in plant sterols are radish, carrot,
celery, cauliflower, cabbage, tomato, and onion. Among fruits commonly studied
fruits such as lemon, orange, pomelo, kiwi, and strawberries contain a relatively
higher amount of total phytosterols. Lemon has 59.4–79.8 mg/100 g fresh weight of
total phytosterols, whereas orange, pomelo, kiwi, and strawberries have 49–73.4,
36–40, 17.5, and 11.8 mg/100 g fresh weight of total phytosterols. Other fruits rich
in phytosterols are peach, blueberries, apple, and plum.
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As mentioned above, several factors could affect the tocopherols and phytosterol
content even within species. Genetics is a major component as varieties and cultivars
of the same species could contain different levels of tocopherol and phytosterols.
Radenkovs et al. (2018) evaluated the by-product of apple processing industries as
possible sources of tocopherols and phytosterols and found different α-tocopherol
and phytosterol levels in different Malus species and varieties. “Bernie Prieks” had
higher δ-tocopherols (around 72% of total tocopherols) and total phytosterols.
β-Sitosterol was detected in all studied Malus species, while other phytosterols
were not identified in some species. A wide range of genetic variability on tocoph-
erol composition is being utilized for breeding for the development of varieties with
high nutritional oil quality (Rani et al. 2007). Growing environment and crop
management are other factors affecting tocopherol and plant sterol concentration.
For example, the level of tocopherols in sunflower seed decreased over the produc-
tion year with higher average air temperature, especially during grain filling time
(Ayerdi Gotor et al. 2015). In addition, a negative correlation (r = -0.61) has been
observed between the tocopherol concentration and temperature during summer
(grain filling period). Further, Zhang et al. (2007) found light during germination
may have an effect on the tocopherol level in canola oil. Light increased total
tocopherols, especially α-tocopherol during seed germination, compared to seeds
germinated in dark conditions. In general, total tocopherols increased during germi-
nation. Further, interconversion of isomers was also seen; γ isomer changed to the α
and disappearance of the δ isomer and appearance of the β isomer after two days of
germination also suggest their interconversion. Total phytosterol also increased
during germination in rapeseed but was higher in the presence of light than in dark
conditions. Increased concentration of α-tocopherol, total tocopherols, and total
phytosterols during germination suggest that oil extraction after germination could
be a viable option for concentrating such beneficial phytochemicals in the oil
fraction, however, there is a depletion of oil reserve during germination, and seedling
growth. Shi et al. (2010) also found similar results in soybean seeds. Oil extraction
two to three days after the seed soaking increased tocopherol and phytosterol levels
in the soybean oil, however, their level decreases five to seven days after soaking.

Seguin et al. (2010) have reported an effect of seeding rate, row spacing, and
seeding date on the tocopherols level in soybean. A seeding rate at 40 seeds/m2 and
wide row spacing (more than 36 cm) resulted in a higher α-tocopherol level in
soybean oil. The earlier seeding date resulted in an almost 45% higher α-tocopherol
concentration compared to the mid to late-May seeding. Carrera and Seguin (2016)
have also mentioned the effect of irrigation and fertilization strategy on the tocoph-
erol levels of edible oil. This suggests that tocopherols concentration in seed oil
could vary based on the different management practices and growing environment.
The enhanced concentration of tocopherols and phytosterols during the germination
process may justify the growing interest of consumers in the consumption of sprouts
and microgreens of various species that are considered rich sources of phytonutrients
and bioactive compounds (Kyriacou et al. 2016; Di Gioia et al. 2017, 2021).
Moreover, several factors like processing, cooking, and method of sample extraction
and analysis make a major difference in the tocopherol and phytosterol levels. Naz
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et al. (2011) have reported a decrease in the individual and total tocopherol levels
(37.9%) during neutralization, bleaching, and deodorization processes, indicating
loss of a major portion of tocopherols during oil processing. Improvement in the
processing technology is needed to preserve tocopherols in the oil during processing.
Heat treatment of the oil also decreases tocopherol levels. For example, higher
temperatures and prolonged heating/frying/cooking time degrade tocopherols pre-
sent in the oil (Kmiecik et al. 2019). However, in the case of vegetables, research has
shown a higher level of tocopherols and phytosterols in slightly heated or cooked, or
steamed vegetables compared to raw fresh vegetable. For example, higher tocoph-
erols were found in steamed broccoli compared to raw and fresh broccoli (Chun et al.
2006; Kaloustian et al. 2008). This is often related to the increased extractability of
the compounds, from steamed/heat treated vegetables, due to cell disruption (Knecht
et al. 2015). Lee et al. (2018) compared the effect of different cooking methods
(boiling vs. blanching vs. steaming vs. microwave) on the level of tocopherols in
different vegetables and found that all cooking methods had higher total tocopherols
levels compared to the raw vegetable; however, the effect of cooking methods varies
based on the vegetable species. Steaming was better for spinach, blanching for
broccoli, microwaving for sweet potato, carrot, mallow, and boiling was better for
chard. Kaloustian et al. (2008) compared the phytosterols level before and after
cooking (boiling) in different vegetables (cabbage, celery, red carrot, white cauli-
flower, yellow onion, and red pepper) and found an increase in level in all studied
vegetables. Different sample extraction methods also affect the levels of tocopherols
and phytosterols measured as different methods differ in their precision and sample
extraction procedures (Kaloustian et al. 2008; Almeida et al. 2020). For example, the
sample extraction method of acid hydrolysis resulted in a notably higher sterol value
compared to alkaline saponification alone (Kaloustian et al. 2008). Different analysis
methods were found to differ in their sensitivity to the plant sterol levels present
(Péres et al. 2006; Xu 2008; Saini and Keum 2016).

8.4 Tocopherols and Phytosterols Health Effects

Tocopherols are mainly known for their antioxidant properties and their role in
reducing cardiovascular and neurodegenerative diseases. The effect of different
tocopherols on human health is summarized in Table 8.3. Due to the higher retention
in human plasma and tissue compared to other tocopherols, α-tocopherol has higher
biological activity, and most of the studies on tocopherols are mainly focused on
α-tocopherol and its potential health benefits. Alpha-tocopherol has more prominent
antioxidant activity as it contains one or two more electron-donating methyl groups
in the chromanol group compared to other tocopherols. It offers protection from lipid
peroxidation and various oxidative stresses. An in vivo study has shown the anti-
oxidant capacity of tocopherols to be in the following order: α > β > γ > δ (Bora
et al. 2022). Higher antioxidant activity of the α-tocopherol inside living organisms
is possibly due to the hepatic α-tocopherol transfer protein as it only recognizes
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Table 8.3 Health benefits of the tocopherols

Tocopherols Health benefits References

α-Tocopherol Antioxidant; neutralization of
lipid peroxidation and oxidative
stress

Adami et al. (2018), Wallert et al. (2019), de
Carvalho et al. (2019), Villalón-García et al.
(2022)

Anti-inflammation Wallert et al. (2019), Liu et al. (2021b),
Schubert et al. (2022), Kopańska et al. (2022)

Reduced risk of heart and car-
diovascular disease

Wallert et al. (2019), Violi et al. (2022)

Protection against neurodegen-
erative disease

Elfakhri et al. (2019), Berardesca and Cameli
(2021), Zakharova et al. (2021)

Antitumor activity and lung
cancer

Yano et al. (2000), Tam et al. (2017),
Fernandes et al. (2018)

Protection of kidney function Tasanarong et al. (2009, 2013), Kongkham
et al. (2013), Monami et al. (2021)

Reduced depression and anxiety Lee et al. (2022)

Protection of eye function Engin (2009), Wang et al. (2011), Xin et al.
(2016)

Gene regulation Fischer and Rimbach (2019), Gugliandolo
et al. (2019)

Improved immune system Wu et al. (2000), Mojani et al. (2013)

β-Tocopherol Antioxidant; protection from
oxidative stress and lipid
peroxidation

Brigelius-Flohé (2006), Azzi (2018)

Increased immunity Wu et al. (2000)

γ-Tocopherol Antioxidant; protection from
oxidative stress

Brigelius-Flohé (2006), Jiang et al. (2022)

Anti-inflammatory activity Lee and Lim (2019), Liu et al. (2021a), Jiang
et al. (2022)

Protection from cardiovascular
disease

Masterjohn et al. (2012)

Protection against nitrosative
stress

Takahashi et al. (2006), Das Gupta et al.
(2015)

Protection against neurodegen-
erative disease

Pahrudin Arrozi et al. (2020)

Anticancer Betti et al. (2006), Smolarek and Suh (2011),
Das Gupta et al. (2015), Chen et al. (2017)

Protection against cognitive
decline and dementia

de Leeuw et al. (2020)

Gene regulation Torricelli et al. (2013)

Increased immunity Wu et al. (2000)

Protection against asthma Wagner et al. (2007, 2008)

Protection of kidney function Tasanarong et al. (2013)

δ-Tocopherol Antioxidant activity Li et al. (2011)

Anticancer Betti et al. (2006), Li et al. (2011), Smolarek
and Suh (2011), Chen et al. (2017), Blair
(2018)

Anti-inflammatory activity Smolarek and Suh (2011)

Increased immunity Wu et al. (2000)

Neuronal differentiation Deng et al. (2015)
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α-tocopherol, while they have maximum retention in plasma and tissue levels. In a
zebrafish study, de Carvalho et al. (2019) found a reduction in oxidative stress and
anxiety induced through caffeine uptake. Similarly, α-tocopherol supplementation
protected human spermatozoon from induced oxidative stress (Adami et al., 2018).
A study by Wallert et al. (2019) found an inhibition effect of α-tocopherol on
ischemia/reperfusion injury-induced oxidative and inflammatory responses,
maintaining normal cardiac function. They suggested the use of vitamin E (espe-
cially α-tocopherol) as an acute therapy for a patient with myocardial infarction. In
addition, α-tocopherol is very helpful against neurodegenerative diseases like
Alzheimer’s disease. Neuroinflammation and oxidative stress were further found
to exacerbate Alzheimer’s disease progression (De Felice and Lourenco 2015;
Elfakhri et al. 2019). Elfakhri et al. (2019) found a possible curating strategy for
Alzheimer’s disease through the administration of etodolac and α-tocopherol in a
concurrent manner as they found a significant reduction in Alzheimer’s disease-
related pathology in the brains of mice through the α-tocopherol application. A
recent study by Villalón-García et al. (2022) showed a reduction in lipid peroxida-
tion and ROS generation in PLA2G6-Associated Neurodegeneration through the
application of α-tocopherol. Likewise, α-tocopherol also protected the cultured
cortical neurons from oxidative stress and the brain cortex of rats during cerebral
ischemia/reperfusion injury (Zakharova et al. 2021). However, at higher concentra-
tions, the antioxidant capacity of the α-tocopherol could decrease (Liu et al. 2021b).
β-tocopherol, a close homologous of the α-tocopherol, is not studied much compared
with other tocopherols for its health effects. In recent studies, β-tocopherol showed
similar antioxidant activity and protection from lipooxidation and oxidative stress,
although the efficiency was comparatively lower than α-tocopherol (Brigelius-Flohé
2006; Azzi 2018).

Despite having a good antioxidant capacity, α-tocopherol can not trap reactive
nitrogen species, unlike γ-tocopherol which has an unsubstituted C-5 position
making it more active to trap relative nitrogen species (Saldeen and Saldeen
2005). Therefore, γ-tocopherol could trap reactive nitrogen species and form
5-nitro-γ-tocopherol which protects the mitochondrial function more efficiently
than other tocopherols (Jiang et al. 2022). In addition, Pahrudin Arrozi et al.
(2020) found comparative effectiveness of γ-tocopherol to α-tocopherol on the
reduction of the amyloid-beta (Aβ) and amyloid precursor protein (APP) contents
which are higher in Alzheimer’s disease patients. Further, γ-tocopherol also reduced
mitochondrial permeability as suggested by the reduction in CypD protein and
pro-caspase-3 protein expression, which was not seen in the α-tocopherol treatment
(Pahrudin Arrozi et al. 2020). de Leeuw et al. (2020) found a positive correlation of
γ-tocopherol with the presynaptic protein levels in the elderly human midfrontal
cortex, suggesting an important role in preserving cognitive power and preventing
dementia problems. A lower presynaptic protein level is generally used to be
recognized as a clinical diagnosis of dementia. Supplementation of α and γ tocoph-
erols could help preventing oxidative stress, the reason behind the decreasing level
of presynaptic protein levels, thus protecting from dementia and deterioration of
cognitive power (de Leeuw et al. 2020). A previous research suggested a better



8 Plant Tocopherols and Phytosterols and Their Bioactive Properties 305

action against myocardial infarction with the combination of α and γ-tocopherol
(Hensley et al. 2004), while Deng et al. (2015) have reported a potential role of
δ-tocopherol on neuronal differentiation through the l-type calcium channels.

Tocopherol also helps to protect against cancer cells. Many studies have shown
the important role of γ- and δ-tocopherol against cancer cells, however, they did not
find conclusive evidence of anticancer activity determined by α-tocopherol
(Abraham et al. 2019; Retzlaff et al. 2021). A meta-analysis even shows a potential
negative role of α-tocopherol on the effectiveness of chemo and radiotherapy further
worsening the survival of cancer patients (Retzlaff et al. 2021). However, many
articles have mentioned the effectiveness or lower effectiveness of α and
β-tocopherol as inhibitors of cancer cells proliferation compared to the γ- and
δ-tocopherol (Galli et al. 2004; Yang et al. 2012; Azzi 2018). Galli et al. (2004)
compared α and γ-tocopherol and their carboxy-ethyl-hydroxychroman metabolites
on prostate cancer cell proliferation and found that γ-tocopherol and its precursors
were more effective in the inhibition of PC-3 growth through the downregulation of
cyclin expression. Similarly, Li et al. (2011) did a comparative study of α-, γ-, and
δ-tocopherol on inhibiting lung tumorigenesis through a xenograft model.
δ-tocopherol was more effective in inhibiting tumor growth possibly through trap-
ping more reactive oxygen and nitrogen species compared to γ- tocopherol while
α-tocopherol was ineffective. δ-Tocopherol inhibited oxidative DNA damage and
nitrotyrosine formation and further increased apoptosis in tumor cells (Li et al.
2011). Similarly, colon tumor formation was reduced by the dietary supplementation
of δ- and γ-tocopherol which also suppressed markers of oxidative and nitrosative
stress (Chen et al. 2017). γ- and δ-tocopherols were also effective in preventing
breast cancer, while a-tocopherol was ineffective (Smolarek and Suh 2011). Despite
several studies have shown the ineffectiveness of α-tocopherol in a cancer-
preventing role, Mahabir et al. (2008) have found an inverse relation between
α-tocopherol intake and risk of lung cancer. Increasing the intake of α-tocopherol
decreased lung cancer risk by 34–54%, through the analysis of epidemiology data
from 1088 patients with lung cancer cases. Nevertheless, α-tocopherol succinate has
shown antitumor activity. In particular, Fernandes et al. (2018) and Tam et al. (2017)
observed antitumor activity of the α-tocopherol succinate against human breast
cancer cells, both in vitro and in vivo.

Tocopherols and especially α-tocopherols are involved in many gene regulatory
functions (Rimbach et al. 2010; Fischer and Rimbach 2019; Gugliandolo et al.
2019). For example, Gugliandolo et al. (2019) found the modulation effect of
α-tocopherol on non-amyloidogenic pathways and autophagy in an in vitro study
of Alzheimer’s disease. Likewise, α-tocopherol modulates the expression of selec-
tive Tumor Necrosis Factor-Alpha-Induced (TNF) genes in primary human aortic
cell lines (Ranard et al. 2019). γ-tocopherol also has gene regulatory activities, and it
upregulates a transglutaminase 2 (TG2) and its activity and decreases cyclin D1 and
cyclin E (Torricelli et al. 2013). In this way, γ-tocopherol helps the inhibition of
prostate cancer cells in humans.

α- and γ-tocopherols also protect kidney function. A meta-analysis by Monami
et al. (2021) showed a reduction in the incidence of contrast-induced nephropathy
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(CIN) after the treatment with α-tocopherol. Another study also found a decrease in
rat renal contrast-induced nephropathy with the pretreatment with α-tocopherol
(Kongkham et al. 2013). A similar result was also found by Tasanarong et al.
(2013) who compared an oral administration of α- and γ-tocopherol with the placebo
in patients affected by chronic kidney disease. α-tocopherol was the most effective in
preventing contrast-induced acute kidney injury compared to γ-tocopherol, while
both are effective against placebo. γ-tocopherols also protect against allergic rhinitis
and asthma (Wagner et al. 2007, 2008). Supplementation of γ-tocopherol for four
days protected from the inflammatory effect induced by allergen (Wagner et al.
2008).

Tocopherols were also found to protect eye functions as studies have shown the
role of vitamin E in the prevention of cataracts and glaucoma (Tanito 2021). Orally
administered α-tocopherol protected eyes from ultraviolet radiation-induced cataract
in rats, however, this effect was dose-dependent (Wang et al. 2011). Similarly,
α-tocopherol application as eye drops was found to prevent ocular oxidative damage
improving the ocular stability and efficiency (Xin et al. 2016). According to Pastor-
Valero (2013), a lower prevalence of cataracts could be associated with a higher
intake of vitamin E (α-tocopherol) and vitamin C through a high consumption of
fruit and vegetables following the Mediterranean diet.

The immunoregulatory role of tocopherols has also gained attention. Supplemen-
tation of tocopherols increases the function of the immune system, thus reducing the
chance of infection, especially in the older population (Lewis et al. 2019). Recently
Wu et al. (2000) showed a lymphocyte proliferation capacity of α, β, γ, and δ
tocopherols in a mice study. In general, the order of efficiency among the four
tocopherol isomers was β-tocopherol ≈ δ-tocopherol > γ-tocopherol >
α-tocopherol. Similarly, Mojani et al. (2013) reported a lymphocyte proliferation
activity of α-tocopherol alone or in combination with mixed-tocotrienols. These
studies suggest a potential beneficial role of tocopherols in strengthening the body
immune system under different stress conditions.

Phytosterols have several health-promoting activities, including a reduction in
blood cholesterol levels, antioxidant, and anti-inflammatory activities, as summa-
rized in Table 8.4. Phytosterols help lowering the total cholesterol and low-density
lipoprotein cholesterol (generally regarded as “bad cholesterol”) in blood by reduc-
ing their absorption (Lagarda et al. 2006; Trautwein and Demonty 2007; Vezza et al.
2020). The exact mechanism behind the reduction of LDL cholesterol is still under
investigation, however, many theories mentioned the precipitation of cholesterol in
the presence of added phytosterol and competition for absorption (MacKay and
Jones 2011; Chawla et al. 2016). The efficiency of phytosterols in lowering the LDL
cholesterol levels in blood plasma is higher when their intake is associated with fat
intake, as bile secreted in the presence of fatty food facilitates the fat mixed micelles
formation, important for plant sterols absorption (Trautwein and Demonty 2007).
The same study revealed that there is cholesterol in the bile that is not completely
reabsorbed in the presence of phytosterols and is later excreted in feces. Outside of
the micellar phase, cholesterol is not soluble, and forms a co-crystal with unabsorbed
phytosterols and they are excreted together. Cholesterol and phytosterol share the
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Table 8.4 Health benefits of phytosterols

Health benefits References

Reduced blood cholesterol level Li et al. (2018), Reaver et al. (2019), Trautwein and Demonty
(2007), Wu et al. (2014)

Anti-obesity activity Thornton et al. (2011), Li et al. (2018), Masuzaki et al.
(2019), Vezza et al. (2020)

Anti-diabetic activity Ramalingam et al. (2020), Krishnan et al. (2021), Jayaraman
et al. (2021)

Antioxidant activity and reduc-
tion of oxidative stress

Koc et al. (2021), Lesma et al. (2018), Paniagua-Pérez et al.
(2008)

Anti-inflammatory activity Othman and Moghadasian (2011), Valerio and Awad (2011),
Kurano et al. (2018), Teixeira et al. (2021), He et al. (2022)

Anti-atherogenic activity Nashed et al. (2005), Moghadasian et al. (2016), Ghaedi et al.
(2020)

Anticoagulant Salunkhe et al. (2018), Gogoi et al. (2018)

Anticancer activity Awad et al. (2007), Jiang et al. (2019), Blanco-Vaca et al.
(2019)

Immune system modulation Paniagua-Pérez et al. (2008), Boukes and Van de Venter
(2016), Le et al. (2017), Hu et al. (2017)

same transporter protein and process, there is also a competition for sterols uptake
and transportation that contributes to reduce the cholesterol level in the body
(Trautwein and Demonty 2007). In a randomized, placebo-controlled study, Reaver
et al. (2019) reported a 10.2% decrease in low-density lipoprotein cholesterol
(LDLc) through the dietary supplementation of 1.5 g/day phytosterol equivalents.
Similarly, an association of lower total cholesterol and LDLc with phytosterol intake
was found by Li et al. (2018). They also found a lower-body max index, waist
circumference, and prevalence of overweight/obesity in the population with higher
phytosterol intake in their diet. Many other studies have also shown the inverse
relationship between phytosterols intake and obesity (Vezza et al. 2020). In a diet-
induced obesity mouse model, Thornton et al. (2011) found a lower mass accumu-
lation in a high-fat diet with phytosterols. Masuzaki et al. (2019) also reported a
reduced preference for a high-fat diet in mice after phytosterol intake (brown rice-
specific c-oryzanol) through modulation in striatal dopamine D2 receptor and further
changing metabolic function. They described phytosterol as a possible approach to
protect against obesity and diabetes. In addition, Jayaraman et al. (2021) found
β-sitosterol may play a role in the downregulation of the IKKβ/NFκB and c-Jun-N-
terminal kinase (JNK) signaling pathway, which helps to reduce obesity-induced
insulin resistance. Daily supplementation of 20 mg/kg of body weight of phytos-
terols stabilized the level of blood glucose, serum insulin, and marker of oxidative
stress in high-fat diet-fed diabetic rats (Krishnan et al. 2021). A similar result was
also observed by Ramalingam et al. (2020). Administering daily 15 mg/kg of body
weight of β-sitosterol to rats on high-fat feeding for up to 30 days, they found lower
plasma glucose and increased levels of insulin.
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Further, phytosterols are also found to have antioxidant, anti-inflammatory,
anticoagulant, and atherosclerotic properties. A study by Koc et al. (2021) suggests
the potential use of β-sitosterol on renal and cardiac necrosis and apoptosis due to the
anti-inflammatory and antioxidant properties of phytosterols which further reduce
oxidative stress. Paniagua-Pérez et al. (2008) have demonstrated the antioxidant
properties of phytosterols and found that β-sitosterol could trap up to 78.12% of free
radicals at 250 μg/mL of phytosterol, through DPPH assay. Lesma et al. (2018) also
reported the antioxidant activity of phytosterols, γ-oryzanol, and their conjugates.
Anti-inflammatory activity is the other important role of phytosterols. Teixeira et al.
(2021) reported the potential anti-inflammatory effect of phytosterol as it reduced
TNF-α and IL-6 in inflammation induced by lipopolysaccharide in the macrophages.
Another study also found the anti-inflammatory activity of the β-sitosterol in the
macrophages through the inactivation of STAT1 and NF-κB (Valerio and Awad
2011). He et al. (2022) also reported on the anti-inflammatory role of phytosterols,
which reduced lipopolysaccharides-induced inflammation of acute lung injury
through the activation of the LXRs/ABCA1 pathway. Reduction in IL-6, TNF-α,
and MCP-1 levels in the adipose tissue in the mice with obesity-induced chronic
inflammation also shows the potential anti-inflammatory activities of phytosterols.

The anti-atherogenic role of phytosterols and their effect on cardiovascular
diseases is one of the most discussed and highly controversial topics. Some studies
have shown positive effects, while others have shown a detrimental effect on
cardiovascular health. Moghadasian et al. (2016) reported a positive effect on
atherosclerotic lesion size and severity compared to control when they supplement
low-density lipoprotein receptor knockout (LDL-r-KO) mice with a wild rice and
phytosterol combination. They attributed the result seen to the decrease in plasma
LDL and the increase in fecal cholesterol extraction. Nashed et al. (2005) reported an
anti-atherogenic activity of phytosterols and inhibition of proinflammatory cytokine
production as a possible pathway for such effect in apolipoprotein E (apoE) deficient
mice. apoE is the protein which plays important role in lipid transportation in plasma
(Hatters et al. 2006). Further, anticoagulant activities of phytosterols were reported
by Gogoi et al. (2018) and they suggested a possible use of soybean-extracted
β-sitosterol to prevent thrombosis-associated cardiovascular disorder. There are
some studies in which authors have discussed the possible negative effects of
phytosterols on coronary atherosclerosis. In particular, a genome-wide meta-analysis
by Scholz et al. (2022) revealed a detrimental effect of phytosterols on coronary
artery disease (CAD). They found a positive relationship between increased serum
phytosterol levels with CAD after performing a Mendelian randomization analysis.
Similarly, a study on mice found an increased rate of ventricular arrhythmia,
impaired cardiac function, and sudden death with the increased plasma level of
phytosterols (Ge et al. 2021). Therefore, further studies, in vivo and in vitro, are
required to better understand the effect of phytosterols on cardiovascular health.

Anticancer properties and immune system stimulation are other possible health
benefits of phytosterols. Phytosterols may have a role in reducing cancer through the
modulation of proliferation and apoptosis of tumor cells (Blanco-Vaca et al. 2019).
Awad et al. (2007) observed a reduction in tumor cell growth and an increase in the
transformed cell membrane in human breast cancer cells. They found an increase in
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Fas protein level and caspase-8 activity and discussed them as a possible cell
signaling pathway in the protection mechanism against a cancer cell. A meta-
analysis by Jiang et al. (2019) also revealed an inverse relationship between phy-
tosterols intake and cancer risk. Another commonly discussed health benefit o
phytosterols is the stimulation of the immune system. Boukes and Van de Venter
(2016) reported phagocytosis and increased innate immune response in the U937
leukemia cells, in vitro study, after the pretreatment with phytosterols extracted from
Hypoxis spp. Similarly, Hu et al. (2017) also reported an increase in immunity with
the phytosterols supplementation in weaned piglets. There was an increase in
lymphocyte production in the mice after the administration of phytosterols in the
study conducted by Paniagua-Pérez et al. (2008). A study has also shown the
immunotherapeutic potential of phytosterols after observing immunosuppression
activity of β-sitosterol and stigmasterol in murine cells (Le et al. 2017). Because of
their multiple health beneficial effects, nowadays plant sterols have become an
important part of the development of functional foods (Poli et al. 2021).

8.5 Conclusions

Tocopherols and phytosterols are plant fat-soluble bioactive compounds which play
an important role in the plant physiology, ranging from the protection against
oxidative stress to cell membrane stability. Tocopherols are mainly known for
their antioxidant activity, while phytosterols are primarily known for their capacity
to lower blood cholesterol levels in the human body. Recently, several randomized
in vitro and in vivo studies have shown their multiple beneficial effects on human
health. As these important bioactive compounds are not synthesized by animals and
the human body, the daily recommended intake of these compounds should be
fulfilled using plant and plant-derived food sources. Vegetable oil, fresh vegetables,
nuts, and fruits are the primary sources of both tocopherols and phytosterols, and
their regular inclusion in the diet is recommended, although the same compounds
have been also successfully extracted from by-product of agri-food industry or from
commonly non-edible plant portions such as the leaves of fruit trees. Considering the
proven health beneficial properties of these compounds, more research is needed to
identify low-cost widely available sources of tocopherols and phytosterols to
enhance their availability at global scale. Further, future research work should
focus on the development of plant-based functional food products investigating
sustainable biofortification approaches for increasing the level of tocopherols and
phytosterols in commonly consumed crops and plant products.
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